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Abstract

We prove that for p-optimal fields (a very large subclass of p-minimal
fields containing all the known examples) a cell decomposition theorem fol-
lows from methods going back to Denef’s paper [Den84]. We derive from it
the existence of definable Skolem functions and strong p-minimality, thus
providing a new proof of the main result of [vdDHM99]. Then we turn to
strongly p-optimal field satisfying the Extreme Value Property – a prop-
erty which in particular holds in fields which are elementarily equivalent
to a p-adic one. For such fields K, we prove that every definable subset of
K×Kd whose fibers are inverse images by the valuation of subsets of the
value group, are semi-algebraic. Combining the two we get a preparation
theorem for definable functions on p-optimal fields satisfying the Extreme
Value Property, from which it follows that infinite sets definable over such
fields are isomorphic iff they have the same dimension.

1 Introduction

This paper is an attempt to continue the road opened by Haskell and Macpher-
son in [HM97] toward a p-adic version of o-minimality, by isolating large sub-
classes of p-minimal fields to which Denef’s methods of [Den84] apply with
striking efficiency.

Recall that a p-adically closed field is a field K elementarily equivalent to
a p-adic field, that is a finite extension of the field Qp of p-adic numbers. For
every a in K, v(a) and |a| denote the p-valuation of a and its norm. The norm is
nothing but the valuation with a multiplicative notation so that |0| = 0, |ab| =
|a|.|b|, |a + b| ≤ max(|a|, |b|) and of course |a| ≤ |b| if and only if v(a) ≥ v(b).
The valuation ring of v is denoted by R, and we fix some π in R such that πR
is the maximal ideal of R. We let v(K) or |K| denote the image of K by the
valuation.

Except if otherwise specified, when we say that a set or a function is definable
we always mean “definable with parameters”. Wherever it is convenient we will
identify subsets of Km×|K|d with their inverse image in Km+d by the valuation,
thus saying for example that the former are definable, semi-algebraic, and so on
if the latter are so.

An expansion (K,L) of K (that is an L-structure extending the ring struc-
ture of K for some language L containing the language of rings) is p-minimal
if every definable subset of K is definable in the language of rings. By “defin-
able” we always mean definable in the language L with parameters from K. For
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sets and functions definable in the language of rings, we use the term “semi-
algebraic” instead. (K,L) is strongly p-minimal (or P -minimal for short, as
in [HM97]) if every elementarily equivalent L-structure is p-minimal. When the
distinction between the L-structure and the ring structure of K is clear from
the context, K itself is called a strongly p-minimal field.

Strong p-minimality was introduced by Haskell and Macpherson in [HM97].
Since their proofs make extensive use of the model-theoretic Compactness The-
orem, very little is known on p-minimal fields without the “strong” assumption
contrary to the situation in o-minimal expansions of real closed fields, where
o-minimality already implies strong o-minimality. They also left open several
questions, such as the existence of a cell decomposition.

Mourgues proved in [Mou09] that a cell decomposition similar to the one
of [Den84] holds for a strongly p-minimal field K if and only if it has defin-
able Skolem functions (“definable selection” in [Mou09]), that is if for every
positive integers m,n and every definable subset S of Km+n the coordinate
projection of S onto Km has a definable section. It is not known at the moment
whether strongly p-minimal fields always have definable Skolem functions.

As Cluckers noted in [Clu04], in [Mou09] a preparation theorem for definable
functions was lacking. He filled this lacuna for the classical analytic structure
on K (see below), and derived from his preparation theorem several important
applications, for parametric integrals and classification of subanalytic sets up to
isomorphism.

The aim of this paper is to address some of these questions by introducing
another notion of minimality for expansions of p-adically closed fields, called
“p-optimality” (see definition below) with the following properties:

1. It is intrinsic (that is its definition only involves the given structure, not
those which are elementarily equivalent to it) natural and general enough
to include all the known examples of p-minimal fields.

2. Nevertheless it implies strong p-minimality, the existence of definable
Skolem functions, cell decomposition and (under a mild assumption which
we will discuss in Remark 1.6) cell preparation, so that all the applications
of [Clu04] generalize to this context.

Remark 1.1 Another cell decomposition has recently been proved in [CKL15]
to hold for strongly p-minimal fields considered as two sorted-structures. This
variant is strong enough to generalize to strongly p-minimal fields the result of
[Clu04] for parametric integrals. On the other hand it takes strong p-minimality
as an assumption for the field sort, and it is weaker than the usual one in
p-adically closed field (the cells in [CKL15] do not have definable centers).
In particular this cell decomposition does not imply the existence of definable
Skolem functions, and neither Theorems 1.4 and 1.5 below.

Defining p-optimal fields. By a celebrated theorem of Macintyre [Mac76]
(generalized to p-adically closed fields in [PR84]) when K = Qp every semi-
algebraic subset of Km is a (finite) boolean combination of sets of the form

S =
{
x ∈ Km : f(x) ∈ PN

}
(1)
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with f a polynomial function, N ≥ 1 an integer and

PN =
{
x ∈ K :∃y ∈ K, x = yN

}
.

We define d-basic functions as m-ary functions for some m which are poly-
nomial in the last d variables with as coefficients global definable functions in
the m − d first variables, and d-basic sets (of power N) as the sets of the
same form as (1) with d-basic functions instead of polynomial1 functions. When
d = 1 we simply talk about basic functions and sets. We say that (K,L) (or
simply K for short) is p-optimal if every definable subset of Km is a (finite)
boolean combination of basic sets, for every m.

Remark 1.2 By the argument of Lemma 2.1 in [Den84], the following subsets
of Km are d-basic, for every d-basic m-ary functions f , g.{

x ∈ Km : f(x) = 0
}

and
{
x ∈ Km : |g(x)| ≤ |f(x)|

}
Moreover, since P ∗N = PN \ {0} is a subgroup of finite index in K∗, the com-
plement in Km of a d-basic set is a finite union of d-basic sets. Hence every
(finite) boolean combination of basic sets is the union of intersections of finitely
many basic sets. All of them can be taken of the same power, because P ∗N ′ is a
subgroup of P ∗N of finite index for every N ′ which is divisible by N .

