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IRMAR, UMR 6625, Université Européenne de Bretagne, Rennes, France

Abstract

In this paper, non-homogeneous Markov-Switching Autoregressive (MS-AR)

models are proposed to describe wind time series. In these models, several au-

toregressive models are used to describe the time evolution of the wind speed and

the switching between these different models is controlled by a hidden Markov chain

which represents the weather types. We first block the data by month in order to

remove seasonal components and propose a MS-AR model with non-homogeneous

autoregressive models to describe daily components. Then we discuss extensions

where the hidden Markov chain is also non-stationary to handle seasonal and inter-

annual fluctuations. The different models are fitted using the EM algorithm to a

long time series of wind speed measurement on the Island of Ouessant (France). It is

shown that the fitted models are interpretable and provide a good description of im-

portant properties of the data such as the marginal distributions, the second-order

structure or the length of the stormy and calm periods.

Keywords: Stochastic weather generators, Wind time series, Markov-switching

autoregressive model, Multiscale model, Overdispersion
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1 Introduction

This paper develops stochastic models for wind time series over different time scales. A

particular impetus for this study was the need to generate realistic wind time series at

different meteorological stations located nearby potential wind farms in France, with the

aim of assessing various quantities related to the wind power production (see e.g. [9],

[11]). More generally, the proposed model have many other risk forecasting applications

since they can be used to generate synthetic time series of unlimited length for a location

consistent with historical data at the same location. The synthetic time series can then

be used as inputs into environmental and ecosystem models (see e.g. [2]), among many

other applications (see also [20]).

[20] provides a recent review of stochastic models which have proposed in the literature

for wind time series. The most classical approach consists in applying the general Box-

Jenkins methodology ([7]). Wind times series are generally not stationary, with typically

important seasonal and daily components but also interannual variability. The first step of

the Box-Jenkins methodology consists in achieving stationarity. Interannual components

are generally neglected and various methods are available in the literature for modeling

daily and seasonal components, for instance differentiation or scaling with mean and

variance functions which evolve periodically (see e.g. [8] and [9]). Another common

approach for treating seasonality in meteorological applications consists in blocking the

data by short time periods, typically one month or one season depending on the amount of

data available, and then assuming that the changes due to the season can be neglected on

this time period. Then, after achieving stationarity, a Box-Cox transformation is generally

applied to get a time series with marginal distribution close to a Gaussian distribution

and an ARMA model is fitted to this transformed time series (see e.g. [9]).

Box-Jenkins methodology generally leads to a good description of the marginal distri-

bution and second order structure of the original wind time series but fails to reproduce

non-linearities which may exist in the dynamics. One well known source of non-linearity in

many meteorological time series is induced by the existence of ”weather types”. They cor-

respond to typical pressure and frontal patterns and induce regime shifts in local weather
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conditions. For example, for the specific time series considered in this paper, at least two

regimes can be easily identified when looking at the data. In the first one, anticyclonic

conditions are prevailing leading to steady and low wind speed, whereas in the second one

moving low pressure systems are dominating leading to more important time variability

in the wind conditions. This induces heteroscedasticity in wind time series, and GARCH

models have been proposed in this context (see [25]). In this work, in order to get a more

physically-based model, we introduce explicitly the regime shifts through a hidden vari-

able. As concerns meteorological applications, the idea of introducing a latent variable

which represents the weather type goes back to [28] where Hidden Markov Models (HMM)

were proposed for modelling the space-time evolution of daily rainfall. HMM have then

been extensively used for modelling rainfall (see [4] and references therein). HMM are

characterized by various conditional independence assumptions on the joint dynamics of

the hidden variable and the observations. These assumptions imply in particular that

successive observations are conditionally independent given the hidden variable. In prac-

tice, it means that all the dynamics should be explained by the weather type, and such

assumptions seems rather unrealistic for wind time series since the correlation between

successive observations is generally high.

In this paper, we propose to use Markov-Switching AutoRegressive (MS-AR) models.

This family of model, which was initially proposed in [14] to describe econometric time

series, is a generalization of both HMM and autoregressive models. Indeed, they combine

different autoregressive models to describe the evolution of the process at different periods

of time, the transition between these different autoregressive models being controlled by

a hidden Markov chain like in HMM. Other forms of regime dependent autoregressive

models have been proposed in the literature for modelling meteorological time series (see

e.g. [30], [21]).

Hereafter, we focus on a particular time series of wind speed measured on the Island of

Ouessant (48027′36′′ N, 506′0′′ W). This time series, which is shown on Figure 1, consists

of 51 years of data, from 1948 to 1998, with a data every 6 hours which corresponds to

the mean wind speed on a 20 minutes time period. We have chosen to consider a long

time series in this study in order to discuss the modelling of interannual variability, but

3



good results were also obtained with the methodology described in this paper on shorter

wind time series at various locations in France with different climatologies.
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Figure 1: Wind speed in ms−1 (y-axis) at Ouessant between 1948 and 1998.

MS-AR models are introduced briefly in Section 2. Then in Section 3, we first block the

time series by month, in order to remove the seasonal components, and fit a separate MS-

AR model each month. The daily components are included directly in the parametrization

of the MS-AR models. These monthly models are validated by checking their ability

to generate realistic wind time series, and it is shown that MS-AR models provide a

better description of the short-term dynamics compared to more conventional ARMA

models. In Section 4, we explore the seasonality in the parameter values for the monthly

models and this leads us to propose an original MS-AR model which incorporates a

seasonal component. This new MS-AR is fitted and validated on the entire time series.

