
HAL Id: hal-01083188
https://hal.science/hal-01083188v1

Submitted on 15 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and Verifying an Evolving Distributed
Control System Using an Event-Based Approach

Christian Attiogbé

To cite this version:
Christian Attiogbé. Modelling and Verifying an Evolving Distributed Control System Using an Event-
Based Approach. ISoLA’2014 - Leveraging Applications of Formal Methods, Verification and Valida-
tion. Specialized Techniques and Applications, B. Steffen & T. Margaria, Oct 2014, Corfu, Greece.
pp.573 - 587, �10.1007/978-3-662-45231-8_48�. �hal-01083188�

https://hal.science/hal-01083188v1
https://hal.archives-ouvertes.fr

Modelling and Verifying an Evolving Distributed Control
System Using an Event-based Approach

Christian Attiogbé

LINA - UMR CNRS 6241 - University of Nantes
F-44322 Nantes Cedex, France

Christian.Attiogbe@univ-nantes.fr

Abstract. Evolving distributed systems are made of several physical
devices distributed through a network and a set of functionalities or ap-
plications hosted by the physical devices. The configuration of the phys-
ical components may be modified through the time, hence the continu-
ous evolving of the whole system. This should affect neither the hosted
software components nor the global functionning of the whole system.
The components of the systems are software components or physical
components but their abstract models are considered with the aim of
modelling and reasoning. We show that an event-based approach can be
benefically used to model and verify this kind of evolving control sys-
tems. The proposed approach is first presented, then the CCTV case
study is introduced and modelled. The resulting model is structured as
a B abstract machine. The functional properties of the case study are
captured, modelled and proved. The refinement technique of Event-B is
used to introduce and prove some properties.
Key words: Heterogenous components, Modelling, Event-B, Property
verification

1 Introduction

Many software applications are required for decentralized control of highly inter-
acting components; they need to be not only reliable but also extensible hence
the use of evolving distributed control systems.

Context. The study of distributed systems has been the subject of years of
research and development [6, 5, 9]; several results exist at operating systems,
middleware and application levels. However specific attention was paid to static
distributed environment where the involved hosts (client and server processes or
peers), are known and clearly identified as well as their architecture or configura-
tion. Three main architectures have governed the design of distributed applica-
tions: two-tier with the interaction between a client and a server, three-tier with
two levels of interaction (client-server, server-host) and n-tier architectures. The
later is the more general one: a client process located on any host may interact
via a middleware with one or several distributed servers.

The client/server two-tier architecture, generalized to n-tier and improved
with the peer-to-peer architecture, is used to structure most of the distributed
applications.

However, when the environment is not static but dynamic, ie its architecture
is evolving according to the (re)configuration of the hosts, then additional dif-
ficulties should be considered, more precisely at the system design level. These
difficulties rely on the identification of the hosts, the structuring of the exchanged
messages, the dynamic aspect of the links and consequently the structure of the
overall architecture of the system. Notably, instead of addressing a request to a
given server, a thin client will address a request to its environment. There is a
shift from the client-server relationship to a more flexible relationship between
an application and its virtual environment. Modelling and analysis should not
consider the precisely known interacting entities but their virtual counterpart.

Motivation. The current keen interest for virtualized distributed environment
(aka cloud, grid) pushes a difficulty at application modelling level because, more
and more applications are dedicated to evolving distributed environment, to
store data, to request functionalities or services, etc. Evolving distributed sys-
tems are those with an adhoc highly changing architecture, due to the behaviour
of their components. Heterogeneity of components (physical devices, software,
various models) is a specific feature of these systems. In this work we target
such evolving distributed systems and more specifically modelling and reason-
ing on a system which will be implemented or deployed as an evolving dynamic
distributed system. That means the interacting processes are neither explicitly
known nor explicitly identified, but the expected behaviour should be described
and formally analysed. This is a key for mastering heterogeneity.

Contribution. We propose an event-based approach to make it easy the mod-
elling and the analysis of evolving distributed applications. We show the effec-
tiveness of the proposed approach on a case study: a CCTV1 control system
which may evolve depending on the used devices and their reconfiguration. The
approach is based on the use of a virtual network of processes, an event-based
modelling and refinement; it can be exploited as a pattern in many other similar
cases.

