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Abstract—This paper deals with a new transformation and 
fusion of digital input patterns used to train and test feed-forward 
neural network for a wound rotor three-phase induction machine 
windings short-circuits diagnosis. The single type of short-circuits 
tested by the proposed approach is based on turn-to-turn fault 
which is known as the first stage of insulation degradation. Used 
input/output data have been binary coded in order to reduce the 
computation complexity. A new procedure, namely addition and 
mean of the set of same rank, has been implemented to eliminate 
the redundancy due to the periodic character of input signals. 
However, this approach has a great impact on the statistical 
properties on the processed data in terms of richness and of 
statistical distribution. The proposed neural network has been 
trained and tested with experimental signals coming from six 
current sensors implemented around a set-up with a prime mover 
and a 5.5kW wound rotor three-phase induction generator. Both 
stator and rotor windings have been modified in order to sort 
out first and last turns in each phase. The experimental results 
highlight the superiority of using this new procedure in both 
training and testing modes. 

Index Terms—Induction generators, Fault diagnosis, Feed-
forward neural network, Digital measurements, Back- 
propagation, Stator current, Rotor current, Winding short- 
circuits, Data pre-processing. 

 
NOMENCLATURE 

Yj Output of neuron j. 

Xi Input of neuron i. 

f ANN transfer function. 

L ANN layer. 

CR Compression ratio. 

NS Number of turns of each stator 

winding. 

NR Number of turns of each rotor 

winding. 

 
I. INTRODUCTION 

ECHNIQUES for condition monitoring and fault detec- 

tion of electrical machines have been developed for the 

last 80 years by starting from human analysis up to modern 
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decision processes. However, it is only recently that these 

techniques have been integrated in complex electromechanical 

systems in which electrical machines are used as prime movers 

(motors) or prime receivers (generators). In this way, the 

squirrel-cage three-phase induction machine which is without 

contest the most interesting machine in term of cost and 

reliability for the industry has been under focus for the last 

20 years. Recently, many review papers have been published 

to give the state of the art for diagnostics techniques around 

induction machines mostly related to electrical faults [1], [2]. 

In these papers, all problems dealing with electrical fault 

detection in electrical machines have been addressed from 

modeling up to the decision process through the instrumenta- 

tion, the signal processing and the applications on real complex 

systems. As applications have to be under focus for condition 

monitoring and fault detection, wind turbine generators are key 

elements in which electrical fault detection is fundamental. In 

this way, many actual projects are dealing with monitoring 

techniques of wind farms and some of them have been 

finalized even with standards. However, the technology is still 

in evolution and it is very hard to find general and efficient 

techniques addressing all the reliability objectives [3]. In fact, 

in modern wind farms, a large majority of generators  are 

based on wound rotor induction machine (WRIM) technology 

with a low number of poles and a planetary  gearbox  to 

adapt the machine rotor shaft speed to the blades speed. A 

large number of papers dealing with control of wound rotor 

induction generators (WRIG) have been published but very 

few on fault detection and localization [4]–[6]. By going back 

to signal processing techniques allowing to characterize the 

different electrical faults, they have been qualified of complex 

and it is always difficult to perform a clear conclusion on any 

fault associated to time, frequency or time-frequency analysis. 

In this way, decision techniques mainly based on artificial 

intelligence (AI) have been used for a  while  in  order  to 

help for the maintenance process on any type of electrical 

machine [2]. Neural networks have been used in association 

with diagnostics techniques for almost twenty years [7] and 

they have been applied to three-phase induction machines 

rotor faults with success [8]–[10]. In this last case, artificial 

neural networks (ANNs) have been used to classify different 

frequencies according to the fault signatures. More recently, 

ANNs with training algorithms have been implemented with 

success in  the decision  process  for simple  faults in  three- 

phase induction machines [11], [12]. The main problem for 

the training process is to perform this task in the real world 
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in order to obtain a good classification and to avoid false 

alarms or to miss obvious faults. In almost all of the published 

techniques, ANNs have been used as supervisors of classical 

signal processing techniques and have been separated of the 

signal analysis. 

In this paper, a classical ANN with back-propagation has 

been  used  to  be  trained  directly  by  signals  coming  from 

sensors to eliminate the analysis mode and to simplify the 

architecture of diagnostics systems. For this purpose, it has 

been proposed to train a dedicated ANN directly with digital 

signals coming from the sensors implemented around electrical 

machines under condition monitoring. It is not so original in 

term of ANN since digitizing tasks have been imagined long 

time ago [13]–[15]. It has been even used recently for multiple- 

fault detection in steam turbines [16]. However, this technique 

has  never  been  implemented  for  electrical  machines  fault 

detection as well as for power systems condition monitoring. 

