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1 INTRODUCTION 

Assessing the dependability of a critical system gen-
erally relies on Boolean models (Fault Trees models, 
Reliability block diagrams, etc.) for: 
• qualitative analysis, such as the determination 
of the sets of component’s failures that cause a crit-
ical or undesired system situation (it is defined as 
the cut set), 
• quantitative analysis to evaluate the probabili-
ties of undesired events or RAMS indicators, that 
can be based on the Sylvester-Poincaré Theorem or 
Binary Decision Diagrams technique (Dutuit & 
Rauzy 2005, Ibanez-Llano et al. 2010). 

This paper explores the use of probabilistic lan-
guages introduced by (Garg et al. 1999) as a formal 
framework for qualitative/quantitative analyze of the 
event sequences. Before to describe the probabilistic 
languages concept, we will present some reasons 
that motivate the choice of events sequences in de-
pendability studies. 

Evaluation using cut analysis requires a full inde-
pendence of the events involved in the cut set. How-
ever, this assumption cannot be stated in the case of 
dynamic reparable systems due to the order relation-
ship between events occurrence: 
• occurrence of event may depend on previous 
occurrence of other events; e.g. in the dynamic 
controlled systems event occurrence may be pro-
hibited by its control according to a previous oc-
currence, or not, of some other events, 
• impact of event sequence on the system failure 
may be different according to the scheduling of the 
event occurrence within the sequence; e.g. event e1 

followed by event e2 leads to an undesired event 
while e2 followed by e1 has no impact. 

In these cases, the value of the obtained probabil-
ity, based on cut-set calculus, represents an over-
statement of the real probability that is searched, 
corresponding no longer with the actual needs of de-
pendability studies. 

Moreover, the cut-based analysis approaches fit 
well to the non-reparable systems. However, in dy-
namic reliability context, it is necessary to take in 
consideration the changes between the different 
modes of functioning/failure or when the systems 
turns back into a functioning state after having 
passed in a failure state. In this case the systems 
must be considered like reparable and only dynamic 
models are able to capture system reconfigurations. 

For all these reasons, the cut-set based analysis 
needs to be enriched by the determination and as-
sessment of event sequences within the cut-set. This 
evolution justifies the use of state space models to 
capture the system dynamic and the impact of com-
ponent’s failures and reparation on the system state. 
Some approaches have been recently developed to 
determine the critical sequences of events and some 
basic properties such as minimality and consistency 
has been proposed for dynamic reparable system 
(Bouissou & Bon 2003, Chaux et al. 2013). Howev-
er, these approaches are based on deterministic lan-
guage theory and focus on the identification of a set 
of events sequences but present some limitations and 
divergences for qualitative and quantitative assess-
ment due to modeling and sequence calculus as-
sumptions. 

The paper is organized as follows. Section 2 pre-
sents the state of the art and highlights the current 
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limitations of existing approaches for sequences as-
sessment. Section 3 introduces the theoretical 
framework of the probabilistic languages (Garg et al. 
1999) and the used notations. In section 4 is intro-
duced the case study which is used like a support for 
the rest of the paper. Section 5 develops a theoretical 
framework based on probabilistic languages for 
quantitative assessment of events sequences. This 
proposed approach is illustrated using the case study 
in the section 6. Finally, section 7 presents the con-
clusions of this work and identifies some future re-
search directions. 

2 STATE OF THE ART 

The existing approaches in quantitative assessment 
area can be classified in two categories:  
• Boolean models where the failure of the system 
is expressed using the Boolean structure function; 
• state space models where the system behavior is 
represented by states and transitions and his evolu-
tion is described by the associated language. 

2.1 Boolean models 

The most important Boolean models are: Event 
Trees and Fault Trees (classics/dynamics). Event 
Trees (Papazoglou 1998) are graphical models that 
can be discretized according to their possible effects 
or distinction in a series of simple events. In the 
same time Event Trees are adapted for modeling and 
assessment of the events sequences for non-
reparable systems such as safety or protection sys-
tems. Instead, the reparable systems or instrumenta-
tion and control systems can not be modeled by 
Event Trees. Fault Trees are built according to an 
undesired event that is decomposed into basic events 
till this decomposition becomes impossible or 
judged useless (Dutuit & Rauzy 2005). These mod-
els are efficient for cut-based analysis but have limi-
tations for sequence-based analysis because of the 
static point of view they consider. 