The results are satisfactory except that the model tends to underestimate the observed

interannual variability in the wind condition. This is the well known ”overdispersion”

phenomenon which is a weakness of many stochastic weather generators (see e.g. [16]).

One possible explanation may be the existence of interannual variations which are not

taken into account in the model. In Section 5, we thus explore interannual components

and show that there is a clear trend in the probability of occurrence of the different
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weather type. This lead us to propose another MS-AR model which includes a trend in

the parameter values. It is shown that this new MS-AR permits a better description of the

observed interannual variability although it is still underestimated. Finally we conclude

in Section 6.

2 MS-AR models

2.1 Model description

A MS-AR process is a discrete-time process with two components {St, Yt} where, for our

particular application, {Yt} denotes the wind speed process with values in (0,+∞) and

St ∈ {1, ...,M} represents the latent weather type at time t. A MS-AR process is then

characterized by the two conditional independence assumptions below:

• the conditional distribution of St given the values of {St′}t′<t and {Yt′}t′<t only

depends on the value of St−1. In other terms, we assume that the weather type

{St} is a first order Markov chain which evolution is independent of the past wind

conditions.

• the conditional distribution of Yt given the values of {Yt′}t′<t and {St′}t′≤t only

depends on the values of St and Yt−1, . . . , Yt−p. For our particular application, it

means that the wind speed process {Yt} is an autoregressive process of order p ≥ 0

which coefficients evolve in time with the weather type sequence.

When p = 0, we retrieve the usual HMM, and the various conditional independence

assumptions are summarized by the directed graph below for p = 1:

· · · → St−1 → St → St+1 → · · ·

↓ ↓ ↓

· · · → Yt−1 → Yt → Yt+1 → · · ·
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MS-AR models were initially introduced in [14] to describe econometric time series, the

regimes corresponding to the different states of the economy, and then used for other

applications (see e.g. [13] and references therein). MS-AR models for wind time series

were initially proposed in [1] and [20] and then, in different contexts in [3] [22].

In the usual applications of HMM and MS-AR models, the hidden Markov chain {St} is

supposed to be homogeneous, in which case the transition probabilities P (St = s′|St−1 =

s) are constant in time and the evolution of {St} is parametrized by the transition matrix

Q = (qs,s′)s,s′∈{1,...,M} with qs,s′ = P (St = s′|St−1 = s). HMM with non-homogeneous

hidden Markov chain were also proposed for meteorological applications, for example in

[29] to describe non-stationary components in time series of wind direction and in [15]

to relate the large circulation to local rainfall conditions. In the next sections, we also

propose various MS-AR models with non-homogeneous hidden Markov chain in order to

describe seasonal and interannual variations.

As concerns the autoregressive models, the most standard MS-AR model is obtained using

standard AR(p) models with Gaussian innovations. If St = st, it is assumed that

Yt = a
(st)
0 + a

(st)
1 Yt−1 + . . .+ a(st)p Yt−p + σ(st)ǫt (1)

where
(

a
(s)
0 , a

(s)
1 , ..., a

(s)
p , σ(s)

)

∈ R
p+1 × (0,+∞) denotes the unknown parameters of

the AR(p) model which describes the evolution of the observed process in the regime

s ∈ {1, ...,M} and {ǫt} is a sequence of independent and identically distributed Gaussian

variable with zero mean and unit variance independent of the Markov chain {St}. In

other words, it is assumed that the conditional distribution P (Yt|Yt−1 = yt−1, . . . , Yt−p =

yt−p, St = st) is a Gaussian distribution with conditional mean and variance given respec-

tively by

E(Yt|Yt−1 = yt−1, . . . , Yt−p = yt−p, St = st) = a
(st)
0 + a

(st)
1 yt−1 + . . .+ a(st)p yt−p (2)

var(Yt|Yt−1 = yt−1, . . . , Yt−p = yt−p, St = st) =
(

σ(st)
)2

(3)

For the application considered in this paper, {Yt} is a process with positive values, and the

model with conditional Gaussian distribution may not be appropriate in such situation

since it does not permit to restore the constraint Yt ≥ 0. In [1], it was proposed to
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replace the Gaussian distribution by a Gamma distribution and keep (2) and (3) for

the conditional moments (the Gamma distribution is also characterized by its two first

moments). This model was fitted to various wind time series, and generally good results

were obtained (some of these results are reported in [20]). However, one drawback of

the parametrization based on the Gamma distribution is that the additional constraints

a
(s)
k > 0 are needed, for k ∈ {0, . . . , p} and s ∈ {1, . . . ,M}, in order to ensure that the

conditional mean of the Gamma distribution is positive. The tests that we have done

on various time series indicates that fitting the MS-AR model with Gaussian innovations

(1) generally leads to selecting AR models of order p = 2 with autoregressive coefficients

a
(s)
2 < 0 (see for example the numerical results given in the next sections) and in such

situation using the model with conditional Gamma distribution may not be appropriate.

Hereafter we consider only models with conditional Gaussian distributions. It permits to

save computational time and also avoid numerical problems which may exist when using

the Gamma distribution. This and other modelling issues related to the parametrization

of the autoregressive models will be further discussed in the next sections.