(Strong) p-minimality versus p-optimality. Note that p-optimal fields are
not assumed to be strongly p-minimal. They are p-minimal because basic sub-
sets of the affine line K are semi-algebraic. Moreover it is difficult to imagine
any proof of p-minimality which does not involve in a way or another a quanti-
fier elimination result similar to Macintyre’s Theorem. The condition defining
p-optimality is actually very close to such kind of elimination. So close that we
can expect it to be proved simultaneously in most cases, if not all, without ad-
ditional effort2. Although not surprising, it is then quite remarkable that every
p-optimal field is strongly p-minimal. More precisely (Theorem 3.2):

Theorem 1.3 For every expansion of a p-adically closed field F , the following
are equivalent:

1. F is p-optimal.

2. Denef’s Cell Decomposition Theorem 2.6 holds in F .

3. F is strongly p-minimal and has definable Skolem function.

Of course (3)⇒(2) follows from [Mou09] (not the other implications, because
Mourgues considers only strongly p-minimal fields). The most interesting part
of Theorem 1.3 is certainly (1)⇒(3). Let us see how it applies to a fundamental
example.

1Note that a global function in m variables is m-basic if and only if it is polynomial, hence
Macintyre’s theorem can be rephrased as: every semi-algebraic subset of Km is m-basic.

2This is indeed what happens in the subanalytic case (see below) as well as in every known
example such as the non-standard analytic structure on Qp((tQ)) studied in [Ble10], or the
expansions of Qp with Weierstrass systems of [Mar08]: all of them are indeed examples of
p-optimal fields.
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Application to the subanalytic case. In the classical analytic structure,
initially introduced on Zp by Denef and van den Dries in [DvdD88] (see Defini-
tion 1.3 and further in [Clu04] for its adaptation to the field case) p-minimality
was derived from the Quantifier Elimination Theorem 1.1 in [DvdD88], the
proof of which is based on the Weierstrass preparation and division theorem
for analytic functions. Strong p-minimality was proved later in [vdDHM99] by
means of an intricate parametric version of this same Weierstrass division. But
a detailed study of the original proof of Theorem 1.1 in [DvdD88] shows that
it directly proves (a very strong form of) p-optimality for the classical analytic
structure. Thus our result, that p-optimal fields are strongly p-minimal, applies
to this structure and gives an alternate proof of the main result of [vdDHM99],
both simpler and much more general.

Main other results. In Section 4 we will consider strongly p-minimal fields
satisfying the following condition.

(*) Every continuous definable function from a closed and bounded definable
set X ⊆ K to |K| \ {0} attains a minimum value.

We call it the Extreme Value Property. Note that it is not at all a restric-
tive assumption: if (K,L) is any p-optimal field which is elementarily equivalent
(K ′,L) for some p-adic field K ′ then the Extreme Value Property trivially holds
true in K ′ (because its p-valuation ring is compact), and passes to K by ele-
mentary equivalence. It is proved in [Clu01] (Theorem 6) that in every strongly
p-minimal field (K,L), the definable subsets of |Kd| are semi-algebraic. The
following is a “relative” version of this result (Theorem 4.1 and Corollary 4.5).

Theorem 1.4 If (K,L) is strongly p-minimal and satisfies the Extreme Value
Property, then every definable set S ⊆ K × |K|d is semi-algebraic. If moreover
K is p-optimal then every definable subset of Km×|K|d is a boolean combination
of (d+ 1)-basic sets.

In Section 5 we derive from it a preparation Theorem 5.3 for definable func-
tions, analogous to Theorem 2.8 in [Clu04]. As an application we get (Theo-
rem 5.6):

Theorem 1.5 Two infinite sets definable over a p-optimal field satisfying the
Extreme Value Property are isomorphic if and only if they have the same di-
mension.

Remark 1.6 As already mentioned the Extreme Value Property is not a strong
assumption. In particular it holds true for every semi-algebraic functions in a
p-adically closed field (by reduction to the p-adic case, with the same argument
as above). Moreover the Cell Preparation Theorem 5.3 applied to any unary
definable function f from a closed and bounded set S ⊆ K to K \{0} gives that
the function |f | : S → |K| \ {0} is semi-algebraic, hence has a minimum value.
So the Cell Preparation Theorem holds true in a p-optimal field if and only if
it satisfies the Extreme Value Property.
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Other terminology and notation. For convenience we will sometimes add
to K one more element ∞, with the property that |x| < |∞| for every x in K.
We also denote by ∞ any partial function with constant value ∞.

Topological notions refer to the topology of the p-valuation, or its image in
|K|.

For every subset X of K we let X∗ = X \ {0}. Note the difference between
R∗ = R \ {0} and R× = the set of units in R.

Recall that K0 is a one-point set. When a tuple a = (x, t) is given in Km+1

it is understood that x = (x1, . . . , xm) and t is the last coordinate. We let â = x
denote the projection of a onto Km. Similarly, the projection of a subset S of
Km+1 onto Km is denoted Ŝ.

We extend |.| (or v) to Km coordinatewise. That is, for every x ∈ Km we
let: ∣∣(x1, . . . , xm)

∣∣ =
(
|x1|, . . . , |xm|

)
.

For every A ⊆ Km we let |A| denote the image of A by this extension of the
valuation.

For every integer e ≥ 1 let Ue = {x ∈ K :xe = 1}. Analogously to Landau’s
notation O(xn) of calculus, we let Ue,n(x) denote any definable function in the
multi-variable x with values in (1 +πnR)Ue. So, given a family of functions fi,
gi on the same domain X, we write that fi = Ue,ngi for every i, when there are
definable functions ωi : X → R and χi : X → Ue such that for every x in X,
fi(x) =

(
1 + πnωi(x)

)
χi(x)gi(x). When e = 1, U1,n(x) is simply written Un(x).

If K◦ is a finite extension of Qp to which K is elementarily equivalent as a
ring, and R◦ is the p-valuation ring ofK◦, then the following set is semi-algebraic
(see Lemma 2.1, point 4, in [Den86])

Q◦N,M = {0} ∪
⋃
k∈Z

πkN (1 + πMR◦).

We let QN,M denote the semi-algebraic subset of K corresponding3 by elemen-
tary equivalence to Q◦N,M in K. If M > v(N), Hensel’s lemma implies that

1 +πMR is contained in P ∗N . Note that in this case, Q∗N,M is a clopen subgroup
of P ∗N with finite index. The next property also follows from Hensel’s lemma
(see for example Lemma 1 and Corollary 1 in [Clu01]).

