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ABSTRACT: This paper presents an approach to assess the effects of common cause failures (CCF) on de-
pendability of digital systems. Independent failures of system components and partial or lethal shocks are con-
sidered in a global CCF model, the Atwood model. The Coloured Petri nets (CPN) are used to modelize the
digital system and the common cause failures. Based on the CPN, the parameters of Atwood model are esti-
mated analytically and by Monte-Carlo simulation. Thereafter, the Atwood model of CCF is modified in order
to represent the dominant failures propagation on some system components in the case of partial shocks. The
assessment of system dependability, in the presence of CCF failures, becomes possible. This approach is applied
to a representative instrumentation and control system of a nuclear power plant. The system is large with a high
level of redundancy.

1 INTRODUCTION

Digital Instrumentation and Control systems (I&C)
systems have a major role in the control and protec-
tion of nuclear power plants. These systems are char-
acterized by a large size, a high level of redundancy
and a complex logic of vote. Although digital systems
and their components are more reliable than the ana-
log systems they replace, some characteristics raise
specific issues on the modelling and assessment of
common cause failures (CCF). A CCF can occur in
operational or on demand modes and affect groups of
identical or similar redundant components having the
same function and operating under comparable con-
ditions.

The β-factor model is the most widely used model

for taking into account CCF within all types of
systems, like nuclear power plants (US-NRC 1987)
and, more generally, in the field of power system
(Bricman-Rejc et al. 2013). It involves the failure of
whole set of components when a common cause event
occurs. This model is used when the system is com-
posed of only a few components. However when the
system is composed of dozens of identical or similar
components, the assumption of failure of whole set of
components, when a CCF occurs, is very conserva-
tive.

The concepts of partial and lethal shocks are very
well adapted to represent the potential effects of stress
factors on electronic hardware. In the next section
we introduce the Atwood model of CCF that takes
into account independent failures of components and



CCF failures due to shocks that affect all or only
some components. For dependability assessment, the
CCF model must be integrated within a system model.
Also, the system model must integrate the dynamic
behaviour of the digital I&C systems. The Markov
chains or Petri nets are such types of models and the
β-factor model has been integrated in Markov chains
(Lilleheier 2008) and in the classical Petri Nets (Sig-
noret et al. 2013). The main drawback of these models
is the combinatorial explosion of their size when the
modelled system is large. To overcome this drawback,
we propose to use the Coloured Petri Nets (CPN) for
I&C systems modelling. The section three of this pa-
per develops a CPN model for an I&C system and,
also, for the CCF Atwood model. In the same sec-
tion, firstly, we propose two approaches for parame-
ters estimation of Atwood model and, secondly, we
modify this model to represent asymmetry in CCF
propagation oriented on some types of components.
If for I&C modelled system only the hardware ar-
chitecture is considered, the oriented propagation of
CCF on this architecture takes into account the soft-
ware and human aspects of functional safety analysis.
Section four presents the probabilistic assessment of
dependability indicators (PFD, MTTF) or of the im-
pact of the oriented CCF. Finally, some conclusions
and future outlook are presented.

2 MODELLING OF COMMON CAUSES
FAILURES (CCF)

2.1 The Atwood model

The model introduced by Atwood (1980) considers
that the system components are subject to two types
of failures: independent failures and shock failures.
Two kinds of shock failures are defined: lethal shocks
and partial (or non-lethal) shocks. In a large redun-
dant systems with N components, a shock is assumed
to be non-lethal when it affects k components among
N with 1 ≤ k ≤ N . A shock is lethal when it affects
all components. In the case of a non-lethal shock,
only the failure of some components is considered.
Each component has then a conditional probability
p of failure. Individual failures, non-lethal and lethal
shocks are assumed to follow independent processes.
The occurrence frequencies of shocks (denoted µ for
non-lethal shocks and ω for lethal shocks) are as-
sumed to be constant.