2.2 Statistical inference

The most classical method for fitting a MS-AR model, for given values of M and p,

consists of using the Expectation-Maximization (EM) algorithm. It was proven that this

algorithm, which was first introduced in [5] for HMM and then generalized to other models

with hidden variables in [12], converges to a maximum of the likelihood function under

general conditions (see [27]). The description of the particular form of this algorithm

for MS-AR models with Gaussian innovations and homogeneous Markov chain can be

found in [19]. This is an iterative procedure, starting from an initial value θ(0) for the

parameters. Each iteration consists of 2 steps:

• E step: computation of an auxiliary function R(θ, θ(n)) which is defined as the

conditional expectation of the complete likelihood given the observations and the

current value of the parameters. For all the models considered in this paper, this

step can easily be performed using the classical forward-backward recursions (see
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e.g. [10] and [28]).

• M step: computation of θ(n+1) = argmaxθR(θ, θ(n)). Depending on the MS-AR

model under consideration, there are not always analytical expression for θ(n+ 1),

in which case a numerical optimization procedure is required. In order to get an

efficient EM algorithm, it is important to implement carefully the optimization

problem. In particular, it is often possible to break the optimization problem into

several lower dimensional optimization problems which are much quicker to solve.

More precisely, for all the models considered in this paper, it is possible to separate

the parameters related to the evolution of the hidden Markov chain, θS , and the

parameters related to the evolution of the observed process in each regime s ∈

{1, . . . ,M}, denoted θ
(s)
Y , such that θ =

(

θS, θ
(1)
Y , . . . , θ

(M)
Y

)

. For example, for the

MS-AR model with homogeneous Markov chain and AR(p) models with Gaussian

distribution (1), we have θS = (qs,s′)s,s′∈{1,...,M}, with the usual constraints to get a

well defined transition matrix, and θ
(s)
Y =

(

a
(s)
0 , a

(s)
1 , . . . , a

(s)
p , σ(s)

)

. Then we have a

decomposition of the form

R(θ, θ(n)) = RS(θS, θ(n)) +R
(1)
Y (θ

(1)
Y , θ(n)) + . . .+R

(M)
Y (θ

(M)
Y , θ(n))

which leads to M +1 separate optimization problems on reduced dimension spaces.

There may exist analytic expression for some of them, e.g. when the hidden Markov

chain is homogeneous or when the autoregressive models are parametrized using (1).

Otherwise, a standard quasi-Newton algorithm has been used in this work, with an

appropriate treatment of the various constraints on the coefficients.

The EM algorithm has several well-known limitations. First, it may converge to a non-

interesting local maximum of the likelihood function. In practice, it means that a careful

choice of the starting value has to be made; this is further discussed in the next sections.

Another drawback is its slow rate of convergence near the maxima, where it is known

that a usual quasi-Newton algorithm is more efficient. An additional advantage of using

a quasi-Newton algorithm is that it provides directly an approximation of the Hessian

of the log-likelihood function, and thus gives useful information on the variance of the

estimates. On the other hand, quasi-Newton algorithms are generally more sensitive to

8



the choice of the starting value and require some programming efforts since they need the

gradient of the function to optimize as input to be efficient. Such algorithms have not

been implemented in this work.

The stability of MS-AR models and the asymptotic properties of the Maximum Likelihood

Estimates (MLE) in HMM and MS-AR models have been studied extensively in the recent

years (see e.g. [10] and references therein). In particular, general conditions which ensure

consistency and asymptotic normality of the MLE for MS-AR model with homogeneous

hidden Markov chain and the autoregressive models described above with Gaussian or

Gamma conditional distributions can be found in [18] and [3], but the existing results

do not apply to the non-stationary MS-AR models considered in this paper. We have

performed various simulation experiments which indicate however that the MLE have a

reasonable behaviour for the non-stationary models considered in this paper.

Another important problem in practice, which has received lots of attention in the last

few years, is the problem of model selection which aims at finding the ”optimal” value

of p and M (see e.g. [10] for a recent review). Hereafter, we have chosen to use the

Bayes Information Criterion (BIC) as a first guide. Although its use is not justified for

MS-AR models from a theoretical point of view, we found that it generally permits to

select parsimonious models which fit the data well. It is defined as

BIC = −2 logL+ k logN

where L is the likelihood of the data, k is the number of parameters and N is the number

of observations. It can be easily computed from the likelihood which is a natural output

of the forward recursions performed in the E-step of the EM algorithm.

3 MS-AR model for monthly data

A classical approach for treating seasonality for meteorological time series consists in

blocking the data by month and fit a separate model each month, assuming that the

different realisations of the same month over different years are independent realizations

of a common stochastic process. This approach is used in this section and we discuss the
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results obtained on the wind time series introduced in Section 1.

3.1 Model description

Even when focusing on a monthly time period, diurnal fluctuations generally imply that

wind time series are not stationary (see the periodogram on Figure (6)). According

to Figure 2, for the time series considered in this work, the wind speed is generally

higher during the day than during the night, with maximum mean value at noon and the

diurnal variations are more important in summer than in winter due to the higher diurnal

variations in the temperature.
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Figure 2: Boxplot of the wind speed distribution as a function of the time in the day

(x-axis) for January (left) and July (right).

A classical approach (see e.g. [9], [21]) for modelling wind time series with diurnal com-

ponents consists in scaling the data by subtracting the periodic mean function and then

eventually dividing by the periodic standard variation function and then assume that the

residual time series is an AR(p) process. This is similar to assume that the wind time se-

ries is a non-homogeneous AR(p) process with periodically evolving coefficients. Here we

propose to use such non-homogeneous autoregressive models in each regime and replace

(2) by (4)

E (Yt|St = st, Yt−p = yt−p, ..., Yt−1 = yt−1) = a
(st)
0 (t) + a

(st)
1 yt−1 + ... + a(st)p yt−p (4)

10



where, for s ∈ {1, ...,M},

a
(s)
0 (t) = α

(s)
0 + α

(s)
1 cos

(

2πt

Td

− α
(s)
2

)

with the unknown parameters α
(s)
0 ∈ R, α

(s)
1 ≥ 0 and α

(s)
2 ∈ [0, 2π[ and Td represents the

number of observations per day in such a way that (4) defines a periodic function with

period one day.