Lemma 1.7 The function x 7→ xe is a group endomorphism of Q∗N0,M0
. If

M0 > v(e) this endomorphism is injective and its image is Q∗eN0,v(e)+M0
.

In particular x 7→ xN defines a continuous bijection from Q1,v(N)+1 to

QN,2v(N)+1. We let x 7→ x
1
N denote the reverse bijection.

3For a more intrinsic definition of QN,M inside K, see [CL12].

5



2 Cell decomposition

In this section K denotes a p-optimal field. We will prove that such fields satisfy
Denef’s cell decomposition (Theorem 2.6).

The cells which usually appear in the literature on p-adic fields are non
empty subsets of Km+1 of the form:

{(x, t) ∈ X ×K : |ν(x)|�1|t− c(x)|�2|µ(x)| and t− c(x) ∈ λG} (2)

where X ⊆ Km is a definable set, c, µ, ν are definable functions from X to K,
�1,�2 are ≤, < or no condition, λ ∈ K and G is a semi-algebraic subgroup of
K∗ with finite index. In this paper we will only consider the cases when G is
K∗ (Theorem 2.4), P ∗N (Theorem 2.6) or Q∗N,M (Theorem 5.3).

In its simplest form, Denef’s Cell Decomposition Theorem asserts that every
semi-algebraic subset of Km is the disjoint union of finitely many cells. It will
be convenient to fix a few more conditions on our cells, but most of all we want
to pay attention on how the functions defining the output cells depend on the
input data.

So we define presented cells in Km+1 as tuples A = (cA, νA, µA, λA, GA)
with cA a definable function on a non-empty domain X ⊆ Km with values in
K, νA and µA either definable functions on X with values in K∗ or constant
functions on X with values 0 or ∞, λA an element of K and GA semi-algebraic
subgroup of K∗ with finite index, such that for every x ∈ X there is t ∈ K such
that:

|νA(x)| ≤ |t− cA(x)| ≤ |µA(x)| and t− cA(x) ∈ λAGA. (3)

Of course the set of tuples (x, t) ∈ X × K satisfying (3) is a cell of Km+1 in
the usual sense of (2). We call it the underlying cellular set of A. Abusing
the notation we will most often also denote that set by A. The existence, for
every x ∈ X, of t satisfying (3) simply means that X is exactly Â. We call it
the base of A. The function cA is called its center, µA and νA its bounds.
We also speak of a presented cell mod G when GA = G.

A presented cell A is said to be of type 0 if λA = 0, and of type 1 otherwise.
Contrary to its center, bounds, and modulo, the type of A only depends on its
underlying set.

The word “cell” will usually refer to presented cells. However, for sake of
simplicity, we will freely talk of disjoint cells, bounded cells, families of cells
partitioning some set and so on, meaning that the underlying cellular sets of
these (presented) cells have the corresponding properties. For instance, it is clear
that every cellular set as in (2) is in that sense the disjoint union of finitely many
(presented) cells mod G.

Lemma 2.1 (Denef) Let S be a definable subset of Km+n. Assume that there
is an integer α ≥ 1 such that for every x in Km the fiber

Sx =
{
y ∈ Kn :(x, y) ∈ S

}
has cardinality ≤ α. Then the coordinate projection of S on Km has a definable
section.

Proof: Identical to the proof of Lemma 7.1 in [Den84].
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Lemma 2.2 (Denef) Let f be an (m + 1)-ary basic function with variables
(x, t) = (x1, . . . , xm, t). Let n ≥ 1 be a fixed integer. Then there exists a
partition of Km+1 into sets A of the form

A =
⋂
j∈S

⋂
l∈Sj

{
(x, t) ∈ Km+1 :x ∈ C and |t− cj(x)|�j,l|aj,l(x)|

}
where S and Sj are finite index sets, C is a definable subset of Km, and cj, aj,l
are definable functions from Km to K, such that for all (x, t) in A we have

f(x, t) = Un(x, t)h(x)
∏
j∈S

(
t− cj(x)

)ej
with h : Km → K a definable function and ej ∈ N.

It is sufficient to check it for every n large enough so we can assume that:

1 + πnR ⊆ PN ∩R× (4)

Thus Un(x, t) in the conclusion could be replaced by u(x, t)N with u a definable
function from A to R×. This is indeed how this result is stated in Lemma 7.2
of [Den84]. However it is the above equivalent (but slightly more precise) form
which appears in Denef’s proof, and which we retain in this paper.

Proof: Follow the proof of Lemma 7.2 of [Den84], using the p-minimality
assumption and basic functions in place of Macintyre’s quantifier elimination
and polynomial functions. Of course, Lemma 7.1 used in Denef’s proof has to
be replaced with the analogous Lemma 2.1.

Remark 2.3 (co-algebraic functions) A remarkable by-product of Denef’s
proof is that the functions cj and aj,l in the conclusion of Lemma 2.2 belong to
coalg(f), which we define now.

Given a basic function f , we say that a function h : X ⊆ Km → K belongs
to coalg(f) if there exists a finite partition of X into definable pieces H, on
each of which the degree in t of f(x, t) is constant, say eH , and such that the
following holds. If eH ≤ 0 then h(x) is identically equal to 0 on H. Otherwise
there is a family (ξ1, . . . , ξrH ) of K-linearly independent elements in an algebraic
closure of K and a family of definable functions bi,j : H → K for 1 ≤ i ≤ eH
and 1 ≤ j ≤ rH , and aeH : H → K∗ such that for every x in H

f(x, T ) = aeH (x)
∏

1≤i≤eH

(
T −

∑
1≤j≤rH

bi,j(x)ξj

)
and

h(x) =
∑

1≤i≤eH

∑
1≤j≤rH

αi,jbi,j(x)

With the αi,j ’s in K. If F is any family of basic functions we let coalg(F)
denote the set of linear combinations of functions in coalg(f) for f in F .
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Theorem 2.4 (Denef) Let F be a finite family of (m+1)-ary basic functions.
Let n ≥ 1 be a fixed integer. Then there exists a finite partition of Km+1

into presented cells H mod K∗ such that the center and bounds of H belong to
coalg(F) ∪ {∞} and for every (x, t) in H and every f in F

f(x, t) = Un(x, t)hf,H(x)
(
t− cH(x)

)αf,H (5)

with hf,H : Ĥ → K a definable function and αf,H ∈ N.