Organisation. The remainder of the article is structured as follows. Section 2
is devoted to the evolving systems considered in the paper; their specificities are
underlined and then we present the CCTV case study (Sect. 2.2). Section 3 and
Section 4 are the core of the paper. We present the used approach (Sect. 3.2)
and its application to the modelling and verification of the CCTV case study
(Sect. 4). Finally, Section 5 concludes the article with some lessons and future
work.

1 Closed-Circuit Television

2 Evolving Distributed Systems

2.1 Issues on Evolving Distributed Systems

The correction of distributed systems is still a challenging concern according
to modelling, verification and implementation; this is essentially due to master-
ing complex non-deterministic behaviours, concurrency and safety. Moreover the
adoption of the service-oriented paradigm enhances not only the need of assis-
tance methods and techniques to build distributed systems but also the needs
of highly evolving distributed systems. Processes that represent parts of the sys-
tem are dynamically linked and unlinked, their behaviours may vary in the time;
consequently the global architecture of the system is changing dynamically.

One solution for resolving the difficulties is to build a formal model which
serves as a basis for the rigorous analysis and for the construction of (parts of)
the system.

Consider a system made of an undefined number of peers which cooperate
and provide services; the peers may be mobile, linked and unlinked to different
other peers. New peers may be involved with respect to needed functionalities.
The architecture of the system is therefore continuously changing.

The message-passing technique with explicit naming and peers identification
is not tractable in such an adhoc context; an implicit message passing is needed
instead. The evolving should not prevent from maintaining the functionalities
and the required properties of a distributed system. Among the issues to be
addressed for this purpose, we consider:

– the modelling issue, in order to best capture the requirements and provide
a faithful model. Appropriate structuring mechanisms are needed to get an
extensible and open system instead of a closed one.

– the reasoning issue, in order to provide method and guidelines to study
desired properties. This should be achievable in parts of the global formal
model.

We use a real life CCTV case study to present our contribution. This kind
of system is often distributed and highly evolving due to the evolution of the
architecture of the devices to be controlled.

2.2 The CCTV Control System

A CCTV2 system is often used for the surveillance of industrial plants, the
surveillance of homes or the control of various distributed equipments from a
central or a decentralized control room. There are several devices which are
linked to their controllers, but this architecture is changing with respect to spe-
cific surveillance policies or the adding of new devices, the removing of existing
devices. In a basic CCTV system the video captured by cameras are displayed
on dedicated screens which may have their own controller.

2 Closed-Circuit Television

The CCTV system may evolve in such a way that, instead of displaying
the video from cameras directly on screens, Digital Video Recorders (DVR) are
added to record the video which are used or analyzed later for various purposes
(Video Contents Analysis). Consequently, the architecture of system changes:
the videos are now recorded before being displayed on the screens.

The system is made of a set of cameras linked with control screens which
are under the supervision of humans. The cameras are directed towards parts
of a predefined area to be controlled for surveillance or intrusion detection. The
cameras send video streams to the control unit which displays the streams on
activated screens. More cameras and screens may be added to cover some un-
reached area without changing the functioning of the system. Thus the CCTV
control system is made on the one hand with several controllers, and on the other
hand with control screens, control cameras and video display units. The video
captured by the cameras are displayed on screens. A controller is linked with one
or several (input) cameras, it displays its output on one or several screens, and
it may have a DVR for storage.

The requirements stipulate that initially there is no recording of video; then
it can be decided to record and save the video while displaying them. Hence a
digital video recorder component will be introduced in the system. Accordingly,
the video stream will not only be the input of the screens but also the input of
the recorder if any.

Some functional properties are required to ensure the good functioning of the
control system. We identify and name each of them in order to refer to them in
the analysis section. They are summarized in Tab. 1.

FReq AreaOK All the area to be supervised are under control
FReq ctrlNCam Each controller can manage several cameras
FReq cam1Ctrl Each camera is managed by only one controller
FReq DispOk All the captured videos are displayed on some screens
FReq RecDispOK All active cameras should be under control
FReq RecOK All video received from the cameras are recorded
FReq NewDev It should be possible to add new cameras and screens

Table 1. Synthesis of the functional requirements

We have to model and analyse the functioning of this control system which
i) is made of several controllers, ii) manages several different devices, and iii)
has a varying architecture.

