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ABSTRACT

During the last months or so we had the opportunity to read two papers trying to relate the
study of Macaulay (1916) inverse systems with the so-called Riquier (1910)-Janet (1920) initial
conditions for the integration of linear analytic systems of partial differential equations. One paper
has been written by F. Piras (1998) and the other by U. Oberst (2013), both papers being written
in a rather algebraic style though using quite different techniques. It is however evident that the
respective authors, though knowing the computational works of C. Riquier (1853-1929), M. Janet
(1888-1983) and W. Grobner (1899-1980) done during the first half of the last century in a way not
intrinsic at all, are not familiar with the formal theory of systems of ordinary or partial differential
equations developped by D.C. Spencer (1912-2001) and coworkers around 1965 in an intrinsic way,
in particular with its application to the study of differential modules in the framework of algebraic
analysis. As a byproduct, the first purpose of this paper is to establish a close link between the
work done by F. S. Macaulay (1862-1937) on inverse systems in 1916 and the well-known Cartan-
Kahler theorem (1934). The second purpose is also to extend the work of Macaulay to the study of
arbitrary linear systems with variable coefficients. The reader will notice how powerful and elegant
is the use of the Spencer operator acting on sections in this general framework. However, we point
out the fact that the literature on differential modules mostly only refers to a complex analytic
structure on manifolds while the Spencer sequences have been created in order to study any kind
of structure on manifolds defined by a Lie pseudogroup of transformations, not just only complex
analytic ones. Many tricky explicit examples illustrate the paper, including the ones provided by
the two authors quoted but in a quite different framework.

1 INTRODUCTION

With only a slight abuse of language, one can say that the birth of the formal theory of systems
of ordinary differential (OD) or partial differential (PD) equations is coming from the combined
work of C. Riquier ([22],1910) and M. Janet ([5],1920) along algebraic ideas brought by D. Hilbert
in his study of sygygies. Roughly, one can say that the given OD or PD equations and all their
derivatives may allow to compute a certain number of derivatives of the unknowns, called principal,
from the other ones, called parametric, which can be chosen arbitrarily, on the condition of course
that the resulting computation of this separation, also called ” cut”, should be unique or at least well
defined. An (apparently) independent though similar approach has been followed later on by W.
Grobner ([4], 1939). However, the successive approaches of Riquier, Janet and Grébner both suffer
from the same lack of intrinsicness as they highly depend on the ordering of the n independent
variables and derivatives of the m unknowns involved in a system of order ¢ ([13],[17]). In actual
practice and as a summarizing comment, we may say that the central concepts in the successive
works of Riquier, Macaulay ([9],§38, p 39), Janet and Grébner were indeed formal integrability and
involution, almost fifty years before these concepts were properly defined and studied by Spencer
and coworkers around 1965 ([13],[14],[25]).

At the same time and as a way to generalize the situation to be found in the study of dynamical



systems where a given initial point must be given in order to determine a unique trajectory passing
through that point, a problem was raised by physicists working with many complicate field equa-
tions, namely that of the knowledge of the so-called ” degree of generality’ of solutions or at least
a possibility to separate the many parametric derivatives into a certain number of ”blocks” being
described by arbitrary functions of a certain number of independent variables (It is now known
from the published ”letters on absolute parallelism” exchanged between E. Cartan and A. Einstein
during the years 1929-1932 why Cartan only wrote one paper on the subject to Einstein in the
language of PD equations, never quoting that it was a straight copy of the work done by Janet
who suffered a lot about this situation as he told himself to the author of this paper while he was
alife). As we shall see in the second section of this paper, the solution of this problem has first
been described along the famous Cauchy-Kowaleski theorem and extended later on in 1934 along
the Cartan-Kéhler (CK) theorem ([3],[6]). The main problem, at least in our opinion, is that such
a theorem is always presented in the framework of the exterior calculus of Cartan and thus totally
separated from its formal origin which was essentially based on the involution assumption lead-
ing to the underlying Hilbert polynomial. In particular, the very specific type of systems met in
the Spencer sequences cannot be imagined from the only use of the Janet sequences as we shall see.

Meanwhile, commutative algebra, namely the study of modules over rings, was facing a very
subtle problem, the resolution of which led to the modern but difficult homological algebra with
sequences and diagrams. Roughly, one can say that the problem was essentially to study proper-
ties of finitely generated modules not depending on the presentation of these modules by means of
generators and relations. This very hard step is based on homological/cohomological methods like
the so-called extension modules which cannot therefore be avoided ([1],[7],[15]) but are quite far
from exterior calculus. Using now rings of differential operators instead of polynomial rings led to
differential modules and to the challenge of adding the word differential in front of concepts of com-
mutative algebra. Accordingly, not only one needs properties not depending on the presentation as
we just explained but also properties not depending on the coordinate system as it becomes clear
from any application to mathematical or engineering physics where tensors and exterior forms are
always to be met like in the space-time formulation of electromagnetism. Unhappily, no one of the
previous techniques for OD or PD equations could work.

By chance, the intrinsic study of systems of OD or PD equations has been pioneered in a to-
tally independent way by D. C. Spencer and collaborators after 1965 ([25]), as we already said, in
order to relate differential properties of the PD equations to algebraic properties of their symbols,
a technique superseding the leading term approach of Riquier, Macaulay, Janet or Grobner . Ac-
cordingly, it was another challenge to unify the purely differential approach of Spencer with the
purely algebraic approach of commutative algebra, having in mind the necessity to use the previ-
ous homological algebraic results in this new framework. This sophisticated mixture of differential
geometry and homological algebra, now called algebraic analysis, has been achieved after 1970 by
M. Kashiwara [7] for the variable coefficients case.

In a rough way, we shall prove in the third section of this paper that, if a differential module
M is defined over a differential field K by a linear involutive system of OD or PD equations of
any order g with n independent variables and m unknowns, one can always find an isomorphic
differential module defined by a linear involutive system in Spencer form, that is a first order in-
volutive system not containing any zero order equation. Starting afresh with this new system, the
CK data are made by a certain number of formal power series in 0 variable (constants), 1 variable,
..., up to n variables, the total number of such formal power series being equal to the number of
unknowns. Moreover, they allow to fully describe the dual inverse system R = homg (M, K) as
a left differential module for the Spencer operator acting on sections in the differential geometric
framework. In the case of systems with constant or even variable coefficients as well, this re-
sult allows to exhibit a finite basis of R. Many explicit examples will illustrate this paper and
must become test examples for using computer algebra without refering to Grébner bases. The
reader will however notice that the concepts presented and the language of sections have rarely
been used in mathematics (See [18],[19] for other details) and, up to our knowledge, have never
been used in computer algebra or in mathematical physics (See [20] and [21] for very recent papers).