In (4), only the intercepts of the AR models are assumed to vary with time. Loosely

speaking, it permits to model that the mean of the wind speed exhibits diurnal variation

but not its variance. According to Figure 2, this seems to be realistic for the particular

time series considered in this work. This model could be obviously generalized by assuming

that the other coefficients of the autoregressive models are periodic functions, but the

various attempts that we have done in this direction for our particular data set did not

improve the results obtained with the simplest model (4). The coefficient α
(s)
1 is related

to the amplitude of the diurnal variations in regime s, whereas α
(s)
2 is associated to the

time in the day when the wind speed is maximum. In the limiting case α
(s)
1 = 0 we

retrieve the homogeneous model (2). The model (4) allows these characteristics to be

different in the weather types. For example, for our dataset we expect more important

diurnal variations when anticyclonic conditions are prevailing than in cyclonic conditions

and such behaviour can not be restored by the more conventional approach discussed in

[9].

Hereafter, we will also consider another approach which consists in including the diurnal

component in the dynamics of the hidden Markov chain and assume that the transition

probabilities are periodic functions. Such approach was initially proposed in [28] for wind

direction and then used in [1] for wind speed. In this work, we have considered simple

parametric functions derived from the multinomial logit model and assumed that

P (St = s′|St−1 = s) ∝ qs,s′ exp

(

κs′ cos

(

2π

T
t− φs′

))

(5)

where Q = (qs,s′)s,s′∈{1,...,M} is a stochastic matrix and, for s ∈ {1, ...,M}, κs ≥ 0 and φs ∈

[0, 2π[ are unknown parameters. Again, T = Td represents the number of observations per

day in such a way that (5) defines a periodic function with period one day. The limiting
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case κs = 0 for s ∈ {1...M} corresponds to the homogeneous case whereas for high values

of κs the conditional distribution (5) is concentrated around φs.

3.2 Parameter estimation

The various models obtained by combining the different parametrizations discussed above

for the hidden Markov chain, which can be homogeneous or not, and the autoregressive

models which can be homogeneous or not have been fitted to the 12 data sets obtained

by blocking the data by month. There are some missing data in the original time series.

When only one data point is missing, a single linear interpolation method has been used to

fill in the gap using adjacent values. It leads to a new time series with missing values only

in 1986 and 1991, and these two years include a long time period with no data. We have

thus decided to remove these two years from the original time series in order to facilitate

the statistical inference. Finally, for each month 49 realizations of length N = 4 ∗ Nd

remain, where Nd represents the number of day in the month under consideration, in order

to fit and validate the models. These realizations are supposed to be independent and the

likelihood function which we consider is obtained as the product of the likelihood over the

49 realizations. The likelihood function has been maximized using the EM algorithm.

In practice, we consider models with a number of regimes M = 1, . . . , 5 and autoregressive

models of order p ∈ {1, 2}. In order to initialize this algorithm with realistic parameter

values, and thus avoid convergence to non-interesting maxima and save computational

time, we have used the nested nature of the models. For example, the non-homogeneous

models were initialized using the parameter values of the corresponding fitted homoge-

neous models and the models of order p = 2 using the models of order p = 1. When

such initialization was not available (for example for the homogeneous models of order

p = 1), the EM has been initialized using several starting values chosen randomly in a set

on physically realistic parameter values.

12



3.3 Results

In this section, we focus on the months of January and July since the results obtained for

these two months are representative of the ones for the other months.

According to Table 1, BIC clearly favours MS-AR models with autoregressive models of

order p = 2 and a number of regimes M between 2 and 4. In January, BIC selects a model

with homogeneous hidden Markov chain and homogeneous autoregressive models, that is

a homogeneous model with no diurnal component. This seems consistent with Figure

2 which suggests that the diurnal components are less important in January. In July,

when diurnal components are more significant, BIC favours models with homogeneous

hidden Markov chain but non-homogeneous autoregressive models. It indicates that it

is more appropriate to model diurnal components inside the dynamics of the weather

types than in the dynamics of the weather type. This seems also more natural from a

physical point of view since the hidden variable is interpreted as a surrogate of the large

scale atmospheric situation which may not be affected by diurnal components but only

by longer term components (see Sections 4 and 5).

January

M 1 2 3 4 5 1 2 3 4 5 Npar

MC AR p = 1 p = 2

H H 29452 28898 28921 28844 28890 29120 28518 28524 28546 28577 M(M − 1) +M(p + 2)

H N 29464 28925 28964 29026 28977 29132 28545 28569 28631 28688 M(M − 1) +M(p + 4)

N H 29452 28933 28974 28910 28959 29120 28552 28580 28592 28647 M(M + 1) +M(p+ 2))

N N 29464 28960 29014 29094 29028 29132 28580 28619 28700 28768 M(M + 1) +M(p+ 4)

July

M 1 2 3 4 5 1 2 3 4 5

MC AR p = 1 p = 2

H H 23572 23299 23295 23367 23408 23380 23100 23109 23190 23233 M(M − 1) +M(p + 2)