3 Modelling and Verification Approach

To master the dynamic aspect of evolving systems and the heterogeneity of their
components, abstract models with a light composition approach are required.

One solution is to view the systems as a virtual net of components; the com-
ponents may share abstract channels for communication. At a more concrete
level of each component, independently from the other components, the abstract
channels may be implemented in various way.

3.1 The Core Modelling Approach

Our approach is based on an event-based composition as a weak coupling of
processes that will interact through a common state space that includes abstract
channels dedicated to message passing. Our initial work was introduced in [3].
The model of a global system consists of

– a global state space made of the data types identified in the requirements;
– a set of process types that describe the identified components of the global

system. The component may be physical or logical. We have to identify
which are the interacting processes and the messages that they exchange.
Each process has its state space, a part of which is shared with the global
state space;

– a set of abstract channels to support the communication with the messages
that are exchanged among the process types. These channels are part of the
global state;

– a set of behavioural descriptions of the process types (they have the form of
guarded events).

A control is then handled via the interaction between the components which are
modelled as process types. Typically the sense/control/output steps in the stan-
dard cycle of control system are handled by the exchanges of messages through
the involved components.

3.2 Event-based Global Model: Virtual Net of Interacting

Components

We define and link process types via identified common data and abstract chan-
nels for interaction (see Fig. 1). The process types are the models of the com-
ponents identified within the requirements. The abstract channels are modelled
according to the interaction needs. Therefore each process type uses the defined
abstract channels and state, independently from the other processes; it is the
message-bus paradigm; here the buses convey messages with data types. Note
that this is a refined view which is compliant with the classical approach of
modelling a distributed system by a graph whose nodes are the state machines
describing processes. In our case the nodes stand for process types, and the
abstract channels denote the graph edges and more specifically the interaction
means: we have a virtual net of components interacting through the channels.

Therefrom, we have guidelines to help in discovering and modelling the de-
sired behaviours of a system with various architectures, including dynamic ones.
We emphasize an event-based view at global level, for composing processes. In

Shared State + abstract channels

Process TypeProcess Type

Fig. 1. Virtual net of process types

the description of the behaviour of each process type, only the common ab-
stract channels are used for interaction purpose, enabling thus an independent
behaviour with respect to the other processes. They can be of any type, enforcing
thus their heterogeneity. Consequently, the architecture of the processes which
are connected via the abstract channels is highly flexible. It enables any number
of process types, and any number of processes of each type to be composed. In
term of distributed control, we can handle in this way the composition of any
number of interacting devices and controllers.

For practical experimentation, we use the Event-B notation and method[2].
Event-B is based on first-order logic and set-theory enabling one to use the ap-
propriate mathematical toolkit to capture modelling aspect. To introduce a few
notation, total function (denoted by the symbol →), surjective function (denoted
by the symbol →→) are very useful to express easily some properties as we will see
in the modelling and verification part. In the scope of the Event-B method, our
process types are modelled as Event-B machines; asynchronous communication
is modelled with the interleaved composition of process behaviours which are
viewed as event occurrences.

Handling the evolving of architecture. An architecture is the set of pro-
cesses of various types connected to the abstract channels at a given moment.
That is the processes sharing the abstract channels conveying the message pass-
ing events from a current configuration. The configuration is submitted to re-
structuring or changes when the processes evolve.

An instance of a defined process type may join the configuration at any time.
In the same way a process may leave a given configuration at any time. These
behaviours do not change the modelling of the whole system.

Interaction aspects. Common abstract channels are introduced to link inter-
acting processes and make them communicate. An abstract channel is modelled
as a set; we keep it abstract to handle asynchronism. But later in the specification
process the channels can be refined, for example as FIFO Queues. The abstract
channel is used to wait for a message or to deposit it. The interaction between
the processes is then handled using the common abstract channels. Therefore,
communications are achieved in a completely decoupled way to favour dynamic
structuring. A process may deposit a message in the channel, generating thus an
event; other processes may retrieve the message from the channel.