2.2 State space models 

The most currently used state space models in the 
context dependability studies are (Cassandras & 
Lafortune 2008): Finite State Automata and Lan-
guage theory, Petri Nets and Markov chains. Other 
models can also be mentioned in the context of this 
paper. Boolean logic Driven Markov Process 
(BDMP) developed by Bouissou & Bon (2003) re-
places the basic events of a fault tree with Markov 
chains; this combination introduces dynamic fea-
tures to cover the order and impact of events occur-
rence. Events sequences are determined by explora-
tion of the model starting with the initial state of the 
system (Bouissou 2006). Stochastic Hybrid Automa-

ton is a stochastic temporized finite state automaton 
with embedded differential equations for each mode 
(Perez Castaneda et al. 2011); this model enables to 
determine sequences of events and their probabilities 
thanks to Monte-Carlo simulation, but it is not pos-
sible to obtain analytical solution. 

All these models can be used, according to their 
deterministic or stochastic features for event se-
quences analysis (Bouissou & Bon 2003, Chaux et 
al. 2013) with two kinds of problem solving: deter-
mination and probability assessment of the event se-
quences. 
For the determination problem, approaches based on 
the language theory are efficient to compute some 
event sequences leading to a given state. Calculus is 
possible only for coherent systems and helps to de-
termine the minimal set of sequences aiming to re-
construct the whole failure language (Chaux et al. 
2013). This approach does not allow quantitative as-
sessment for the determined events sequences. 

For the assessment of sequence probability, some 
limitations are encountered by the existing ap-
proaches: 
• state space models such as Markov chains are 
efficient for determining a state probability. Con-
sequently, a sequence needs to be assimilated to its 
final state that must be considered as an absorbing 
state. In this case, probability of this state repre-
sents the probability of the language reaching this 
state. 
• the sequence probability calculus is based on 
the events occurrence probability; in existing ap-
proaches, the value of this probability remains the 
same whatever is the state from which the event 
occurs. However, in dynamic system, a given event 
may have different occurrence probability in dif-
ferent system states even if its meaning – failure or 
reparation of the component ci – remains the same 
in all sequences. 

Probabilistic Languages (Garg et al. 1999), that 
takes advantages from both languages theory and 
stochastic process theory, appears to be an interest-
ing way towards a formal framework for the analysis 
of event critical sequences. The next section presents 
the theory foundation of the probabilistic languages 
concept. 

3 PROBABILISTIC LANGUAGES 
FRAMEWORK 

The theory of probabilistic languages was developed 
by Garg, Kumar & Marcus (1999) in order to model 
the stochastic discrete event systems (DES) behav-
ior. 

To simplify the formal definition of the probabil-

istic language, a special event called “termination 

event”, noted �∆, is used to represent the fact that the 

state of the system obtained after the occurrence of a 



sequence is a terminal state. A system state is termi-

nal if it represents a special interest for the study 

(e.g. system mission achievement, dangerous failure 

state). Thus the system behavior is given by the set 

Ω of finite length sequences followed or not by the 

termination event: 

Ω  =  Σ
∗(�∆  +  �)  = Σ

∗
�∆  ∪  Σ

∗ (1) 

In this equation Σ is the set of all events called al-

phabet, Σ∗ is the set of all finite events sequences of 

the alphabet Σ (* is the iteration operation called also 

Kleene-closure) and � represents an empty sequence 

of events. 
To determine the occurrence probability for an 

events sequence s, should be considered not only the 
independent occurrence of this sequence but also the 
occurrence of all sequences that starts with s (all the 
sequences which have s like prefix). The set of all 
the sequences having a given prefix sequence s is 
given by: 

< � >= {��| �� ∈  Ω} (2) 