The failure rate of a specific component in a group
of N elements, due to an independent failure or to a
non-lethal shock is:

λN1 = λi + µ.p.(1− p)N−1 (1)

The failure rate of a group of k components from N
with 1 ≤ k ≤ N due to a non-lethal shock is:

λ
(N)
k = µ.pk.(1− p)N−k (2)

The failure rate of N components due to a non-
lethal and lethal shock is:

λNN = µ.pN + ω (3)

For a specific component in a group of N compo-
nents, the total failure rate is given by:

λTOT = λIND + ω + µ.
N∑
k=1

Ck−1
N−1p

k.(1− p)N−k (4)

The Atwood model is considered representative for
the phenomena leading to multiple failures in the
large digital I&C systems. It allows to represent CCF
affecting only a part of the all components of the sys-
tem. However, it introduces three parameters to es-
timate p, µ and ω. The results will be sensitive, of
course, to the values used, usually given by expert
opinion or by using default values. The default values
usually used for these parameters are the following:

• α = µ
λTOT

= 0.405: the rate of non-lethal shocks.

• p = 0.2 ou 0.33 ou 0.5 : conditional probability
of component failure in a non-lethal shock.

• βletal = ω
λTOT

= 5.10−3 : the rate of lethal shocks.

Later, in this work, we propose to determine the
values of these parameters by two approaches: an an-
alytical one, or a second approach based on results of
Monte-Carlo simulations.

2.2 The Coloured Petri nets (CPN) model

In order to asses the impact of CCF in the depend-
ability study of digital I&C systems, it is necessary
to have a model of this studied system that is able to
take into account the system dynamics. A widely used
model in the dependability studies of dynamic sys-
tems is represented by the Petri nets (Signoret et al.
2013). Since I&C systems are complex and large, we
choose to use the coloured Petri nets (CPN) type.
CPN (Jensen & Kristensen 2009, Jensen 1997) is a
discrete-event modelling language combining the ca-
pabilities of Petri nets with the capabilities of a high-
level programming language. The main difference be-
tween a classical Petri Net and a CPN is that the CPN
tokens can have different colours representing data
types (e.g. Boolean, integer or more complex data
structure). The formal definition of CPN is as follows.

A Coloured Petri Net is a 9-uplet CPN =
(P,T,A,Σ, V,C,G,E, I), where:

1. P is a finite set of places.

2. T is a finite set of transitions, P ∩ T = ∅.

3. A ⊆ P × T ∪ T × P is a set of directed arcs.

4. Σ is a finite set of non-empty colour sets.



5. V is a finite set of typed variables such that
Type[ν] ∈ Σ for all variables ν ∈ V .

6. C : P → Σ is a colour set function that assigns
a colour set to each place.

7. G : T → EXPRV is a guard function that
assigns a guard condition to each transition t
such that Type[G(t)] = Bool, bool standing for
Boolean data type.

8. E :A→EXPRV is an arc expression function
that assigns an arc expression to each arc a such
that Type[E(a)] = Type[C(p)], where p is the
place connected to the arc a.

9. I : P → EXPR∅ is an initialisation function
that assigns an initialisation expression to each
place p such that Type[I(p)] = Type[C(p)].

Individual CPN models can be hierarchically re-
lated to each other in a formal way, i.e. with a well-
defined semantics. CPN model hierarchy is realized
through substitution transitions. The idea is to asso-
ciate a transition to a more complex CPN (a module),
which gives a more precise and detailed description
of the activity represented by the substitution transi-
tion (represented by a double rectangle, e.g. in figure
2). The places connected to a substitution transition
transmit a given marking from a high level (level of
substitution transition) to a low level (level of module)
and vice versa. CPN concept of hierarchy allows us to
propose a modular modelling approach for a complex
systems, based on generic modules that can be instan-
tiated as often as needed.

Additionally, the probabilistic dependability as-
sessment requires the time evolution of the system.
For this, the CPN must take into account the time
aspect. In a timed CPN (Jensen & Kristensen 2009,
Jensen 1997), the time is given by a global clock.
In addition to their colour, the tokens contain a time
value, also called a time stamp. When a transition is
enabled, it is fired and changes the time stamps of to-
kens which are deposited in its output places. In these
places, the tokens remain frozen and can not be used
to enable other transitions until the current model time
(given by the global clock) is smaller than their time
stamps. As soon as the time stamp of the tokens is
greater than or equal to the current time model, these
tokens can enable other transitions which are instantly
fired. In other words, the time stamp describes the
earliest model time from which a token can be used.

