Table des matières

Conclusion

Références 1 Introduction

Ce rapport montre qu'il est possible de simuler le modèle mathématique d'une machine asynchrone triphasé avec le formalisme DEVS (Discrete EVent System Specification) et d'obtenir les mêmes résultats que ceux obtenus avec le logiciel Matlab/Simulink. Le modèle mathématique est obtenu par une mise en équation des courants statoriques et rotoriques du modèle orienté circuit proposé dans [START_REF] Yazidi | Double-fed three-phase induction machine abc model for simulation and control purposes[END_REF]. Il consiste en un système complet de six équations différentielles linéaires du 1 er ordre à six inconnues. Le modèle DEVS est basé sur la méthode de quantification QSS (Quantized State System) proposée par le professeur B.P Zeigler [START_REF] Bernard | .addSubModel(LPF(m, 500, "QSS3")) LPF2 = Machine.addSubModel(LPF(m, 500, "QSS3")) LPF3 = Machine.addSubModel(LPF(m, 500, "QSS3")) Meca = Machine[END_REF] et adaptée à la simulation des systèmes hybrides par E. Kofman dans [START_REF] Kofman | A third order discrete event simulation method for continuous system simulation[END_REF][START_REF] Kofman | Discrete event simulation of hybrid systems[END_REF][START_REF] Kofman | A second order approximation for DEVS simulation of continuous systems[END_REF][START_REF] Kofman | Quantization-based simulation of differential algebraic equation systems[END_REF].

Nous utilisons une implémentation en langage Python [http://www.python.org] des modèles DEVS de la librairie "Continuous" proposée dans le logiciel PowerDEVS [2]. Parmis ces modèles, l'intégrateur utilise la méthode de quantification des variables de sorties QSS qui permet d'éviter la quantification temporelle à pas fixe classique utilisée par Matlab/Simulink. Cette méthode nécessite cependant de fixer le pas de quantification qd de chaque intégrateur qui conditionne la convergence du système modélisé.

La simulation se fait par le biais d'une implémentation de l'algorithme optimisé (arbre de simulation à plat) du simulateur PythonDEVS [1]. Les résultats de simulations seront comparés aux résultats Matlab/Simulink obtenus dans le précédent papier intitulé "Simulation Maple d'une machine asynchrone triphasée".

Nous discuterons de notre approche et du calibrage de notre système dans une dernière section.

Modélisation DEVS

Cette section décrit le modèle mathématique et le modèle DEVS de la machine à induction triphasée que nous allons simuler par la suite. Nous présentons le modèle mathématique puis la modélisation de celui-ci dans le formalisme DEVS.

Modèle mathématique

Le modèle orienté circuit simplifié d'une machine à induction triphasée est donné sur la figure 1. Ce modèle peut être séparé en trois parties distinctes : Le stator, le rotor et le couplage magnétique entre ces deux entités.

FIG. 1 -Modèle orienté circuit

Le stator est alimenté par un système triphasé équilibré composé des tensions sinusoïdales v as (t), v bs (t) et v cs (t) :

v i (t) = V m sin(2π f t -(i -1) 2π 3) i = 1, 2 ou 3
Les tensions composées constituent un système triphasé équilibré en avance de

                         v as (t) =
) + i br . cos(θ r (t)) + i cr . cos(θ r (t) + 2π 3) v cs (t) = r s .i cs + L s d dt i cs -L ms 2 d dt i as + d dt i bs + L sr d dt i ar . cos(θ r (t) + 2π 3) + i br . cos(θ r (t) -2π 3) + i cr . cos(θ r (t)) v ar (t) = r r .i ar + L r d dt i ar -L mr 2 d dt i br + d dt i cr + L rs d dt i as . cos(θ r (t)) + i bs . cos(θ r (t) -2π 3) + i cs . cos(θ r (t) + 2π 3) v br (t) = r r .i br + L r d dt i br -L mr 2 d dt i ar + d dt i cr + L rs d dt i as . cos(θ r (t) + 2π 3) + i bs . cos(θ r (t)) + i cs . cos(θ r (t) -2π 3) v cr (t) = r r .i cr + L r d dt i cr -L mr 2 d dt i ar + d dt i br + L rs d dt i as . cos(θ r (t) -2π 3) + i bs . cos(θ r (t) + 2π 3) + i cs . cos(θ r (t)) T e (t) -T l = J. d dt Ω(t) + f .Ω(t) Ω(t) = d dt θ r (t) (1)
Le couple T e peut se calculer grâce à la formule donnée ci-dessous : Nous allons à présent donner le schéma bloc DEVS permettant la modélisation et la simulation du système d'équations 1. Les ordres de grandeurs des temps de simulation sont identiques que ceux observé dans le tableau 2. Le temps de simulation est multiplié par 8 lorsqu'on passe de dq=0.1 à dq=0.001.