2 CARTAN-KHALER THEOREM REVISITED

If E is a vector bundle over the base manifold X with projection m and local coordinates
(z,y) = (z°,y*) projecting onto x = (z°) for i = 1,...,n and k = 1,...,m, identifying a map with
its graph, a (local) section f: U C X — F is such that 7o f = id on U and we write y* = f*(z)
or simply y = f(x). For any change of local coordinates (z,y) — (Z = ¢(z),5 = A(z)y) on E,
the change of section is y = f(x) — § = f(&) such that f'(¢(x) = AL (x)f*(x). The new vector
bundle E* obtained by changing the transition matriz A to its inverse A1 is called the dual vector
bundle of E. Differentiating with respect to z° and using new coordinates y¥ in place of 9; f*(z),
we obtain §L0;¢"(z) = AL(z)yF + 0;AL(z)y*. Introducing a multi-index p = (u1, ..., 1) with
length | pu |= p1 + ... + 1, and prolonging the procedure up to order g, we may construct in this
way, by patching coordinates, a vector bundle J,(E) over X, called the jet bundle of order ¢ with
local coordinates (x,y,) = (2',y%) with 0 <| u |< ¢ and y§ = y*. For a later use, we shall set
w41 = (1, ooy im1, i + 1, i1, oo, fn) and define the operator j, : E — Jo(E) @ f — jq(f) on
sections by the local formula j,(f) : (z) — (9,f*(x) | 0 <| p |< ¢,k = 1,...,m). Finally, a jet
coordinate y’lj is said to be of class i if uy = ... = p;j—1 =0, u; # 0.

DEFINITION 2.1: A system of PD equations of order ¢ on E is a vector subbundle R, C J,(E)
locally defined by a constant rank system of linear equations for the jets of order ¢ of the
form a?‘(m)yﬁ = 0. Its first prolongation Ryi1 C Jg1(E) will be defined by the equations
ap (x)yh = 0,a;" (x)yk, 1, + Oiap (x)yf = 0 which may not provide a system of constant rank as
can easily be seen for zy, —y = 0 = xy,, = 0 where the rank drops at x = 0.

The next definition will be crucial for our purpose.

DEFINITION 2.2: A system R, is said to be formally integrable if the Ry, are vector bundles
Vr > 0 (regularity condition) and no new equation of order ¢ + r can be obtained by prolonging
the given PD equations more than r times, Vr > 0.

Finding an inrinsic test has been achieved by D.C. Spencer in 1965 along coordinate dependent
lines sketched by Janet as early as in 1920 ([5]) and Grobner in 1940 ([5]), as we already said.
The key ingredient, missing explicitly before the moderrn approach, is provided by the following
definition.

DEFINITION 2.3: The family g4, of vector spaces over X defined by the purely linear equa-
tions a;“(x)vl’j+y =0for | u|=gq,| v |=ris called the symbol at order ¢+r and only depends on g,.

The following procedure, where one may have to change linearly the independent variables if
necessary, is the heart towards the next definition which is intrinsic even though it must be checked
in a particular coordinate system called d-regular (See [13] and [14] for more details):

e Equations of class n: Solve the maximum number 7 of equations with respect to the jets of
order ¢ and class n. Then call (x!,...,2™) multiplicative variables.

e Equations of class i: Solve the maximum number of remaining equations with respect to the
jets of order ¢ and class i. Then call (2%, ...,2%) multiplicative variables and (x**1, ..., 2™) non-
multiplicative variables.

e Remaining equations equations of order < q — 1: Call (z!,...,2™) non-multiplicative variables.

DEFINITION 2.4: A system of PD equations is said to be involutive if its first prolongation
can be achieved by prolonging its equations only with respect to the corresponding multiplicative
variables. The numbers o, = m(q+n—i—1)!/((¢—1)!(n—i)!) — B, will be called characters and



oy > ... > ). For an involutive system, (y%a+1, ... y™) can be given arbitrarily.

Though the preceding description was known to Janet (he called it : "modules de formes en
involution”), surprisingly he never used it explicitly. In any case, such a definition is far from being
intrinsic and the hard step will be achieved from the Spencer cohomology that will also play an im-

portant part in the so-called reduction to first order, a result no so well known today as we shall see.

Let us consider J,41(E) with jet coordinates {y§ | 0 <| A |[< ¢ + 1} and J;(J,(E)) with jet
coordinates {2}, 2} ; | 0 <| p |< ¢,i = 1,...,n}. The canonical inclusion J,41(E) C Ji(Jy(E)) is
described by the two kinds of equations:

Zi ~ Zuga, =0, 0<|pul<g—1
21,0~ 2ty =0, lpl=q—1

k =

or using the parametrization z;, ;
;

yko o, for | p|=q with 28 = y* V0 <| n|< q.

Let T be the tangent vector bundle of vector fields on X, T* be the cotangent vector bundle of 1-
forms on X and A*T* be the vector bundle of s-forms on X with usual bases {dz! = dz"* A...Adz}
where we have set I = (i; < ... < is). Also, let S;T* be the vector bundle of symmetric g-covariant
tensors. Moreover, if £, € T are two vector fields on X, we may define their bracket [§,n] € T
by the local formula ([¢,7]) (x) = £ (2)0.n'(z) — n*(x)0:¢%(z) leading to the Jacobi identity
€, [, CI1+ [0, [C, €]+ (C, [€,9]] = 0, €, 1,¢ € T.. We have also the useful fornuula [T(f)(€), T(f)(n)] =
T(f)([&,n]) where T(f) : T(X) — T(Y) is the tangent mapping of a map f : X — Y. Finally, we
may introduce the exterior derivative d : N"T* — ANTHIT* : w = wrda! — dw = O;wrdx’ Adx! with
d?> = dod=0in the Poincaré sequence:

AT Ly Al Ay a2 4y A anpr

In a purely algebraic setting, one has ([13],[15]):

PROPOSITION 2.5: There exists a map 6 : AST* @ S, 1 T* @ E — ASTIT* @ S, T* @ E which
restricts to § : AST* ® gg41 — A*TIT* @ gy and 62 =606 = 0.

Proof: Let us introduce the family. of s-forms w = {Wﬁ = vfbﬁldxl} and set (5w)ﬁ = dx? /\wﬁ_Hj.
We obtain at once (0°w)f; = da’ A da? A WZ+1i+1j =0.
Q.ED.

The kernel of each § in the first case is equal to the image of the preceding d but this may no
longer be true in the restricted case and we set:

DEFINITION 2.6: We denote by B:,,.(g,) € Z:,,(g94) and Hi,,(9q) = Z21.(9¢)/Bisr(9q)
respectively the coboundary space, cocycle space and cohomology space at A°T™ ® gq4, of the
restricted d-sequence which only depend on g, and may not be vector bundles. The symbol g, is
said to be s-acyclic if H;H =..=HJ, , =0,Yr >0, involutive if it is n-acyclic and finite type if
gq+r = 0 becomes trivially involutive for r large enough. Finally, S;7* ® E is involutive Vg > 0 if
we set SpT* Q FE = E.

The preceding results will be used in proving the following technical result that will prove to
be quite useful for our purpose ([13],[17]).

PROPOSITION 2.7: One has the isomorphisms J1(J,(E))/Jy+1(E) =~ T* @ J4(E)/6(Sq1T* ®
E)~T"® J,;_1(E) & 6(T* ® S;T* ® E). More generally one may define the Spencer bundles
Cr(E) = Cyr(E) = NT*®@J,(E) /(N1 T* 08,11 T*®E) with an isomorphism C,.(E) ~ §(A"T*®
ST RE)BNT*®J,-1(E). In particular one has Cy(E) = J,(E) while C,,(E) = N"T*®@J,-1(E).