Definition 1 (Garg et al. 1999): Consider the meas-

urable space (Ω,�), where Ω = Σ
∗(e∆  +  �) and F is 

the σ-algebra generated by {< � > | s ∈  Ω}. Then a 

probabilistic language (p-language) ℙ is a probabil-

ity measure on the measurable space (Ω,�). 
Thereby the termination probability for a se-

quence s (the probability that the evolution of a sys-
tem ends after the occurrence of s) is given by the 
following expression: 

ℙ ��Δ =  ℙ � −   ℙ ��!∈Σ ,∀� ∈ Σ∗ (3) 

where ℙ(s) represents the occurrence probability of s 

and ℙ(��)!∈Σ  represents the probability of contin-

uous operation beyond s. 

The probabilities of termination corresponding to 
different sequences are mutually exclusive, so the 
cumulative probability that the system arrives in a 
terminal state can be obtained by adding the individ-
ual probabilities for all possible sequences: 

ℙ Syst �Δ =   ℙ s�Δ!∈!∗  (4) 

Sometimes it is easier to describe a p-language 
using an associated automaton that can recognize 
this language. 
Definition 2: A probabilistic automaton (or p-
automaton) over the alphabet (set of events) Σ is de-
fined by the following quintuple: 

�! =   (�,�, �,ℙ,  �!) (5) 

where: 
• X is a finite set of states; 
• � is a finite set of events called alphabet; 
• �: � ×� → � is the transition function that as-

sociates to each initial state and each event an 
arrival state; 

•  ℙ ∶ �×�×� ⟶ 0, 1
 
is the probability tran-

sition function affecting to each transition a 
discrete occurrence probability which satisfies 
the following relation: 

ℙ(�! , �, �!) !∈Σ!!∈!
≤ 1,∀�! ∈ � (6) 

• �! represents the initial state. 

 

The evolution of a p-automaton is the following: 

if the system is in the state �!, the transition e to the 

state �! is done with the probability ℙ (�! , �, �!). The 

probability transition function can be extended to the 

paths � ⊂ X ΣX
∗ in the p-automaton �! (a path is 

obtaining by concatenating the transitions, where the 

end state and the initial state of two consecutive 

transitions coincide). The probability of the paths is 

defined by the next equation: 

�! ∈ � ∶  ℙ ���! = ℙ � ℙ � ! ��!  (7) 

Each p-automaton defines a p-language and in-
versely each p-language can be represented by a p-
automaton. 
Definition 3 (Garg et al. 1999): The p-automaton 

�! =   (X,Σ, �,ℙ,  �!) with: 

∀�, � ∈ Σ
∗
, � ∈ Σ ∶  ℙ �, �, � =

! !

! !
, if  t = ��

0, otherwise .

 (8) 

generates a L p-language.  

4 PRESENTATION OF THE CASE STUDY 

In order to present the application of probabilistic 
languages we start by considering an oven tempera-
ture control system (Figure 1). It operates in the fol-
lowing manner: the oven temperature can be con-
trolled by a proportional integral controller (PI) or 
by an On/Off controller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Structural diagram of the temperature con-
trol system of an oven. 
 



The proportional integral controller (PI) has the 
role of keeping the temperature at a given target val-
ue and is characterized by a failure rate �!" and by a 
probability of failure on demand �!"#$%. The role of 
On/Off controller is to maintain the temperature in a 
given range and is also characterized by a failure 
rate �!"/!"" and by a probability of failure on de-
mand 

 
�!"#$%/!"". When the controller PI fails, the 

On/Off controller provides the temperature control if 
this one is not failing on demand. In the same man-
ner if the On/Off controller fails the PI controller 
will provide the temperature control (if it not fails on 
demand). 

When either of the controllers is failed it will be 
repaired, the repair process being characterized by a 
repair rate μ!" respectively μ!"/!"". This operating 
mode represents the simplified operating mode (ob-
tained by removing the continuous part of the sys-
tem describing the temperature evolution) of the 
case study defined in (Perez et al. 2011). 