The following drawbacks can be cited: the low
readability (which can be put into perspective by us-
ing hierarchical CPN) and the difficulty in verifying a
Petri net model. This last drawback can be offset by
using a verification of CPN properties. This properties
verification is supported by the state space method.
The basic idea underlying the state space method is
to compute all reachable states and state changes of

the CPN model and to represent them as a directed
graph, where nodes represent states and arcs repre-
sent occurring events. From a constructed state space,
it is possible to answer a large set of questions con-
cerning the behaviour of the system, such as absence
of deadlocks, a possibility to be able to reach a given
state. We have used this formal verification of a CPN
to study and validate some specific safety properties
of an I&C systems (Pinna et al. 2013), but a Monte-
Carlo simulation can be also realized without this type
of verification.
In this paper, we propose to integrate the Atwood
model into a CPN model of an I&C system. The ob-
tained model allows the assessment of the CCF im-
pact on the system dependability. In order to realize
this assessment, in the next section, we introduce a
case study coming from a nuclear power plant.

3 CASE-STUDY PRESENTATION AND ITS
MODELLING

The studied system is a digital protection system. It
is a part of the defence in depth of a nuclear power
plant.

3.1 System architecture

This protection I&C system contains four divisions,
which are strictly identical, see figure 1. These di-
visions are physically separated. Each division is
composed of five ”Acquisition & Processing Units”
(APU). The APU 0, 1 and 2 represent the subsystem
A (SSA). The APU 3 and 4 represent the subsystem
B (SSB). The gathering of APU into subsystems takes
into account the allocation of control functions of the
I&C system. For the same control function, there is
one implementation in an APU of SSA and one im-
plementation in an APU of SSB with different inputs
and treatment and their outputs must be identical in
the normal operating mode.

Different electronic boards C1 et C2 are included
in each APU. Each APU contains one C1 board. The
APU 0 and 1 contain four C2 boards, and the APU
3, 4 and 5 contain three C2 boards. These electronic
boards are used for reception, treatment and emission
of signals.

A second type of partition is defined: the groups of
APU (GAPU). A group of APU contains all of the
APU i (i [0,4]) of the four divisions.

3.2 Modelling assumptions

3.2.1 Assumptions for the electronic boards
modelling

A constant failure rate is considered for boards.
The C2 boards of an APU are considered as a series

system.
The board failures can be detected by a set of self-

tests. When a failure is detected by a self-test (SA),



Figure 1: Architecture of the case study I&C system for a nuclear
power plant

the detection time is considered null. When a failure
is not detected by a self-test (NSA), then it is detected
offline during a periodical-test. For a given division,
these periodical-tests take place at each 18 months.
So every quarter of this period, a division is tested
during the periodic tests. After the periodic tests, the
failed boards are repaired.

According to the supplier of electronic boards, their
coverage rate of self-tests (tc) is 100% , but this value
seems to be ambitious. We add to the model the non-
detected failures by self-test (NSA failures) in order to
take into account the errors due to operation (different
parameters or installation of boards from the nominal
conditions specified by the provider). Thus the cover-
age rate is reduced at 85%. The global failure rate of
the boards remains identical (λIND = λSA + λNSA).
The rates of detected failures (λSA) and non-detected
failures(λNSA) are adjusted by the following equa-
tions: λSA = tc.λIND and λNSA = (1− tc).λIND.

3.2.2 Assumptions for global system modelling
The hazardous event is represented by the failure of
the protection I&C system.

The occurrence of this hazardous event is based on
the voting logic of the APU:

• An APU fails when a card C1 or C2 is failed.

• A group of APU (GAPU) fails when 3 out of 4
APU is failed (3oo4).

• A subsystem (SSA or SSB) fails when a GAPU
is failed.

• The I&C system fails when a subsystem is
failed (1oo2) or when two subsystems are failed
(2oo2).