In recent years, other interesting papers on the usage of 

ANNs  for  power  systems  condition  monitoring  have  been 

published. The aim was always to add a sort of ’intelligence’ 

to  fault  detection  by  superposing  a  layer  for  the  decision 

process  [17].  Therefore,  the  Elman  network  and  the  back 

propagation  algorithm  have  been  used  to  build  dedicated 

ANNs [18]–[20]. In these previous cases, the different ANNs 

are  mainly  considered  as  classifiers  and  the  computation 

process is performed by other techniques. To the best of our 

knowledge, only one work was fully dedicated to the ANN 

usage  in  order  to  protect  windings  of  large  power  turbo- 

generators [21]. 

However, in many recent applications, ANNs have been 

efficiently used in association with power systems and elec- 

trical machines for identification [22], control [23], fault 

location [24], diagnosis [25], fault detection and classification 

[26], [27]. 

The basic idea is to make diagnostics systems more econom- 

ical and more reliable to be used at a large scale in modern 

wind farms in which the predictive maintenance is a crucial 

operation. 

On the other hand, short-circuits treated in this paper are 

almost taken at their early stage with one or two shorted turns 

in each phase and in each side (stator or rotor). The aim 

is not to detect or to localize simultaneous faults although 

one or two turns by phase  and  by  side  have  been  tested. 

The early stage detection is very important before the thermal 

propagation in the machine windings. It is well known that 

any AC electrical machine can still operate with a couple of 

shorted turns even at rated operation mode. The interest of the 

early stage detection is clearly based on the need of predictive 

maintenance avoiding full windings failures. Therefore, this 

paper will address problems of data collection and scaling 

for the ANN  inputs  and  it  will  be  used  on  a  set-up  able 

to perform both stator and  rotor  turn-to-turn  short-circuits 

for a three-phase WRIG similar to the ones used in wind 

turbine generators. The first part of the paper is dedicated to 

the description of the proposed feed-forward ANN technique 

before trying the system on real data coming from a reduced 

scale set-up. Different problems of input-output data scaling, 

processing convergence approach and pattern recognition have 

been presented to demonstrate the efficiency of the proposed 

technique. The different tests have been performed on a 5.5kW, 

50Hz, 220V/380V, 8 poles WRIG with several sets of one 

short-circuited turn fault on both stator and rotor sides. For 

this purpose, a specific set-up has been developed in order to 

collect digital data from three stator phase currents sensors 

and three rotor phase current sensors. 

 
II. BACKGROUND 

ANNs are a type of computer program inspired from the 

human brain. It uses to process information such as learning 

and generalization procedures and emerged by developing 

software in actual technology with successful applications in 

many fields. The majority of these applications is concerned 

with problems of both pattern recognition and classification. 

The knowledge of the ANN is gathered by detecting patterns 

and data relationships through a training process and by no 

way from programming [28]–[32]. Any ANN is build with 

layers and the minimum number of layers is two and without 

any maximum but usually four or five is considered as the 

maximum. Each layer is build from a number of processing 

units called neurons. The power of the neural computation 

comes form the connections between neurons in different 

layers. There exist many types of connections and their choice 

depends on the network architecture. Each neuron is composed 

of a weighted input, a bias, a transfer function and one output. 

The sum of the weighted input list and the bias creates a 

value which passes through the activation function and which 

produces the single output of the neuron. A transfer function 

introduces a non-linearity in the network. The only purpose 

to train a neural network is to modify the different weights 

of each neuron in order to evaluate relationships in between 

inputs and outputs. Two indicators can evaluate if one specific 

network is well trained or not. The first is the training error and 

the second one is the validation error. The neural network is 

considered as well trained only if both training and validation 

errors are converging to a small value close to zero. Once 

the network is trained and tested, a set of new inputs can be 

applied and it can predict the corresponding output 

 
A. Network Architecture 

There are many different types of ANNs, some of them 

being more popular than others. So it is important to distin- 

guish between network architectures (topology) and network 

algorithms (computational methods). In 1940, the first idea 

of the neural network came out with only two layers (input 

and output layers) and one weighted layer (output  layer) 

[30]. This single layer of adaptive weights is able to solve 

simple functions and problems with very important limitations. 