The values for the different rates that characterize 
the system transitions are: 
�!" = 3.5 ∙ 10

!!
 ℎ
!!, �!"/!"" = 2 ∙ 10

!!
ℎ
!!,  

 �!" = 8 ∙ 10
!!
ℎ
!!, �!"/!"" = 10 ∙ 10

!!
ℎ
!!, 

�!"#$% = 0.03, �!"#$%/!"" = 0.05. 
The automaton that describes this system is present-
ed in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Continuous Time Markov Chain of the 
case study. 

5 PROPOSED APPROACH 

The proposed approach is decomposed into four 
steps. 

5.1 Step 0: system modelling 

The approach based on probabilistic languages theo-

ry proposed by Garg et al. needs to give a priori the 

p-language (the set of sequences and for each se-

quence s the occurrence probability of sequences sub 

set that have s like prefix). In other words, the p-

language is built from equation (3). This knowledge 

(the whole set of sequences and their probabilities) 

is not aware in the dependability studies. In depend-

ability studies, the problem is rather reverse: giving 

a system, we need to determine the events sequences 

and, after that, to calculate their occurrence probabil-

ities. Thus, we propose to work with, as initial data, 

the p-automaton. 

5.2 Step 1: events probability determination 

The p-automaton needs to be provided with event 

occurrence discrete probability for each transition 

(as in definition 2). As in dependability studies the 

probability laws describing the stochastic 

phenomena are rather continuous, we propose to 

determine discrete probabilities required by p-

automata theory using embedded Discrete Time 

Markov Chain (DTMC) (Figure 3) in a continous 

time stochastic process. This embedded DTMC is 

obtained by considering only the instants of 

transition firing between states. Using embedded 

DTMC ensures that the system reaches a stationnary 

probabilities distribution of states. Consequently, the 

probability �!" of a transition �!" that starts from a 

given state si to another state sj is determined as the 

ratio between the rate of this transition and the sum 

of the rates for all transitions starting from state si. 

This probability is given by the following relation: 

ℙ �!" = �!" =
�!"

(�!")!!!
 (9) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Discrete Time Markov Chain representing 
the p-automaton for the case study. 
 

For example on the case study, the occurrence 

probabilities for the transitions �!", �!! and �!" are: 

ℙ �!" = �!" =
�!"/!"" 1− �!"#$%/!""

�!"/!"" + �!"
 

ℙ �!! = �!! =
�!"/!""�!"#$%/!"" + �!"�!"#$%

�!"/!"" + �!"
 

ℙ �!" = �!" =
�!" 1− �!"#$%

�!"/!"" + �!"
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Note that the sum off all the transitions, which 

can start from a given state, is equal to one. 

5.3 Step 2: sublanguages determination 

After event probability determination, next step is 

about probability sequence calculus. 

Considering the case study, we focus on the anal-

ysis of the sequences that reach the state 3 (danger-

ous state). Indeed, in this state, the system is com-

pletely failed and the temperature oven is 

uncontrolled. 

To use the equation (3), which gives the expres-

sion of the probability of these sequences, state 3 

must be considered as a terminal state. Thus for a 

sequence, which terminates in state 3, considering 

first that the occurrence probability of a sequence is 

equal with the product between transitions probabili-

ties (equation 7) and also considering the events �!", 

�!! and �!", which allowed the system to continue 

his evolution beyond the state 3, the termination 

probability for the sequence s it is: 

ℙ ��Δ =  ℙ � −   ℙ ��  

= ℙ � −   ℙ ��!" + ℙ ��!! +  ℙ ��!"  

= ℙ � −   ℙ � ℙ �!" + ℙ � ℙ �!!

+ ℙ � ℙ �!"  

= ℙ � −  ℙ � ℙ �!" + ℙ �!! + ℙ �!"  

= ℙ � −  ℙ � �!" + �!! + �!"  

= ℙ � −  ℙ � ∙ 1 = 0  

This approach is proposed in the p-languages the-

ory and it was developed in the context of synthesis 

of control strategy by supervision (Wang & Ray 

2004). The obtained result shows that, in dependa-

bility studies, the calculus of events sequences prob-

ability is not possible if this p-language is coupled 

with embedded DTMC without any cautions (if the 

terminal state of a sequence is not an absorbent state, 

its probability is always equal to zero). 