Proof: The first commutative ad exact diagram:

0
1

0— Sq+1T* QF —
1

0—  Jm(E) —
1

0— Jo(E) =

I
0

shows that C1(E) ~ T* @ J4(E)/Sg+1T* @ E. The general case finally depends on the following
second commutative and exact diagram by using a (non-canonical) splitting of the right column:

~ 3
Seleo
S
= 3
ol
Q9
&
1
o

o<—QK<—
&
1

0 0 0
\: \J )

AT @ S T* 9 E 5 NT*@S,T*®E 5 SNT*®S,IT*®E) —0
| i I

ANIT* @S T*®E —  ANT*®@J,(E) — C.(E) -0
1 \: \!

0 - NT*®J,1(E) = NT*® Jy_1(E) =0
\J A
0 0

When r = n, the equality §(A"1T* @ Sy 1T*) = A"T™* ® S, T* gives the last result.

Q.E.D.

These absolutely non-trivial results can be restricted to the systems and symbols. Accordingly,
the inclusion Ry41 C J1(Rg4) can be considered as a new first order system over Ry, called first
order reduction or Spencer form. One obtains ([13],[14],[15]):

PROPOSITION 2.8: The first order reduction is formally integrable (involutive) whenever R,
is formally integrable (involutive). In that case, the reduction has no longer any zero order equation.

Having in mind control theory, we have therefore set up the problem of ”state”, even for systems
which are not of finite type and it just remains to modify the Spencer form in order to generalize
the Kalman form to PD equations. Here is the procedure that must be followed in the case of a
first order involutive system with no zero order equation, for example like the one we just obtained.

e Look at the equations of class n solved with respect to y?, ..., y5.
e Use integrations by part like:

Yy — a(@)yhtt = dn(y' — a(2)y’t) + Opa(z)y’ T = g + Onalz)y® !

e Modify 4!, ...,y% to ¢',...,#” in order to ” absorb” the various y2+1, ..., y™ only appearing in the
equations of class n.

PROPOSITION 2.9: The new equations of class n only contain yﬁﬂ, Yyt with0<i<in—1

K3
while the equations of class 1,...,n — 1 no more contain y°+1, ..., y™ and their jets.

Proof: The first assertion comes from the absorption procedure. Now, if y™ or y;* should ap-
pear in an equation of class < n—1, prolonging this equation with respect to the non-multiplicative
variable ™ should bring " or ¥} and (here involution is essential) we should get a linear com-
bination of equations of various classes prolonged with respect to z!,...,z" "' only, but this is
impossible.

Q.E.D.



A similar proof provides at once (See later on for the definition):
COROLLARY 2.10: Any torsion element, if it exists, only depends on 7', ..., 5”.
We are now in position to revisit Grobner bases with critical eyes (See [17] for more details).

EXAMPLE 2.11: Let P = (x3)2, P> = x2x3 — (x1)?%, P3 = (x2)? be three polynomials generat-
ing the ideal a = (Py, Py, P3) C Q[x1, X2, x3]- The corresponding system Rs defined by the three
PD equations

Y33 =0, Y3 —y11=0, Y22 =0

is homogeneous and thus automatically formally integrable but g- is not involutive though finite
type because g4 = 0 (Exercise). Elementary computations of ranks of matrices shows that the
d-map:

0= A2T* @ g3 —>5 A3T* @ ga — 0

is an isomorphism and thus g is 2-acyclic, a crucial intrinsic property [13,15,25] totally absent from
any "old” work. Now, denoting the initial of a polynomial by in() while choosing the ordering
X3 > X1 > X2, we obtain:

in(Pr) = (x3)* in(—P,) = (x1)*,in(Ps) = (x2)°

and {Py, Pa, Ps} is a Grobuner basis. However, choosing the ordering xs > x2 > X1, we have now:

in(Pr) = (x3)?,in(P2) = x2x3,n(P3) = (x2)?

and {Py, P>, P3} is not a Grobner basis because y112 = 0,y113 = 0 AND y331; = 0. Accordingly, a
Grébner basis COU.ld be {Pl, PQ, P3,P4 = (X1)2X2,P5 = ()(1)2X37 P6 = (X1)4} (”')

The main use of involution is to construct differential sequences made up by successive com-
patibility conditions (CC). In particular, when R, is involutive, the linear differential operator

D:E% Jq(E) 3 Jo(E)/Rq = Fy of order g with space of solutions © C FE is said to be involutive
and one has the canonical linear Janet sequence ([19], p 144):

0—0 —o>T 2 pF2yp Py Pup 4

where each other operator is first order involutive and generates the CC of the preceding one with
F.=NT*®J,(E)/(NT*® Ry + (A" T* ® S, 11T* @ E)). As the Janet sequence can be ”cut at
any place”, that is can also be constructed anew from any intermediate operator, the numbering of
the Janet bundles has nothing to do with that of the Poincaré sequence for the exterior derivative,
contrary to what many physicists still believe. Moreover, the fiber dimension of the Janet bun-
dles can be computed at once inductively from the board of multiplicative and non-multiplicative
variables that can be exhibited for D by working out the board for D; and so on. For this, the
number of rows of this new board is the number of dots appearing in the initial board while the
number nb(i) of dots in the column ¢ just indicates the number of CC of class i for i = 1,...,n with
nb(i) < nb(j),Vi < j and we have therefore:

THEOREM 2.12: The successive first order operators Dy, ..., D,, are automatically in reduced
Spencer form.

DEFINITION 2.13: The Janet sequence is said to be locally exact at F, if any local section of
F, killed by D, is the image by D, of a local section of F._;. It is called locally exact if it is
locally exact at each Fj. for 0 < r < n. The Poincaré sequence is locally exact, that is a closed
form is locally an exact form but counterexamples may exist ([20], p 373).

EXAMPLE 2.14: ([9],§38, p 40 where one can find the first intuition of formal integrability)
The primary ideal ¢ = ((x1)?, x1X3 — X2) provides the system 317 = 0,13 — y2 = 0 which



is neither formally integrable nor involutive. Indeed, we get dsy11 — di(y13 — y2) = y12 and
dsy12 — da(y13 — y2) = Yoo, that is to say each first and second prolongation does bring a new
second order PD equation. Considering the new system yo5 = 0,912 = 0,913 —y2 = 0,911 = 0, the
question is to decide whether this system is involutive or not. One could use Janet/Grobner algo-
rithm but with no insight towards involution. In such a simple situation, as there is no PD equation
of class 3, the evident permutation of coordinates (1,2,3) — (3,2, 1) provides the following involu-
tive second order system with one equation of class 3, 2 equations of class 2 and 1 equation of clas 1:

(I>4 = Y33 =0 1 2 3
D3 = 193 = 0|1 2 e
@2 = Y22 = 0 1 2 e
Pl=yz—y» = 0|1 o

We have a3 = 0,02 = 0, = 2 and the corresponding CC system is easily seen to be the following
involutive first order system in reduced Spencer form:

o O OO

\114 = dg(I)g — dg(I)4
\113 = d3‘1>2 - d2(1)3 =
U2 = dy®! — 4, ®* + B3 =
Ul = dy®! — d; 93 + §2

— =
NN NN
o W Ww Ww

The final CC system is the involutive first order system in reduced Spencer form:

{degllll—dg\IJ2+d1\Il4—\I/3 = 0|1 2 3

We get therefore the Janet sequence:
0—0—>1—4—4—1—0

and check that the Euler-Poincaré characteristic, that is the alternate sum of dimensions of the
Janet bundles, is 1 —4+4—1=0.