To allow flexible capabilities to the neural network, more 

adaptive weighted  layers have  been  added. When no  loop 

connections in between neurons exist in the  network,  this 

type of connection can be called a  feed-forward  network 

[28]. In most cases, a three-layer architecture (two layers of 

adaptive weights) feed-forwardly connected can solve many 

non-linear problems which makes it one of the most widely 

used architectures. 



 3 

 

y[S] 

ji  xi (2) 

 

B. Network Algorithms 

ANNs can learn through two main types of both supervised 

and unsupervised algorithms [28]. Unsupervised ANNs are 

used in order to analyze data without having a desired output. 

This type of learning is used for data clustering, feature extrac- 

tion, and similarity detection [30], [31]. Usually, supervised 

learning algorithms are much more used than unsupervised 

ones. The supervised learning depends on changing every 

weight in the network in order to meet a desired output for a 

specified pattern. 

To reach this goal, many computational methods have been 

used to adapt weights after running a significant number of 

iterations. In this case, the most common method is the back- 

propagation algorithm. It consists in two phases: (i) the feed- 

forward phase, which is the propagation of the input vector 

through the network and (ii) the back-propagation phase which 

begins to compare the desired output to the real output of the 

network and then recalibrate the network based on this error. 

[7], [28], [30]. 

 
C. Feed-Forward Neural Network 

The performance of any ANN depends on its architecture, 

on the training algorithm, on the presentation of data, on the 

analysis of the output as well as on the timing to stop the 

training mode. In order to appreciate the effect of one of these 

configurations, all of them must be fixed and only one can be 

changed at the same time. 

The importance of the good presentation of data to the ANN 

is the main goal of this paper. The preparation of input data 

to the ANN and the analysis of its output are labeled as pre- 

processing and post-processing modes respectively [29], [31]. 

The proposed ANN is built by using pre-processing blocks 

and  feed-forward  architecture  (Fig.  1).  In  this  ANN,  each 

layer  consists  in  n  neurons  (n  :  1, . . . , j) and  x  inputs 

(xi  : 1, . . . , m). The first input of each layer is a bias input 

(typical values can be equal to 0.5 or 1). The first layer is the 

input layer. The Lth  layer with nodes is the output layer. If 

m inputs and n neurons are available in the first hidden layer, 

the output of each of these neurons (y) will be calculated by: 

 

j = f (uj ) (1) 

Where uj  is calculated by: 
m 

uj = 
X 

w[S] 

i=0 

where j = 1, . . . , n. 

 
The importance of mixing the pre-processing and the post- 

processing modes in order to obtain the best performances in 

the classification of faults is very important. Among n steps, 

two fundamental ones are usually implemented for any type 

of data to prepare the input vector for the dedicated ANN: 

(i) centering by subtracting  the  average  value,  (ii)  scaling 

by dividing by its standard deviation. The problem of using 

original data without pre-processing is that the dimension of 

the input vector is very large in front of the small size of target 

 

(a) 

 

 
(b) 

 

Fig. 1. General configuration of an ANN: a) ANN architecture - b) Pre- 
processing and post-processing units. 

 

 

data. The post-processing mode is always an important task 

which has been often pointed out without many details on its 

implementation. 

In order to use this ANN as a patterns classifier, the post- 

processing block can be limited to a binary number for each 

pattern [7]. A feed-forwardly connected ANN with a back- 

propagation algorithm can be chosen to perform efficient tests 

as it is the most common and successful design for any ANN. 

Common activation functions such as sigmoid or hyperbolic 

tangent will be used by all layers of the ANN. After fixing all 

radical parameters. By choosing all these parameters and all 

these configurations, the designed ANN will be transformed 

in a ’black box’ which receives input data and which gives 

output data making a model to test different pre-processing 

algorithms. This ANN has only a standard configuration, and 

this might not be the optimal configuration. The standard 

configuration is used only for a comparison between different 

approaches. Another studies could take place after verifying 

this digital pre-processing approach to find a better ANN auto- 

configuration and to apply a post-processing approach. 

 

D. DEVSimPy Software for ANN Modeling 

DEVSimPy (Python Simulator for DEVS models) [33], [34] 

is a user-friendly interface for collaborative modeling and 

simulation of discrete event systems implemented in Python. 

Python is a programming language known for its simple syntax 

and its capacity to allow designers to implement quickly their 

models. The DEVSimPy project used the Python language and 

provides a GUI based on PyDEVS [35] application program 
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interface (API) in order to facilitate both the coupling and 

the re-usability of PyDEVS models. DEVSimPy uses the 

wxPython graphic library and is an open source project under 

GPL V3 license. Its development is supported by the SPE 

UMR6134 research laboratory team. As is shown in Figure 2, 

DEVSimPy is used to provide a model and to simulate systems 

by using a library of basic models in Python. The different 

libraries (part one in Fig. 2) are composed with models which 

can be used to describe systems like ANNs or Power System. 

