# Cell decomposition and classification of definable sets in p-optimal fields 

Luck Darnière, Immanuel Halupczok

## To cite this version:

Luck Darnière, Immanuel Halupczok. Cell decomposition and classification of definable sets in poptimal fields. 2014. hal-01083119v3

## HAL Id: hal-01083119 <br> https://hal.science/hal-01083119v3

Preprint submitted on 14 Jul 2015 (v3), last revised 5 Feb 2016 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Cell decomposition and classification of definable sets in $p$-optimal fields 

Luck Darnière, Immanuel Halpuczok

July 14, 2015


#### Abstract

We prove that for $p$-optimal fields (a very large subclass of $p$-minimal fields containing all the known examples) a cell decomposition theorem follows from methods going back to Denef's paper [Den84]. We derive from it the existence of definable Skolem functions and strong $p$-minimality, thus providing a new proof of the main result of [vdDHM99]. Then we turn to strongly $p$-optimal field satisfying the Extreme Value Property - a property which in particular holds in fields which are elementarily equivalent to a $p$-adic one. For such fields $K$, we prove that every definable subset of $K \times K^{d}$ whose fibers are inverse images by the valuation of subsets of the value group, are semi-algebraic. Combining the two we get a preparation theorem for definable functions on $p$-optimal fields satisfying the Extreme Value Property, from which it follows that infinite sets definable over such fields are isomorphic iff they have the same dimension.


## 1 Introduction

This paper is an attempt to continue the road opened by Haskell and Macpherson in [HM97] toward a $p$-adic version of $o$-minimality, by isolating large subclasses of $p$-minimal fields to which Denef's methods of [Den84] apply with striking efficiency.

Recall that a $p$-adically closed field is a field $K$ elementarily equivalent to a $p$-adic field, that is a finite extension of the field $\mathbf{Q}_{p}$ of $p$-adic numbers. For every $a$ in $K, v(a)$ and $|a|$ denote the $p$-valuation of $a$ and its norm. The norm is nothing but the valuation with a multiplicative notation so that $|0|=0,|a b|=$ $|a| \cdot|b|,|a+b| \leq \max (|a|,|b|)$ and of course $|a| \leq|b|$ if and only if $v(a) \geq v(b)$. The valuation ring of $v$ is denoted by $R$, and we fix some $\pi$ in $R$ such that $\pi R$ is the maximal ideal of $R$. We let $v(K)$ or $|K|$ denote the image of $K$ by the valuation.

Except if otherwise specified, when we say that a set or a function is definable we always mean "definable with parameters". Wherever it is convenient we will identify subsets of $K^{m} \times|K|^{d}$ with their inverse image in $K^{m+d}$ by the valuation, thus saying for example that the former are definable, semi-algebraic, and so on if the latter are so.

An expansion $(K, \mathcal{L})$ of $K$ (that is an $\mathcal{L}$-structure extending the ring structure of $K$ for some language $\mathcal{L}$ containing the language of rings) is $p$-minimal if every definable subset of $K$ is definable in the language of rings. By "definable" we always mean definable in the language $\mathcal{L}$ with parameters from $K$. For
sets and functions definable in the language of rings, we use the term "semialgebraic" instead. ( $K, \mathcal{L}$ ) is strongly $p$-minimal (or $P$-minimal for short, as in [HM97]) if every elementarily equivalent $\mathcal{L}$-structure is $p$-minimal. When the distinction between the $\mathcal{L}$-structure and the ring structure of $K$ is clear from the context, $K$ itself is called a strongly $p$-minimal field.

Strong p-minimality was introduced by Haskell and Macpherson in [HM97]. Since their proofs make extensive use of the model-theoretic Compactness Theorem, very little is known on $p$-minimal fields without the "strong" assumption contrary to the situation in o-minimal expansions of real closed fields, where $o$-minimality already implies strong o-minimality. They also left open several questions, such as the existence of a cell decomposition.

Mourgues proved in [Mou09] that a cell decomposition similar to the one of [Den84] holds for a strongly $p$-minimal field $K$ if and only if it has definable Skolem functions ("definable selection" in [Mou09]), that is if for every positive integers $m, n$ and every definable subset $S$ of $K^{m+n}$ the coordinate projection of $S$ onto $K^{m}$ has a definable section. It is not known at the moment whether strongly $p$-minimal fields always have definable Skolem functions.

As Cluckers noted in [Clu04], in [Mou09] a preparation theorem for definable functions was lacking. He filled this lacuna for the classical analytic structure on $K$ (see below), and derived from his preparation theorem several important applications, for parametric integrals and classification of subanalytic sets up to isomorphism.

The aim of this paper is to address some of these questions by introducing another notion of minimality for expansions of $p$-adically closed fields, called " $p$-optimality" (see definition below) with the following properties:

1. It is intrinsic (that is its definition only involves the given structure, not those which are elementarily equivalent to it) natural and general enough to include all the known examples of $p$-minimal fields.
2. Nevertheless it implies strong $p$-minimality, the existence of definable Skolem functions, cell decomposition and (under a mild assumption which we will discuss in Remark 1.6) cell preparation, so that all the applications of [Clu04] generalize to this context.

Remark 1.1 Another cell decomposition has recently been proved in [CKL15] to hold for strongly $p$-minimal fields considered as two sorted-structures. This variant is strong enough to generalize to strongly $p$-minimal fields the result of [Clu04] for parametric integrals. On the other hand it takes strong $p$-minimality as an assumption for the field sort, and it is weaker than the usual one in $p$-adically closed field (the cells in [CKL15] do not have definable centers). In particular this cell decomposition does not imply the existence of definable Skolem functions, and neither Theorems 1.4 and 1.5 below.

Defining p-optimal fields. By a celebrated theorem of Macintyre [Mac76] (generalized to $p$-adically closed fields in [PR84]) when $K=\mathbf{Q}_{p}$ every semialgebraic subset of $K^{m}$ is a (finite) boolean combination of sets of the form

$$
\begin{equation*}
S=\left\{x \in K^{m}: f(x) \in P_{N}\right\} \tag{1}
\end{equation*}
$$

with $f$ a polynomial function, $N \geq 1$ an integer and

$$
P_{N}=\left\{x \in K: \exists y \in K, x=y^{N}\right\}
$$

We define $d$-basic functions as $m$-ary functions for some $m$ which are polynomial in the last $d$ variables with as coefficients global definable functions in the $m-d$ first variables, and $d$-basic sets (of power $N$ ) as the sets of the same form as (1) with $d$-basic functions instead of polynomial ${ }^{1}$ functions. When $d=1$ we simply talk about basic functions and sets. We say that $(K, \mathcal{L})$ (or simply $K$ for short) is $p$-optimal if every definable subset of $K^{m}$ is a (finite) boolean combination of basic sets, for every $m$.
Remark 1.2 By the argument of Lemma 2.1 in [Den84], the following subsets of $K^{m}$ are $d$-basic, for every $d$-basic $m$-ary functions $f, g$.

$$
\left\{x \in K^{m}: f(x)=0\right\} \text { and }\left\{x \in K^{m}:|g(x)| \leq|f(x)|\right\}
$$

Moreover, since $P_{N}^{*}=P_{N} \backslash\{0\}$ is a subgroup of finite index in $K^{*}$, the complement in $K^{m}$ of a $d$-basic set is a finite union of $d$-basic sets. Hence every (finite) boolean combination of basic sets is the union of intersections of finitely many basic sets. All of them can be taken of the same power, because $P_{N^{\prime}}^{*}$ is a subgroup of $P_{N}^{*}$ of finite index for every $N^{\prime}$ which is divisible by $N$.
(Strong) $p$-minimality versus $p$-optimality. Note that $p$-optimal fields are not assumed to be strongly $p$-minimal. They are $p$-minimal because basic subsets of the affine line $K$ are semi-algebraic. Moreover it is difficult to imagine any proof of $p$-minimality which does not involve in a way or another a quantifier elimination result similar to Macintyre's Theorem. The condition defining $p$-optimality is actually very close to such kind of elimination. So close that we can expect it to be proved simultaneously in most cases, if not all, without additional effort ${ }^{2}$. Although not surprising, it is then quite remarkable that every $p$-optimal field is strongly $p$-minimal. More precisely (Theorem 3.2):

Theorem 1.3 For every expansion of a p-adically closed field $F$, the following are equivalent:

1. $F$ is $p$-optimal.
2. Denef's Cell Decomposition Theorem 2.6 holds in $F$.
3. $F$ is strongly p-minimal and has definable Skolem function.

Of course $(3) \Rightarrow(2)$ follows from [Mou09] (not the other implications, because Mourgues considers only strongly $p$-minimal fields). The most interesting part of Theorem 1.3 is certainly $(1) \Rightarrow(3)$. Let us see how it applies to a fundamental example.

[^0]Application to the subanalytic case. In the classical analytic structure, initially introduced on $\mathbf{Z}_{p}$ by Denef and van den Dries in [DvdD88] (see Definition 1.3 and further in [Clu04] for its adaptation to the field case) $p$-minimality was derived from the Quantifier Elimination Theorem 1.1 in [DvdD88], the proof of which is based on the Weierstrass preparation and division theorem for analytic functions. Strong $p$-minimality was proved later in [vdDHM99] by means of an intricate parametric version of this same Weierstrass division. But a detailed study of the original proof of Theorem 1.1 in [DvdD88] shows that it directly proves (a very strong form of) $p$-optimality for the classical analytic structure. Thus our result, that $p$-optimal fields are strongly $p$-minimal, applies to this structure and gives an alternate proof of the main result of [vdDHM99], both simpler and much more general.