Equivalently, we have the involutive first Spencer operator Dy : Cy = R, A A (Rq) —
Ji(Rg)/Rgt1 = T* @ Ry/6(gq+1) = Ci of order one induced by the Spencer operator D : Ryy1 —
T* @ Ry : g1 — j1(§y) — &g+1 which is well defined because both Jy41(E) and T @ J,(E)
may be considered as sub-bundles of J;(J4(E)). Introducing the Spencer bundles C, = N"T* ®
Ry/6(A"IT* @ g441), the first order involutive (r + 1)-Spencer operator Dyyq1 @ Cp — Cyryq is
induced by D : N"T*®@ Ry1 = AT T* @Ryt a®&yi1 — da®@&;+ (—1)"aA D41 and we obtain
the canonical linear Spencer sequence ([14], p 150):

J D D D D,
0—>®—q>00—1>01—2>02—3>—>0n—>0

as the canonical Janet sequence for the first order involutive system Rqy1 C Ji(Ry).

The canonical Janet sequence and the canonical Spencer sequence can be connected by a
commutative diagram where the Spencer sequence is induced by the locally exact central horizon-
tal sequence which is at the same time the Janet sequence for j, and the Spencer sequence for
Jo+1(E) C J1(J4(E)) ([14], p 1563) but this result will not be used in this paper (See [16],[19],[20],[21]
for recent papers providing more details on applications of these results to engineering and math-
ematical physics, in particular continuum mechanics, gauge theory and general relativity).

For an involutive system of order ¢ in solved form, we shall use to denote by y,.; the principal
jet coordinates, namely the leading terms of the solved equations in the sense of involution. Ac-
cordingly, any formal derivative of a principal jet coordinate is again a principal jet coordinate.
The remaining jet coordinates will be called parametric jet coordinates and denoted by ypar. We
shall use a ”trick” in order to study the parametric jet coordinates. Indeed, the symbol of j, is
the zero symbol and is thus trivially involutive at any order ¢. Accordingly, if we introduce the
multiplicative variables x*, ..., x* for the parametric jets of order ¢ and class i, the formal derivative



or a parametric jet of strict order ¢ and class i by one of its multiplicative variables is uniquely
obtained and cannot be a principal jet of order ¢ + 1 which is coming from a uniquely defined
principal jet of order ¢ and class i. We have thus obtained the following technical Proposition
which is very useful in actual practice:

PROPOSITION 2.15: The principal and parametric jets of strict order ¢ of an involutive system
of order ¢ have the same Janet board if we extend it to all the classes that may exist for both sets,
in particular the respective empty classes.

Paying attention to the specific situation of the symbol of order ¢, the following technical
lemmas are straightforward consequences of the definition of an involutive system and allow to
construct all the possible sets of principal or parametric jet coordinates when m,n and ¢ are given
(See [13] p 123-125 for more details).

LEMMA 2.16: If yl’j € Ypri and yl € Ypar appear in the same equation of class 4 in solved form,
then v is of class <7 and [ > k& when v is also of class 1.

LEMMA 2.17: If yfj is a principal jet coordinate of strict order ¢, that is | p |= ¢ with
w1 = 0,51 = 0,u; > 0, then V5 > 4, yﬁfliﬂj is a principal jet coordinate and this nota-
tion has a meaning because p; > 0.

LEMMA 2.18: If there exists an equation of class ¢, there exists also an equation of class ¢ + 1.
Accordingly, the classes of the solved equations of an involutive symbol are an increasing chain of
consecutive integers ending at n.

LEMMA 2.19: The indices u; of the principal jet coordinates of strict order ¢ and class ¢ are an
increasing chain of consecutive integers starting from 1.

Combining the preceding lemmas, we obtain:
PROPOSITION 2.20: If ¢ = 1, one has 0 < 8] < ... < 87 < m in a coherent way with the

relations af =m — 3%, Vi =1,...,n and (m — 8}) + (B3 — B}~ 1) + ...+ (8 —0) = m. The system
made by the equations of class 1+ ... + class ¢ is involutive over K[dy,...,d;] fori=1,....n

Using the Janet board and the definition of involutivity, we get dim(gg4r) = > 1y (:‘-2-;:11))"
and thus dim(Rg4,) = dim(Rg—1) + > iy (T:;, . In the case of analytic systems, the following

theorem providing the CK data is well known though its link with involution is rarely quoted
because it is usually presented within the framework of exterior calculus ([3],[7]):

THEOREM 2.21 (Cartan-Kéhler): If R, C J,(E) is a linear involutive and analytic system of
order ¢ on E, there exists one analytic solution y* = f¥(z) and only one such that:
1) (20, 0 f*(x0)) with 0 <| p |[< ¢ — 1 is a point of Ry_y =7 (Ry) C Jy_1(E).
2) For i = 1,...,n the o/, parametric derivatives 9, f*(z) of class i are equal for 2+! = zhtt L an =
xy to o given analytic functions of z, ..., 2.

The monomorphism 0 — J,11(E) — Ji(J,(E)) allows to identify R,.1 with its image R, in
J1 (R,) and we just need to set R, = = E in order to obtain the first order system (Spencer form)

Ry C Jy (E) which is also involutive and analytic while 7 : Ry — E is an epimorphism. Studying
the respective symbols, we may identify g,4, and g, while §; is involutive. Looking at the Janet

board of multiplicative variables we have:
A . il il s
i =al+..+al=al,, =a =a) —aft =B - By

and obtain:

COROLLARY 2.22: If Ry C Ji(F) is a first order linear involutive and analytic system such
that 7} : Ry — E is an epimorphism, then there exists one analytic solution y* = f*(z) and only



one, such tha‘c:1
1) fY(x),..., f% (z) are equal to 31 given constants when z = z.

2) fBi+L(2), .., fP (2) are equal to Bit! — Bi given analytic functions of «', ..., 2" when !
%4-1’ e =T

T n

3) A7+ (x), ..., f™(x) are m — B} given analytic functions of z!, ..., 2.

+1_

Proof. The analytic proof of the corollary uses inductively the Cauchy-Kowaleski theorem which
is the particular case described by the conditions 5 = 0, ..., ?_1 = 0,57 = m leading to the
existence of one analytic solution y* = f¥(z) and only one such that f!(z),..., f™(z) are equal to
m given analytic functions of x!,...,2"~1 when 2" = 2z%. As such a proof is quite technical, we
refer the reader to ([13],p 159-163) for the details. For the reader not familiar with involution, we
shall nevertheless explain in a formal way why the CK data of the corollary coincide with the CK
data of the theorem, a result not evident at first sight, even on the next elementary illustrative
examples.