Once the model has been built (part two in Fig. 2), DEVSimPy 

allows the simulation in an automated way. The results coming 

from the simulation can be displayed using embedded tools 

like graphs or diagrams (part three in Fig. 2). 

 

 
 

Fig. 2.   DEVSimPy cockpit. 

 
The aim of the proposed technique is to implement a new 

way to configure and to use ANN for wound rotor induction 

generator fault classification with the DEVS formalism imple- 

mented in Python language. DEVS is a formalism allowing 

a high behavioral level description of a discrete event system 

with a modular and hierarchical approach. DEVSimPy pro- 

vides a framework for the DEVS modeling in a graphical way 

and allows the implementation of re-usable models available 

a single data matrix of 100,000 rows and six columns. The 

analog currents data oscillate in the  interval  [-23A,+23A] 

and they are almost periodic at least during the steady state. 

Moreover, the period of the stator currents in steady state 

is different from the one of the  rotor  currents.  As  it  has 

been evaluated during the training phase, the ANN exhibits 

poor results due to redundant data coming from the periodic 

character of all signals. As said before, periodicity changes 

considering the side on which they are measured. Therefore, 

there is a high frequency (grid frequency) from the stator side 

and a low frequency (controlled by the power converter) on the 

rotor side. Moreover, additive frequency components coming 

from windings faults are superposed to the existing main 

frequencies. Usually, electrical fault signatures appear as high 

frequency components in both stator and rotor currents. These 

fault frequency components put constraints on the number of 

periods used in order to train the ANN. A sampling period of 

0.1ms and 200 points per period for the stator side has been 

used as a compatible factor for a grid frequency of 50Hz. Of 

course, for the rotor side the number of periods is not constant 

due to the slip and it is lower than for the stator side due to the 

load and the related slip frequency. It has been decided to use 

2000 points (ie. 10 periods of the stator current at steady state) 

for each of the six currents to represent the input of the ANN 

for one pattern. The number of training patterns used for the 

learning mode has a significant impact on the performance of 

any classifier. By using larger training sets, it leads to a better 

performances and a slower learning rate. On the contrary, by 

using low number of sets, it leads to lower performances and 

a faster learning rate [31]. Therefore, it has been decided to 

use a reasonable number of sets tuned at 10 units for each 

fault on both stator and rotor sides. 

 
A. Linear Transformation 

One of the most common steps of the pre-processing mode 

consists in a simple linear re-scaling of input variables. This 

re-scaling process of data tunes them in the correct interval, 

centers them on the activation function range and avoids also 

in libraries. MATLAB/Simulink c has not yet any DEVS the saturation of output signals. As said before, the six currents 

formalism in its libraries. With DEVSimPy, the feed-forward 

ANN algorithm has been divided in sub-parts in order to 

insulate and to control the learning and testing modes in an 

efficient way. 

 
III. PROPOSED DIGITAL PRE-PROCESSING APPROACH 

For many applications, it is necessary to transform data 

into new representations before training any ANN. In many 
cases, the choice of the pre-processing technique will be one 

of the most significant factors in achieving performances of 

the completed system [7], [31]. For the application presented 

herewith, data coming from sensors around the electrical 

machine under test will be composed of six current analog 

signals: three for the rotor side and three for the stator side 

of the three-phase  WRIG.  On  the  other  hand,  data  length 

of 10s with a sampling period of 0.1ms (10kHz sampling 

frequency) has been recorded. The current time has been 

represented in rows and the six variables in columns giving 

oscillate in the magnitude interval [-23A,+23A] making easy 

the normalization process by dividing every single value by 23. 

By applying a linear transformation, all of the inputs will be 

in a similar range. The normalization ensures that the ANN 

inputs, outputs and weights are in the range of unity at the 

beginning which helps a lot in the initialization of weights 

[7]. 

 
B. Digital Compression 

By having a large dimension of input data, this leads to 

a large number of weights inside the ANN which imposes 

automatically a long learning period of time. The motivation 

for reduction of this dimension is that it can help in decreasing 

the size of the ANN configurable parameters and consequently 

the number of inputs. An ANN with a low number of inputs 

can learn faster than the same ANN with more input and it can 

increase its global performances and its output accuracy which 

is the most important parameter for classification features. 
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Fig. 3.   Digital compression procedure. 