We assume that the mission time of the protec-
tion I&C system is ten years. Indeed, this system is
retrofitted only during the decennial maintenance op-
erations of the nuclear plant. System unavailability
can occur during the ten years. The system changes
from unavailable to available state without being as
good as new as it is not fully retrofitted on this pe-
riod of ten years. Some electronic boards may be still
failed when the system becomes available.

3.3 CPN modelling

We propose to use a modular approach for system
modelling. Thus, the CPN model (shown in figure 2)
is composed by the following modules:

• CCF generating (blue box)

• System representation (red box)

• State system description (green box)

Figure 2: High level coloured Petri net of the I&C system

3.3.1 CCF generating using Atwood model
Non-lethal CCF are modelled by the CPN sub-net
shown in figure 3. It corresponds to the substitution
transition DCC non letale of the figure 2. The place
Nb-carte contains the number of electronic boards N
in the system. The firing of transition Save maintains
the number of electronic boards N of the system in
the place SNb carte and set N tokens in the place
nb carteu. The transition proba is fired N times. The
function defdcc() draws a random value using an uni-
form distribution law of probabilities in the interval
[0, 1]. If the drawn value is lower than conditional
probability p the considered board will be shock sen-
sitive. The returned value will be 1, otherwise 0.

The firing of init temps transition allows to deter-
mine the occurrence time of the non-lethal shock us-
ing the function floor(exponential(!mu)+0.5) and, in
the same time, to specify if it is detected or not by
a self-test. This is done using the function detect().
This function draws a random value using an uniform
distribution law of probabilities in the interval [0, 1].
If the value is lower than coverage rate of self-tests
(tc), the non-lethal shock is detected. In this case the
function return the value 1, otherwise 0. The firing
of the transition dcc assigns the occurrence time of
CCF and the variable of failure detection at each to-
ken of the system that is shock sensitive. The tran-
sition no def dcc allows to remove the tokens repre-
senting boards that are not shock sensitive. The tran-
sition new dcc allows to generate the next occurrence



Figure 3: CPN sub-net modelling the non-lethal CCF

time of the non-lethal shock and to redefine the num-
ber of boards, which are shock sensitive.
Lethal CCF are modelled by the CPN sub-net shown
in figure 4. It corresponds to the substitution tran-
sition DCC letale of the figure 2. The firing of the
transition gene dcc l allows to determine the occur-
rence time of the lethal shock using the function
floor(exponential(!omega)+0.5). A lethal CCF affects
all the components (electronic boards) of the system
and is always detected online. Thus, there are issued N
temporized tokens with a color (’DCC-NL’,1) (1 for
detection). The next occurrence time for a new lethal
CCF is calculated since the previous is realized.

Figure 4: CPN sub-net modelling the lethal CCF

The Atwood model introduces three parameters to
estimate: p, µ and ω. Two approaches, analytic or by
simulation, can be used for doing their estimation.

Analytical approach for estimation of CCF
model parameters. From the expressions of α, βletal
and λTOT , we obtain the following equations system:

(1− α
N∑
k=1

pk(1− p)N−k)µ+ αω = αλIND (5)

(−β
N∑
k=1

pk(1− p)N−k)µ+ (1− β)ω = βλIND (6)

The value of conditional probability p is consid-
ered known (e.g. at classical default values 0.2, 0.33
or 0.5). The independent failure rate for an electronic
board is λIND = 2.35 10−6 h−1. The equations (5) and
(6) give the values of occurrence frequencies of non-
lethal shocks µ and of lethal shocks ω. The obtained
results are presented in Table 1.

Table 1: The values of occurrence frequencies µ and ω for non-
lethal and lethal shocks as a function of p using analytical ap-
proach

p µ in h−1 ω in h−1

0.2 9.52 10−7 1.18 10−8

0.33 9.52 10−7 1.18 10−8

0.5 9.52 10−7 1.18 10−8

Monte-Carlo simulation approach for estima-
tion of CCF model parameters. We introduce the
ratio between the occurrence rate of independent fail-
ures λIND and the total failure rate λTOT of a compo-
nent (an electronic board):

γ =
λIND
λTOT

= 1− α.
N∑
k=1

Ck−1
N−1p

k.(1− p)N−k − βletal

(7)

γ = 1− α.p− βletal (8)