Indeed, according to the CK theorem, we get from 1) the parametric jets y?, ..., y™ with no mul-

tiplicative variable and from 2) the af = m — 7 parametric jets _ynlyﬂ, <yt of class n with
multiplicative variables !, ..., 2", ... , o} =m— 3} parameti? jets y; i+ y™ of class ¢ with mul-
tiplicative variables 2!, ..., 2%, ... , and ai parametric jets y”1, ..., of class 1 with multiplicative
variable 2! only. Collecting the y* and their jets successively from the class n down to the class
1, we may start with y,' +1, <o, Y™ with multiplicative variables x!,...,x™, ... | then Y ' +1, O VA

with multiplicative variables x!, ..., 2% because 57 > i, ... , then Y1 1"+1, ..., y7* with multiplicative
variable 2! and finally 7+, ... ™ with no multiplicative variable or, equivalently, y®' 1, ... y™
with multiplicative variables z!,...,z™. We just need to repeat this procedure with n — 1 in place
of n and BT in place of m, so on down till 1 and 3} in order to obtain the corollary. It is important
to notice that only the use of the Spencer form can bring the same total number of such formal
power series of n down to 0 independent variables as the number of unknowns, even for nonlinear

systems or linear systems with variable coefficients.
Q.E.D.

EXAMPLE 2.23: With n = 2,m = 2,q = 1,k = Q, let us consider the following first order
involutive sytem in (reduced) Spencer form:

3 = y2 — y? 0] 1 2
P? =yl = 0|1 2
ol =4l = 0 1 e

with corresponding board of principal /parametric jets up to order 1:

ys,y5 | 1
yi 1
[ ]

o o IV
<
—_

because the principal class 2 is full.
The previous equations and their first prolongations are described by the board (Compare to [9]):

v v vl o v W | vl wh yh YT 3 | -

0 ol0 0 -1 1 0 0 0 0 0 0

210 00 1 0O 0] O 0 0 0 0 0

10 o1 0 O 0] O 0 0 0 0 0
di®*l0 0[]0 0 0 010 0 0 -1 1 0

Accordingly, a basis of sections may start like in the board (Compare to [9]):

v v vl v v ws |uh vl wh yh u U |

e — EY[1 0|0 0 0 0[O 0 0 0 0 0
2 = ES |0 1/0 0 0 0|0 0 0 0 0 0
2 5 pgllo 0olo 0o 1 1/0 0 0 0 0 0
2 5 gl'lo olo 0o 0 0|0 0 0 1 1 1




As the system is homogeneous, we have for example Ei' = ai! + al? + a3? = 0 and so on. We
obtain therefore an infinite number of modular equations through this way to write down sections.
The CK data are {f*(0,0), f2(z*,0)} in agrement with the above result and we have:

it 2?) = f1(0,0)
At 2?) = f2(2',0) 4 022 (2!, 0)2? + ...
= f2(x,0) + O f2 (21, 0)2% + ...
1

In the present situation, we notice that f2(x!,2?) = f(z! + 2?) = (2! + 22,0) by using the first
equation.

With @3 =92 —y? = 0,02 =y —ay? = 0,®! = y{ — ay? = 0 where a is a constant parameter, we
let the reader check that this system is involutive for any value of ¢ and may not be homogeneous
but the corresponding module M is 1-pure if and only if a # 0.

Withnow n=2,m=3,g=1,K =k = Q, we could finally add a third unknown 5> and consider
the following new first order involutive system in reduced Spencer form where a is an arbitrary
constant parameter:

yi—yi—ay* = 0] 1 2
va = 0|1 2
y% = 0 1 e

At order 1 we have pri = {y{,y3,y3} and par = {y', 4%, v>,y?,v3,y3} with corresponding board
of principal/parametric jets up to order 1:

ys,y5 | 12 Y3
yi 1 e vi s
o o |yl yty?

We obtain at once 87 = 2 > 81 = 1 and the characters o =3 -2 =1 < a}l =3 -1 =2, that
ism—p=3-2=1,-p=2-1=1,-0=1-0= 1. We have in particular y3 with
multiplicative variables !, 2, then y; with multiplicative variable ! only and finally y* with no
multiplicative variable or, equivalently, y> with multiplicative variables ', z2. Similarly, we have
y? with multiplicative variable 2! only and y? with no multiplicative variable or, equivalently, y>
with multiplicative variable z!' to which we have finally to add y' with no multiplicative variable.
It follows that the CK data are {f1(0,0), f2(x!,0), f3(2',2?)} and we have indeed:

Pata?) = (@100 + a2t 000 4+ 0y f2(w1,0) 5 + .
= f2(=",0) + (& f2(2,0) + af?(z!,0))a?
+O1 f2(21,0) + a0y (24, 0) + ady f3 (w1, 0)) S 4.

Finally, we have 0o f! = 0 and 8, f' = 0. Accordingly, we have f!(z!,22?) = cst = f1(0,0) as a
way to obtain f!(z!,z?) in this particular situation. Though the CK data do not depend on a,
the underlying differential module M highly depends on a. Indeed, when a # 0 the torsion module
t(M) is generated by z = y' satisfying 2o = 0,27 = 0 and we have the purity filtration:

O:tQ(M) Ctl(M) :tQ(M) :t(M) cM

while, when a = 0, the torsion module t(M) is generated by 2’ = y* and 2” = y? with both 2} = 0
and z; = 0 but 275 — 2”1 = 0 only, a result leading to the different purity filtration:

O:t2<M) Ct1<M) Cto(M) :t(M) cM

EXAMPLE 2.24: With n = 2,m = 1,¢q = 8,k = Q, let us revisit the example of ([12],p 93).
Using the multi-index notation, let us consider the system of seventh order y34) = 0,y(5,2) = 0.
This homogeneous system is of course formally integrable but is far from being involutive. Using
the change of variables 2! — 2! + 22, 22 — z2we get d-regular coordinates but the system/symbol
is not involutive and we need one prolongation in order to obtain the following eighth order invo-
lutive system:
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8
)

— 15y 4,4y — 24y(5,3) — 10y6,2) =
+ 10y(4,4) + 15Y(5,3) + 6Y(6,2)
— 6y(4,4) — 8Y(5,3) — 3Y(6,2)
+ 3Ya,4) + 3Y5,3) + Ys,2)
+3yc1,6) T 3U2,5) T Y34 =
+5Y1,6) + 10y2.5) + 10yi3.4) + 5Yu3) t Y52y =

Yo,8
Ya,7
Yi2,6
Y,
Yoo,7
Yoo,7

I
OO OO oo
(S IS

8 8 8 8
e o 0 o o

At order 8, we have the parametric jets {y4,4),¥(5,3), ¥(6,2)> ¥(7,1), ¥(8,0)} With multiplicative vari-
able ! only and thus a2 =1 —1=0,af =8 —3 = 5. At order 7, we have the 6 parametric jets
{Y25), ¥(3,4), Y(4,3), Y(5,2)5 Y(6,1), Y(7,0)} while at order < 6 we have 1 +24+3+4+5+6+47 = 28
parametric jets, that is a total of 28 46 = 34 parametric jets with no multiplicative variable. Con-
trary to the Riquier/Janet/Grobner approach, we are sure that the only intrinsic number is the
non-zero character af = 5 providing the parametric jets with only one multiplicative variable, in a
coherent way with ([12],p 94) but in a completely different framework. As in the next example, the
number of parametric jets with no multiplicative variable may however change a lot if we change
the presentation of the module.