H N 23446 23142 23135 23192 23279 23258 22952 22952 23028 23110 M(M − 1) +M(p + 4)

N H 23572 23281 23191 23243 23317 23380 23086 23022 23055 23150 M(M + 1) +M(p+ 2)

N N 23446 23172 23183 23254 23344 23258 22981 23001 23086 23183 M(M + 1) +M(p+ 4)

Table 1: BIC values for the various MS-AR models fitted for the months of January and

July. The first column indicates if the hidden Markov chain is homogeneous (H) or non-

homogeneous (NH), the second column indicates if the AR models are homogeneous (H)

or non-homogeneous (NH). The last column gives the number of parameters Npar.
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Let us now first focus on January. According to the BIC values given in Table 1, the

best model has M = 2 regimes, but the difference with the model with M = 3 regimes is

low. A more precise investigation of these two models shows that the model with M = 3

regimes permits to better reproduce some important properties of the data such as the

durations of the storms than the model with M = 2 regimes. The models with M ≥ 4

regimes had states with very low probability of occurrence or the fitted states included

two very similar states. This led us to restrict attention to M = 3 and select the model

with homogeneous hidden Markov chain and autoregressive models of order p = 2 which

has 18 parameters.

According to Table 2, the first regime corresponds to periods with steady wind conditions,

with a low standard deviation for the innovation σ(s) and also a slower decrease to zero

of the autocorrelation functions than in the other regimes, whereas the third regime

corresponds to periods with important temporal variability in the wind conditions. The

comparison of the means of the stationary distributions in the different regimes also

indicates that higher wind speed are generally observed in periods with high variability

than in period with low variability. The transition matrix exhibits high values on the

diagonal and thus the different regimes are relatively persistent (the mean duration of

sojourns varies between 2.69 days in the regime 2 and 5.86 days in regime 3). There

are also some very small transition probabilities : for example most of the time the

Markov chain will transit from regime 1 to regime 3 through regime 2 and vice-versa.

The stationary distribution of the hidden Markov chain indicates that the three regimes

have almost the same probability of occurrence.

A useful tool to confirm visually the interpretation of the states consists in computing the

smoothing probabilities defined as the conditional distribution of the hidden state given

all the observations (y1, ..., yN) available in a given month

P [St = s|Y1 = y1, ..., YN = yN ]

for s ∈ {1, ...,M}. A complementary information is provided by the most likely hidden

sequence computed using the Viterbi algorithm which leads to a segmentation of the

observed time series according to the different regimes (see [29]). An example of such
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Transition matrix AR models

St Coefficients

St−1 1 2 3 π(s) a
(s)
0 a

(s)
1 a

(s)
2 σ(s) µ(s)

1 0.92 [0.026] 0.07 [0.050] 0.01 [0.032] 0.35 1.13 [0.121] 0.96 [0.012] -0.13 [0.008] 1.65 [0.051] 6.63

2 0.07 [0.023] 0.91 [0.015] 0.02 [0.023] 0.35 2.83 [0.346] 0.86 [0.023] -0.19 [0.012] 2.66 [0.073] 8.77

3 0.01 [0.023] 0.03 [0.046] 0.96 [0.038] 0.30 6.36 [0.213] 0.69 [0.035] -0.20 [0.024] 3.44 [0.165] 12.32

Table 2: Estimated parameters for the homogeneous model with M = 3 regimes and

autoregressive models of order p = 2 together with the stationary distribution π(s) of the

Markov chain and the mean µ(s) of the stationary solution of the AR models. Asymptotic

standard errors computed from the observed information matrix are given in brackets.

Results for January.

segmentation is shown on Figure 3 : we retrieve periods when one of the regimes is clearly

the more likely (see for example the stormy period in the middle of the month) and

transition periods with several regimes having similar probabilities.

Figure 4 shows the distribution of the wind direction in the different regimes identified

using the Viterbi algorithm. The third regime is mainly associated with wind from the

South-West : it may correspond to cyclonic conditions when quickly evolving low-pressure

systems are coming from the Atlantic ocean. The two other regimes have similar distri-

butions for the wind direction and can be associated with all wind directions. Looking

at the distribution of other meteorological variables, such as the sea-level pressure, may

help refining the meteorological interpretation of the different regimes.

To further validate the model, we have checked its ability to simulate realistic wind time

series since this is an important aspect for the applications which have motivated this work.

For that, we have generated artificial time series from the model and we have compared

various statistics computed from these artificial sequences with those computed from the

data. Typical results are shown in Figure 5. In order to assist visual comparison, 95%

prediction intervals for the fitted model have been superimposed where these quantities

have been computed using Monte Carlo methods. The limits of the intervals correspond

to the 2.5th and 97.5th percentiles from 1000 independently sequences of 49 months of

January simulated using the fitted model.
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Figure 3: Top panel : smoothing probabilities P [St = s|Y1 = y1, ..., YN = yN ] for s = 1

(dotted line), s = 2 (dashed line) and s = 3 (full line) for one month of January. Bottom

panel : wind speed (y1, ..., yN) for the same month of January. The line style corresponds

to the most likely state identified using the Viterbi algorithm with the same convention

as on the top panel.
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Figure 4: Wind direction in the different regimes identified using the Viterbi algorithm.

Results for January.