 

 

 

The aim of the proposed technique is to reduce the space 

dimension for this periodic type of data. By digitizing data, 

which is a natural way of acquisition for modern sensors 

having digital outputs, the process can be seen as an increase 

of the number of inputs and thus of the problem dimension. 

As shown (Fig. 3), every sample of each current after been 

normalized has four digits after the decimal point because 

of the 16-bit conversion. The results of this compression of 

normalized current samples have been displayed as real data 

at the bottom of the Figure 3. 

By using a 16-bit analog-to-digital converter, every pattern 

gives a matrix of 6 columns of 16-bit and 2000  rows.  It 

means that the number of inputs is multiplied by 16. Using 

the powerful  way of  digital values represented  by a  Most 

Significant Bit (MSB) and a Least Significant Bit (LSB) can 

lead to a new compression method. This has been implemented 

by taking the mean value of 2000 rows for the MSB and 

this procedure will compress all the data into one row with 

96 inputs. This type of compression is neither a time nor a 

magnitude transformation but a new binary technique which 

is very simple in term of operation. Because binary values 

contain only zeros and ones, each average value can be an 

index of the percentage of values 1 in each column. With 

this technique, the compression ratio (CR) will be a factor 

of  the  number  of  outputs  from  the  binary  converter  (B  = 

16) and the number of inputs (N = 2000) CR=  6∗N = 125. 

All kind of compression methods must introduce some data 

losses. However, if too much information is lost in the pre- 

processing mode, the result will be obviously a reduction of 

performances. In this case, the redundancy of periodic data has 

been eliminated and the method will refine the fault signature 

in the way that it will be easier for the ANN to perform a clear 

differentiation in between several types of faults during the 

steady state operation. However, the detection of faults during 

the transient mode can be also interesting or even mandatory 

in a significant number of applications using WRIG. The final 

 

goal is to allow fault detection independently of any modes 

of operation. In this way, the proposed compression technique 

can be used in both transient and steady state modes. The 

only difference can be related to the signals rating since the 

magnitudes of the different currents are higher in transient 

compared to the steady state. Therefore, the change of scaling 

factors can be used to deal with transients. The advantage 

of the compression technique is that it can be used for both 

learning and testing modes without any changes. Usually, since 

the different currents are periodic, the envelope technique can 

be used to scale all the signals on the overall observation 

period. Therefore, the convenient interval [-X, +X] is easy 

to be found and this is the one to be used in both learning and 

testing modes. 

 
IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Set-Up Description 

A specific experimental set-up (Fig. 4) has been designed 

in order to perform measurements on a lab-scaled three-phase 

5.5kW, 50Hz, 220V/380V, 8-poles WRIG. A back-to-back 

voltage static inverter has been used to control the rotor 

currents. The WRIG is driven by a prime mover designed 

around a 7kW three-phase squirrel-cage induction machine 

and a 11kW programmable voltage static inverter (VSI). The 

prime mover is controlled in order to emulate the wind speed 

and to allow the system to operate in different modes and with 

different output power. It is able to operate at constant wind 

speed (steady state) or with wind speed slopes (transients). The 

back-to-back converter is able to control the DC bus voltage by 

absorption of sinusoidal currents and to impose WRIG rotor 

currents with convenient magnitudes, frequencies and phases. 

As an example, the three normalized stator currents taken at 

steady state have been displayed (Fig. 5). The normalization 

has been performed in order to be directly connected to the 

ANN inputs and the coding has been done with an accuracy 

of 16 bits which is the maximum available on the DAB. 

This set-up has been designed to collect both stator and 

rotor currents of the WRIG by means of a data acquisition 

board with dedicated 16-bit analog-to-digital converters. The 

current sensors (basically AC current measurement) are based 

on magnetic cores with windings. The scaling factor for the 

current sensors is 0.1V/A and the frequency bandwidth is 1Hz- 

20MHz. Therefore, the output of the actual current sensor 

is analog. The digitizing process is performed with the data 

acquisition board having a signal conditioner at its inputs in 

order to scale the maximum magnitude and to pass through 

a low-pass filter in order to perform the anti-aliasing task. In 

future applications, it is expected that current sensors will be 

equipped with a digitizer module inside each and a wireless 

transmission. 