EXAMPLE 2.25: Withn =4,m =1,¢ = 2,k = Q, let us start with the unmixed perfect/radical
polynomial ideal a = (x1,x2) N (X3, X4) C k[x1, X2, X3, X4] as in the end of [11] and consider the
corresponding system made by y13 = 0,y14 = 0, y23 = 0, y24 = 0. This system is formally integrable
because it is homogeneous but it is not evident to prove that it is also involutive. Integrating this
system, it is easy to prove that the general solution y = p(x!, 22) + (23, z*) only depends on two
arbitrary functions of two variables. However, such a result has nothing to do with the CK theorem
because the quoted functions depend on different couples of variables. Hence it is not evident at
first sight to know about the corresponding CK data. Let us make the following linear change of
variables o' — 2! 4+ 2%, 22 — 22 + 22 in order to obtain the involutive system:

Yaatynn =0 |1 2 3 4
Ysa + Y13 = 1 2 3 e
ysz+yes =0 | 1 2 3 e
Yy24—y13 =0 | 1 2 e o

defining a 2-pure differential module M.

We have thus pars = {y,y1,Y2, Y3, Ya, Y11, Y12, Y13, Y14, Y22, Y23} wWhere {y,y1,92,¥3,ya} have no
multiplicative variable, {911, y12, y13,¥14} have the only multiplicative variable x! while {ya2, 923}
has the two multiplicative variables (z!,22). We have a3 = 0,03 = 0,02 = 2,0} = 4 where only
a = a3 and the last two series of two variables have an intrinsic meaning.

Setting z* = y;, we obtain the first order involutive system in reduced Spencer form:

daz' —di2* = 0,da2? —doz? = 0,dy23 —dsz? = 0,dy2* + di2* =0 1
dsz' —di23 =0,d32? —doz® = 0,d32® + dyz® = 0,d32* +d12° =0 1
dgzl - d12’2 == 0, d224 — d1z3 =0 1

N NN
o LW W
o 0 I~

with characters af = 0,03 = 0,a = o = 2(intrinsic),ai = 4 and the CK data for z = g(z) are
{9%(2*,0,0,0),9%(x%,0,0,0), g' (x',22,0,0), g*(x!,22,0,0)} with now two series of two variables as
before but also two series of one variable instead of the four found before. The system made by
the equations of class 2+class 3 is involutive.

Adding finally y with d;y = 2%, brings one additional equation to each class and does not therefore
change the difference of characters, a result leading to the previous CK data to which one has to
add f(0,0,0,0). This is the standard way to get a differential module isomorphic to M but defined
by a first order system in Spencer form. A similar study can be done for the system y44 = 0, y34 =
0,933 = 0,24 — y13 = 0 coming from the primary ideal q = ((x4)?, x3x4, (x3)% X2X4 — x1x3) With
radical p = (x4, x3) as in ([19], Ex 4.2).

EXAMPLE 2.26: In order to emphasize the importance of dealing with vector bundles in the
differential geometric setting of this section and with differential fields or projective modules in

11



the differential algebraic setting of the next section, we provide a tricky example of a linear system
with coefficients in a true differential field which is not just a field of rational functions in the
independent variables. With n =2, m = 1,q = 2, let us consider the non-linear system R:

y22*%(y11)3 =01 2
3 = L e

obtained by equating to zero two differential polynomials. Doing crossed derivatives, it is easy to
check that the system is involutive and allows to define a true differential extension K of k = Q
which is isomorphic to k(y, y1, Y2, Y11, Y111, -..) if we set for example day; = %(yll)Q and so on. By
linearization, we get the following linear second order involutive system Rs defined over K:

{ Yoo — (y11)*Y11 =0

2
Yio —ynuYn =0 .

1
1

The various symbols of the first system are vector bundles over Ro while the symbols of the sec-
ond system are vector spaces over K. As an exercise in order to understand the problems that
may arise in general, we invite the reader to study similarly the non-linear second order system
Yoo — %(yn)2 = 0,y12 — y11 = 0 and conclude. The interested reader may look at ([14],VI.B.3 ,p
273 and VL.B.7 p 275) for criteria providing differential fields and based on the Spencer 2-acyclicity
property of the symbol at order ¢ ([14], Prop. IIL1.1.3, p 92 and Theorem III.C.1, p 95).

3 MACAULAY INVERSE SYSTEMS REVISITED

Let A be a unitary ring, that is 1,a,0 € A = a + b,ab € A,1la = al = a and even an integral
domain (ab=0=a =0 or b = 0) with field of fractions K = Q(A). However, we shall not always
assume that A is commutative, that is ab may be different from ba in general for a,b € A. We say
that M = oM is a left module over A if x,y € M = ax,z +y € M,Va € A or a right module Mp
over B if the operation of B on M is (z,b) — xb,¥b € B. If M is a left module over A and a right
module over B with (az)b = a(zb),Va € A,Vb € B,Vx € M, then we shall say that M = sMp is a
bimodule. Of course, A = 4 A4 is a bimodule over itself. The category of left modules over A will
be denoted by mod(A) while the category of right modules over A will be denoted by mod(A°P).
We define the torsion submodule t(M) ={x € M |30 # a € A,ax =0} C M and M is a torsion
module if t(M) = M or a torsion-free module if t(M) = 0. We denote by homa(M,N) the set
of morphisms f : M — N such that f(axz) = af(x). In particular homy(A, M) ~ M because
f(a) = af(1) and we recall that a sequence of modules and maps is exact if the kernel of any map
is equal to the image of the map preceding it.

When A is commutative, hom(M, N) is again an A-module for the law (bf)(z) = f(bx) as we
have (bf)(az) = f(bax) = f(abz) = af(bx) = a(bf)(z). In the non-commutative case, things are
more complicate and we have:

LEMMA 3.1: Given s4M and 4Np, then hom4 (M, N) becomes a right module over B for the
law (fb)(z) = f(x)b. Similarly, given 4Mp and 4N, then homs (M, N) becomes a left module
over B for the law (bf)(x) = f(xb).

Proof: In order to prove the first result we just need to check the two relations:
(fb)(azx) = f(ax)b = af(x)b = a(fb)(z),
((fOY")(z) = (fb)(2)b” = f(2)V'b = (fU'D)(2).

The proof of the second result could be achieved similarly.

Q.E.D.

DEFINITION 3.2: A module F is said to be free if it is isomorphic to a (finite) power of A
called the rank of F' over A and denoted by rk4(F') while the rank of a module is the rank of a
maximum free submodule. In the sequel we shall only consider finitely presented modules, namely
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finitely generated modules defined by exact sequences of the type Fj S, Fy — M — 0 where Fj
and Fy are free modules of finite ranks. For any short exact sequence 0 — M’ — M — M” — 0,
we have rka(M) = rka(M’) + rka(M”). A module P is called projective if there exists a free
module F' and another (projective) module ) such that P®Q ~ F. Accordingly, a projective (free)

resolution of M is a long exact sequence ... s, Py o, P S, Py 25 M —5 0 where Py, P, P, ...
are projective (free) modules, M = coker(d;) = Py/im(dy) and p is the canonical projection.