Main other results. In Section 4 we will consider strongly p-minimal fields satisfying the following condition.
(*) Every continuous definable function from a closed and bounded definable set $X \subseteq K$ to $|K| \backslash\{0\}$ attains a minimum value.

We call it the Extreme Value Property. Note that it is not at all a restrictive assumption: if $(K, \mathcal{L})$ is any $p$-optimal field which is elementarily equivalent $\left(K^{\prime}, \mathcal{L}\right)$ for some $p$-adic field $K^{\prime}$ then the Extreme Value Property trivially holds true in $K^{\prime}$ (because its $p$-valuation ring is compact), and passes to $K$ by elementary equivalence. It is proved in [Clu01] (Theorem 6) that in every strongly $p$-minimal field $(K, \mathcal{L})$, the definable subsets of $\left|K^{d}\right|$ are semi-algebraic. The following is a "relative" version of this result (Theorem 4.1 and Corollary 4.5).

Theorem 1.4 If $(K, \mathcal{L})$ is strongly p-minimal and satisfies the Extreme Value Property, then every definable set $S \subseteq K \times|K|^{d}$ is semi-algebraic. If moreover $K$ is $p$-optimal then every definable subset of $K^{m} \times|K|^{d}$ is a boolean combination of $(d+1)$-basic sets.

In Section 5 we derive from it a preparation Theorem 5.3 for definable functions, analogous to Theorem 2.8 in [Clu04]. As an application we get (Theorem 5.6):

Theorem 1.5 Two infinite sets definable over a p-optimal field satisfying the Extreme Value Property are isomorphic if and only if they have the same dimension.

Remark 1.6 As already mentioned the Extreme Value Property is not a strong assumption. In particular it holds true for every semi-algebraic functions in a $p$-adically closed field (by reduction to the $p$-adic case, with the same argument as above). Moreover the Cell Preparation Theorem 5.3 applied to any unary definable function $f$ from a closed and bounded set $S \subseteq K$ to $K \backslash\{0\}$ gives that the function $|f|: S \rightarrow|K| \backslash\{0\}$ is semi-algebraic, hence has a minimum value. So the Cell Preparation Theorem holds true in a p-optimal field if and only if it satisfies the Extreme Value Property.

Acknowledgement. We would like to thank Rak Cluckers and Pablo Cubides-Kovacsiks for helpful discussions. This paper is based on [HM97] and [Den84], with which the reader is expected to be familiar. We will also make extensive use of [Clu03]. Moreover we borrowed ideas from papers of other authors, especially Raf Cluckers in [Clu04]. The concept of $p$-optimal field seems to be new but appears implicitly in many papers on $p$-adic fields, especially [Den86] which has been a source of inspiration for us.

Other terminology and notation. For convenience we will sometimes add to $K$ one more element $\infty$, with the property that $|x|<|\infty|$ for every $x$ in $K$. We also denote by $\infty$ any partial function with constant value $\infty$.

Topological notions refer to the topology of the $p$-valuation, or its image in $|K|$.

For every subset $X$ of $K$ we let $X^{*}=X \backslash\{0\}$. Note the difference between $R^{*}=R \backslash\{0\}$ and $R^{\times}=$the set of units in $R$.

Recall that $K^{0}$ is a one-point set. When a tuple $a=(x, t)$ is given in $K^{m+1}$ it is understood that $x=\left(x_{1}, \ldots, x_{m}\right)$ and $t$ is the last coordinate. We let $\widehat{a}=x$ denote the projection of $a$ onto $K^{m}$. Similarly, the projection of a subset $S$ of $K^{m+1}$ onto $K^{m}$ is denoted $\widehat{S}$.

We extend |.| (or $v$ ) to $K^{m}$ coordinatewise. That is, for every $x \in K^{m}$ we let:

$$
\left|\left(x_{1}, \ldots, x_{m}\right)\right|=\left(\left|x_{1}\right|, \ldots,\left|x_{m}\right|\right) .
$$

For every $A \subseteq K^{m}$ we let $|A|$ denote the image of $A$ by this extension of the valuation.

For every integer $e \geq 1$ let $\mathbf{U}_{e}=\left\{x \in K: x^{e}=1\right\}$. Analogously to Landau's notation $\mathcal{O}\left(x^{n}\right)$ of calculus, we let $\mathcal{U}_{e, n}(x)$ denote any definable function in the multi-variable $x$ with values in $\left(1+\pi^{n} R\right) \mathbf{U}_{e}$. So, given a family of functions $f_{i}$, $g_{i}$ on the same domain $X$, we write that $f_{i}=\mathcal{U}_{e}, n g_{i}$ for every $i$, when there are definable functions $\omega_{i}: X \rightarrow R$ and $\chi_{i}: X \rightarrow \mathbf{U}_{e}$ such that for every $x$ in $X$, $f_{i}(x)=\left(1+\pi^{n} \omega_{i}(x)\right) \chi_{i}(x) g_{i}(x)$. When $e=1, \mathcal{U}_{1, n}(x)$ is simply written $\mathcal{U}_{n}(x)$.

If $K^{\circ}$ is a finite extension of $\mathbf{Q}_{p}$ to which $K$ is elementarily equivalent as a ring, and $R^{\circ}$ is the $p$-valuation ring of $K^{\circ}$, then the following set is semi-algebraic (see Lemma 2.1, point 4, in [Den86])

$$
Q_{N, M}^{\circ}=\{0\} \cup \bigcup_{k \in \mathbf{Z}} \pi^{k N}\left(1+\pi^{M} R^{\circ}\right)
$$

We let $Q_{N, M}$ denote the semi-algebraic subset of $K$ corresponding ${ }^{3}$ by elementary equivalence to $Q_{N, M}^{\circ}$ in $K$. If $M>v(N)$, Hensel's lemma implies that $1+\pi^{M} R$ is contained in $P_{N}^{*}$. Note that in this case, $Q_{N, M}^{*}$ is a clopen subgroup of $P_{N}^{*}$ with finite index. The next property also follows from Hensel's lemma (see for example Lemma 1 and Corollary 1 in [Clu01]).

Lemma 1.7 The function $x \mapsto x^{e}$ is a group endomorphism of $Q_{N_{0}, M_{0}}^{*}$. If $M_{0}>v(e)$ this endomorphism is injective and its image is $Q_{e N_{0}, v(e)+M_{0}}^{*}$.

In particular $x \mapsto x^{N}$ defines a continuous bijection from $Q_{1, v(N)+1}$ to $Q_{N, 2 v(N)+1}$. We let $x \mapsto x^{\frac{1}{N}}$ denote the reverse bijection.

[^1]
## 2 Cell decomposition

In this section $K$ denotes a $p$-optimal field. We will prove that such fields satisfy Denef's cell decomposition (Theorem 2.6).

The cells which usually appear in the literature on $p$-adic fields are non empty subsets of $K^{m+1}$ of the form:

$$
\begin{equation*}
\left\{(x, t) \in X \times K:|\nu(x)| \square_{1}|t-c(x)| \square_{2}|\mu(x)| \text { and } t-c(x) \in \lambda G\right\} \tag{2}
\end{equation*}
$$

where $X \subseteq K^{m}$ is a definable set, $c, \mu, \nu$ are definable functions from $X$ to $K$, $\square_{1}, \square_{2}$ are $\leq,<$ or no condition, $\lambda \in K$ and $G$ is a semi-algebraic subgroup of $K^{*}$ with finite index. In this paper we will only consider the cases when $G$ is $K^{*}$ (Theorem 2.4), $P_{N}^{*}$ (Theorem 2.6) or $Q_{N, M}^{*}$ (Theorem 5.3).

In its simplest form, Denef's Cell Decomposition Theorem asserts that every semi-algebraic subset of $K^{m}$ is the disjoint union of finitely many cells. It will be convenient to fix a few more conditions on our cells, but most of all we want to pay attention on how the functions defining the output cells depend on the input data.

So we define presented cells in $K^{m+1}$ as tuples $A=\left(c_{A}, \nu_{A}, \mu_{A}, \lambda_{A}, G_{A}\right)$ with $c_{A}$ a definable function on a non-empty domain $X \subseteq K^{m}$ with values in $K, \nu_{A}$ and $\mu_{A}$ either definable functions on $X$ with values in $K^{*}$ or constant functions on $X$ with values 0 or $\infty, \lambda_{A}$ an element of $K$ and $G_{A}$ semi-algebraic subgroup of $K^{*}$ with finite index, such that for every $x \in X$ there is $t \in K$ such that:

$$
\begin{equation*}
\left|\nu_{A}(x)\right| \leq\left|t-c_{A}(x)\right| \leq\left|\mu_{A}(x)\right| \text { and } t-c_{A}(x) \in \lambda_{A} G_{A} \tag{3}
\end{equation*}
$$

Of course the set of tuples $(x, t) \in X \times K$ satisfying (3) is a cell of $K^{m+1}$ in the usual sense of (2). We call it the underlying cellular set of $A$. Abusing the notation we will most often also denote that set by $A$. The existence, for every $x \in X$, of $t$ satisfying (3) simply means that $X$ is exactly $\widehat{A}$. We call it the base of $A$. The function $c_{A}$ is called its center, $\mu_{A}$ and $\nu_{A}$ its bounds. We also speak of a presented cell $\bmod G$ when $G_{A}=G$.