Therefore we use guarded events, message passing and the ordering of event
occurrences; the processes synchronise and communicate through the enabling
or disabling of their events. An event is used to model the waiting for a data
by a process; it may be blocked until the availability of the data which enables
the event guard. The availability of the data is the effect produced by another
process event. Consider for example the case of processes exchanging messages,
one process waits for the message, hence there should be an event with a disabled
guard; another process with an enabled guard performs its behaviour which re-
sults in sending the message.

Composition of the processes. Practically the composition is implicit during
the modelling of the unstructured systems considered here. But a bottom-up
view may be adopted, where the composition of process types is made explicit.

The described processes Pi are combined by a fusion operation
⊎

that merges
an undefined number of process types. The semantics of the fusion operator
comes from the conjunction of processes paradigms[10, 1]. The fusion operator
merges the state spaces and the events of the processes into a single global system
Sysg which has the conjunction of the invariants, and which in turn can also be
involved in other fusion operations.

Sysg =̂
⊎

i

Pi =
⊎

i

〈Si ,Ei ,Evti〉 = 〈Sg ,Eg ,Evtg〉

According to the fusion operator, when process types are merged, a variable
denoting a set of current processes is introduced for each type; this variable is
used to identify the processes of the concerned type and to distinguish the events
related to each type. The processes access the global state and communicate with
others, through their events.

4 Modelling and Verifying the CCTV system

From the requirements we identify the following components: cameras, screens,
controllers, DVR. They have specific behaviours, they are loosely linked and their
number is varying. We use abstract channels to model the shared communication
links (videoChannel, · · ·).

The behaviour of a camera is to send a stream of captured signals to the
linked screens via the control units (the controllers). The behaviour of a screen
consists in visualising the streams of signals received from the cameras. A DVR
saves a stream of signal from cameras and also sends them on the screens.

4.1 A Glimpse of the Constructed Model

Following our analysis, the components of the CCTV system, viewed as process
types, have been gradually modelled using their weak composition. The result
of the composition is a virtual net of processes which is structured using the B
notation (with an abstract machine as the structuring unit). As enabled by the

flexibility of the fusion operator used to weakly compose the process types, at the
first abstract level, we have combined only the Cameras and the Screens in order
to capture earlier the feature imposed by the requirements; it is as if the cameras
are linked directly with screens. At a second abstraction level, the controllers are
introduced via a refinement where the virtual net is enlarged by other processes;
now it is as if the link between cameras and screens is detailed. Using this two
abstraction levels, we can handle some properties considering that the policy
deployed by the controllers and hence the evolving of the architecture does not
impact on the properties to be preserved. This is essentially the initial problem to
be solved when considering evolving distributed system. This approach enables
us to master the complexity of the model and also to master the verification of
the properties. It can be used elsewhere as a modelling and verification pattern.

The structuring of the state space is achieved using identified data types,
a set of state variables and an invariant that describes the properties of the
processes (camera, screen):

machine CameraHdl
· · ·

invariant /* state space predicate */
connectedCameras ⊆ CAMERA

/* the set of connected cameras */
∧ connectedScreens ⊆ SCREEN

/* the set of connected screens */
∧ activeCameras ⊆ CAMERA
∧ activeScreens ⊆ SCREEN
∧ activeCameras ⊆ connectedCameras
/* the active cameras are part of the connected ones */

∧ activeScreens ⊆ connectedScreens
∧ display ∈ activeCameras →→ activeScreens
/* the active cameras are connected to active screens */
/* All the active screens are used */

∧ videoChan ∈ P(VIDEO × CAMERA)
/* abstract channel: set of video+cameraId */

∧ nootherPriority ∈ BOOL
∧ videoStream ∈ VIDEO 7→ activeScreens

/* the video are displayed on one screen */
∧ displayedVideo ∈ P(VIDEO)
∧ activeDVR ⊆ DVR

/* the set of active DVR */
∧ videoStore ∈ VIDEO 7→ activeCameras

/* to store the video from the cameras */
∧ · · · /* more properties are added below */

Fig. 2. Abstract model of the CCTV system

The evolving of the system depends on the behaviour (modelled as a set of
events) that defines the involved processes. The events considered for the Camera
model description are summarised in Tab. 2.