T e (t

Modèle DEVS

Résultats de simulations

Discussion

Les tableaux 2 et 3 montrent les temps de simulations DEVS en fonction des pas de quantifications qd utilisés dans tous les intégrateurs du modèle complet (dans les filtres, au stator, au rotor...). Ces résultats sont en accords avec le fait que plus dq et petit plus les temps de simulations sont importants. Comme le montre le schéma 2, nous avons introduit des filtres pas bas au sein du système pour répondre à un problème de blocage de la simulation. En effet, au début de la simulation, le résultat de l'intégration (au sein du stator par exemple) donne des valeurs importantes qui impliquent une activation des modèles à des temps qui dépasse le temps final de simulation. Par conséquent, et en accord avec les algorithmes DEVS, aucun modèle est activé et la simulaiton ne démarre pas. L'introduction de filtre permet de lisser les valeurs brutales et de donner des temps d'activation des modèles raisonnable (inférieur au temps finale de simulation). La nouvelle version du logiciel Simulink effectue automatiquement ces rectifications mais les anciennes versions nécessitaient la même procédure.

L'introduction de filtre passe bas permet donc de débloquer la simulation mais peu introduire une erreur numérique suivant la valeur des coefficients des filtres. Dans ce papier les coefficients des filtres sont tous égaux à 2000 de manière à pouvoir laisser passer le maximum d'informations. Les valeurs de ces coefficients sont également suffisantes pour débloquer la simulation car les temps de réponse des filtres sont largement inférieurs aux constantes de temps des sous-systèmes filtrés. A l'heure actuelle, nous pouvons dire que le choix des valeurs des coefficients influe sur la réponse mais aussi sur le temps de simulation. Plus les coefficients des filtres sont bas, plus les réponses filtrés sont tronquées et plus les temps de simulations sont importants du fait peut être de la forme exagéré des signaux traités. Ces affirmations reposent sur l'expérience car il n'existe aucune méthode déterministe pour fixer ces coefficients et un travail devra être fait dans ce sens.

Nous sommes également conscient qu'une étude des performances de simulation aurait été plus juste avec un choix personnalisé des pas de quantification. Nous avons choisi de fixer des valeurs des pas identiques pour tous les intégrateurs alors que les dynamiques des signaux d'entrées sont différentes.

Introduction 2 Modélisation DEVS 2 . 1 3 . 1

 2131 Modèle mathématique . 2.2 Modèle DEVS . Résultats de simulations . 3.1.1 Machine à vide avec vitesse initiale nulle . 3.1.2 Machine en pleine charge avec vitesse initiale nulle . 3.2 Discussion .

 FIG. 2 -Schéma bloc Simulink de la MADA

 FIG. 3 -Modèles couplés du stator et du rotor

FIG. 4 -

 4 FIG. 4 -Modèles couplés de la force électromotrice et du couple

FIG. 5 -

 5 FIG. 5 -Modèles couplés de la partie mécanique et du filtre passe bas

3 . 1 . 1

 311 FIG.6-Vitesse mécanique Ω(t) pour T l = 0

FIG. 7 -

 7 FIG. 7 -Courants statoriques et rotoriques à vide, T l = 0

FIG. 8 - 2 -

 82 FIG. 8 -Couple électromoteur et force électromotrice coté stator avec T l = 0 Nm

3. 1 . 2

 12 Machine en pleine charge avec vitesse initiale nulleNous imposons à présent un couple de charge T l = 75 Nm égale au couple de charge nominal.

 FIG. 9 -Vitesse mécanique Ω(t) pour T l = 75

 FIG. 10 -Courants statoriques et rotoriques avec T l = 75 Nm

3 -

 3 FIG. 11 -Couple électromoteur et force électromotrice coté stator avec T l = 75 Nm

 FIG.12 -Erreur en fonction de dq pour T l = 0

 phase du stator sont fonction d'une inductance mutuelle L ms et des courants statoriques voisins. De même, le rotor est alimenté par un système triphasé équilibré composé des tensions sinusoïdales v ar (t), v br (t) et v cr (t). Chaque phase est caractérisée par une résistance r r et une inductance L r . Les interactions magnétiques entre chaque phase du rotor sont fonction d'une inductance mutuelle L mr et des courants rotoriques voisins. Les effets du rotor sur le stator (resp. du stator sur le rotor) sont fonction d'une inductance mutuelle L sr (resp. L rs), des courants rotoriques i ar (t), i br (t) et i cr (t) (resp. i as (t), i bs (t) et i cs (t)) et de la position électrique du rotor θ r (t).