A presented cell $A$ is said to be of type 0 if $\lambda_{A}=0$, and of type 1 otherwise. Contrary to its center, bounds, and modulo, the type of $A$ only depends on its underlying set.

The word "cell" will usually refer to presented cells. However, for sake of simplicity, we will freely talk of disjoint cells, bounded cells, families of cells partitioning some set and so on, meaning that the underlying cellular sets of these (presented) cells have the corresponding properties. For instance, it is clear that every cellular set as in (2) is in that sense the disjoint union of finitely many (presented) cells $\bmod G$.

Lemma 2.1 (Denef) Let $S$ be a definable subset of $K^{m+n}$. Assume that there is an integer $\alpha \geq 1$ such that for every $x$ in $K^{m}$ the fiber

$$
S_{x}=\left\{y \in K^{n}:(x, y) \in S\right\}
$$

has cardinality $\leq \alpha$. Then the coordinate projection of $S$ on $K^{m}$ has a definable section.

Proof: Identical to the proof of Lemma 7.1 in [Den84].

Lemma 2.2 (Denef) Let $f$ be an $(m+1)$-ary basic function with variables $(x, t)=\left(x_{1}, \ldots, x_{m}, t\right)$. Let $n \geq 1$ be a fixed integer. Then there exists a partition of $K^{m+1}$ into sets $A$ of the form

$$
A=\bigcap_{j \in S} \bigcap_{l \in S_{j}}\left\{(x, t) \in K^{m+1}: x \in C \text { and }\left|t-c_{j}(x)\right| \square_{j, l}\left|a_{j, l}(x)\right|\right\}
$$

where $S$ and $S_{j}$ are finite index sets, $C$ is a definable subset of $K^{m}$, and $c_{j}, a_{j, l}$ are definable functions from $K^{m}$ to $K$, such that for all $(x, t)$ in $A$ we have

$$
f(x, t)=\mathcal{U}_{n}(x, t) h(x) \prod_{j \in S}\left(t-c_{j}(x)\right)^{e_{j}}
$$

with $h: K^{m} \rightarrow K$ a definable function and $e_{j} \in \mathbf{N}$.
It is sufficient to check it for every $n$ large enough so we can assume that:

$$
\begin{equation*}
1+\pi^{n} R \subseteq P_{N} \cap R^{\times} \tag{4}
\end{equation*}
$$

Thus $\mathcal{U}_{n}(x, t)$ in the conclusion could be replaced by $u(x, t)^{N}$ with $u$ a definable function from $A$ to $R^{\times}$. This is indeed how this result is stated in Lemma 7.2 of [Den84]. However it is the above equivalent (but slightly more precise) form which appears in Denef's proof, and which we retain in this paper.

Proof: Follow the proof of Lemma 7.2 of [Den84], using the p-minimality assumption and basic functions in place of Macintyre's quantifier elimination and polynomial functions. Of course, Lemma 7.1 used in Denef's proof has to be replaced with the analogous Lemma 2.1.

Remark 2.3 (co-algebraic functions) A remarkable by-product of Denef's proof is that the functions $c_{j}$ and $a_{j, l}$ in the conclusion of Lemma 2.2 belong to $\operatorname{coalg}(f)$, which we define now.

Given a basic function $f$, we say that a function $h: X \subseteq K^{m} \rightarrow K$ belongs to coalg $(f)$ if there exists a finite partition of $X$ into definable pieces $H$, on each of which the degree in $t$ of $f(x, t)$ is constant, say $e_{H}$, and such that the following holds. If $e_{H} \leq 0$ then $h(x)$ is identically equal to 0 on $H$. Otherwise there is a family $\left(\xi_{1}, \ldots, \xi_{r_{H}}\right)$ of $K$-linearly independent elements in an algebraic closure of $K$ and a family of definable functions $b_{i, j}: H \rightarrow K$ for $1 \leq i \leq e_{H}$ and $1 \leq j \leq r_{H}$, and $a_{e_{H}}: H \rightarrow K^{*}$ such that for every $x$ in $H$

$$
f(x, T)=a_{e_{H}}(x) \prod_{1 \leq i \leq e_{H}}\left(T-\sum_{1 \leq j \leq r_{H}} b_{i, j}(x) \xi_{j}\right)
$$

and

$$
h(x)=\sum_{1 \leq i \leq e_{H}} \sum_{1 \leq j \leq r_{H}} \alpha_{i, j} b_{i, j}(x)
$$

With the $\alpha_{i, j}$ 's in $K$. If $\mathcal{F}$ is any family of basic functions we let $\operatorname{coalg}(\mathcal{F})$ denote the set of linear combinations of functions in $\operatorname{coalg}(f)$ for $f$ in $\mathcal{F}$.

Theorem 2.4 (Denef) Let $\mathcal{F}$ be a finite family of $(m+1)$-ary basic functions. Let $n \geq 1$ be a fixed integer. Then there exists a finite partition of $K^{m+1}$ into presented cells $H \bmod K^{*}$ such that the center and bounds of $H$ belong to $\operatorname{coalg}(\mathcal{F}) \cup\{\infty\}$ and for every $(x, t)$ in $H$ and every $f$ in $\mathcal{F}$

$$
\begin{equation*}
f(x, t)=\mathcal{U}_{n}(x, t) h_{f, H}(x)\left(t-c_{H}(x)\right)^{\alpha_{f, H}} \tag{5}
\end{equation*}
$$

with $h_{f, H}: \widehat{H} \rightarrow K$ a definable function and $\alpha_{f, H} \in \mathbf{N}$.
Proof: Follow the proof of Theorem 7.3 in [Den84], using once again the $p$-minimality assumption and basic functions in place of Macintyre's quantifier elimination and polynomial functions.

Given two families $\mathcal{A}, \mathcal{B}$ of subsets of $K^{m}$, recall that $\mathcal{B}$ refines $\mathcal{A}$ if $\mathcal{B}$ is a partition of $\bigcup \mathcal{A}$ such that every $A$ in $\mathcal{A}$ which meets some $B$ in $\mathcal{B}$ contains it.

Corollary 2.5 (Denef) Let $\mathcal{F}$ be a finite family of m-ary basic functions, $N \geq$ 1 an integer and $\mathcal{A}$ a family of boolean combinations of subsets of $K^{m}$ defined by $f(x) \in P_{N}$ with $f$ in $\mathcal{F}$. Then there exists a finite family $\mathcal{H}$ of cells $\bmod P_{N}^{*}$ with center and bounds in $\operatorname{coalg}(\mathcal{F})$ which refines $\mathcal{A}$.

Proof: Theorem 2.4 applies to $\mathcal{F}$ with $n>v(N)$, so that $1+\pi^{n} R \subseteq P_{N}$. It gives a partition of $K^{m}$ into presented cells $B \bmod K^{*}$. Every such cell $B$ is the disjoint union of finitely many presented cells $H \bmod P_{N}^{*}$, whose centers and bounds are the restrictions to $\widehat{H}$ of the center and bounds of $B$ (hence belong to $\operatorname{coalg}(\mathcal{F})$ ), on which $h_{f, B}(x) P_{N}^{*}$ and $\left(t-c_{B}(x)\right) P_{N}^{*}$ are constant, simultaneously for every $f$ in $\mathcal{F}$. Thus every $A$ in $\mathcal{A}$ either contains $H$ or is disjoint from $H$ by (5) and our choice of $n$, which proves the result.

The following simpler statement, which follows directly from Corollary 2.5 by $p$-optimality, is sufficient in most cases.

Theorem 2.6 (Denef's cell decomposition) For every finite family $\mathcal{A}$ of definable subsets of $K^{m}$ there is for some $N$ a finite family of presented cells $\bmod P_{N}^{*}$ refining $\mathcal{A}$.

Remark 2.7 It has been proved in [CKDL15] that every definable function in a strongly $p$-minimal field is piecewise continuous. We will show in the next section that $p$-optimal fields are strongly $p$-optimal. Thus the bounds and centers of the cells in the above cell decompositions can be chosen continuous by refining appropriately a given cell decomposition.

## 3 From $p$-optimality to strong $p$-minimality with Skolem functions

Lemma 3.1 Assume that Denef's Cell Decomposition Theorem 2.6 holds true for an expansion of a p-adically closed field $F$. Then it has definable Skolem functions.

The proof is taken from the appendix of [DvdD88]. It is similar to proposition 4.1 in [Mou09] except that we do not assume strong $p$-minimality (nor any continuity in the bounds of the cells).