The acquisition time has been set to 10s and the different 

values are normalized, digitized and stored in files with a 

sampling period of 0.1ms which has already presented in the 

theory. In order to perform a significant training configuration, 

12 types of faults have been used depending on both rotor or 

stator sides on one hand and of phases and coils on the other 

hand. A part of these data has been used for training patterns 
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(a) 

 

 
(b) 

 

Fig. 4.  Set-up for the different tests: a) Block-scheme configuration b) Photo 

of the real set-up. 
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Fig. 5.   Sample of 3 normalized stator currents (2000 samples each) at steady 

state with the fault F10. 
 

 
and an other part has been used for the ANN testing mode in 

order to perform an efficient fault classification 

 

B. Short-Circuited Windings Faults 

The only type of electrical faults used in all experiments 

is based on turn-to-turn windings short-circuits on both stator 

and rotor sides (Fig. 6) The different tests of these faults have 

been performed with a rotor speed of 775rpm (rated load) and 

 

 

 
 

Fig. 6. Topology of the different short-circuits in both stator and rotor 

windings: each stator phase is (1 : NS − 2 : 1) turns and each rotor phase 
is (1 : NR − 2 : 1) turns. 

 

 

 

a synchronous rotating speed of 750rpm (grid frequency of 

50Hz for 8 poles). 

For the rotor side: 

• F1: short-circuit on the first and the last turns of the first 

two phases and on the first turn of the third phase. 

• F2: short-circuit on the first and the last turns of three 
phases. 

• F3: short-circuit on the first and the last turns of the first 

phase and on the first turn of the second phase. 

• F4: short-circuit on the first and the last turns of the first 
two phases. 

• F5: short-circuit on the last turns of the first phase. 
• F6: short-circuit on the first and the last turns of the first 

phase. 

For the stator side: 

• F7: short-circuit on the first turn of the first two phases. 

• F8: short-circuit on the last turn of the first two phases. 

• F9: short-circuit on the last turn of the first phase. 

• F10: short-circuit on the last turn of the second phase. 
• F11: short-circuit on the first and the last turns of the 

second. 

• F12: short-circuit on the first and the last turns of the first 

phase. 

Both stator and rotor windings have been modified by re- 

winding both magnetic circuits and giving outside the core 

inputs and outputs for the three phases first and last turn of 

each winding. Therefore, there are two more windings per 

phase and per side (stator and rotor) on each phase. Each 

stator and rotor winding has on each phase the geometrical 

configuration (1 : N − 2 : 1) turns for a total number of N 
turns per phase. On the other end, each first and last turn of 

each phase and on each side has a switch in parallel to directly 

short-circuit any of these turns. The total number of switch 

is 24. The direct short-circuit operation without any limiting 

resistances has been made possible by the fact that a direct 

short-circuit on any single turn did not affect too much the 

magnitude of the short-circuited current which never crossed 

over its rated value. 
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C. Learning and Test Patterns 

The ANN learning pattern consists in values of three stator 

currents and three rotor currents when the WRIG is operating 

in both healthy and faulty modes at steady state. 

Let x be the number of faults considered by the ANN and 
y an integer such that 2y > x. The number of vectors in one 

learning pattern before pre-processing mode is 10 × (1 + x) 
or 10 which correspond with the acquisition time in seconds 

and 1 for the healthy mode simulation. The dimension of 

these vectors is equal to the sum of the number of signals 

and the number of bits to differentiate x faults whose effects 

are recorded in the learning pattern signals. Therefore, the 

dimension of the learning vectors is 2k × 6 + y. In summary, 

the pattern of the real learning is a matrix of 10 × (1 + x) 
rows and 12k + y columns. 

The pre-processing mode described in the previous section 

is crucial to improve the convergence of the proposed ANN. 

The goal of the pre-processing mode is to extract the informa- 

tion from data (2k periodic input data) and to present it with 

the minimum number of inputs to the ANN without losing 

necessary information. The proposed pre-processing technique 

can be summarized within 2 steps: (i) coding of real data with 

four decimal digits in 16-bit binary values and (ii) compression 

of columns of the new matrix binary package of 2000 points. 

The size of the learning pattern is now binary 
10×2000×(1+x)

 

ie 10 × (1 + x) rows and 16 × 6 + y columns with x and y 
similar to the previous values. 

It has been chosen to train the ANN with 10 sets of 2000 

points among the 100,000 available items. Moreover, in order 

to avoid the transient period, the acquisition of 20,000 points 

has been shifted of 20,000 steps. 
 

TABLE I 

SIZE OF LEARNING PATTERNS. 