A module N over A is injective if and only if hom 4 (e, N) is an ezact functor, that is transforms
any short exact sequence into a short exact sequence or, equivalently (Baer criterion), if and only
if any map a — IV where a C A is an ideal can be extended to a map A — N. Accordingly, we may
similarly define by duality an injective resolution of M by using injective modules and reversing
the arrows (See [24], p 67-74 for more details).

DEFINITION 3.3: A resolution of a short exact sequence 0 — M’ R VNI VBN 0
of A-modules is a short exact sequence 0 — X’ Jox Sx o 0 of exact complexes such

that X 2 M — 0,X' 2 M — 0,X” P M” — 0 are resolutions and we shall say
that the sequence of complexes is over the sequence of modules. Such a definition can also
be used when the complexes are not exact and we have the long exact connecting sequence

.= Hi(X) - Hi(X”) - H;—1(X’) — ... if we introduce the homology H;(X) of a decreas-
ing complex X; 1 — X; — X;_1 with a similar result for the cohomology of increasing complexes.
In particular, if any two are exact, the third is exact too ([15], Theorem II1.1.15, p 196-203).

Using the notation M* = homa(M, A), for any morphism f : M — N, we shall denote by
f*: N* — M* the morphism which is defined by f*(h) = ho f,Vh € hom4(N,A) and satisfies
rka(f) = rka(im(f)) = rka(f*),Vf € homa(M, N)(See [16], Corollary 5.3, p 179). We may take

out M in order to obtain the deleted sequence ... BN P, BEN Py — 0 and apply hom (e, A) in

ds d
order to get the sequence ... < Py <— P7 +— 0.

PROPOSITION 3.4: The extension modules ext® (M) = ker(dj) = homa(M,A) = M* and
ext'y (M) = ker(df,,)/im(d;),Vi > 1 do not depend on the resolution chosen and are torsion
modules for i > 1. Using hom(e, N), one can similarly define ext’, (M, N) with ext%(,N) =
homa(M, N) and the ext’, (M, N) vanish Vi > 0 whenever M is a projective module or N is an
injective module (See [16] and [24] for the details).

Let A be a differential ring, that is a commutative ring with n commuting derivations {01, ..., On }
with 0,0; = 0;0; = 0;;,Vi,j = 1,...,n such that 9;(a + b) = 0;a + 9;b and 9;(ab) = (d;a)b +
ad;ib,Va,b € A. More generally, a similar definition can be provided for a differential integral
domain A with unit 1 € A and will be used therafter whenever we shall need a differential field
Q C K of coefficients that is a field (a € K = 1/a € K) with 9;(1/a) = —(1/a?)d;a, for example
in order to exhibit solved forms for systems of partial differential equations as in the preceding
section. Using an implicit summation on multi-indices, we may introduce the (noncommutative)
ring of differential operators D = A[dy, ...,d,] = A[d] with elements P = a*d,, such that | p [< oo
and d;a = ad; + 0;a. The highest value of || with a* # 0 is called the order of the operator P and
the ring D with multiplication (P,Q) — P o @ = PQ is filtred by the order ¢ of the operators.
We have the filtration 0 C A= Do C D1 C ... C Dy C ... C Do = D. Moreover, it is clear that
D, as an algebra, is generated by A = Dy and T = Dy/Dy with D; = A @ T if we identify an
element ¢ = £'d; € T with the vector field & = £¥(x)0; of differential geometry, but with ¢ € A
now. It follows that D = pDp is a bimodule over itself, being at the same time a left D-module
pD by the composition P — QP and a right D-module Dp by the composition P — P(@) with
D.Dg = D, s, Vr,s > 0 in any case.

If we introduce differential indeterminates y = (y',...,y™), we may extend diyﬁ = y/]jﬂi to

7 = a;yl iy 407 = ap"yk .y, + Oyl for 7 =1,..., p. Therefore, setting Dy' + ... + dy™ =

Dy ~ D™ and calling I = D® C Dy the differential module of equations, we obtain by residue
the differential module or D-module M = Dy/D®, denoting the residue of yl’j by y’,j when there
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can be a confusion. Introducing the two free differential modules Fy ~ D™0 F} ~ D™ we obtain

equivalently the free presentation F} A, Fo - M — 0 of order ¢ when mg = m,m; = p
and di = D = ® o j,. We shall moreover assume that D provides a strict morphism (see
below) or, equivalently, that the corresponding system R, is formally integrable ([15]). It fol-
lows that M can be endowed with a quotient filtration obtained from that of D™ which is
defined by the order of the jet coordinates y, in D,y. We have therefore the inductive limit
0=M_,1CMyCMC..CM,C..CMy=M with diM; C My, but it is important to
notice that D, Dy = Dgyr = D, My = Myyr,Vq, 7 > 0 = M = DM,,Vq > 0 in this particular
case. It also follows from noetherian arguments and involution that D, I, = I;,,Vr > 0 though
we have in general only D, I, C I, Vr > 0,Vs < ¢. It mut finally be noticed that the identifi-
cation (Pp,..., Py,) < Piy' + ... + P,y™ made by Piras in ([12], section 2, p 89) may bring the
rows of the underlying differential operator of a system, in a coherent way with the identification
D™  Dy' + ...+ Dy™ that we have used in the study of differential modules. As A C D, we may
introduce the forgetful functor for : mod(D) — mod(A) : pM — 4M. In this paper, we shall go
as far as possible with such an arbitrary differential ring A though, in actual practice and thus in
most of the examples considered, we shall use a differential field K ([14]). We shall also assume
that the ring A is a noetherian ring (integral domain) in such a way that D becomes a (both left
and right) noetherian ring (integral domain).

More generally, introducing the successive CC as in the preceding section while changing slightly
the numbering of the respective operators, we may finally obtain the free resolution of M, namely

the exact sequence RN F LN F EEN Fy — M — 0. In actual practice, one must
never forget that D = ® o j, acts on the left on column vectors in the operator case and on the
right on row vectors in the module case. Also, with a slight abuse of language, when D = ® o j,
is involutive as in section 2 and thus R, = ker(®) is involutive, one should say that M has an
involutive presentation of order ¢ or that M, is involutive and D, My = My1,,Vq,7 > 0 because
D.Dy = Dyir,Vg,7r > 0.

In Section 2, the formal integrability of a system has been used in a crucial way in order to
construct various differential sequences. Therefore, the algebraic counterpart provided by the next
definition and proposition will also be used in a crucial way too in order to construct various res-
olutions of a differential module, though in a manner which is not so natural when dealing with
applications to mathematical physics ([20], [21]). For this reason, we invite the reader to follow
closely the arguments involved on the illustrating examples provided. To sart with, if M and N
are two filtred differential modules and f : M — N is a differential morphism, that is a D-linear
map with f(Pm) = Pf(m),VP € D, then f will be called an homomorphism of filtred modules if
it induces A-linear maps f, = My, — N,. Chasing in the following commutative diagram:

0 0
\ 1
M, ELN N, — coker(fy) —0
i { i
SN S coker(f) —0

M
while introducing im(f) =1 C N,im(fy) = I; € Ny, we may state:

DEFINITION 3.5: A differential morphism f is said to be a strict homomorphism if the two
following equivalent properties hold:

1) There is an induced monomorphism 0 — coker(f,) — coker(f),Vq > 0.