Proof: By a straightforward induction it suffices to prove that for every definable subset $A$ of $F^{m+1}$ the coordinate projection of $A$ onto $\widehat{A}$ has a definable section. If $A$ is a union of finitely many definable sets $B$ and if a definable section $\sigma_{B}: \widehat{B} \rightarrow B$ has been found for each projection of $B$ onto $\widehat{B}$ we are done. Thus, by cell decomposition, we can assume that $A$ is a presented cell $\bmod P_{N}^{*}$ for some $N$. We deal with the case when $A=\left(c_{A}, \nu_{A}, \mu_{A}, \lambda_{A}\right)$ is of type 1 and $\nu_{A} \neq 0$ or $\mu_{A} \neq \infty$, the other cases being trivial.
W.l.o.g. we can assume that $v \circ \nu_{A}$ is equal to $v\left(\lambda_{A}\right)$ modulo $N$, so $\nu_{A} / \lambda_{A}$ takes values in $v^{-1}\left(N v\left(F^{*}\right)\right)$. As $Q_{N, 2 v(N)+1}$ is a definable subgroup of $v^{-1}\left(N v\left(F^{*}\right)\right)$ with finite index, there is a partition of $\widehat{A}$ into finitely many definable pieces $X$ on which $\nu_{A} / \lambda_{A}$ has constant residue class modulo $Q_{N, 2 v(N)+1}$. Again it suffices to prove the result for each piece $A \cap(X \times F)$ of $A$, so we can assume that $X=\widehat{A}$. Pick any $u$ in $R^{\times}$such that $\nu_{A} / \lambda_{A}$ belongs constantly to $u \cdot Q_{N, 2 v(N)+1}$ on $\widehat{A}$. Then $\xi=\left(\nu_{A} /\left(u \lambda_{A}\right)\right)^{1 / N}$ is a definable function on $\widehat{A}$ and the map

$$
\sigma: x \mapsto\left(x, c_{A}(x)+\lambda_{A} \xi(x)^{N}\right)
$$

is a definable section of the projection of $A$ onto $\widehat{A}$. If $\nu_{A}=0$ and $\mu_{A} \neq \infty$ a similar argument on $\mu_{A}$ gives the conclusion.

Theorem 3.2 For every expansion of a p-adically closed field $F$, the following are equivalent:

1. $F$ is $p$-optimal.
2. Denef's cell decomposition Theorem 2.6 holds in $F$.
3. $F$ is strongly $p$-minimal and has definable Skolem function.

Proof: $\quad(1) \Rightarrow(2)$ is Theorem 2.6. Let us prove that $(2) \Rightarrow(3)$. By Lemma 3.1 it only remains to derive strong $p$-minimality from the Cell Decomposition Theorem 2.6.

Let $\Phi(\xi, \sigma)$ be a parameter-free formula with $m+1$ variables. It defines a subset $S$ of $F^{m+1}$ which splits into finitely many cells $C \bmod P_{N}^{*}$ for some $N$. Let $\mathcal{C}$ be the family of these cells, and $X_{1}, \ldots, X_{r}$ a finite partition of $\widehat{S}$ refining the $\widehat{C}$ 's for $C \in \mathcal{C}$. For each $i \leq r$ let $\theta_{i}\left(\alpha_{i}, \xi\right)$ be a parameter-free formula in $n_{i}+m$ variables and $a_{i} \in F^{n_{i}}$ such that

$$
X_{i}=\left\{x \in F^{m}: F \models \theta\left(a_{i}, x\right)\right\} .
$$

Let $\Theta\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ be the parameter-free formula in $n_{1}+\cdots+n_{r}$ saying that, given any values $a_{i}^{\prime}$ of the parameters $\alpha_{i}$, the formulas $\theta_{i}\left(a_{i}^{\prime}, \xi\right)$ define a partition of $\widehat{S}$. In particular we have $F \models \Theta\left(a_{1}, \ldots, a_{r}\right)$.

Let $\mathcal{C}_{i}$ be the family of all the cells $C \cap\left(X_{i} \times K\right)$ for $C \in \mathcal{C}$. This is a finite partition of $S \cap\left(X_{i} \times K\right)$ into cells mod $P_{N}^{*}$, which consists in $k_{0}^{i}$ cells of type $0, k_{1}^{i}$ cells $D$ of type 1 with $\mu_{D} \neq \infty$, and $k_{\infty}^{i}$ cells $D$ of type 1 with $\mu_{D}=\infty$. We let $k^{i}=\left(k_{0}^{i}, k_{1}^{i}, k_{\infty}^{i}\right)$. For every $x \in X_{i}$, the fiber $S_{x}=\{t \in F:(x, s) \in S\}$
is the disjoint union of the fibers $C_{x}$ for $C \in \mathcal{C}_{i}$, each of which is of the same type as $C$. Given a tuple $k=\left(k_{0}, k_{1}, k_{\infty}\right)$ it is an easy exercise to write a parameter-free formula $\Psi_{k, N}(\xi)$ in $m$ free variables saying that, given any value $x^{\prime}$ of the parameter $\xi$, the set of points $t^{\prime}$ in $F$ such that $F \models \Phi\left(x^{\prime}, t^{\prime}\right)$ is the disjoint union of $k_{0}$ cells $\bmod P_{N}^{*}$ of type $0, k_{1}$ cells $D^{\prime} \bmod P_{N}^{*}$ of type 1 with $\mu_{D^{\prime}} \neq \infty$, and $k_{\infty}$ cells $D^{\prime} \bmod P_{N}^{*}$ of type 1 with $\mu_{D^{\prime}}=\infty$. By construction we have

$$
F \models \exists \alpha_{1}, \ldots, \alpha_{r} \Theta\left(\alpha_{1}, \ldots, \alpha_{r}\right) \wedge \bigwedge_{i \leq r} \forall \xi\left[\theta\left(\alpha_{i}, \xi\right) \rightarrow \Psi_{k^{i}, N}(\xi)\right]
$$

This formula is satisfied in every $\tilde{F} \equiv F$. So there are $\tilde{a}_{i}$ in $\tilde{F}^{n_{i}}$ for $i \leq r$ such that the sets

$$
\tilde{X}_{i}=\left\{\tilde{x} \in \tilde{F}^{m}: \tilde{F} \models \theta\left(\tilde{a}_{i}, \tilde{x}\right)\right\}
$$

form a partition of $\left\{\tilde{x} \in \tilde{F}^{m}: \exists \tilde{t} \in \tilde{F}, \tilde{F} \models \theta(\tilde{x}, \tilde{t})\right\}$, and for every $\tilde{x} \in \tilde{X}_{i}$ the set of $\tilde{t} \in \tilde{F}$ such that $\tilde{F} \models \theta(\tilde{x}, \tilde{t})$ is the disjoint union of $k_{0}^{i}+k_{1}^{i}+k_{\infty}^{i}$ cells of $\tilde{F}$. In particular the formula $\Phi(\tilde{x}, \sigma)$ defines a semi-algebraic subset of $F$, whatever is the value of the parameter $\tilde{x}$ in $\tilde{F}^{m}$. This being true for every formula $\Phi$, it follows that $\tilde{F}$ is $p$-minimal hence that $F$ is strongly $p$-minimal.

Finally let us prove that $(3) \Rightarrow(1)$. Let $S$ be a definable subset of $F^{m+1}$, and $S^{\prime}$ the corresponding definable set in an elementary extension $F^{\prime}$ of $F$. For every $x^{\prime}$ in $F^{\prime m}$ let $S_{x^{\prime}}^{\prime}$ denote the fiber of $\widehat{S^{\prime}}$ over $x^{\prime}$ :

$$
S_{x^{\prime}}^{\prime}=\left\{t^{\prime} \in F:\left(x^{\prime}, t^{\prime}\right) \in S^{\prime}\right\}
$$

For every $x^{\prime}$ in $\widehat{S}^{\prime}$ the $p$-minimality of $F^{\prime}$ and Macintyre's thorem (see Footnote 1) give a tuple $z_{x^{\prime}}^{\prime}$ of coefficients of a description of $S_{x^{\prime}}^{\prime}$ as a boolean combination of basic sets. The model-theoretic Compactness Theorem then gives definable subsets $S_{1}, \ldots, S_{q}$ of $F^{m}$ and for every $i \leq q$ an $\mathcal{L}$-formula $\varphi_{i}(x, t, z)$ with $m+1+n_{i}$ free variables which is a boolean combination of formulas of the form $f(x, t, z) \in P_{N}$ with $f \in \mathbf{Z}[x, t, z]$, such that for every $x$ in $S_{i}$ there is a list of coefficients $z_{x}$ such that

$$
S_{x}=\left\{t \in T: F \models \varphi\left(x, t, z_{x}\right)\right\} .
$$

In other words, for every $x$ in $S_{i}$

$$
F \models \exists z \forall t\left((x, t) \in S \leftrightarrow \varphi_{i}(x, t, z)\right) .
$$

Our assumption (3) then gives for each $i \leq q$ a definable function $\zeta_{i}: S_{i} \rightarrow F^{n_{i}}$ such that for every $x \in S_{i}$

$$
F \models \forall t\left[(x, t) \in S \leftrightarrow \varphi_{i}\left(x, t, \zeta_{i}(x)\right)\right] .
$$

Let $B_{i}=\left\{(x, t) \in F^{m+1}: F \models \varphi_{i}\left(x, t, \zeta_{i}(x)\right)\right\}$. By construction this is a boolean combination of basic subsets of $F^{m+1}$, hence so is $C_{i}=B_{i} \cap\left(S_{i} \times F\right)$. The conclusion follows, since $S$ is the union of these $C_{i}$ 's.

## 4 Relative p-minimality

The aim of this section is to prove the following result. It may be called "relative $p$-minimality".

Theorem 4.1 Assume that $(K, \mathcal{L})$ is strongly p-minimal and satisfies the Extreme Value Property. Then every definable set $S \subseteq K \times|K|^{d}$ is semi-algebraic, for every $d$.