Figure 5 shows the results obtained for the marginal distributions, the autocorrelation

function and the distribution of the sojourn durations above and below some selected

thresholds. They are among the most common criteria used to validate stochastic weather

generators. These results were compared with the ones obtained using the Box-Jenkins
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methodology, and we could identify several advantages of using MS-AR models. First,

the MS-AR model is able to reproduce the marginal distribution of the process with-

out applying an initial transformation, such as the Box-Cox transformation, to achieve

normality. This is not surprising given the distributional flexibility inherent in hidden

Markov modelling. However, the model tends to overestimate the probability of low wind

speed and can even simulate negative wind speed. Nevertheless, the results remains satis-

factory, especially if the simulated time series are used as input to simulate the behaviour

of a system with a low sensitivity to light wind conditions, such as the power value of

a wind turbine. If low wind speed are important for a particular application or if the

statistical inference leads to creating artificial state just to account for the skewness of

the marginal distribution then using the model with conditional Gamma distributions

discussed in Section 2 or applying a preliminary Box-Cox transformation could be more

appropriate. Figure 5 shows that the fitted MS-AR model permits also to reproduce the

autocorrelation function and the distribution functions of the sojourn durations above

and below some selected thresholds since the sample distribution function always lie in

the 95% prediction interval computed from the model. We could not get such good results

using Box-Jenkings methodology as concerns the sojourn durations and there are good

theoretical reasons for that. Indeed, Box-Jenkins methodology is based on ARMA models

and thus assume that, after eventual increasing transformation, the process is Gaussian.

It entails some symmetry in the dynamics of the time series and that the behaviour for low

wind speed should be similar to the one for high wind speed. In particular, the durations

of the sojourns below the quantile of order p should have the same distribution that the

ones above the quantile of order 1 − p. Figure 5 indicates that this is not true for the

time series considered in this paper and that the durations of the excursions below the

25% quantile tend to be longer that the ones above the 75% quantile : we find again that

the time series exibits more variability at high level than at low level. MS-AR models

mix different AR models and thus allow, for example, different dynamics at low and high

levels. It leads to a good reproduction of the sojourn durations (see Figure 5).

Similar results were obtained for other months. For the months with important diur-

nal variations, we also checked that the fitted MS-AR model with homogeneous hidden
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Figure 5: Top left: QQ-plot of the marginal distribution for the fitted model (y-axis)

against the sample distribution (x-axis). Top right : autocorrelation functions. Bottom

left: log-survivor-functions of the time duration of the sojourns below the threshold 6ms−1

which corresponds to the 25% quantile of the marginal distribution. Bottom right: log-

survivor-functions of the time duration of the sojourns above 12ms−1 which corresponds

to the 75% quantile of the marginal distribution. Time is expressed in days. The full lines

corresponds to the sample functions and the dashed lines to the fitted model with a 95%

prediction intervals (dotted line). The distributions for the fitted model were obtained by

simulation. Results for January.

Markov chain but non-homogeneous AR models can reproduce the characteristics of these

variations. For example, Figure 6 shows that the fitted model can reproduce both the

fluctuations of the mean wind speed and the peak at 1day−1 in the periodogram for the

month of July. The model has also been successfully validated at other locations with

different climatologies. In particular, a MS-AR model was fitted on wind data in the

Aegean Sea and a systematic comparison with the Box-Jenkins methodology and a non-

parametric resampling method is performed in [20]. It is shown that the MS-AR model
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and the non-parametric resampling method improve the results obtained with the Box-

Jenkins methodology and both lead to similar results. An advantage of using MS-AR

models over non-parametric resampling methods is their interpretability which leads to

open structure and allows for more physical models as it is illustrated in the next sections.
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Figure 6: Left panel : diurnal variations of the mean wind speed. Right panel : peri-

odogram (on x-axis in day−1) . The full line corresponds to the sample functions and

the dashed line to the fitted model with a 95% prediction intervals dotted line). The

distributions for the fitted model were obtained by simulation. Results for July.

4 MS-AR model with seasonal components

In the previous section, a separate MS-AR model was fitted each month. For many

applications, it is necessary to have a model which can simulate the wind speed on a

yearly basis. A straightforward combination of the monthly models would lead to a

yearly model where the parameters vary as a step function with a break at the beginning

of each month. In this section, we propose including seasonality in a more appropriate

way into the model.

The results obtained when fitting the MS-AR models introduced in the previous section to

each of the 12 months indicate that a MS-AR with M = 3 regimes, homogeneous hidden

Markov chain but non-homogeneous autoregressive models is the simplest model which

gives satisfactory results for all months. As discussed in Section 3, simplest homogeneous

MS-AR models also provide a good description of wind conditions in winter, when daily
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components can be neglected, but for simplicity reasons we have decided to keep the same

model for the different months. Then, in order to be able to follow the seasonal evolution

of the parameters, the regimes have been numbered increasingly according to their con-

ditional standard deviations σ(s), the first regime corresponding to wind conditions with

low variability whereas the third one to higher variability. In May the first two states

were inverted in order to make the time evolution of the coefficients more consistent.

Figure 7 provides a synthetic view of the seasonal evolution of some of the coefficients

of the fitted models and summarizes important features of the climatology. First, the

time evolution of α
(s)
0 and σ(s) indicates respectively that the mean and the temporal

variability are generally higher in winter than in summer. Then, the amplitude of the

daily component α
(s)
1 is maximum in spring and summer in regime 1 and 2 and at the

end of summer in regime 3. The comparison of the values of α
(s)
1 and α

(s)
0 in the different

regimes s ∈ {1, ...,M} shows that the contribution of the daily component to the mean

wind speed is more important in the regimes with low temporal variability. Finally, the

diagonal coefficients of the transition matrices indicate that the third regime is more

persistent in winter than in summer, and thus cyclonic conditions may generally last

longer in winter than in summer.