 

 without pre-processing with pre-processing 

row (size of pattern) 10(1 + x) 10(1 + x) 
column (ANN inputs) 12k + y 96 + y 

 
Table I shows that the input size (column) with a pre- 

processing process is much smaller than without it regardless 

of x. The number of ANN patterns (row) is the same when 

the pre-processing process is not performed with the same 

fault number because rows represent the number of patterns 

used to train the ANN. The number of ANN inputs is egual to 

the number of neurons inside the input layer. The re-scaling of 

input data will reduce the overall number of neurons inside the 

ANN. Therefore, it can seen that the ANN learning phase by 

using data compression will be faster than without modifying 

data. 

The quality of a learning pattern can be measured through 

its Gaussianity [7]. The distribution of learning pattern nor- 

malized occurrences has been shown in cases of the proposed 

pre-processing technique and without it for comparison pur- 

poses (Fig. 7). After the compression, the distribution of the 

learning pattern is a Gaussian characteristic centered on 0.5. 

On the contrary, the distribution of the learning pattern without 

compression does not present the same characteristic.  The 

data distribution affects directly the behavior of the activation 

 

 

(a) 

 

 

(b) 

 

Fig. 7. Statistics for learning patterns: a) without pre-processing. - b) with 
pre-processing. 

 

 

function. When the data is centered and uniform (Gaussian 

distribution) the activation function is applied on the maximum 

data range ensuring an optimum efficiency of the ANN. The 

testing pattern has been selected from 100,000 points and its 

size has been represented by 10 vectors injected during the 

learning phase. If x is the number of faults tested, the learning 

pattern will be a matrix with 10×(1+x) rows and 96 columns 

in the case of a pre-processing process. It has 10 × (1 + x) 

rows and 2k × 6 columns when the pre-processing process is 
not used. The post-processing phase has not been operated but 

a right approach is to use a bitstream for the ANN output to 

differentiate the class of faults in an efficient way. 

 
 

D. Neural Network Simulation 

In order to show the importance of the proposed compres- 

sion technique, two ANNs have been used. The first ANN has 

2k ×6+y inputs for the learning phase without pre-processing 

process. The second ANN has 16×6+y inputs for the learning 
phase with the preprocessing process. 

Concerning the configuration of these two ANNs: 
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• Based on trial and error tests to find the best configuration 

for the WRIG fault classification [36], both learning and 

momentum factors (named N and M) have been chosen 

respectively at 0.1 and 0.9. 

• The number of neurons inside the input layer is related to 

the input data, which gives 2000 neurons for the network 

without digital compression and 96 neurons when digital 

compression is applied. The number of neurons in the 

hidden layer is 56, which is an acceptable number than 

the common rule n/2 + 1 where n is the number of input 

data. The number of neurons of the output layer depends 

on the number of faults to be considered. For 12 faults, 

4 binary outputs can be considered as the minimum. 

 

 
 

Fig. 8.   ANN DEVSimPy modeling with pre- and post-processing. 

 
For modeling and simulation purposes, the DEVSimPy GUI 

software has been used in order to implement ANN, pre- 

processing and post-processing algorithms. 

To implement the ANN model with the proposed pre- 

processing method, the DEVSimPy ANN library has been 

used. This library is composed by six models that will help to 

build a full ANN: input, output, hidden layers, error calculators 

and input file (Fig. 8). The input file is a model that extracts 

data from a file and gives it to them network in form of 

patterns. 

Figure 9(a) and 9(b) shows both learning and testing error 

progresses depending on the number of considered faults. 

When the number of considered faults increases, the percent- 

age of the learning error decreases when the pre-processing is 

used. The same phenomenon can be observed on the testing 

error. It can be seen that the testing error converges always 

and it is around to 4% when the pre-processing process is 

implemented. Table II shows the test results with the ANN 

already trained to classify all the 12 faults. The detection error 

represents the percentage of undetected faults on 10 tested 

patterns. For example, for the fault F2 has been detected on 

all the 10 patterns. On the contrary, the fault F7 has shown 

only three detection on all the test pattern. The difference is 

due to the fact that the fault F7 is almost similar to some other 

faults. 
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Fig. 9.    Comparison of learning and testing errors: a) Learning error. - b) 
Testing error. 

 
TABLE II 

RESULTS ON CLASSIFICATION OF THE 12 FAULTS. 