Proof: Follow the proof of Theorem 7.3 in [Den84], using once again the
p-minimality assumption and basic functions in place of Macintyre’s quantifier
elimination and polynomial functions.

Given two families A, B of subsets of Km, recall that B refines A if B is a
partition of

⋃
A such that every A in A which meets some B in B contains it.

Corollary 2.5 (Denef) Let F be a finite family of m-ary basic functions, N ≥
1 an integer and A a family of boolean combinations of subsets of Km defined
by f(x) ∈ PN with f in F . Then there exists a finite family H of cells mod P ∗N
with center and bounds in coalg(F) which refines A.

Proof: Theorem 2.4 applies to F with n > v(N), so that 1 + πnR ⊆ PN . It
gives a partition of Km into presented cells B mod K∗. Every such cell B is the
disjoint union of finitely many presented cells H mod P ∗N , whose centers and

bounds are the restrictions to Ĥ of the center and bounds of B (hence belong to
coalg(F)), on which hf,B(x)P ∗N and (t−cB(x))P ∗N are constant, simultaneously
for every f in F . Thus every A in A either contains H or is disjoint from H by
(5) and our choice of n, which proves the result.

The following simpler statement, which follows directly from Corollary 2.5
by p-optimality, is sufficient in most cases.

Theorem 2.6 (Denef’s cell decomposition) For every finite family A of
definable subsets of Km there is for some N a finite family of presented cells
mod P ∗N refining A.

Remark 2.7 It has been proved in [CKDL15] that every definable function in a
strongly p-minimal field is piecewise continuous. We will show in the next section
that p-optimal fields are strongly p-optimal. Thus the bounds and centers of
the cells in the above cell decompositions can be chosen continuous by refining
appropriately a given cell decomposition.

3 From p-optimality to strong p-minimality with
Skolem functions

Lemma 3.1 Assume that Denef’s Cell Decomposition Theorem 2.6 holds true
for an expansion of a p-adically closed field F . Then it has definable Skolem
functions.
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The proof is taken from the appendix of [DvdD88]. It is similar to proposi-
tion 4.1 in [Mou09] except that we do not assume strong p-minimality (nor any
continuity in the bounds of the cells).

Proof: By a straightforward induction it suffices to prove that for every defin-
able subset A of Fm+1 the coordinate projection of A onto Â has a definable
section. If A is a union of finitely many definable sets B and if a definable
section σB : B̂ → B has been found for each projection of B onto B̂ we are
done. Thus, by cell decomposition, we can assume that A is a presented cell
mod P ∗N for some N . We deal with the case when A = (cA, νA, µA, λA) is of
type 1 and νA 6= 0 or µA 6=∞, the other cases being trivial.

W.l.o.g. we can assume that v ◦ νA is equal to v(λA) modulo N , so
νA/λA takes values in v−1(Nv(F ∗)). As QN,2v(N)+1 is a definable subgroup of

v−1(Nv(F ∗)) with finite index, there is a partition of Â into finitely many de-
finable pieces X on which νA/λA has constant residue class modulo QN,2v(N)+1.
Again it suffices to prove the result for each piece A ∩ (X × F ) of A, so we can

assume that X = Â. Pick any u in R× such that νA/λA belongs constantly to

u.QN,2v(N)+1 on Â. Then ξ = (νA/(uλA))1/N is a definable function on Â and
the map

σ : x 7→
(
x, cA(x) + λAξ(x)N

)
is a definable section of the projection of A onto Â. If νA = 0 and µA 6= ∞ a
similar argument on µA gives the conclusion.

Theorem 3.2 For every expansion of a p-adically closed field F , the following
are equivalent:

1. F is p-optimal.

2. Denef’s cell decomposition Theorem 2.6 holds in F .

3. F is strongly p-minimal and has definable Skolem function.

Proof: (1)⇒(2) is Theorem 2.6. Let us prove that (2)⇒(3). By Lemma 3.1 it
only remains to derive strong p-minimality from the Cell Decomposition Theo-
rem 2.6.

Let Φ(ξ, σ) be a parameter-free formula with m + 1 variables. It defines a
subset S of Fm+1 which splits into finitely many cells C mod P ∗N for some N .

Let C be the family of these cells, and X1, . . . , Xr a finite partition of Ŝ refining
the Ĉ’s for C ∈ C. For each i ≤ r let θi(αi, ξ) be a parameter-free formula in
ni +m variables and ai ∈ Fni such that

Xi = {x ∈ Fm :F |= θ(ai, x)}.

Let Θ(α1, . . . , αr) be the parameter-free formula in n1 + · · · + nr saying that,
given any values a′i of the parameters αi, the formulas θi(a

′
i, ξ) define a partition

of Ŝ. In particular we have F |= Θ(a1, . . . , ar).
Let Ci be the family of all the cells C ∩ (Xi ×K) for C ∈ C. This is a finite

partition of S ∩ (Xi ×K) into cells mod P ∗N , which consists in ki0 cells of type
0, ki1 cells D of type 1 with µD 6= ∞, and ki∞ cells D of type 1 with µD = ∞.
We let ki = (ki0, k

i
1, k

i
∞). For every x ∈ Xi, the fiber Sx = {t ∈ F :(x, s) ∈ S}
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is the disjoint union of the fibers Cx for C ∈ Ci, each of which is of the same
type as C. Given a tuple k = (k0, k1, k∞) it is an easy exercise to write a
parameter-free formula Ψk,N (ξ) in m free variables saying that, given any value
x′ of the parameter ξ, the set of points t′ in F such that F |= Φ(x′, t′) is the
disjoint union of k0 cells mod P ∗N of type 0, k1 cells D′ mod P ∗N of type 1 with
µD′ 6= ∞, and k∞ cells D′ mod P ∗N of type 1 with µD′ = ∞. By construction
we have

F |= ∃α1, . . . , αr Θ(α1, . . . , αr) ∧ ∧∧
i≤r
∀ξ
[
θ(αi, ξ)→ Ψki,N (ξ)

]
This formula is satisfied in every F̃ ≡ F . So there are ãi in F̃ni for i ≤ r

such that the sets
X̃i = {x̃ ∈ F̃m : F̃ |= θ(ãi, x̃)}

form a partition of {x̃ ∈ F̃m :∃t̃ ∈ F̃ , F̃ |= θ(x̃, t̃)}, and for every x̃ ∈ X̃i the set
of t̃ ∈ F̃ such that F̃ |= θ(x̃, t̃) is the disjoint union of ki0 + ki1 + ki∞ cells of F̃ .
In particular the formula Φ(x̃, σ) defines a semi-algebraic subset of F , whatever
is the value of the parameter x̃ in F̃m. This being true for every formula Φ, it
follows that F̃ is p-minimal hence that F is strongly p-minimal.