To avoid this, we propose to determine firstly the 

whole set of events sequences of the system, that is 

represented by the language L!"#. This language can 

be represented as the union of sublanguages associ-

ated with the states of the system. A sublanguage as-

sociated to a state �! is defined as the set of all 

events sequences, which lead the system from its ini-

tial state to the considered state. 

���� = ����
  (10) 

To determine the sublanguages �� we propose to 

use the theory of rational languages and more pre-

cisely the Arden lemma (Carton 2008). 

Arden Lemma: Being two languages A and B and be-

ing the equation: 

 �! = �!� + � (11) 

where �! represents the unknown language: 

1. if � ∉ �, the only solution of the equation is 

�! = ��
∗. 

2. if � ∈ �, the solutions have the form �! =

� + � �
∗ where � ⊆ Σ

∗.  

The lemma is mainly used in the case where 

� ∉ � and the language �! = ��
∗ is the unique solu-

tion. 

For each state �! of the system the equation (11) 

can be written, considering the sequences starting 

from all the other states �! ≠ �! and arriving in the 

state �! by only one transition. The set of n equations 

(11) (where n is the number of system states) allow 

to obtain all the sublanguages �!. 

Having a system represented by a p-automaton 

and using this approach we can determine all the 

events sequences without model exploring. 

5.4 Step 3: sequences probability calculation 

Each events sequence of the system 

� = �!"�!"…  � !!! ! that starts from the initial state 

�! and arrives in the state �! can be extracted from 

the language �!"# otained in the previous step. Using 

the probability for each transition of the p-automaton  

obtained in step 1, we propose to use the following 

equation in order to obtain the termination 

probability for the sequence � = �!"�!"…  � !!! ! : 

ℙ ��! =   ℙ(�!")!!"∈!
, ∀� ∈ �∗ (12) 

The meaning of this equation is that the 

probability of a events sequence is equal with the 

product of the probabilities of all of its events eij . 

Figure 4 summerizes the different steps of our 
proposed approach to formally determine the whole 
set of events sequences and to assess their 
probability using the probabilistic languages. 

6 APPLICATION ON THE CASE STUDY 

6.1 Application of the proposed approach 

Step 0: Figure 3 shows the embedded Discrete Time 
Markov Chain representing the p-automaton of the 
case study. 

Step 1: The transition probabilities �!" are calculated 

using the equation (9). 

Step 2: The sublanguages associated to each state 

represent the sub set of the sequences that lead the 

system from the initial state 1 to one of his states. 

Considering each state of the automaton as terminal 

state (not absorbing) we obtain the next equations: 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Approach proposed for the probabilistic 
assessment of events sequences. 
 

�! = �!�!" + �!�!" (13) 

�! = �!�!" + �!�!! + �!�!" (14) 

�! = �!�!" + �!�!" + �!�!! + �!�!" (15) 

�! = �!�!" (16) 

For example the first equation (13) denote the 

sublanguage associate to state �! as being the all 

events sequences arriving in this state by only one 

transition: from state �! (all the events sequences 

previously terminated in �!: �!) followed by the 

transition �!" or from state �! (all the events se-

quences previously terminated in �!: �!) followed 

by the transition �!" (according to Figure 3). 

Using the Arden lemma, the equations (13-16) give 

the next expressions for the sublanguages: 

• to state 1: 

�! = �!" + �!" �!! + �!"�!"
∗
�!" �!! +

�!" �!! + �!"�!"
∗
�!"

∗
�!" �!! +

�!"�!"
∗
�!"�!" �!" +

�!" �!! + �!"�!"
∗
�!" �!! +

�!" �!! + �!"�!"
∗
�!"

∗
�!" +

�!" �!! + �!"�!"
∗
�!"�!"

∗ (17) 

• to state 2: 

�! = �! �!" + �!" �!! + �!"�!"
∗
�!" �!! +

�!" �!! + �!"�!"
∗
�!"