Figure 7 also suggests to let the coefficients of the model evolve smoothly in time instead

of using step functions. In this work, we use simple parametric forms to describe the

seasonal evolution of the different coefficients. More precisely, we used again (5) for the

transition matrix but with T = Ty the number of observations in one year in order to

obtain a periodic function with period one year. Then we use AR models of order p = 2

with time varying coefficients to model the conditional evolution of the wind speed

Yt = a
(st)
0 (t) + a

(st)
1 (t)Yt−1 + a

(st)
2 (t)Yt−2 + σ(st)(t)ǫt (6)

with {ǫt} a sequence of independent and identically distributed Gaussian variable with

zero mean and unit variance independent of the Markov chain {St}. Again the daily

component is modelled assuming that

a
(s)
0 (t) = α

(s)
0 (t) + α

(s)
1 (t) cos

(

2π

Td

t− α
(s)
2 (t)

)

Then, if f(t) denotes the value of one of the parameters of the AR models at time t (i.e.
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Figure 7: Seasonal variations of σ(s) (top left), qs,s (top right), α
(s)
0 (bottom left) and α

(s)
1

(bottom right). The full line corresponds to regime s = 1, the dashed line to s = 2 and

the dotted line to s = 3. The thin line corresponds to the values obtained when fitting

separately the models to monthly data whereas the thick line corresponds to the values

obtained after fitting the seasonal model on yearly data. The x-axis represents the time

in month.

f(t) = a
(s)
1 (t), f(t) = a

(s)
2 (t), f(t) = σ(s)(t), f(t) = α

(s)
0 (t), f(t) = α

(s)
1 (t) or f(t) = α

(s)
2 (t)

for some s ∈ {1, ...,M} ), we assume a smooth seasonal evolution of the form

f(t) = f0 + f1cos

(

2π

Ty

t− f2

)

(7)

with f0, f1 ≥ 0 and f2 ∈ [0, 2π[ unknown parameters. Since the conditional standard

deviation σ(s)(t) and the amplitude of the daily component α
(s)
0 (t) should be positive

in order to ensure identifiability, the constraints f0 > 0 and f1 < f0 were added when

f(t) = σ(s)(t) or f(t) = α
(s)
0 (t) for s ∈ {1, ...,M}. The model has M(M + 1)+ 3M(p+ 4)

parameters.

Due to the complexity of the model and the length of the time-series under consideration,
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it is important to initialize the EM algorithm with realistic parameter values. Indeed,

each iteration of the EM algorithm requires important CPU time and thus the number

of iteration needs to be reasonable. Furthermore, using arbitrary values is very likely to

lead the algorithm to converge to a non-interesting maximum of the likelihood function.

In practice, the parameters have first been estimated using the least square methods and

the parameter values obtained when fitting separately the models to each month of data

and then reestimated using the EM algorithm on the whole time series.

We obtain a non-stationary model, which includes both daily and seasonal components

and which can be used to generate long wind time series with no discontinuity problems

at the beginning of each month. Again, like in Section 3.3, the realism of the simulated

time series has been checked by comparing various statistics computed from the synthetic

time series to the ones of the original data. We first performed validation on a monthly

basis (we considered both calendar month and also periods from the 15th of one month

to the 15th of the following month), and the results were similar to those reported in

Section 3.3. This is not surprising since, according to Figure 7, the restriction of the

fitted seasonal model to monthly time periods are relatively close to the models fitted on

monthly data.

We also performed validation on a yearly basis, and in particular we checked the ability

of the model to reproduce the interannual variability of the wind conditions. Figure 8

shows that the fitted model underestimates the observed variability in the yearly mean.

Monthly or seasonal validation leads to similar results. This is a well known feature of

many stochastic weather generators which is termed ”overdispersion” in the literature

(see e.g. [16] and [17]). Two possible sources of overdispersion are identified in [16].

The first one is an inadequate modelling of high-frequency variations and the second

one is the presence of low-frequency variations in the climate, on an interannual time

scale, which are not taken into account by the model (see also [6]). The results given in

Section 3.3 indicate that the model is able to reproduce the short-term dynamics and in

particular the autocorrelation function up to time lags of one month (see Figure 5). As a

consequence, in absence of interannual components, the variability of the monthly mean

should also be well described by the model since for a second-order stationary process
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the variance of the sample mean can be deduced from the autocovariance function. In

the next section we thus investigate the presence of interannual components in the time

series under consideration and show that including it into the model help reproducing the

interannual variability.

6 7 8
0

0.2

0.4

0.6

0.8

1

20 25 30
0

0.2

0.4

0.6

0.8

1

Figure 8: Distribution function of the annual mean (left) and annual maxima (right). The

full line corresponds to the sample function and the dashed line to the fitted models with

a 95% prediction intervals (dotted line). The thin lines correspond to the seasonnal model

without trend (see Section 4) and the thick lines to the model with trend (see Section 5).

The distribution for the fitted model was obtained by simulation. Results for the time

period 1973-1998.

5 Model with interannual components

Figure 9 shows the 7-year running mean of the conditional expectation E[St|Y1 =

y1, ..., YT = yT ] associated to the smoothing probabilities for the seasonal model intro-

duced in Section 4. This time series exhibits a clear trend, with low values in the years

1950-1955 and 1970-1975, high values for the years 1960-1965 and a tendency to increase

from 1970 to 2000. According to the interpretation of the various states given in Section

3.3, higher expectations may correspond to periods with higher temporal variability in

the wind conditions and thus to periods with more frequent cyclonic conditions.