Finally let us prove that (3)⇒(1). Let S be a definable subset of Fm+1,
and S′ the corresponding definable set in an elementary extension F ′ of F . For
every x′ in F ′m let S′x′ denote the fiber of Ŝ′ over x′:

S′x′ =
{
t′ ∈ F :(x′, t′) ∈ S′

}
For every x′ in Ŝ′ the p-minimality of F ′ and Macintyre’s thorem (see Foot-
note 1) give a tuple z′x′ of coefficients of a description of S′x′ as a boolean com-
bination of basic sets. The model-theoretic Compactness Theorem then gives
definable subsets S1, . . . , Sq of Fm and for every i ≤ q an L–formula ϕi(x, t, z)
with m+ 1 +ni free variables which is a boolean combination of formulas of the
form f(x, t, z) ∈ PN with f ∈ Z[x, t, z], such that for every x in Si there is a list
of coefficients zx such that

Sx =
{
t ∈ T :F |= ϕ(x, t, zx)

}
.

In other words, for every x in Si

F |= ∃z ∀t
(
(x, t) ∈ S ↔ ϕi(x, t, z)

)
.

Our assumption (3) then gives for each i ≤ q a definable function ζi : Si → Fni

such that for every x ∈ Si

F |= ∀t
[
(x, t) ∈ S ↔ ϕi

(
x, t, ζi(x)

)]
.

Let Bi = {(x, t) ∈ Fm+1 :F |= ϕi(x, t, ζi(x))}. By construction this is a boolean
combination of basic subsets of Fm+1, hence so is Ci = Bi ∩ (Si × F ). The
conclusion follows, since S is the union of these Ci’s.
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4 Relative p-minimality

The aim of this section is to prove the following result. It may be called “relative
p-minimality”.

Theorem 4.1 Assume that (K,L) is strongly p-minimal and satisfies the Ex-
treme Value Property. Then every definable set S ⊆ K×|K|d is semi-algebraic,
for every d.

We need to state a few preliminary results and to introduce some notation.
For every a ∈ K and r ∈ |K∗| we let

B(a, r) =
{
y ∈ K : |x− y| < r

}
denote the ball of center a and radius r.

Fact 4.2 For every a ∈ λQ∗N,M with λ ∈ K∗, λQ∗N,M ∩ aR× is a ball.

Proof: It suffices to prove it when K is a p-adic field, and the general result
will follow by elementary equivalence since QN,M is semi-algebraic. Recall that
in this case

QN,M = {0} ∪
⋃
k∈Z

πkN (1 + πMR)

hence every a ∈ Q∗N,M write a = λπkN (1 + πMωa) for some ωa ∈ R and

k = v(a/λ). We are going to prove that λQN,M ∩ aR× = B(a, |λπkN+M−1|).
For every b ∈ λQN,M ∩ aR× we have b = λπkN (1 + πMωb) for some ωb ∈ R

and the same integer k hence

|b− a| =
∣∣λπkN+M (ωb − ωa)

∣∣ ≤ |λπkN+M |.

So λQN,M ∩aR× is contained in B(a, |λπkN+M−1|). Conversely for any element
b in this ball we have b = a+ λπkN+Mω for some ω ∈ R hence

b = λπkN (1 + πMωa) + λπkN+Mω

= λπkN (1 + πMωa + πMω)

= λπkN (1 + πMω′)

with ω′ = ωa + ω ∈ R hence b ∈ λQ∗N,M . Since v(b) = k + v(λ) = v(a) we get

that b ∈ λQ∗N,M ∩ aR×.

Fact 4.3 For every definable set S ⊆ Km×|K|d, if A ⊆ Km is the image of the
coordinate projection of S onto Km, there is a definable function σ : A→ |K|d
such that (x, σ(x)) ∈ S for every x ∈ A.

Proof: By p-minimality, the value group v(K∗) is simply a Z-group. Every
non-empty definable subset of a Z-group which is bounded above (resp. below)
has a largest (resp. smallest) element. The conclusion easily follows if d = 1,
and for d ≥ 1, it is a straightforward induction.
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Beware that σ in Fact 4.3 is not a Skolem function because it is not a function
at all from S to Kd: it is a function from S to |K|d, and the inverse image of
its graph by the valuation is a definable subset of K × Kd but no longer the
graph of a definable function. The next Lemma shows that this can be fixed, in
a strong sense.

Lemma 4.4 Assume that (K,L) is strongly p-minimal and satisfies the Ex-
treme Value Property. Then every definable function f : X ⊆ K → |K|d is
semi-algebraic. In particular there is a semi-algebraic function f̃ : X → Kd

such that f = |f̃ |.

For every r ∈ |K∗| we let r+ denote the element of |K∗| immediately greater
than r.

Proof: If f = (f1, . . . , fd) it suffices to prove the result separately for each fi,
hence we can assume that d = 1. Given a finite partition of X in definable pieces
Y it suffices to prove the result for the restriction of f to each Y separately. Thus
by splitting X in f−1({0}) and X \ f−1({0}) we can assume that f(X) ⊆ |K∗|.
By Theorem 3.3 and Remark 3.4 in [HM97] there is a definable open set U
contained in X such that X \U is finite and f is continuous on U . By throwing
away a finite set if necessary, we can therefore assume that f is continuous and
X is open in K. Finally we can assume that f is not constant on X, otherwise
the result is trivial.