We introduce alsoEi that represents the number of in-
dependent failure events realized in 10 years of sim-
ulations. This number is obtained by simulating only
the independent failures in Petri net model and their
occurrences are counted. It allows to obtain from the
equation 9, the average independent failure rate λIND
for a board in the system. The different rates can be
estimated from the following equations:

λIND =
Ei

10 ans ∗N
(9)

µ =
α.λIND
γ

(10)

ω =
βletal.λIND

γ
(11)

The expected value of Ei is equal to 8.28 and
the value obtained for independent failures rate is:
λIND = 2,36 E−6 h−1. The results obtained by ap-
plying this approach are presented in Table 2.

The occurrence frequencies µ and ω for non-lethal
and lethal shocks obtained by applying these ap-
proaches (analytical and simulation approaches) are
almost identical. This result allows, firstly, to validate
the proposed CPN modelling approach for the At-
wood shock model. Secondly, the Monte-Carlo simu-
lation approach could be used to revisit some assump-
tions supporting the Binomial Failure Rate model un-
derlying the Atwood shock model, especially in the
case of digital I&C systems including software.



Table 2: The values of occurrence frequencies µ and ω for non-
lethal and lethal shocks as a function of p using Monte-Carlo
simulation approach

p γ λTOT µ ω
0.2 0.995 2.37 10−6 9.62 10−7 1.18 10−8

0.33 0.995 2.37 10−6 9.62 10−7 1.18 10−8

0.5 0.995 2.37 10−6 9.62 10−7 1.18 10−8

Introduction of asymmetry in CCF propagation.
For a realistic modelling of common causes failures
(CCF) and of their impact on the systems depend-
ability, it is interesting to assume that some non-
lethal shocks predominantly affect some k compo-
nents among the all N components of the system, with
1 ≤ k ≤ N (e.g. only some types of electronic boards
belonging to the I&C systems). We propose to mod-
ify the generation of non-lethal CCF for simulating
the asymmetries in their propagation, in other words
considering ”oriented” CCF.

In a system with N components, a non-lethal shock
affects the boards with a conditional probability p.
The expected number of affected components is N ∗
p. The set of N components can be divided in two
sub-sets A (SSA) and B (SSB), containing respec-
tively a et b components, such as a+ b = N . Let be x
(respectively y) the probability that a component of
SSA (respectively SSB) is affected by a non-lethal
shock. From reasoning on mathematical expectation,
we have:

ax+ by = Np (12)

To determine x and y we choose how a CCF will af-
fect the SSA (p1) and SSB (p2), such as p1 + p2 = 1.
Thus, we obtain:

x =
N.p.p1
a

(13)

y =
N.p.p2
b

(14)

The solutions of these equations, x and y, are the prob-
abilities of non-lethal shock for the CPN tokens that
represent respectively the SSA and SSB components.

3.3.2 System modelling by CPN
The hierarchical and modular aspects of Coloured
Petri nets are exploited to develop the CPN model of
I&C system. Thus, each of its divisions is modelled
by means of a substitution transition at the high level
of the system, in the Figure 2. A division includes five
APU, each of them includes the correct number of
electronic boards C1 and C2. The CCF are transmitted
to the APU and to the boards by means of CPN places
(socket places). The state of an APU is determined by
the state of its boards (available or unavailable). Once
the state of a board changes, the new state of APU is

sent to the specification that determines the state of
the whole I&C system.

An electronic board represented in the Figure 5 has
three possible tangibles states: operational (”Marche”
place), failed and non-detected (”detection” place)
and in reparation (”reparation” place). When the
board is operational, it can change its state if one of
the following four events occurs:

• independent failure detected online by a self-test
(modelled by the purple Petri sub-net on the right
side of the model)

• independent failure detected offline in
periodical-tests (modelled by the purple
sub-Petri net on the left side of the model)

• non-lethal CCF detected online and lethal CCF
(modelled by the tokens received by ”AR DCC”
place from the CCF models of the Figures 3 and
4)

• non-lethal CCF detected offline in periodical-
tests (modelled also by the tokens received by
”AR DCC” place from the CCF model of the
Figure 3)

If the failures are detected during the periodic tests,
the ”rep” transition is fired and the board changes
its state to the reparation state. If the failures are
detected online, the board changes its state im-
mediately from the operational to the repair state.
The repair time is calculated using the function
floor(exponential(1/!MTTR)+1.0). As soon as the
board is repaired, its state changes immediately to the
operational state. The next occurrence times of the in-
dependent failures detected online and offline are also
calculated.