We need to state a few preliminary results and to introduce some notation. For every $a \in K$ and $r \in\left|K^{*}\right|$ we let

$$
B(a, r)=\{y \in K:|x-y|<r\}
$$

denote the ball of center $a$ and radius $r$.
Fact 4.2 For every $a \in \lambda Q_{N, M}^{*}$ with $\lambda \in K^{*}, \lambda Q_{N, M}^{*} \cap a R^{\times}$is a ball.
Proof: It suffices to prove it when $K$ is a $p$-adic field, and the general result will follow by elementary equivalence since $Q_{N, M}$ is semi-algebraic. Recall that in this case

$$
Q_{N, M}=\{0\} \cup \bigcup_{k \in \mathbf{Z}} \pi^{k N}\left(1+\pi^{M} R\right)
$$

hence every $a \in Q_{N, M}^{*}$ write $a=\lambda \pi^{k N}\left(1+\pi^{M} \omega_{a}\right)$ for some $\omega_{a} \in R$ and $k=v(a / \lambda)$. We are going to prove that $\lambda Q_{N, M} \cap a R^{\times}=B\left(a,\left|\lambda \pi^{k N+M-1}\right|\right)$.

For every $b \in \lambda Q_{N, M} \cap a R^{\times}$we have $b=\lambda \pi^{k N}\left(1+\pi^{M} \omega_{b}\right)$ for some $\omega_{b} \in R$ and the same integer $k$ hence

$$
|b-a|=\left|\lambda \pi^{k N+M}\left(\omega_{b}-\omega_{a}\right)\right| \leq\left|\lambda \pi^{k N+M}\right| .
$$

So $\lambda Q_{N, M} \cap a R^{\times}$is contained in $B\left(a,\left|\lambda \pi^{k N+M-1}\right|\right)$. Conversely for any element $b$ in this ball we have $b=a+\lambda \pi^{k N+M} \omega$ for some $\omega \in R$ hence

$$
\begin{aligned}
b & =\lambda \pi^{k N}\left(1+\pi^{M} \omega_{a}\right)+\lambda \pi^{k N+M} \omega \\
& =\lambda \pi^{k N}\left(1+\pi^{M} \omega_{a}+\pi^{M} \omega\right) \\
& =\lambda \pi^{k N}\left(1+\pi^{M} \omega^{\prime}\right)
\end{aligned}
$$

with $\omega^{\prime}=\omega_{a}+\omega \in R$ hence $b \in \lambda Q_{N, M}^{*}$. Since $v(b)=k+v(\lambda)=v(a)$ we get that $b \in \lambda Q_{N, M}^{*} \cap a R^{\times}$.

Fact 4.3 For every definable set $S \subseteq K^{m} \times|K|^{d}$, if $A \subseteq K^{m}$ is the image of the coordinate projection of $S$ onto $K^{m}$, there is a definable function $\sigma: A \rightarrow|K|^{d}$ such that $(x, \sigma(x)) \in S$ for every $x \in A$.

Proof: By $p$-minimality, the value group $v\left(K^{*}\right)$ is simply a Z-group. Every non-empty definable subset of a Z-group which is bounded above (resp. below) has a largest (resp. smallest) element. The conclusion easily follows if $d=1$, and for $d \geq 1$, it is a straightforward induction.

Beware that $\sigma$ in Fact 4.3 is not a Skolem function because it is not a function at all from $S$ to $K^{d}$ : it is a function from $S$ to $|K|^{d}$, and the inverse image of its graph by the valuation is a definable subset of $K \times K^{d}$ but no longer the graph of a definable function. The next Lemma shows that this can be fixed, in a strong sense.

Lemma 4.4 Assume that $(K, \mathcal{L})$ is strongly $p$-minimal and satisfies the Extreme Value Property. Then every definable function $f: X \subseteq K \rightarrow|K|^{d}$ is semi-algebraic. In particular there is a semi-algebraic function $\tilde{f}: X \rightarrow K^{d}$ such that $f=|\tilde{f}|$.

For every $r \in\left|K^{*}\right|$ we let $r^{+}$denote the element of $\left|K^{*}\right|$ immediately greater than $r$.
Proof: If $f=\left(f_{1}, \ldots, f_{d}\right)$ it suffices to prove the result separately for each $f_{i}$, hence we can assume that $d=1$. Given a finite partition of $X$ in definable pieces $Y$ it suffices to prove the result for the restriction of $f$ to each $Y$ separately. Thus by splitting $X$ in $f^{-1}(\{0\})$ and $X \backslash f^{-1}(\{0\})$ we can assume that $f(X) \subseteq\left|K^{*}\right|$. By Theorem 3.3 and Remark 3.4 in [HM97] there is a definable open set $U$ contained in $X$ such that $X \backslash U$ is finite and $f$ is continuous on $U$. By throwing away a finite set if necessary, we can therefore assume that $f$ is continuous and $X$ is open in $K$. Finally we can assume that $f$ is not constant on $X$, otherwise the result is trivial.

For every $a \in X$ the set of $r \in\left|K^{*}\right|$ such that $B(a, r) \subseteq X$ and $f$ is constant on this ball is definable, non-empty and bounded above (otherwise $X=K$ and $f$ is constant, which we have excluded) hence by Fact 4.3 it has a maximum element $\rho(a)$. We are claiming that the following set

$$
S=\left\{a \in X: \forall b \in B\left(a, \rho(a)^{+}\right) \cap X, f(a) \leq f(b)\right\}
$$

has the property that for every ball $B \subseteq X$ on which $f$ is non-constant, $B$ intersects both $S$ and $X \backslash S$. Indeed let $B=B(c, r)$ be any such ball. The function $\rho$ is definable, so the Extreme Value Property gives $a_{0} \in B$ such that $\rho\left(a_{0}\right)=\min _{b \in B} \rho(b)$. Since $f$ is non-constant on $B$, necessarily $\rho\left(a_{0}\right)<r$ hence $B\left(b, \rho\left(a_{0}\right)^{+}\right) \subseteq B$ for every $b \in B$. By construction $f$ is non-constant on $B\left(a_{0}, \rho\left(a_{0}\right)^{+}\right)$. The latter is the disjoint union of $B\left(a_{0}, \rho\left(a_{0}\right)\right)$ and finitely many balls $B\left(a_{i}, \rho\left(a_{0}\right)\right)$ for $1 \leq i \leq n$ (where $n+1 \geq 2$ is the cardinality of the residue field). By minimality of $\rho\left(a_{0}\right), f$ is constant on each $B\left(a_{i}, \rho\left(a_{0}\right)\right)$ hence there is $i \neq j$ between 0 and $n$ such that

$$
\begin{equation*}
\forall b \in B\left(a_{0}, \rho\left(a_{0}\right)^{+}\right), f\left(a_{i}\right) \leq f(b) \leq f\left(a_{j}\right) \tag{6}
\end{equation*}
$$

Moreover $f$ is non-constant on the union of $B\left(a_{k}, \rho\left(a_{0}\right)\right)$ for $0 \leq k \leq n$ hence $f\left(a_{i}\right)<f\left(a_{j}\right)$. It follows that $\rho\left(a_{i}\right)=\rho\left(a_{j}\right)=\rho\left(a_{0}\right)$ and hence $a_{i} \in S$ and $a_{j} \notin S$ by (6), which proves our claim.
$X$ and $S$ are definable subsets of $K$, hence semi-algebraic by $p$-minimality. Thus there exists a partition $\mathcal{A}$ of $X$ in finitely many cells $\bmod Q_{N, M}^{*}$ for some $N, M$ such that $S$ is also the union of the cells in $\mathcal{A}$ that it contains. Every cell $A \in \mathcal{A}$ can be presented as the set of elements $t \in K$ such that

$$
\left|\nu_{A}\right| \leq\left|t-c_{A}\right| \leq\left|\mu_{A}\right| \text { and } t-c_{A} \in \lambda_{A} Q_{N, M}^{*}
$$

We are claiming that $f(t)$ only depends on $\left|t-c_{A}\right|$ as $t$ ranges over $A$. If $\lambda_{A}=0$ then $A$ is reduced to a point, hence $f$ is constant on $A$. Otherwise $\lambda_{A} \neq 0$ and for every $t \in A$, the set of $t^{\prime} \in A$ such $\left|t-c_{A}\right|=\left|t-c_{B}\right|$ is a ball $B$ by Fact 4.2. By construction of $\mathcal{A}, A$ is either contained in $S$ or in $X \backslash S$ hence so is $B$. But then, by construction of $S, f$ is constant on $B$. This proves our claim.

Now pick any $A \in \mathcal{A}$ and translate it by $c_{A}$. The result is a cell $A^{\prime} \bmod$ $Q_{N, M}^{*}$ centered at 0 on which $f(t)$ only depends on $|t|$. Thus the graph of the restriction $f_{\mid A}$ of $f$ to $A$ is the intersection with $\lambda_{A} Q_{N, M}^{*}$ of the pre-image by the valuation of a definable function $\theta:\left|A^{\prime}\right| \rightarrow|K|$. By Theorem 6 in [Clu03] it follows that $f_{\mid A}$ is semi-algebraic, hence so is $f$. The last point immediately follows from the existence of definable Skolem functions for semi-algebraic sets (see for example [vdD84]).