It is well known that many long meteorological time series exhibit non-climatic (or arti-

ficial) sudden changes due, for example, to an instrument change or a change in station
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location or exposure and that this may affect the study of the climatic trends. Since we

have few information on the existence of such changes for the time series considered in

this paper or access to an homogenized version of this time series, the results have been

compared with those obtained using reanalysis data. More precisely, we have used the

ERA-40 data set which consists in a global reanalysis with 6-hourly data covering the

period from 1958 to 2001. This reanalysis was carried out by the European Centre for

Medium Range Weather Forecast (ECMWF) and can be freely downloaded and used for

scientific purposes at the URL:

http://data.ecmwf.int/data

The seasonal model described in Section 4 was then fitted to the time series retrieved

from the ERA-40 data set for the same location than in situ-data. We obtained generally

similar estimation for the parameters of the model, except for the conditional standard

deviations σ(s) which are systematically lower for ERA-40 time series: reanalysis data

tend to be smoother than in-situ data. Figure 9 also shows the 7-year running mean

of the conditional expectation associated to the smoothing probabilities computed using

ERA-40 data. We also observe a clear trend and comparing with in-situ data indicates

a good overall agreement. For comparison purpose, Figure 9 also shows the Atlantic

multidecadal oscillation (AMO) index which is significantly positively correlated with

the running means of the smoothing expectation shown on the same figure: periods

with higher values of the AMO index seems to coincide with less frequent steady wind

conditions. This may be an indication that the observed trend may partly be explained

by climatic variations. However, there are also differences between the results obtained

using ERA-40 and in-situ data which may correspond to non-climatic breaks in one of

these two time series (see also [23]).

In order to study the impact of the interannual variations on the overdispersion, we have

chosen to focus on the time period from 1973 to 1998 when the running mean for in-situ

data shown on Figure 9 exhibits a clear increasing trend, and replaced (5) by

P (St = s′|St−1 = s) ∝ qs,s′ exp

(

κs′ cos

(

2π

Ty

(t− φs′)

)

+ λs′t

)

(8)
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Figure 9: 7-year running mean of the smoothing expectation E[St|Y1 = y1, ..., YT = yT ] for

the seasonal model together with the AMO index (dotted line). The full line corresponds

to the model fitted on in-situ data whereas the dashed line corresponds to the model fitted

on ERA40 data at the same location. The three time series have been scaled by removing

the mean and dividing by the standard deviation in order to facilitate the comparison.

where, for s ∈ {1...M}, λs is an unknown parameter which describe possible trends in the

probability of occurrence of the regime s. Here, we assume that the long-term climatic

variations only impact the probability of occurrence of the different weather types but

not the dynamics inside the weather types. Non-homogeneous hidden Markov models,

based on similar conditional independence assumptions, have already been proposed in

the literature for statistical downscaling (see e.g. [15] and [26]), in which case the hidden

weather type is used to link the large-scale circulation to local weather condition.

Again, the model has been fitted using the EM algorithm. Figure 10 indicates that the

fitted model is able to reproduce the observed trend in the probability of occurrence of the

different weather types. The estimation for the parameter λ1 is negative, and it coincides

with the fact that regime 1 is less and less likely whereas positive values for λ2 and λ3

indicate that the two regimes with more variability become more and more likely.

Figure 8 shows that the model with interannual components better reproduces the vari-

ability of the observed mean values compared to the model without interannual compo-

nent, but still underestimates the observed variability. Using a more sophisticated model

for the interannual components could again improve these results. For example, we could

replace the linear trend in (8) by a polynomial function, include covariates such as the
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AMO index, or consider models where the interannual components also modify the dy-

namics inside the regimes. An alternative in order to improve the description of the

interannual variability could consist in using more sophisticated models for the seasonal

component (see e.g. [24]).
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Figure 10: Annual mean of the smoothing expectations E[St|Y1 = y1, ..., YT = yT ] for

the seasonal model with interannual component (full line) and annual mean of the ex-

pectation of the Markov chain with transition probabilities (8) (dashed line) with a 95%

prediction intervals (red dotted line). The expectation for the fitted model was obtained

by simulation. Results for the time period 1973-1998

6 Conclusions

This paper investigates the use of MS-AR models to describe wind time series and it

is shown that these models have several virtues. First, thanks to their distributional

versatility, they are able to describe the marginal distribution of the time series and thus

pre-processing the data, like applying the Box-Cox transformation, is not needed. Then,

these models have the ability to model diverse time scales which are present in wind time

series and improve the description of important properties of the dynamics such as the

durations of calm or stormy conditions. This is an important aspect for many applications

of these models. Finally, their interpretability leads to open structure which allows for

more physical models. In this work, this is used to include various time scale, from daily

to interannual components, in a realistic manner into the model.
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The model have important limitations. First, it fails in reproducing the lowest part of

the marginal distribution and can even simulate negative wind speed. Using alternative

autoregressive models or applying an initial transformation on the data may lead to sub-

stantial improvements. Further, it fails in reproducing the observed interanual variability

and the results obtained in Section 5 suggest looking for a more sophisticated trend model.

A trend model which can incorporate scenarios for the future climate would be of partic-

ular interest since it would permit to produce simulations consistent with climate change.

Other related modelling issues which remain to be investigated include the inclusion of

the wind direction in the model and the generalization to a space-time model to describe

the wind evolution at several locations.
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