This CPN model of electronic boards are generic.
For all boards, only the numerical values of parame-
ters (failure and repair rates) are different.

3.3.3 System state modelling by CPN
Using the information about the state (avail-
able/unavailable) of the APU i (i ∈ [0,4] of the di-
vision j (j ∈ [1,4])), it is possible to determine the
state of the I&C system during the Monte-Carlo sim-
ulation using the CPN of Figure 6. The system state
is represented by a token whose colour is composed
of five booleans, each of them representing the state
of one APU. The different configurations on the tran-
sitions’ guards allow to define the conditions of avail-
ability/unavailability of the system.

The entire CPN model obtained for the I&C system
has 685 transitions and 504 places. Even if the model
size is large enough, the use of hierarchy and colours
concepts have resulted in a modular and readable
model obtained through the instantiation of generic
templates. We can note, that an equivalent classical
Petri net model for the same I&C system should have



Figure 5: CPN sub-net of an electronic board

Figure 6: CPN sub-net to determine the state of the whole I&C
system (available or unavailable)

several thousands places and transitions. The obtained
CPN model allows the probabilistic dependability as-
sessment of the system.

4 PROBABILISTIC DEPENDABILITY
ASSESSMENT

4.1 Probability of failure on demand

Since the I&C system is a protection system (its mis-
sion is to protect the nuclear power plant), we are in-
terested to asses only the Probability of Failure on
Demand (PFD). This is in accordance with the IEC-
61508 (2010) standard and its declination IEC-61513
(2011) that address the functional safety of digital
systems. We define two kinds of PFD:

• the real PFD that represents the I&C system un-
availability starting with the moment where the
electronic boards are not anymore in their opera-
tional state;

• the visible PFD that represents the system un-
availability only starting with the moment where
the boards failure is detected. The time between
the occurrence of non-detected failures and their
detection by a periodical-test is not considered.

The definition of the two kinds of PFD allows to
estimate the difference between the real state of the
system and the state observed by plant operators dur-
ing operation.

The PFD is estimate using Monte-Carlo simulation
by the following equation:

PFD =
System unavailability time

Mission time
(15)

The results presented in the Table 3 are obtained
after 10,000 histories during 10 years. The 95% con-
fidence interval for all of the results presented in Table
3 is also estimated and its value is < 10−6.

According to IEC-61513 (2011) ”there is not an
equivalent scheme to the reliability/risk reduction SIL
levels proposed in IEC 61508 in common use in the
nuclear sector”. Consequently, we do not associate a
SIL level for the system under study.

If the conditional probability of failure of one com-
ponent in a non-lethal shock p increases, there will be
more components affected by a shock and the PFD
also increases. The difference between the real PFD
and the visible PFD is about 10 to 100.



Table 3: Real and visible PFD of the protection I&C system for
different values of p

Indicators p Average
real PFD 0.2 2.5 10−5

visible PFD 0.2 < 10−6

real PFD 0.33 2.73 10−4

visible PFD 0.33 1.0 10−6

real PFD 0.5 5.4 10−4

visible PFD 0.5 4.0 10−6

4.2 Influence of the oriented non-lethal CCF

To asses the impact of asymmetric propagation of
non-lethal CCF, we consider the orientation of CCF
on the two sub-systems SSA and SSB, using the ap-
proach presented in section 3.3.1.

The conditional probability of failure of one com-
ponent in a non-lethal shock is p= 0.2. The frequency
of non-lethal shocks is arbitrary fixed at one shock
per year, i.e. µ = 1.14 10−1h−1. The lethal shocks are
not represented. 10,000 trajectories during 10 years
are also realized and the occurrence of system failure
ends the trajectory simulation. Table 4 shows the re-
sults. The sum of failures’ combinations (columns) is
equal with the total number of histories (10,000) for a
fixed CCF orientation.