	La vitesse mécanique Ω(t) est la solution d'un système de deux équations différentielles du 1er ordre avec pour coefficient,
	la force de frottement f et l'inertie J. Cette équation n'est pas homogène car elle est égale à la différence entre le couple
	électromagnétique T e et le couple mécanique T l .
	Les entités observées en sortie du système sont les courants (statoriques et rotoriques) ainsi que le couple électromagné-
	tique de la machine T e (t). Pour plus de détails sur la modélisation mathématique du système, le lecteur peut se rapporter
	au rapport précédent intitulé "Simulation Maple d'une machine asynchrone triphasé". Le modèle complet est donné par
	le système d'équations 1 :

π 6 sur le système de tensions simples est d'amplitude √ 3 fois plus grande. Chaque phase est caractérisée par une résistance r s et une inductance L s . Les interactions magnétiques entre chaque

 Cette section présente quelques modes de fonctionnement simple de la machine MADA 5.5 KW (Machine Asynchrone à Double Alimentation). Pour plus de détails sur l'explication physiques des phénomènes, le lecteur peut se rapporter aux papiers précédants. Enfin, nous présentons une discussion sur le calibrage du modèle (coefficients des filtres et des pas de quantification des intégrateurs) ainsi que sur la comparaison des résultats obtenus avec Matlab/Simulink. Les valeurs des paramètres du système 1 choisi pour les besoins de la simulation sont résumées dans le tableau 1 :

	3 Simulation DEVS	
	Tension composée efficace (U m)	380V
	Fréquence (f)	50Hz
	Pôles (p)	4
	Coefficient d'inertie (J)	0.1kg.m²
	Coefficient d'atténuation (f)	0.001Nm.s/rad
	Couple de charge nominale (T ln)	73Nm
	Résistance au stator (r s)	0.528Ω
	Résistance au rotor (r r)	0.282Ω
	Inductance au stator (L s)	0.04732H
	Inductance au rotor (L r)	0.01452H
	Inductance magnétique au stator (L ms)	0.01732H
	Inductance magnétique au stator (L mr)	0.005852H
	Inductance mutuelle (L sr = L rs)	0.02259H
	TAB. 1 -Valeurs des paramètres pour la machine 5.5 KW

). Nous allons à présent simuler le système dans différentes configurations.

Remarque : Les figures sont des captures d'écran du logiciel PowerDEVS que nous avons utilisé dans un premier temps afin de valider nos modèles. Par la suite nous avons développé un environnement en langage python permettant de reproduire le comportement du logiciel

PowerDEVS. Cette implémentation nous permettra par la suite de rendre plus simple le développement des algorithmes de simulations concurrentes de fautes dont on ne parle pas ici mais qui reste notre objectif final.

La simulation DEVS permet donc d'aboutir aux mêmes résultats que Simulink. 4 Conclusion