∗
  (18) 

 

• to state 3: 

�! = �!�!" + �!�!" �!! + �!"�!"
∗
  (19) 

• to state 4: 

�! = �!�!" (20) 

Step 3: Having the sublanguage defined for each 

state of the considered system we can obtain firstly 

the probability for a sublanguage and secondly the 

probabilities for events sequences belonging to this 

sublanguage. To illustrate the sequence probabilities 

assessment, the results obtained for two sub-

languages (�!and �!) are presented in this paper. 

For the simplification we will use the following 

notations: 

�!" = � ;  �!" = 1− � ;  �!" = �! ;  �!" = �! ;   

�!! = 1− �! − �! ;  �!" = �! ;  �!" = �!; 

�!! = 1− �! − �!;  �!" = �!;  �!" = 1− �!. 

 

Probabilities assessment for the sublanguage L! 

Using the expression (17) we can calculate the prob-

abilities of different iterations that compose the 

regular expression of the sublanguage �! and, after 

that, we obtain the final analytic expression: 

ℙ �! = ℙ ��! =!∈!∗
!!!!!!

!! !!!!!!! !!!!!
= 1  (21) 

This result, the probability of the sublanguage 

ℙ �! , is compliant with the expected one: indeed, 

for the p-automaton of the Figure 3, the probability 

of all sequences starting from state 1 and reaching 

back to state 1 must be obviously equal to one. Nev-

ertheless, the approach is able to provide the proba-

bility of all individual sequences reaching to this 

state. To illustrate this fact, the occurrence probabil-

ity for some particular sequences, extracted from �! 

and that lead the system in the state 1, are obtained 

doing the numerical calculus. Their values are pre-

sented in Table 1. Firstly we can observe that the 

sum of probabilities of considered events sequences 

is approximately equal with 1 and this corresponds 

to analytical solution of the sublanguage probability 

(eq. 21). Secondly we can identify the most relevant 

events sequences (by the greatest values of their 

probability). 

 

Probabilities assessment for the sublanguage �! 

The sublanguage �! describes infinity sequences 

which bring the system in the failure state 3 from the 

initial state 1: 

ℙ �! =
!!!!!!!!!

!! !!!!!!! !!!!!!!
  (22) 

Calculating the numerical values for some se-

quences we obtain the values from Table 2. The 

state 3 represents the dangerous state because the 

oven temperature is uncontrolled and thus we can 

Step 0. Modeling the system as a fi-

nite states automaton (FSA) 

Step 1. Obtaining the p-automaton 

using embedded discrete time Mar-

kov chain (DTMC) technique 

p-automaton ≡  DTMC 

ℙ �!" = �!" =
�!"

�!"!!!

  

Step 2. Determine the sublanguages 

associated to a state �! 

(rules of Arden) 

Step 3. Calculate the probability of 

one or more sequences  s ∈ L! 

ℙ ��! =   ℙ(�!")

!!"∈!

 



identify the most critical events sequences (with the 

greatest values of their probability) of the system. 

 
Table 1. Occurrence probabilities for few sequences 
that lead the system in the state 1. ______________________________________________ 
 

Sequence �!       Sequence probability ℙ �!  

______________________________________________ 

s
1
= e

12
e
21

        0.9213    

s
2
= e

12
e
22
e
21

       0.0276    

s
3
= e

12
e
23
e
33
e
32
e
21

     4.9961e-06    

s
4
= e

12
e
22
e
23
e
32
e
23
e
32
e
21

   4.8080e-10    

s
5
= e

12
e
23
e
34
e
43
e
32
e
21

    1.8331e-08    

s
6
= e

12
e
22
e
23
e
33
e
34
e
43
e
32
e
21

  2.2602e-11   

s
7
= e

12
e
23
e
34
e
41

      1.0233e-04    

s
8
= e

13
e
34
e
41

       0.0215    

s
9
= e

13
e
33
e
34
e
41

      8.8586e-04    

s
10
= e

13
e
34
e
43
e
34
e
41

     3.2502e-06    

s
11
= e

13
e
32
e
21

       0.0256    

s
12
= e

13
e
33
e
32
e
22
e
23
e
32
e
21

   4.1624e-09   
______________________________________________ 

           ℙ �! = ℙ �! ≅ 1!!
 