As already mentioned in the introduction, Theorem 4.1 is a "relative" version of Theorem 6 in [Clu03]. Since our proof heavily depends on the main results of [Clu03] it is more convenient here to use additive notation for the value group, so let $G=v\left(K^{*}\right)$. Theorem 6 in [Clu03] actually says that for every definable set $S \subseteq\left(K^{*}\right)^{d}$, with $(K, \mathcal{L})$ a strongly $p$-minimal expansion of a $p$-adically closed field, the image of $S$ in $G^{d}$ by the valuation is definable in Presburger language

$$
\mathcal{L}_{\text {Pres }}=\left\{0,1,+, \leq,\left(\equiv_{n}\right)_{n>0}\right\}
$$

where $\equiv_{n}$ is interpreted in $G$ as the binary congruence relation modulo the integer $n$.

It follows from Theorem 1 in [Clu03] and Remarks (iii) just above it that every subset of $G^{d}$ definable in the language $\mathcal{L}_{\text {Pres }}$ is the union of finitely many disjoint sets defined by the conjunction for $1 \leq i \leq d$ of conditions $\left(E_{i}\right)$ of the form

$$
\zeta_{i}+\sum_{1 \leq j<i} a_{i, j} \frac{X_{j}-c_{j}}{n_{j}} \square_{i, 1} X_{i} \square_{i, 2} \zeta_{i}^{\prime}+\sum_{1 \leq j<i} a_{i, j}^{\prime} \frac{X_{j}-c_{j}}{n_{j}} \text { and } X_{i} \equiv c_{i}\left[n_{i}\right]
$$

with every $\zeta_{i}, \zeta_{i}^{\prime} \in G, a_{i, j}, a_{i, j}^{\prime}, c_{i}, n_{i} \in \mathbf{Z}, 0 \leq c_{i}<n_{i}$ and $\square_{i, 1}, \square_{i, 2}$ being either $\leq$ or no condition. Let $\lambda$ be the list of all these integers and symbols. Let $\Lambda_{d}$ denote the set of lists $\lambda$ of this sort. The conjunction of the above conditions $\left(E_{i}\right)$ for $1 \leq i \leq d$ is expressed by a formula $\varphi_{\lambda}(X, \zeta)$ with free variables $X=\left(X_{1}, \ldots, X_{d}\right)$ and parameters $\zeta=\left(\zeta_{1}, \ldots, \zeta_{d}, \zeta_{1}^{\prime}, \ldots, \zeta_{d}^{\prime}\right)$. We let $\varphi_{\lambda}(X, Z)$ be the corresponding parameter-free formula in $\mathcal{L}_{\text {Pres }}$ with $d+2 d$ free variables.

With these results in mind we can turn to the proof of Theorem 4.1.
Proof: Let $S$ be a definable ${ }^{4}$ subset of $K \times G^{d}$. For every $x \in K$ the fiber $S_{x}=\left\{\tau \in G^{d}:(x, \tau) \in S\right\}$ is definable in $\mathcal{L}_{\text {Pres }}$ by Theorem 6 in [Clu03]. Hence there is a finite set of elements $\lambda_{1}, \ldots, \lambda_{r} \in \Lambda_{d}$ and parameters $\gamma_{k} \in G^{2 d}$ such that the sets $C_{\lambda_{k}}\left(\gamma_{k}\right)$, defined as the set of elements $\tau \in G^{d}$ such that $G \models$ $\varphi_{\lambda_{k}}\left(\tau, \gamma_{k}\right)$, form a partition of $S_{x}$. These formulas $\varphi_{\lambda_{k}}(T, Z)$ easily translate into formulas $\psi_{\lambda_{k}}(T, Z)$ in the language of rings such that for every $t \in K^{d}$ and every $z \in K^{2 d}, K \models \psi_{\lambda_{k}}(t, z)$ if and only $G \models \varphi_{\lambda_{k}}(v(t), v(z))$.

[^2]By strong $p$-minimality the same holds true in every $\left(K^{\prime}, \mathcal{L}\right) \equiv(K, \mathcal{L})$. Hence by the model-theoretic Compactness Theorem there is a partition of $K$ in finitely many definable sets $A_{1}, \ldots, A_{s}$ and for each $l \leq s$ a finite set of indexes $\lambda_{1, l}, \ldots, \lambda_{r_{l}, l} \in \Lambda_{d}$ such that for every $x \in A_{l}$ there are parameters $\zeta_{x, k, l} \in G^{2 d}$ such that $S_{x}$ is partitioned by the sets $C_{\lambda_{k, l}}\left(\zeta_{x, k, l}\right)$ for $k \leq r_{l}$. By Fact 4.3 there are definable functions $\zeta_{k, l}$ from $A_{l}$ to $G^{2 d}$ such that for every $x \in A_{l}$ the sets $C_{\lambda_{k, l}}\left(\zeta_{k, l}(x)\right)$ for $k \leq r_{l}$ form a partition of $S_{x}$. By Lemma 4.4 and the Extreme Value Property there are semi-algebraic functions $\tilde{z}_{k, l}$ from $A_{k}$ to $K^{2 d}$ such that $\zeta_{k, l}=\left|\tilde{z}_{k, l}\right|$ (that is $\zeta_{k, l}=v \circ \tilde{z}_{k, l}$ with additive notation).

By the above construction $v^{-1}(S)$ is the disjoint union for $l \leq s$ and $k \leq r_{l}$ of the sets $B_{k, l}$ of tuples $(x, t) \in A_{k} \times K^{d}$ such that $K \models \psi_{\lambda_{k, l}}\left(t, \tilde{z}_{k, l}(x)\right)$. These sets are semi-algebraic because $\psi_{\lambda_{k, l}}(T, Z)$ is a formula in the language of rings and $\tilde{z}_{k, l}$ a semi-algebraic function. Thus $v^{-1}(S)$ itself is semi-algebraic, hence so is $S$ by definition.

Corollary 4.5 Assume that $K$ is p-optimal and satisfies the Extreme Value Property. Then every definable subset of $K^{m} \times|K|^{d}$ is a boolean combination of $(d+1)$-basic sets.

Proof: If $m=1$ the conclusion follows from Theorem 4.1 and Macintyre's Theorem (see Footnote 1). Assume that it has been proved for $m \geq 1$ and let $S$ be a definable subset of $K^{m+1+d}$ which is the pre-image by the valuation of a subset of $K^{m+1} \times|K|^{d}$. Let $S^{\prime}$ be the corresponding definable set over an elementary extension $K^{\prime}$ of $K$. For every $x^{\prime}$ in $K^{\prime m}$ let $S_{x^{\prime}}^{\prime}$ denote the fiber of $S^{\prime}$ over $x^{\prime}$ :

$$
S_{x^{\prime}}^{\prime}=\left\{\left(t^{\prime}, z^{\prime}\right) \in K^{\prime} \times{K^{\prime}}^{d}:\left(x^{\prime}, t^{\prime}, z^{\prime}\right) \in S^{\prime}\right\}
$$

This set $S_{x^{\prime}}^{\prime}$ is obviously the inverse image in $K^{\prime} \times K^{\prime d}$ by the valuation of a subset of $K^{\prime} \times\left|K^{\prime}\right|^{d}$. Note that $K^{\prime}$ is strongly $p$-minimal and satisfies the Extreme Value Property, because these two properties are preserved by elementary equivalence. Thus Theorem 4.1 applies in $K^{\prime}$ and gives a tuple $a_{x^{\prime}}^{\prime}$ of coefficients of a description of $S_{x^{\prime}}^{\prime}$ as a boolean combination of $(d+1)$-basic subsets of $K^{\prime d+1}$. The model-theoretic Compactness Theorem then gives definable subsets $A_{1}, \ldots, A_{q}$ of $K^{m}$ and for every $i \leq q$ an $\mathcal{L}$-formula $\varphi_{i}(\alpha, \tau, \zeta)$ with $n_{i}+1+d$ free variables which is a boolean combination of formulas of the form $f(\alpha, \tau, \zeta) \in P_{N}$ with $f \in \mathbf{Z}[\alpha, \tau, \zeta]$, such that for every $x$ in $A_{i}$ there is a list of coefficients $a_{x}$ such that

$$
S_{x}=\left\{(t, z) \in K \times K^{d}: K \models \varphi\left(a_{x}, t, z\right)\right\} .
$$

In other words, for every $x$ in $A_{i}$

$$
K \models \exists a \forall t, z\left((x, t, z) \in S \leftrightarrow \varphi_{i}(a, t, z)\right) .
$$

By Theorem 3.2, $K$ has definable Skolem functions, hence for each $i \leq q$ there is a definable function $\sigma_{i}: A_{i} \rightarrow K^{n_{i}}$ such that for every $x \in A_{i}$

$$
K \models \forall t, z\left[(x, t, z) \in S \leftrightarrow \varphi_{i}\left(\sigma_{i}(x), t, z\right)\right] .
$$

Let $B_{i}=\left\{(x, t, z) \in K^{m+1+d}: K \models \varphi_{i}\left(\sigma_{i}(x), t, z\right)\right\}$. By construction, this is a boolean combination of $(d+1)$-basic subsets of $K^{m+1+d}$. On the other hand,
$A_{i} \times K^{d+1}$ is obviously a $(d+1)$-basic subset of $K^{m+1+d}$. Indeed, if $c_{i}(x)$ denotes the indicator function of $A_{i}$, then $h_{i}(x, t, z)=c_{i}(x)-1$ is $(d+1)$-basic and we have

$$
A_{i} \times K^{d+1}=\left\{(x, t, z) \in K^{m+1+d}: h_{i}(x, t, z)=0\right\}
$$

which is a $(d+1)$-basic set by Remark 1.2. The conclusion follows, since $S$ is the union of the sets $B_{i} \cap\left(A_{i} \times K^{d+1}\right)$.