 En ce qui concerne la comparaison des résultats avec Simulink, nous pouvons dire que les régimes permanents sont similaires à l'exception du couple électromoteur T e . Les régimes transitoires évoluent différament mais présente le mme enveloppe.Nous pouvons conclure sur le fait que la simulation DEVS conduit aux mêmes résultats que ceux obtenus avec Matlab/Simulink (sous certaines conditions liées au choix de dq). A l'heure actuelle, bien que le simulateur DEVS que nous avons implémenté soit basé sur un algorithme optimisé, les temps de simulation sont trop importants. Cela est dû à la méthode de quantification QSS qui calcule le temps d'activation des modèles en fonction de la valeur du pas de quantification. Le meilleur moyen d'accélérer les simulations est d'augmenter ces pas de quantification au risque d'augmenter l'erreur numérique conduisant à une divergence des résultats de simulation. De plus, la présence des filtres passe bas, qui ont été introduit afin d'éviter le blocage des simulations, ont une influence sur les temps de simulation : plus les pas de quantification des filtres sont bas plus les temps de simulations sont importants. Les coefficients des filtres ont également une influence sur la stabilité des résultats. Lorsque les coefficients sont élevés (fréquence de coupure haute), les solutions sont plus réaliste (plus proche de celle obtenu avec Simulink) et moins bruités numériquement.IN1 = self.addInPort(), self.IN2 = self.addInPort() self.IN3 = self.addInPort(), self.IN4 = self.addInPort() self.IN5 = self.addInPort(), self.IN6 = self.addInPort() self.IN7 = self.addInPort(), self.IN8 = self.addInPort() self.OUT1 = self.addOutPort() self.OUT2 = self.addOutPort() self.OUT3 = self.addOutPort() ##connecting self.connectPorts(self.IN1, self.NLF1.IPorts[0]) self.connectPorts(self.IN2, self.NLF1.IPorts[1]) self.connectPorts(self.IN3, self.NLF1.IPorts[2]) self.connectPorts(self.IN4, self.NLF1.IPorts[3]) self.connectPorts(self.IN5, self.NLF1.IPorts[4]) self.connectPorts(self.IN6, self.NLF1.IPorts[5]) self.connectPorts(self.IN7, self.NLF1.IPorts[6]) self.connectPorts(self.IN8, self.NLF1.IPorts[7]) self.connectPorts(self.IN1, self.NLF2.IPorts[0]) self.connectPorts(self.IN2, self.NLF2.IPorts[1]) self.connectPorts(self.IN3, self.NLF2.IPorts[2]) self.connectPorts(self.IN4, self.NLF2.IPorts[3]) self.connectPorts(self.IN5, self.NLF2.IPorts[4]) self.connectPorts(self.IN6, self.NLF2.IPorts[5]) self.connectPorts(self.IN7, self.NLF2.IPorts[6]) self.connectPorts(self.IN8, self.NLF2.IPorts[7]) self.connectPorts(self.IN1, self.NLF3.IPorts[0]) self.connectPorts(self.IN2, self.NLF3.IPorts[1]) self.connectPorts(self.IN3, self.NLF3.IPorts[2]) self.connectPorts(self.IN4, self.NLF3.IPorts[3]) self.connectPorts(self.IN5, self.NLF3.IPorts[4]) self.connectPorts(self.IN6, self.NLF3.IPorts[5]) self.connectPorts(self.IN7, self.NLF3.IPorts[6]) self.connectPorts(self.IN8, self.NLF3.IPorts[7]) self.connectPorts(self.NLF1.OUT, self.OPorts[0]) self.connectPorts(self.NLF2.OUT, self.OPorts[1]) self.connectPorts(self.NLF3.OUT, self.OPorts[2])

	Fichier FEM.py
	self.expr1=str(Lrs)+" * (-u7 * (u0 * sin(u6)+u1 * sin(u6-2.0944)+
	u2 * sin(u6+2.0944))+u3 * cos(u6)+u4 * cos(u6-2.0944)+u5 * cos(u6+2.0944))"
	self.expr2=str(Lrs)+" * (-u7 * (u0 * sin(u6+2.0944)+u1 * sin(u6)+
	u2 * sin(u6-2.0944))+u3 * cos(u6+2.0944)+u4 * cos(u6)+u5 * cos(u6-2.0944))"
	self.expr3=str(Lrs)+" * (-u7 * (u0 * sin(u6-2.0944)+u1 * sin(u6+2.0944)+
	u2 * sin(u6))+u3 * cos(u6-2.0944)+u4 * cos(u6+2.0944)+u5 * cos(u6))"
	## All models
	self.NLF1 = self.addSubModel(NLFunction(self.expr1,8))
	self.NLF2 = self.addSubModel(NLFunction(self.expr2,8))
	self.NLF3 = self.addSubModel(NLFunction(self.expr3,8))
	# in/out ports
	self.

Simulink est basé sur des algorithmes utilisant des matrices et procède par inversion de ces matrices pour obtenir, par une discrétisassions en temps à pas fixe, des résultats avec des temps beaucoup plus raisonnables. DEVS utilise la simulation à événements discrets qui devrait accélérer la simulation en terme de pas de calcul. Cependant, face à des systèmes bouclés complexes comme celui de la machine asynchrone, la méthode QSS demande des pas de quantification petits et donc des temps de simulation importants.L'avantage d'utiliser DEVS n'apparaît pas clairement face aux résultats obtenus avec Matlab/Simulink. Cela dit, DEVS offre la possibilité d'implémenter des algorithmes comparatifs et concurrents permettant de faire du diagnostic de pannes. C'est la raison pour laquelle nous avons choisis cette approche.En perspective, pour diminuer les temps de simulation important avec DEVS, il faut donc se pencher sur une méthode de détermination ou d'adaptation des pas de quantification au cours de la simulation. De plus, nous sommes en train de développer une méthode de simulation concurrente des défauts les plus courants qui peuvent apparaître au sein de ces systèmes asynchrones.