 
Fault type Desired output Real output Detection 

error [%] 

Healthy 0000 0.08, 0.05, 0.03, 0.04 0.0 
F1 0001 0.07, 0.09, 0.04, 0.90 0.0 
F2 0010 0.07, 0.05, 0.98, 0.04 0.0 
F3 0011 0.05, 0.15, 0.91, 0.93 0.0 
F4 0100 0.09, 0.93, 0.10, 0.08 20.0 
F5 0101 0.06, 0.80, 0.26, 0.96 40.0 
F6 0110 0.10, 0.92, 0.88, 0.07 0.0 
F7 0111 0.38, 0.70, 0.86, 0.77 70.0 
F8 1000 0.99, 0.05, 0.04, 0.01 0.0 
F9 1001 0.90, 0.02, 0.18, 0.75 0.0 

F10 1010 0.92, 0.08, 0.94, 0.04 0.0 
F11 1011 0.95, 0.08, 0.85, 0.91 0.0 
F12 1100 0.90, 0.98, 0.09, 0.19 0.0 

 

 

Therefore, the proposed pre-processing technique allows the 

ANN construction for the classification of 12 different faults 

with an average testing error close to 6%. If two errors are 

similar, it is very difficult for the ANN to differentiate them. 

This is the reason why the testing error with pre-processing 

process is not close to zero when the number of faults is larger 

than one. 

After validating the digital pre-processing mode [36], it is 

very interesting to see the impact of changing the number of 

   
with pre-processing 
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with pre-processing 
without pre-processing 
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digits used to code the analog data extracted from the test 

bench. All the results presented above have been based on 

16-bit analog-to-digital (AD) converter and use an accuracy 

level of the four digits after the decimal point. An interesting 

approach is to test the accuracy required for the ANN to 

distinguish between all faults. To implement this, analog data 

will be converted to digital with multiple accuracies: (i) three 

digits after the decimal point has been used with a 12-bit AD 

converter, (ii) two digits after the decimal point, with a 9-bit 

AD converter, (iii) one digit after the decimal point, with 6- 

bit AD converter. As the AD converter influences the number 

of input data, Table III shows different number of input that 

corresponds with different AD accuracies. If a NB-bit accuracy 

is used with the NC currents of the WRIG (NC being in 

between 1 and 6), the number of ANN input data is NB ∗NC.  

For a 16-bit AD converter with six currents, it gives 16∗6 = 96 
ANN inputs. 

With the given ANN structure, the accuracy depending on 

NB has been changed keeping all other ANN parameters 

unchanged (one hidden layer, number of hidden neurons, 

transfer function, number of outputs) in order to evaluate the 

training error, the testing error and the number of iterations to 

reach a given minimum error (Table III). 

TABLE III 
INFLUENCE OF THE AD CONVERTER ACCURACY.  

 
NB-bit ANN 

inputs 
Training 
error [%] 

Testing 
error [%] 

Iterations 

6 36 0.12 5.3 10, 000 
9 54 0.15 10.0 10, 000 
12 72 0.25 13.9 10, 000 
16 96 0.25 13.9 12, 000 

 
As shown (Table III) the ANN performances are improved 

when the number of bits used by the AD converter in the 

pre-processing mode is reduced. This means that the ANN 

does not need the average of LSBs. The ANN can find the 

fault signature inside only on the average of MSBs, and any 

other additional data are considered by the neural network 

as noise. The 6-bit AD converter is the minimal configuration 

that can be used to encode the different current with a minimal 

accuracy of only one digit after the decimal point. The average 

of LSBs does not offer to the ANN enough information 

because it is always close to 0.5 whatever the signal is and 

that is due to the constant change of these bits. 

In conclusion, the pre-processing process has given a Gaus- 

sian character to data and has enhanced the information 

extraction of input signals which is very important in both 

system identification and ANN theory. 

 

V. CONCLUSION 

In the field of electrical machines and drives, ANNs have 

been regularly used as classifiers or to substitute complex 

control algorithms. In this paper, an original ANN with digital 

inputs has been used to detect and to localize turn-to-turn 

windings short-circuits in WRIG in order to be applied in wind 

farms. The ANN architecture is very simple and the proposed 

method does not require a large computational burden. The 

ANN  method  is  based  on  the  back-propagation  algorithm 

and it has been built with an efficient training mode and 

verified in the testing mode with many real signals coming 

from a dedicated test-bench. The ANN performances have 

been evaluated by varying some key parameters such as data 

acquisition, bits number and data pre-processing. At this stage, 

it has not yet been implemented in a real wind farm but its 

efficiency and its simplicity can lead to much simple industrial 

development with basic hardware such as FPGA boards to 

decrease the cost of modern condition monitoring systems 

adapted to wind farms. 
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