Table 4: Combinations of failed boards leading to the system
downtime depending on p1 and p2

CCF orientation p1 SSA 0.1 0.2 0.3
p2 SSB 0.9 0.8 0.7

only CCF 9404 9723 9787
indep. SA failures 3 0 1
indep. NA failures 21 9 9
indep. SA and NSA 77 46 42
CCF & indep. SA failures 8 6 1
CCF & indep. NSA failures 487 216 160
MTTFF (in h) 49586 28921 22056

We can observe that the more a sub-system is pre-
ferred (according to p1 and p2), the more the MTTFF
increases. The logic vote explains this phenomenon.
We observe also that independent failures combina-
tions without CCF rarely leads to system failure, due
to the high level of redundancy. Independent failures
detected offline lead more easily to system failure
than the ones detected online. This aspect can be im-
proved by increasing the frequency of periodic tests
or the coverage rate of self-tests.

5 CONCLUSIONS

The coloured Petri nets allow to represent the digi-
tal I&C systems and to assess the dependability in-
dicators considering CCF. The shock Atwood model
has been transposed in Petri net. It allows to take in
account the independent failures, the lethal CCF, but
also the non-lethal CCF. An extension of this model

was proposed to represent the asymmetric propaga-
tion of non-lethal CCF on privileged axes. This allows
to relax the assumption of the random repartition of
non-lethal shocks on the all components and to rep-
resent the effects of diversity. The proposed approach
has been applied to a representative case of I&C sys-
tem of a nuclear power plant.

The extremely low volume of operating experience
related to the protection I&C systems makes it diffi-
cult to estimate the α factors representing the condi-
tional probability of failures on demand of the k com-
ponents in a group of N components when a CCF oc-
curs. This CPN model could be used to simulate oper-
ating experience for obtaining more data, which make
a more accurate estimation of these factors.

Another interesting axis concerns the estimation of
the three parameters of the Atwood model. The pro-
posed Monte-Carlo simulation approach for the esti-
mation of these parameters has been validated by an
analytical approach. This Monte-Carlo simulation ap-
proach could be used to revisit the assumptions sup-
porting the Binomial Failure Rate model underlying
the Atwood model.

REFERENCES

Atwood, C. L. (1980). Estimating common cause failure rates
for pumps in nuclear reactors. Ph. D. thesis, California.

Bricman-Rejc, Z., M. Cepin, & A. Sitdikova (2013). Estimat-
ing common-cause failures parameters within power system
reliability analysis. In Annual Conference of the European
Safety and Reliability Association, ESREL 2013, Amster-
dam, pp. 2841–2846.

IEC-61508 (2010). Functional safety of electri-
cal/electronic/programmable electronic safety-related,
Volume 1-7.

IEC-61513 (2011). Nuclear power plants - Instrumentation and
control for systems important to safety - General require-
ments for systems.

Jensen, K. (1997). Coloured Petri Nets: Basic Concepts, Anal-
ysis Methods and Practical Use (Volume 1), Volume 1.
Springer Verlag.

Jensen, K. & L. Kristensen (2009). Coloured Petri nets: mod-
eling and validation of concurrent systems. Springer-Verlag
New York Inc.

Lilleheier, T. (2008). Analysis of common cause failures in com-
plex safety instrumented systems.

Pinna, B., G. Babykina, N. Brı̂nzei, & J.-F. Pétin (2013). Deter-
ministic and stochastic dependability analysis of industrial
systems using Coloured Petri Nets approach. In Annual Con-
ference of the European Safety and Reliability Association,
ESREL 2013, Amsterdam, pp. 2969–2977.

Signoret, J.-P., Y. Dutuit, P.-J. Cacheux, C. Folleau, S. Collas,
& P. Thomas (2013). Make your petri nets understandable:
Reliability block diagrams driven petri nets. Reliability En-
gineering and System Safety 113, 61–75.

US-NRC (1987). NUREG/CR-4780. Procedures for treating
common-cause failures in safety and reliability studies, Vol-
ume 1 and 2. Washington, DC: US Nuclear Regulatory Com-
mission.