## 5 Cell preparation

The main result of this section is the Cell Preparation Theorem 5.3 for definable functions. We derive from it our last main result, Theorem 5.6, which classifies up to isomorphism the definable sets over any $p$-optimal field satisfying the Extreme Value Property.
Lemma 5.1 (Denef) Assume that $K$ is p-optimal and satisfies the Extreme Value Property. Then for every definable function $f: X \subseteq K^{m} \rightarrow K$ there is an integer $e \geq 1$ and a partition $\mathcal{A}$ of $X$ in definable sets $A$ such that for every $x$ in $A$

$$
|f(x)|^{e}=\left|\frac{p_{A}(x)}{q_{A}(x)}\right|
$$

with $p_{A}, q_{A}$ a pair of basic functions such that $q_{A}(x) \neq 0$ for every $x$ in $A$.
Proof: By Corollary 4.5, $\left\{(x, t) \in K^{m} \times K:|t|=|f(x)|\right\}$ is a boolean combination of 2-basic subsets of $K^{m+1}$. The proof of Denef's Theorem 6.3 in [Den84] then applies word-for-word, with basic functions instead of polynomial functions. It gives a partition of $X$ in finitely many definable pieces $A$, on each of which $|f|^{e}=\left|p_{A} / q_{A}\right|$ for some 1-basic functions such that $q_{A}(x) \neq 0$ for every $x$ in $A$.

Remark 5.2 Given an integer $n_{0} \geq 1$, the set $1+\pi^{n_{0}} R$ is a definable subgroup of $R^{\times}$with finite index. Thus in Lemma 5.1 we can always assume, refining if necessary the partition of $X$ (but keeping the same integer $e$ independently of $n_{0}$ ), that for every $x$ in $A$

$$
f(x)^{e}=\mathcal{U}_{n_{0}}(x) \frac{p_{A}(x)}{q_{A}(x)}
$$

Theorem 5.3 (Cell preparation) Assume that $K$ is p-optimal and satisfies the Extreme Value Property. Let $\left(\theta_{i}: A_{i} \subseteq K^{m+1} \rightarrow K\right)_{i \in I}$ be a finite family of definable functions and $N_{0} \geq 1$ an integer. Then there exists an integer $e \geq 1$ and, for every $n \in \mathbf{N}^{*}$, a pair of integers $M, N$ and a finite family $\mathcal{H}$ of presented cells mod $Q_{N, M}^{*}$ such that $M>2 v(e)$, e $N_{0}$ divides $N$, $\mathcal{H}$ refines $\left(A_{i}\right)_{i \in I}$, and for every $(x, t) \in H$,

$$
\begin{equation*}
\theta_{i}(x, t)=\mathcal{U}_{e, n}(x, t) h(x)\left[\lambda_{H}^{-1}\left(t-c_{H}(x)\right)\right]^{\frac{\alpha}{e}} \tag{7}
\end{equation*}
$$

for every $i \in I$ and every $H \in \mathcal{H}$ contained in $A_{i}$, with $h: \widehat{H} \rightarrow K$ a continuous definable function and $\alpha \in \mathbf{Z}$ (both depending on $i$ and $H$ ) ${ }^{5}$.

[^3]Remark 5.4 Remark 2.7 applies to the above theorem as well, so the center and bounds of every cell in $\mathcal{H}$ can be chosen to be continuous.

Proof: For each $i$ let $e_{i}$ be an integer, $\mathcal{A}_{i}$ a partition of $A_{i}$ and $\mathcal{F}_{i}$ a family of basic functions, all given by Lemma 5.1 applied to $\theta_{i}$. By replacing each $e_{i}$ with a common multiple we can assume that all of them are equal to some integer $e \geq 1$. Given an integer $n \geq 1$ we can refine the partition $\mathcal{A}_{i}$ as in Remark 5.2 with $n_{0}=n+2 v(e)$.

Let $\mathcal{A}$ be a finite family of definable sets refining $\bigcup_{i \in I} \mathcal{A}_{i}$. We can assume that each of them is a boolean combination of basic sets of the same power $N$, with $N$ a multiple of $e N_{0}$. For every $A$ in $\mathcal{A}$, every $i \in I$ such that $A_{i}$ contains $A$ and every $(x, t)$ in $A$ we have

$$
\begin{equation*}
\theta_{i}(x, t)^{e}=\mathcal{U}_{n_{0}}(x, t) \frac{p_{i, A}(x, t)}{q_{i, A}(x, t)} \tag{8}
\end{equation*}
$$

with $p_{i, A}$ and $q_{i, A}$ a pair of basic functions such that $q_{i, A}(x, t) \neq 0$ on $A$.
For each $A$ in $\mathcal{A}$ let $\mathcal{F}_{A}$ be the set of basic functions involved in a description of $A$ as a boolean combination of basic sets of power $N$. Theorem 2.4 applies to the family $\mathcal{F}$ of all the basic functions $p_{i, A}, q_{i, A}$ and the functions in $\mathcal{F}_{A}$, for all $A$ 's and $i$ 's. It gives a partition of $K^{m+1}$ into finitely many presented cells $B \bmod K^{*}$ such that for every $f$ in $\mathcal{F}$ and every $(x, t)$ in $B$

$$
\begin{equation*}
f(x, t)=\mathcal{U}_{M}(x, t) h_{f, B}(x)\left(t-c_{B}(x)\right)^{\beta_{f, B}} \tag{9}
\end{equation*}
$$

with $M=n_{0}+v(N), h_{f, B}: \widehat{B} \rightarrow K$ a definable function and $\beta_{f, B}$ a positive integer.

Partitioning $\widehat{B}$ if necessary, we can assume that the cosets $h_{f, B}(x) Q_{N, M}^{*}$ are constant on $\widehat{B}$. Since $M>v(N), 1+\pi^{M} R$ is contained in $Q_{N, M}^{*}$, so $B$ itself can be partitioned into cells $H \bmod Q_{N, M}^{*}$ such that $\widehat{H}=\widehat{B}, c_{H}=c_{B}$ and $f(x, t) Q_{N, M}^{*}$ is constant on $H$ by (9), for every $f$ in $\mathcal{F}$. A fortiori $f(x, t) P_{N}^{*}$ is constant on $H$ for every $f$ in $\mathcal{F}$, hence each $A$ in $\mathcal{A}$ either contains $H$ or is disjoint from $H$, for every $A$ in $\mathcal{A}$. So the family $\mathcal{H}$ of all those cells $H$ that are contained in $\bigcup \mathcal{A}$ refines $\mathcal{A}$, hence refines $\left\{A_{i}: i \in I\right\}$ as well.

For every cell $H$ in $\mathcal{H}$ there is a unique cell $B$ as above containing $H$. For every $i \in I$ such that $H$ is contained in $A_{i}$, the unique $A$ in $\mathcal{A}$ containing $B$ is also contained in $A_{i}$. By (9) applied to $f=p_{i, A}$ and to $f=q_{i, A}$, and by (8) we have for every $(x, t) \in H$

$$
\begin{equation*}
\theta_{i}(x, t)^{e}=\mathcal{U}_{n_{0}}(x, t) \frac{\mathcal{U}_{M}(x, t) h_{p_{i, A}, B}(x)\left(t-c_{B}(x)\right)^{\beta_{p_{i, A}, B}}}{\mathcal{U}_{M}(x, t) h_{q_{i, A}, B}(x)\left(t-c_{B}(x)\right)^{\beta_{q_{i, A}, B}}} \tag{10}
\end{equation*}
$$

The $\mathcal{U}_{n_{0}}$ and $\mathcal{U}_{M}$ factors simplify in a single $\mathcal{U}_{n_{0}}$ since $M \geq n_{0}$. By construction $c_{H}=c_{B}$ and $\widehat{H}=\widehat{B}$. So, for every $(x, t)$ in $H$ we get

$$
\begin{equation*}
\theta_{i}(x, t)^{e}=\mathcal{U}_{n_{0}}(x, t) g(x)\left[\lambda_{H}^{-1}\left(t-c_{H}(x)\right)\right]^{\alpha} \tag{11}
\end{equation*}
$$

with $g: \widehat{H} \rightarrow K$ a definable function and $\alpha \in \mathbf{Z}$ (both depending on $i$ and $H$ ). In turn $\mathcal{U}_{n_{0}}=\mathcal{U}_{e, n_{0}-v(e)}^{e}$ because $n_{0}>2 v(e)$ (see Lemma 1.7). The latter can be replaced by $\mathcal{U}_{n}^{e}$ because $n_{0}-v(e)=n+v(e) \geq n$. So (11) becomes

$$
\begin{equation*}
\theta_{i}(x, t)^{e}=\mathcal{U}_{e, n}(x, t)^{e} g(x)\left(\left[\lambda_{H}^{-1}\left(t-c_{B}(x)\right)\right]^{\frac{\alpha}{e}}\right)^{e} \tag{12}
\end{equation*}
$$

This implies that $g$ takes values in $P_{e}$, hence $g=h^{e}$ for some definable function $h: \widehat{H} \rightarrow K$, from which (7) follows.