Behaviour related to Camera

Event Description

addCamera a new camera is added
activateCamera one camera is activated
sendVideo a camera sends a video
rmvCamera a camera is removed

Table 2. Camera handling events

Behaviour related to Screen

Event Description

addScreen a screen is added
getVideo a screen gets a video
displayVideo a screen displays a video
rmvVideo a screen is removed
addDVR a DVR is added
getVideoDVR a DVR gets a video

Table 3. Screen handling events

The B specification to manage a Camera is the abstract machine equipped
with these related events (see Fig. 3). In the same way the behaviour dedicated
to the screen control is depicted in Fig. 4.

4.2 Mastering the Architecture and its Modelling

One of the advantages of the composition of the process types by the fusion op-
erator is that an important part of the model can be incrementally analysed, by
considering each process type, whatever the order. Not all the behaviours can be
analysed this way due to the lack of information for the interaction between the
processes; but as soon as the appropriate types are introduced the interaction
analysis is achieved. From the composition point of view it is very beneficial
for mastering the evolving architecture. The reconfiguration of the system ar-
chitecture for example does not impact on the modelling and the control of the
system. However there are some limitations to this type of composition: one can
neither constrain the composition nor hide some communication channels. From
the heterogeneity point of view, data abstraction and behavioural abstraction

machine CameraHdl
sets CAMERA, SCREEN, VIDEO
variables

connectedCameras, activeCameras, display , videoChan,nootherPriority
activeDVR, videoStore

invariant

/* state space predicate, as given above (Fig. 4.1) */
initialisation

connectedCameras, activeCameras, display , videoChan,
nootherPriority , activeDVR, videoStore := ∅, ∅, ∅, ∅, ∅, ∅, ∅

events

addCamera =̂ · · ·

; activateCamera =̂ · · ·

; sendVideo =̂ · · ·

; rmvCamera =̂ · · ·

end

Fig. 3. Structure of the Camera abstract machine

machine ScreenHdl
sets SCREEN, VIDEO /* abstract sets */
variables

connectedScreens, activeScreens, display , videoChan,nootherPriority ,
videoStream, displayedVideo, activeDVR, videoStore

invariant

/* state space predicate, as given in Fig. 4.1 */
initialisation

connectedScreens, activeScreens, display , videoChan,nootherPriority ,
videoStream, displayedVideo, activeDVR, videoStore := ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅

events

addScreen =̂ · · ·

; getVideo =̂ · · ·

; displayVideo =̂ · · ·

; rmvVideo =̂ · · ·

; addDVR =̂ · · ·

; getVideoDVR =̂ · · ·

; · · ·

end

Fig. 4. Structure of the screen abstract machine

allow to consider in the same way heterogeneous components via their process
types.

We do not deal with the parameterisation of the architecture in this case
study.

4.3 Verifying the properties

The requirements stipulate that the system may satisfy the properties introduced
in the table Tab.1 (see Sect. 2.2). Some of them are captured without restructur-
ing. Some others are restructured; for instance, the requirement FReq RecDispOK

is rephrased as follows: all active cameras are recorded and displayed when the
DVR is activated.

Properties Descriptions

FReq DispOK:

All the captured videos are displayed on some screens.
FReq RecDispOK:

When the DVR is installed, all the displayed video are recorded and save
to ensure the DCA.
FReq RecOK:

All active camera are recorded and displayed

We have completely modelled and analyzed the system using the presented
approach, including the properties formalized (in Event-B) as follows.

The property FReq RecDispOK is modelled as follows:
((activeDVR 6= {} ∧ videoStore 6= {}) ⇒

((dom(videoStore) ⊆ displayedVideo)
∨ (dom(videoStore)\

(displayedVideo ∩ dom(videoStore))
⊆ dom(videoStream))))

The set inclusion is used in this formalisation to capture the FReq DispOK prop-
erty.

The properties FReq cam1Ctrl and FReq DispOK are captured through a to-
tal surjective function: display ∈ activeCameras →→ activeScreens.
Indeed the domain (activeCameras) of the total function indicates that all the
active cameras are displayed. The property FReq RecOK is captured in the in-
variant with the same total surjective function (because all the active cameras
that are displayed on the screens are recorded when the VCR is used).