For every a ∈ X the set of r ∈ |K∗| such that B(a, r) ⊆ X and f is constant
on this ball is definable, non-empty and bounded above (otherwise X = K and
f is constant, which we have excluded) hence by Fact 4.3 it has a maximum
element ρ(a). We are claiming that the following set

S =
{
a ∈ X :∀b ∈ B

(
a, ρ(a)+

)
∩X, f(a) ≤ f(b)

}
has the property that for every ball B ⊆ X on which f is non-constant, B
intersects both S and X \ S. Indeed let B = B(c, r) be any such ball. The
function ρ is definable, so the Extreme Value Property gives a0 ∈ B such that
ρ(a0) = minb∈B ρ(b). Since f is non-constant on B, necessarily ρ(a0) < r
hence B(b, ρ(a0)+) ⊆ B for every b ∈ B. By construction f is non-constant on
B(a0, ρ(a0)+). The latter is the disjoint union of B(a0, ρ(a0)) and finitely many
balls B(ai, ρ(a0)) for 1 ≤ i ≤ n (where n+1 ≥ 2 is the cardinality of the residue
field). By minimality of ρ(a0), f is constant on each B(ai, ρ(a0)) hence there is
i 6= j between 0 and n such that

∀b ∈ B(a0, ρ(a0)+), f(ai) ≤ f(b) ≤ f(aj). (6)

Moreover f is non-constant on the union of B(ak, ρ(a0)) for 0 ≤ k ≤ n hence
f(ai) < f(aj). It follows that ρ(ai) = ρ(aj) = ρ(a0) and hence ai ∈ S and
aj /∈ S by (6), which proves our claim.

X and S are definable subsets of K, hence semi-algebraic by p-minimality.
Thus there exists a partition A of X in finitely many cells mod Q∗N,M for some
N,M such that S is also the union of the cells in A that it contains. Every cell
A ∈ A can be presented as the set of elements t ∈ K such that

|νA| ≤ |t− cA| ≤ |µA| and t− cA ∈ λAQ∗N,M .
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We are claiming that f(t) only depends on |t−cA| as t ranges over A. If λA = 0
then A is reduced to a point, hence f is constant on A. Otherwise λA 6= 0 and
for every t ∈ A, the set of t′ ∈ A such |t− cA| = |t− cB | is a ball B by Fact 4.2.
By construction of A, A is either contained in S or in X \S hence so is B. But
then, by construction of S, f is constant on B. This proves our claim.

Now pick any A ∈ A and translate it by cA. The result is a cell A′ mod
Q∗N,M centered at 0 on which f(t) only depends on |t|. Thus the graph of the
restriction f|A of f to A is the intersection with λAQ

∗
N,M of the pre-image by

the valuation of a definable function θ : |A′| → |K|. By Theorem 6 in [Clu03]
it follows that f|A is semi-algebraic, hence so is f . The last point immediately
follows from the existence of definable Skolem functions for semi-algebraic sets
(see for example [vdD84]).

As already mentioned in the introduction, Theorem 4.1 is a “relative” version
of Theorem 6 in [Clu03]. Since our proof heavily depends on the main results of
[Clu03] it is more convenient here to use additive notation for the value group,
so let G = v(K∗). Theorem 6 in [Clu03] actually says that for every definable
set S ⊆ (K∗)d, with (K,L) a strongly p-minimal expansion of a p-adically closed
field, the image of S in Gd by the valuation is definable in Presburger language

LPres = {0, 1,+,≤, (≡n)n>0}

where ≡n is interpreted in G as the binary congruence relation modulo the
integer n.

It follows from Theorem 1 in [Clu03] and Remarks (iii) just above it that
every subset of Gd definable in the language LPres is the union of finitely many
disjoint sets defined by the conjunction for 1 ≤ i ≤ d of conditions (Ei) of the
form

ζi +
∑

1≤j<i

ai,j
Xj − cj
nj

�i,1 Xi �i,2 ζ
′
i +

∑
1≤j<i

a′i,j
Xj − cj
nj

and Xi ≡ ci [ni]

with every ζi, ζ
′
i ∈ G, ai,j , a

′
i,j , ci, ni ∈ Z, 0 ≤ ci < ni and �i,1,�i,2 being

either ≤ or no condition. Let λ be the list of all these integers and symbols.
Let Λd denote the set of lists λ of this sort. The conjunction of the above
conditions (Ei) for 1 ≤ i ≤ d is expressed by a formula ϕλ(X, ζ) with free
variables X = (X1, . . . , Xd) and parameters ζ = (ζ1, . . . , ζd, ζ

′
1, . . . , ζ

′
d). We let

ϕλ(X,Z) be the corresponding parameter-free formula in LPres with d+2d free
variables.

With these results in mind we can turn to the proof of Theorem 4.1.

Proof: Let S be a definable4 subset of K × Gd. For every x ∈ K the fiber
Sx = {τ ∈ Gd :(x, τ) ∈ S} is definable in LPres by Theorem 6 in [Clu03]. Hence
there is a finite set of elements λ1, . . . , λr ∈ Λd and parameters γk ∈ G2d such
that the sets Cλk(γk), defined as the set of elements τ ∈ Gd such that G |=
ϕλk(τ, γk), form a partition of Sx. These formulas ϕλk(T,Z) easily translate
into formulas ψλk(T,Z) in the language of rings such that for every t ∈ Kd and
every z ∈ K2d, K |= ψλk(t, z) if and only G |= ϕλk(v(t), v(z)).

4Recall that in this context, “definable” means that the inverse image of S by the valuation
is definable in K ×Kd.
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By strong p-minimality the same holds true in every (K ′,L) ≡ (K,L).
Hence by the model-theoretic Compactness Theorem there is a partition of K in
finitely many definable sets A1, . . . , As and for each l ≤ s a finite set of indexes
λ1,l, . . . , λrl,l ∈ Λd such that for every x ∈ Al there are parameters ζx,k,l ∈ G2d

such that Sx is partitioned by the sets Cλk,l(ζx,k,l) for k ≤ rl. By Fact 4.3 there

are definable functions ζk,l from Al to G2d such that for every x ∈ Al the sets
Cλk,l(ζk,l(x)) for k ≤ rl form a partition of Sx. By Lemma 4.4 and the Extreme

Value Property there are semi-algebraic functions z̃k,l from Ak to K2d such that
ζk,l = |z̃k,l| (that is ζk,l = v ◦ z̃k,l with additive notation).

By the above construction v−1(S) is the disjoint union for l ≤ s and k ≤ rl
of the sets Bk,l of tuples (x, t) ∈ Ak×Kd such that K |= ψλk,l(t, z̃k,l(x)). These
sets are semi-algebraic because ψλk,l(T,Z) is a formula in the language of rings
and z̃k,l a semi-algebraic function. Thus v−1(S) itself is semi-algebraic, hence
so is S by definition.