Corollary 5.5 Suppose that $K$ is p-optimal and satisfies the Extreme Value Property. Let $\left(\theta_{i}: A \subseteq K^{m} \rightarrow K\right)_{i \in I}$ be a finite family of definable functions with the same domain. Then for every integer $n \geq 1$, there exists an integer $e$, a semi-algebraic set $\tilde{A} \subseteq K^{m}$ and a definable bijection $\varphi: \tilde{A} \rightarrow A$ such that for every $i \in I$ and every $x$ in $\tilde{A}$

$$
\theta_{i} \circ \varphi(x)=\mathcal{U}_{e, n}(x) \tilde{\theta}_{i}(x)
$$

with $\tilde{\theta}_{i}: \tilde{A} \subseteq K^{m} \rightarrow K$ semi-algebraic functions.
Proof: The proof goes by induction on $m$. Let us assume that it has been proved for some $m \geq 0$ (it is trivial for $m=0$ ) and that a finite family $\left(\theta_{i}\right)_{i \in I}$ of definable functions is given with domain $A \subseteq K^{m+1}$. If $A$ is a disjoint union of sets $B$, it suffices to prove the result for the restrictions of the $\theta_{i}$ 's to $B$. So, for any given integer $n \geq 1$, Theorem 5.3 with $N_{0}=1$ reduces to the case when $A$ is a presented cell $\bmod Q_{N, M}^{*}$ for some $N, M$ such that for some $e_{0} \geq 1$ dividing $N, M>2 v\left(e_{0}\right)$ and for every $i \in I$ and every $(x, t)$ in $A$

$$
\begin{equation*}
\theta_{i}(x, t)=\mathcal{U}_{e_{0}, n}(x, t) h_{i}(x)\left[\lambda_{A}^{-1}\left(t-c_{A}(x)\right)\right]^{\frac{\alpha_{i}}{e_{0}}} \tag{13}
\end{equation*}
$$

with $h_{i}: \widehat{A} \rightarrow K$ a definable function and $\alpha_{i} \in \mathbf{Z}$.
Let $e_{1} \geq 1$ be an integer, $Y \subseteq K^{m}$ a semi-algebraic set, $\psi: Y \rightarrow \widehat{A}$ a definable bijection, $\tilde{f}: Y \rightarrow K$ a semi-algebraic function for each $f$ in $\mathcal{F}$, all of this given by the induction hypothesis applied to $\mathcal{F}=\left\{\mu_{A}, \nu_{A}\right\} \cup\left\{h_{i}\right\}_{i \in I}$. Let $\tilde{A}$ be the set of $(y, s) \in Y \times K$ such that

$$
\left|\tilde{\nu}_{A}(y)\right| \leq|s| \leq\left|\tilde{\mu}_{A}(x)\right| \text { and } s \in \lambda_{A} Q_{N, M}^{*}
$$

Then $\varphi:(y, s) \mapsto\left(\psi(y), c_{A}(\psi(y))+s\right)$ defines a bijection from $\tilde{A}$ to $A$. For every $i \in I$ and every $(y, s) \in \tilde{A}$ we have

$$
\theta_{i} \circ \varphi(y, s)=\mathcal{U}_{e_{0}, n}(y, s) \mathcal{U}_{e_{1}, n}(y, s) \tilde{h}_{i}(y)\left(\lambda_{A}^{-1} s\right)^{\frac{\alpha_{i}}{e_{0}}}
$$

The first two factors can be replaced by $\mathcal{U}_{e, n}$ with $e$ any common multiple of $e_{0}$ and $e_{1}$. Since $\tilde{\theta}:(y, s) \mapsto \tilde{h}_{i}(y)\left(\lambda_{A}^{-1} s\right)^{\frac{\alpha_{i}}{e_{0}}}$ is a semi-algebraic function on $\tilde{A}$ the conclusion follows.

Theorem 5.3 and Corollary 5.5 are exactly analogous to Theorems 2.8 and 3.1 in [Clu04], except that we obtain a slightly more precise equality of functions $\bmod \left(1+\pi^{n} R\right) . \mathbf{U}_{e}$ instead of equality of their norm (which is the same as equality of functions mod $R^{\times}$). Thus all the important consequences that are derived from these theorems in [Clu04] for the classical analytic structure remain valid in every $p$-optimal field which satisfies the Extreme Value Property.

For applications to parametric integrals, which require numerous specific definitions, we refer the reader to the proofs of Theorems 4.2 and 4.4 in [Clu04]. Anyway these results have already been generalized to arbitrary strongly $p$-minimal fields in [CKL15]. For the classification of definable sets up to isomorphisms, which only uses the "topological dimension" defined in [HM97] for definable sets over strongly $p$-minimal fields, we have the following.

Theorem 5.6 Assume that $K$ is p-optimal and satisfies the Extreme Value Property. Then there exists a definable bijection between two infinite definable sets $A \subseteq K^{m}$ and $B \subseteq K^{n}$ if and only if they have the same dimension.

Proof: If there is a definable bijection (an "isomorphism") between $A$ and $B$ they have the same dimension by Corollary 6.4 in [HM97]. Conversely, if $A$ and $B$ have the same dimension $d$, then by Corollary 5.5 they are isomorphic to infinite semi-algebraic sets $\tilde{A}$ and $\tilde{B}$ respectively, both of which have dimension $d$, by Corollary 6.4 in [HM97] again. Then $\tilde{A}$ and $\tilde{B}$ are semi-algebraically isomorphic by the main result of [Clu01], hence $A$ and $B$ are isomorphic.

## References

[Ble10] Ali Bleybel. p-adically closed fields with nonstandard analytic structure. J. Symbolic Logic, 75(3):802-816, 2010.
[CKDL15] Pablo Cubides-Kovacsics, Luck Darnière, and Eva Leenknegt. Topological cell decomposition and dimension theory in $p$-minimal fields. preprint, 2015.
[CKL15] Pablo Cubides-Kovacsics and Eva Leenknegt. Integration and cell decomposition in $p$-minimal structures. arXiv:1502.06467v1, February 2015.
[CL12] Raf Cluckers and Eva Leenknegt. A version of $p$-adic minimality. J. Symbolic Logic, 77(2):621-630, 2012.
[Clu01] Raf Cluckers. Classification of semi-algebraic p-adic sets up to semialgebraic bijection. J. Reine Angew. Math., 540:105-114, 2001.
[Clu03] Raf Cluckers. Presburger sets and p-minimal fields. J. Symbolic Logic, 68(1):153-162, 2003.
[Clu04] Raf Cluckers. Analytic p-adic cell decomposition and integrals. Trans. Amer. Math. Soc., 356(4):1489-1499, 2004.
[Den84] Jan Denef. The rationality of the Poincaré series associated to the p-adic points on a variety. Invent. Math., 77(1):1-23, 1984.
[Den86] Jan Denef. p-adic semi-algebraic sets and cell decomposition. J. Reine Angew. Math., 369:154-166, 1986.
[DvdD88] Jan Denef and Lou van den Dries. p-adic and real subanalytic sets. Ann. of Math. (2), 128(1):79-138, 1988.
[HM97] Deirdre Haskell and Dugald Macpherson. A version of o-minimality for the p-adics. J. Symbolic Logic, 62(4):1075-1092, 1997.
[Mac76] Angus Macintyre. On definable subsets of $p$-adic fields. J. Symbolic Logic, 41(3):605-610, 1976.
[Mar08] Nathanaël Mariaule. Effective model-completeness for $p$-adic analytic structures. arXiv:1408.0610, 2008.
[Mou09] Marie-Hélène Mourgues. Cell decomposition for $P$-minimal fields. MLQ Math. Log. Q., 55(5):487-492, 2009.
[PR84] A. Prestel and P. Roquette. Formally p-adic fields, volume 1050 of Lecture Notes in Math. Springer-Verlag, 1984.
[vdD84] Lou van den Dries. Algebraic theories with definable Skolem functions. J. Symbolic Logic, 49(2):625-629, 1984.
[vdDHM99] Lou van den Dries, Deirdre Haskell, and Dugald Macpherson. Onedimensional p-adic subanalytic sets. J. London Math. Soc. (2), 59(1):1-20, 1999.


[^0]:    ${ }^{1}$ Note that a global function in $m$ variables is $m$-basic if and only if it is polynomial, hence Macintyre's theorem can be rephrased as: every semi-algebraic subset of $K^{m}$ is $m$-basic.
    ${ }^{2}$ This is indeed what happens in the subanalytic case (see below) as well as in every known example such as the non-standard analytic structure on $\mathbf{Q}_{p}\left(\left(t^{\mathbf{Q}}\right)\right)$ studied in [Ble10], or the expansions of $\mathbf{Q}_{p}$ with Weierstrass systems of [Mar08]: all of them are indeed examples of $p$-optimal fields.

[^1]:    ${ }^{3}$ For a more intrinsic definition of $Q_{N, M}$ inside $K$, see [CL12].

[^2]:    ${ }^{4}$ Recall that in this context, "definable" means that the inverse image of $S$ by the valuation is definable in $K \times K^{d}$.

[^3]:    ${ }^{5}$ If $H$ is of type 0 then it is understood that $\alpha=0$ and we use the conventions that in this case $\lambda_{H}^{-1}=0$ and $0^{0}=1$.