The property FReq NewDev is handled through the events (addCamera, acti-
vateCamera) of the machine CameraHdl and the event addScreen of the ScreenHdl
machine; they impact on the variable display.

The abstract machine corresponding to the composition of the process types
is obtained by the merging of the parts of the machines of the processes. The
resulting machine is named IntergratedVideoSys. This later is refined in the fol-
lowing.

Refinement and verification The properties FReq ctrlNCam and FReq cam1Ctrl

are captured through a refinement (named IntergratedVideoSys r1) of the ab-
stract machine modelled previously.

To master the modelling and the verification of the required properties we use
the refinement technique available in the Event-B method. During the analysis
of the case, one can note that the three properties FReq DispOk, FReq ctrlNCam

and FReq cam1Ctrl are dependent and we model them gradually. Indeed from
an abstract point of view the FReq DispOk property is captured with a single
total function display , expressing that each camera (video) is displayed on one
screen and all the videos are displayed. Thus in the first abstract machine we
do not introduce the properties FReq ctrlNCam and FReq cam1Ctrl; they are
introduced in a refinement.

The refinement we have used is summarized as follows: a function f : A →→ B
is refined by two functions g and h defined using the same sets A, B together
with a new set I such that:

g : A → I ∧ h : I →→ B ∧
f ⊆ (g ; h)

More specifically, I stands for the set of controllers which have been intro-
duced in the refinement; the total function g and the surjecive function h are
used to capture respectively the properties FReq cam1Ctrl and FReq ctrlNCam.

Consequently, the three properties are proved using the refinement of the
previous abstract machine. This refinement process is a practical modelling and
verification pattern easily reusable for similar cases of control involving con-
trollers and controlled units in this decentralized way.

The abstract machine and its refinement have been implemented using the
Rodin toolkit (see Fig. 5 for the synthetic architecture).

The proof statistics (with the refinement related to the properties FReq DispOk,
FReq ctrlNCam and FReq cam1Ctrl) obtained from the Rodin toolkit are drawn
in the following table Tab. 4 . The context machines have their names suffixed by
Ctx, they contain the definitions of sets which are shared by the other machines
of the B project. The context machines do not generate proof obligations.

All the proof obligations for the correctness of our models (containing the
required properties) have been automatically discharged by the Rodin toolkit.

4.4 Further with the interoperability

A key to handle heterogeneity and semantic interoperability is the use of a lay-
ered structure composed of formal models, where the inner layer, the most ab-
stract one, is the most commonly homogeneous in terms of concepts, relations
and properties. The outermost layers are those with more specific details in the
models. Note that the proposed method should be viewed from the abstract layer

Fig. 5. Structure of the models (a snapshot from the Rodin toolkit)

ElementName Total Auto Undischarged
PO proved PO

IVS CCTV (project) 30 30 0

IntegratedVideoSysRef Ctx 0 0 0

IntegratedVideoSys Ctx 0 0 0

IntegratedVideoSys 24 24 0

IntegratedVideoSys r1 6 6 0

Table 4. Proof statistics

which is one of the many levels needed to master heterogeneity and semantic in-
teroperability. Indeed, from a low abstraction level, several formal descriptions
with various semantic models may be associated to one given component of a
system. However changing the abstraction level to the higher one, details are
forgotten until one can reach an abstract level where the semantics models are
interoperable; this corresponds to the event level and the virtual component
net level adopted in the current proposed work. The global properties and their
analysis are only possible at this level.

Establishing bridges between formal models, using for instance the matching
between domain specific ontological concepts is necessary to deal with inter-
mediary abstraction layers. A reference compatibility layer is required as the
commonly shared semantics; this is the smallest set of properties shared by all
components of a system. As far as the implementation is concerned, this refer-
ence compatibility layer is captured by the invariant of our Event-B model. For
this purpose, the choice of Event-B is worthwhile since Logics and Set Theory
have very basic concepts which can be easily shared or implemented with other

formalisms. Likewise, when we have to consider the composition of components
modelled with different formalisms, on the one hand the bridging between the
formalisms and on the other hand the reference to a compatibility layer are the
key solutions.