Corollary 4.5 Assume that K is p-optimal and satisfies the Extreme Value
Property. Then every definable subset of Km × |K|d is a boolean combination
of (d+ 1)-basic sets.

Proof: If m = 1 the conclusion follows from Theorem 4.1 and Macintyre’s
Theorem (see Footnote 1). Assume that it has been proved for m ≥ 1 and let
S be a definable subset of Km+1+d which is the pre-image by the valuation of
a subset of Km+1 × |K|d. Let S′ be the corresponding definable set over an
elementary extension K ′ of K. For every x′ in K ′m let S′x′ denote the fiber of
S′ over x′:

S′x′ =
{

(t′, z′) ∈ K ′ ×K ′d :(x′, t′, z′) ∈ S′
}

This set S′x′ is obviously the inverse image in K ′ × K ′d by the valuation of
a subset of K ′ × |K ′|d. Note that K ′ is strongly p-minimal and satisfies the
Extreme Value Property, because these two properties are preserved by ele-
mentary equivalence. Thus Theorem 4.1 applies in K ′ and gives a tuple a′x′

of coefficients of a description of S′x′ as a boolean combination of (d + 1)-basic
subsets of K ′d+1. The model-theoretic Compactness Theorem then gives defin-
able subsets A1, . . . , Aq of Km and for every i ≤ q an L–formula ϕi(α, τ, ζ) with
ni + 1 + d free variables which is a boolean combination of formulas of the form
f(α, τ, ζ) ∈ PN with f ∈ Z[α, τ, ζ], such that for every x in Ai there is a list of
coefficients ax such that

Sx =
{

(t, z) ∈ K ×Kd :K |= ϕ(ax, t, z)
}
.

In other words, for every x in Ai

K |= ∃a ∀t, z
(
(x, t, z) ∈ S ↔ ϕi(a, t, z)

)
.

By Theorem 3.2, K has definable Skolem functions, hence for each i ≤ q there
is a definable function σi : Ai → Kni such that for every x ∈ Ai

K |= ∀t, z
[
(x, t, z) ∈ S ↔ ϕi

(
σi(x), t, z

)]
.

Let Bi = {(x, t, z) ∈ Km+1+d :K |= ϕi(σi(x), t, z)}. By construction, this is a
boolean combination of (d + 1)-basic subsets of Km+1+d. On the other hand,
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Ai×Kd+1 is obviously a (d+1)-basic subset of Km+1+d. Indeed, if ci(x) denotes
the indicator function of Ai, then hi(x, t, z) = ci(x)− 1 is (d+ 1)-basic and we
have

Ai ×Kd+1 =
{

(x, t, z) ∈ Km+1+d :hi(x, t, z) = 0
}

which is a (d + 1)-basic set by Remark 1.2. The conclusion follows, since S is
the union of the sets Bi ∩ (Ai ×Kd+1).

5 Cell preparation

The main result of this section is the Cell Preparation Theorem 5.3 for definable
functions. We derive from it our last main result, Theorem 5.6, which classifies
up to isomorphism the definable sets over any p-optimal field satisfying the
Extreme Value Property.

Lemma 5.1 (Denef) Assume that K is p-optimal and satisfies the Extreme
Value Property. Then for every definable function f : X ⊆ Km → K there is
an integer e ≥ 1 and a partition A of X in definable sets A such that for every
x in A ∣∣f(x)

∣∣e =

∣∣∣∣pA(x)

qA(x)

∣∣∣∣
with pA, qA a pair of basic functions such that qA(x) 6= 0 for every x in A.

Proof: By Corollary 4.5, {(x, t) ∈ Km×K : |t| = |f(x)|} is a boolean combina-
tion of 2-basic subsets of Km+1. The proof of Denef’s Theorem 6.3 in [Den84]
then applies word-for-word, with basic functions instead of polynomial func-
tions. It gives a partition of X in finitely many definable pieces A, on each of
which |f |e = |pA/qA| for some 1-basic functions such that qA(x) 6= 0 for every
x in A.

Remark 5.2 Given an integer n0 ≥ 1, the set 1 +πn0R is a definable subgroup
of R× with finite index. Thus in Lemma 5.1 we can always assume, refining if
necessary the partition of X (but keeping the same integer e independently of
n0), that for every x in A

f(x)e = Un0
(x)

pA(x)

qA(x)
.

Theorem 5.3 (Cell preparation) Assume that K is p-optimal and satisfies
the Extreme Value Property. Let (θi : Ai ⊆ Km+1 → K)i∈I be a finite family
of definable functions and N0 ≥ 1 an integer. Then there exists an integer
e ≥ 1 and, for every n ∈ N∗, a pair of integers M , N and a finite family H
of presented cells mod Q∗N,M such that M > 2v(e), eN0 divides N , H refines
(Ai)i∈I , and for every (x, t) ∈ H,

θi(x, t) = Ue,n(x, t)h(x)
[
λ−1H

(
t− cH(x)

)]α
e (7)

for every i ∈ I and every H ∈ H contained in Ai, with h : Ĥ → K a continuous
definable function and α ∈ Z (both depending on i and H)5.

5If H is of type 0 then it is understood that α = 0 and we use the conventions that in this
case λ−1

H = 0 and 00 = 1.
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Remark 5.4 Remark 2.7 applies to the above theorem as well, so the center
and bounds of every cell in H can be chosen to be continuous.

Proof: For each i let ei be an integer, Ai a partition of Ai and Fi a family of
basic functions, all given by Lemma 5.1 applied to θi. By replacing each ei with
a common multiple we can assume that all of them are equal to some integer
e ≥ 1. Given an integer n ≥ 1 we can refine the partition Ai as in Remark 5.2
with n0 = n+ 2v(e).

Let A be a finite family of definable sets refining
⋃
i∈I Ai. We can assume

that each of them is a boolean combination of basic sets of the same power N ,
with N a multiple of eN0. For every A in A, every i ∈ I such that Ai contains
A and every (x, t) in A we have

θi(x, t)
e = Un0

(x, t)
pi,A(x, t)

qi,A(x, t)
(8)

with pi,A and qi,A a pair of basic functions such that qi,A(x, t) 6= 0 on A.
For each A in A let FA be the set of basic functions involved in a description

of A as a boolean combination of basic sets of power N . Theorem 2.4 applies
to the family F of all the basic functions pi,A, qi,A and the functions in FA, for
all A’s and i’s. It gives a partition of Km+1 into finitely many presented cells
B mod K∗ such that for every f in F and every (x, t) in B

f(x, t) = UM (x, t)hf,B(x)
(
t− cB(x)

)βf,B (9)

with M = n0 + v(N), hf,B : B̂ → K a definable function and βf,B a positive
integer.