______________________________________________ 

 
Table 2. Occurrence probabilities for few sequences 
that lead the system in the state 3. ______________________________________________ 
 

Sequence �!       Sequence probability ℙ �!  

______________________________________________ 

s
1
= e

12
e
23

        2.3744e-04    

s
2
= e

12
e
22
e
21
e
13

      0.0014   

s
3
= e

13
e
33

        0.0021    

s
4
= e

12
e
22
e
23
e
32
e
23
e
33

    3.8620e-11    

s
5
= e

12
e
23
e
33
e
34
e
43

     1.4724e-09   

s
6
= e

13
e
33
e
34
e
43
e
32
e
23

    4.0899e-11   
______________________________________________ 

          ℙ �! = ℙ �! ≅ 0.0037!!
 

______________________________________________ 

6.2 Analytic validation of the results 

In order to check the validity of the results (sequenc-

es probabilities), we propose the next approach: 
1. To determine the stationary distribution of states 
probabilities for embedded DTMC [π! π! π! π!] by 
using the equations: 

� = � ∙�      and       � ∙ 1 = 1 (23) 

where the vector � represents the state probability 

distribution, M is the matrix of transitions probabili-

ties and 1 is a vector with all elements 1. 

Using the equations (23) we determined the ana-

lytic form for the state probabilities. 

2. To prouve that the probabilities for different sub-
languages, obtained by the equations (17-20), the 
following relation is to be validated: 

ℙ �! ∙ ℙ ��!!∈!∗

!
!

!

= ℙ �! ∙ ℙ �!→! = ℙ �! (24) 

It means that the probability to reach state �! is 

equal to the product of the probability of the initial 

state �! and the probability of the sublanguage from 

�! to �!. 

• for �!: �! ∙ ℙ �! = �! 

• for �!: �! ∙ ℙ �! = �! 

• for �!: �! ∙ ℙ �! = �! 

• for �!: �! ∙ ℙ �! = �! 

7 CONCLUSIONS 

In this paper, we presented the use of the theory of 
probabilistic language for the assessment of the oc-
currence probability of events sequences that de-
scribe the system evolutions. In order to be able to 
apply this theory, for a system modelled by a finite 
state automaton, we proposed a 3 steps approach. 

The use of the embedded Discrete Time Markov 
Chain in a continuous stochastic process for deter-
mining the events probability makes assumption that 
the system is in a stationary state characterizing by 
stationary distribution probabilities over its states. 
But the embedded DTMC is not limited to Continu-
ous Time Markov Chain; a DTMC can also be de-
fined from semi-Markov or under some hypothesis 
from more generally stochastic processes. Another 
advantage to use the DTMC to obtain the events 
probability is that the probability of an event is not 
the same during the system evolution, but can de-
pends on the state where it occurs (in other words 
the same event can be characterized by different oc-
currence probabilities). The use of the Arden lemma 
permits to formally determine the whole set of 
events sequences, without model exploring. Finally, 
the probability occurrence for relevant or critical 
events sequences and for a sublanguage is deter-
mined. 

The approach is applied on a control system tem-
perature. This case study shows the ability of the 
proposed approach to take into account together sto-
chastic phenomena characterized by continuous laws 
of probability (such as failures and reparations pro-
cesses) and phenomena characterized by discrete 
laws of probability (such as failures on demand). 

This work opens several ways of research in our 
future activity. First of all, it will be interesting to 
propose an approach that allows calculating the 
probabilities of events sequences in a transient sys-
tem state before reaching the stationary distribution. 
Secondly, we are interested to apply this approach in 
more complex systems including components ageing 



with the more generally underlying stochastic con-
tinuous process. Also, an extension of the operations 
provided by the p-languages theory should be useful 
for taking in account different types of systems 
(non-deterministic systems, reconfigurable systems, 
systems composed of several sub-systems) in de-
pendability studies. 
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