Therefore a tool specific analysis is required when different formal models
are considered to tackle different facets of a system. When it is necessary and
possible, equivalence proofs should be conducted but this is not required for all
the different facets. Interfaces between the models have to be built even with the
vision of narrowing or widening the models and their coverage.

In approaches such as Ptolemy [7, 8] or ModelHex [4], the compatibility be-
tween computation models or their synchronisation are emphasized; this is like
a semantic adaptation in order to make the models compatible. The main dif-
ference between these approaches and our is that we do not achieve a semantic
adaptation since we consider that the heterogeneity is inherently a feature of
complex systems. Rather we try to handle heterogeneity but by maintaining
consistency between the involved components.

5 Conclusion

We have presented a method to model and analyse a distributed control system
with a varying architecture. The method is based on the composition of the iden-
tified physical and logical components of the system described at the abstract
level. The components are described as process types. Their composition is based
on the sharing of abstract channels denoting message buses, used by the processes
to communicate without the identification of the interacting peers. This enables
us to handle the distributed and dynamic architecture of the control system. The
method helps to structure and model interacting components as process types.
To put into practice, the Event-B notation and method are used. It follows that
the refinement technique permits to handle some properties via refinement of
abstract structure defined at earlier steps. Especially, in order to handle the in-
dependence of the control with respect to the controllers and their architecture,
the desired relationships between the controlled units are established at abstract
level as if they are directly linked; then controllers are introduced in a refinement
and appear between the linked controlled units. All the properties are proved ei-
ther at abstract level or in the refinement. Experimentations are conducted with
a CCTV case study using AtelierB and Rodin. Our experiment is easily reusable
in other case studies involving a control system with a dynamic architecture.
The two-levels specification can be considered as the reference pattern when we
distinguish firstly at the abstract level the end-point relationship between the
controlled units (ie of the desired control policy) and secondly the structuring
of the controllers and their link as intermediary agents between the controlled
units. Further works are scheduled on the parametrisation of the architecture of
the controllers. In the current case of the CCTV the structuring constraints are
fixed. However, in some control systems for instance in embedded control sys-
tems, in order to manage energy consumption, the structure of the system can

be reconfigured. This leads us to think about various behavioural modes and to
define the structuring and thus the architecture with respect to these modes. The
desired properties and hence their proofs will depend on the behavioural modes.
But this can be as well analysed as various refinements of the same abstract
machine of the ongoing architecture.

References

1. M. Abadi and L. Lamport. Conjoining Specifications. ACM Trans. Program. Lang.
Syst., 17(3):507–535, May 1995.

2. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

3. C. Attiogbé. Event-Based Approach to Modeling Dynamic Architecture: Applica-
tion to Mobile Adhoc Network. In T. Margaria and B. Steffen, editors, ISOLA’2008,
volume 17 of CCIS, pages 769–781, 2008.

4. F. Boulanger, C. Jacquet, C. Hardebolle, and A. Dogui. Heterogeneous model
composition in modhel’x: the power window case study. In Proceedings of Gemoc
2013, Workshop on the Globalization of Modeling Languages, page 10 pages, Miami,
Florida, USA, Sep 2013.

5. L. Lamport. The implementation of reliable distributed multiprocess systems.
Computer Networks, 2:95–114, 1978.

6. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM, 21(7):558–565, 1978.

7. E. A. Lee. Disciplined Heterogeneous Modeling. In O. H. D.C. Petriu, N. Rou-
quette, editor, Proceedings of the ACM/IEEE 13th International Conference on
Model Driven Engineering, Languages, and Systems (MODELS), pages 273–287.
LNCS 6395, Springer-Verlag, October 2010.

8. C. Ptolemaeus, editor. System Design, Modeling, and Simulation using Ptolemy
II. Ptolemy.org, 2014.

9. A. S. Tanenbaum and R. van Renesse. Distributed Operating Systems. ACM
Comput. Surv., 17(4):419–470, 1985.

10. P. Zave and M. Jackson. Conjunction as Composition. ACM Transactions on
Software Engineering and Methodology, 2(4):379–411, October 1993.