Partitioning B̂ if necessary, we can assume that the cosets hf,B(x)Q∗N,M are

constant on B̂. Since M > v(N), 1 + πMR is contained in Q∗N,M , so B itself

can be partitioned into cells H mod Q∗N,M such that Ĥ = B̂, cH = cB and
f(x, t)Q∗N,M is constant on H by (9), for every f in F . A fortiori f(x, t)P ∗N
is constant on H for every f in F , hence each A in A either contains H or is
disjoint from H, for every A in A. So the family H of all those cells H that are
contained in

⋃
A refines A, hence refines {Ai : i ∈ I} as well.

For every cell H in H there is a unique cell B as above containing H. For
every i ∈ I such that H is contained in Ai, the unique A in A containing B is
also contained in Ai. By (9) applied to f = pi,A and to f = qi,A, and by (8) we
have for every (x, t) ∈ H

θi(x, t)
e = Un0

(x, t)
UM (x, t)hpi,A,B(x)

(
t− cB(x)

)βpi,A,B
UM (x, t)hqi,A,B(x)

(
t− cB(x)

)βqi,A,B (10)

The Un0
and UM factors simplify in a single Un0

since M ≥ n0. By construction

cH = cB and Ĥ = B̂. So, for every (x, t) in H we get

θi(x, t)
e = Un0

(x, t)g(x)
[
λ−1H

(
t− cH(x)

)]α
(11)

with g : Ĥ → K a definable function and α ∈ Z (both depending on i and H).
In turn Un0

= Uee,n0−v(e) because n0 > 2v(e) (see Lemma 1.7). The latter can

be replaced by Uen because n0 − v(e) = n+ v(e) ≥ n. So (11) becomes

θi(x, t)
e = Ue,n(x, t)eg(x)

([
λ−1H

(
t− cB(x)

)]α
e

)e
(12)
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This implies that g takes values in Pe, hence g = he for some definable function
h : Ĥ → K, from which (7) follows.

Corollary 5.5 Suppose that K is p-optimal and satisfies the Extreme Value
Property. Let (θi : A ⊆ Km → K)i∈I be a finite family of definable functions
with the same domain. Then for every integer n ≥ 1, there exists an integer e,
a semi-algebraic set Ã ⊆ Km and a definable bijection ϕ : Ã→ A such that for
every i ∈ I and every x in Ã

θi ◦ ϕ(x) = Ue,n(x)θ̃i(x)

with θ̃i : Ã ⊆ Km → K semi-algebraic functions.

Proof: The proof goes by induction on m. Let us assume that it has been
proved for some m ≥ 0 (it is trivial for m = 0) and that a finite family (θi)i∈I of
definable functions is given with domain A ⊆ Km+1. If A is a disjoint union of
sets B, it suffices to prove the result for the restrictions of the θi’s to B. So, for
any given integer n ≥ 1, Theorem 5.3 with N0 = 1 reduces to the case when A
is a presented cell mod Q∗N,M for some N , M such that for some e0 ≥ 1 dividing
N , M > 2v(e0) and for every i ∈ I and every (x, t) in A

θi(x, t) = Ue0,n(x, t)hi(x)
[
λ−1A

(
t− cA(x)

)]αi
e0 (13)

with hi : Â→ K a definable function and αi ∈ Z.
Let e1 ≥ 1 be an integer, Y ⊆ Km a semi-algebraic set, ψ : Y → Â a

definable bijection, f̃ : Y → K a semi-algebraic function for each f in F , all of
this given by the induction hypothesis applied to F = {µA, νA} ∪ {hi}i∈I . Let
Ã be the set of (y, s) ∈ Y ×K such that

|ν̃A(y)| ≤ |s| ≤ |µ̃A(x)| and s ∈ λAQ∗N,M .

Then ϕ : (y, s) 7→ (ψ(y), cA(ψ(y)) + s) defines a bijection from Ã to A. For
every i ∈ I and every (y, s) ∈ Ã we have

θi ◦ ϕ(y, s) = Ue0,n(y, s)Ue1,n(y, s)h̃i(y)(λ−1A s)
αi
e0

The first two factors can be replaced by Ue,n with e any common multiple of e0

and e1. Since θ̃ : (y, s) 7→ h̃i(y)(λ−1A s)
αi
e0 is a semi-algebraic function on Ã the

conclusion follows.

Theorem 5.3 and Corollary 5.5 are exactly analogous to Theorems 2.8 and
3.1 in [Clu04], except that we obtain a slightly more precise equality of functions
mod (1+πnR).Ue instead of equality of their norm (which is the same as equality
of functions mod R×). Thus all the important consequences that are derived
from these theorems in [Clu04] for the classical analytic structure remain valid
in every p-optimal field which satisfies the Extreme Value Property.

For applications to parametric integrals, which require numerous specific
definitions, we refer the reader to the proofs of Theorems 4.2 and 4.4 in
[Clu04]. Anyway these results have already been generalized to arbitrary
strongly p-minimal fields in [CKL15]. For the classification of definable sets
up to isomorphisms, which only uses the “topological dimension” defined in
[HM97] for definable sets over strongly p-minimal fields, we have the following.
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Theorem 5.6 Assume that K is p-optimal and satisfies the Extreme Value
Property. Then there exists a definable bijection between two infinite definable
sets A ⊆ Km and B ⊆ Kn if and only if they have the same dimension.

Proof: If there is a definable bijection (an “isomorphism”) between A and B
they have the same dimension by Corollary 6.4 in [HM97]. Conversely, if A and
B have the same dimension d, then by Corollary 5.5 they are isomorphic to
infinite semi-algebraic sets Ã and B̃ respectively, both of which have dimension
d, by Corollary 6.4 in [HM97] again. Then Ã and B̃ are semi-algebraically
isomorphic by the main result of [Clu01], hence A and B are isomorphic.
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