2) f(My) = f(M) N Ng, that is I, = I N N,.

A sequence made by strict morphisms will be called a strict sequence. In order to fulfill the con-
ditions of the definition, it is most of the time necessary to ”shift 7 the filtration of a differential
module M by setting M(r), = M,4, in such a way that ¢ could be negative and we shall therefore
always assume that M, = 0,Vq < 0.

PROPOSITION 3.6: If we have a strict short exact sequence 0 — M’ NEINY VNN VRN 0
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in which 3¢ > 0 such that DM, = M,¢,,Vr > 0, then 3¢',¢” > 0 such that DM, =
Mq’,+r,DrM”q7’ = M’ 4p,¥r > 0 and conversely. We may thus assume that ¢ = ¢’ = ¢” in
both cases by choosing ¢ > 0. More generally, an exact sequence of filtred differential modules is
strictly exact if and only if the associated sequence of graded modules is exact in a way dualizing
the differential geometric framework, on the condition to shift conveniently the various filtrations
involved.

Proof: First of all, setting G = gr(M),G" = gr(M'),G” = gr(M”), we have the commutative and
exact diagram:

0 0 0
4 \ \

0— M_, = oM., T3 M, 50
4 \ \

0— M, Inoowm, I M, S0
1 \: 1

0 ¢ ™ g 9 e, o
4 \: \
0 0 0

Indeed, as g is a strict epimorphism, it follows that g, is surjective Vg > 0. Also, as f is a monomor-
phism, then f; is also a monomorphism Vg > 0 by restriction. Moreover, as f is also strict, we
obtain successively by chasing:

ker(gq) = f(M/) nM, = f(Mé) = fq(Mé) = im(fq)

It follows that the two upper rows are exact and the bottom row is thus exact too Vg > 0 from the
snake theorem in homological algebra ([2],[15],[16], [25]).

This result provides the short exact sequence 0 — G’ gﬂ)) G g?"ﬁ)) G” — 0 of graded modules.
Let us now consider the following commutative diagram with maps such as £ @ m — &m and where
the upper row is exact because D1 ~ A ® T is free over A:

0= DioaM, -5 DiwaM, & Di@aM”, —0
\ 2 \

fa+1 9q+1
0— My, = My = Mg =0

If the central map is surjective, then the map on the right is also surjective, that is DM, =
M1 = DiM”; = M”44 and thus ¢ = ¢”. This is the typical situation met in a finite presenta-
tion of a system already considered. Moreover, Dy M, é CcCM é 1= TG; - G’q 41 like in the following
commutative and exact diagrams where the left one is holding for a (formally integrable) system
while the corresponding right one is holding for an arbitrary filtred module M with gr(M) = G:

0 0 0 0
i ! 0 +

0= g1 — T*®R, T@aM, — Gg1 —0
+ + T T

0— Rq+1 — Jl(Rq) D1®AMq — Mq+1
4 + T T

0=+ Ry, = R, — 0 0— M, = M, —0
! ! + +
0 0 0 0

In these diagrams, the upper morphism is the composition g41 BN ®gq = T*®R, in the system
diagram and the composition T® 4 My = T®aGq — Gg41 in the module diagram. Accordingly, a
chase is showing that D1 M, = T'My + M, C M1 with equality if and only if TGy = Gg41.
From noetherian arguments for polynomial rings in commutative algebra, it follows that G’ is
finitely generated and we may choose for ¢ the maximum order of a minimum set of generators.
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Conversely, if D, M;, = M, ,,DM”p» = M” ;> 4,,¥r > 0, we may choose ¢ = sup(q’,¢") and we
have thus Dy M, = M, 1, D1M” ;= M”11 = D1 M, = Myy1, using again the snake theorem.

As a byproduct, it is always possible to find ¢ > 0 such that we could have at the same time
D, My = Mgy, DTM[; = MéM, D, M” ;= M”44, Vr >0 in the two situations considered.

We end this proof with a comment on the prolongation of symbols and graded modules which, in
our opinion based on more than thirty years spent on computing and applying these dual concepts,

is not easy to grasp. For this, let us consider the corresponding diagrams:

0 0 0 0
\ 1 T T

0— Jq+1 — Sq+1T* QR F Sq+1T®AE* — Gq+1 —0
) ) 1T 6% 1T 6%

0o T*®g, » T @S ®F TS, TOAE* — ToaG, — 0

Indeed, exactly as we have in general Ry+1 C p1(Ry) = g4+1 C p1(gq), there is no correspond-
ing concept in module theory without a reference to a presentation. In the differential geometric
framework, p1(g,) is the reciprocal image of ¢, that is the subset (not always a vector bundle !) of
Sq+11T* ® E made by elements having an image in 7% ® g, under §. Such a definition is also the
one of ” fiber product” in ([8], IIL.5, p 88-91).

Q.E.D.

EXAMPLE 3.7: Though this is not evident at first sight when m = 1,n = 2, A = Q[z}, 2?], we
invite the reader to prove that the third order linear system ya9s + 22y2 = 0,y111 +y2 —y = 0 has
the same formal solutions as the third order system y;111 — y = 0,y2 = 0 which is defined over Q,
a result leading to the generating involutive third order linear system #s00 = 0,y122 = 0,9112 =
0,111 —¥ = 0,922 = 0,912 = 0,2 = 0. We have My = {y}, My = {g, i1}, Mo = {g, 1,911} = M
while using only parametric jets because d1911 = 9111 = ¥ and thus D1l = Iy, D115 C I3 with a
strict inclusion, DI5 = I. (See the similar Examples II1.2.64 and I11.3.11 in [15] for the details).

Roughly speaking, homological algebra has been created for finding intrinsic properties of mod-
ules not depending on their presentations or even on their resolutions and we now exhibit another
approach by defining the formal adjoint of an operator P and an operator matrix D:

DEFINITION 3.8: Setting P = a*d,, € D «*%s ad(P) = (—1)*ld,a" € D, we have ad(ad(P)) =
P and ad(PQ) = ad(Q)ad(P),YP,Q € D. Such a definition can be extended to any matrix of
operators by using the transposed matrix of adjoint operators and we get:

<\ DE >=< ad(D)\, & > + div (...)

from integration by part, where A is a row vector of test functions and <> the usual contraction.
We quote the useful formulas [ad(§),ad(n)] = —ad([¢,n)]),YE,n € T (care about the minus sign)
and rkp(D) = rkp(ad(D)) as in ([16])(See also Example 3.22 below).

LEMMA 3.9: If f € aut(X) is a local diffeomorphisms on X, we may set z = f~!(y) = g(y) and
we have the identity:

0 1
——(——0if*(g(y)) = 0.
oy* (A(g(y)) (o(s))
PROPOSITION 3.10: If we have an operator FE N F', we may obtain by duality an operator

AT @ B* ED) anpr g .

EXAMPLE 3.11: In order to understand how the Lemma is involved in the Proposition, let us
revisit relativistic electromagnetism (EM) in the light of these results when n = 4. First of all,
we have dA = F = dF = 0 in the sequence A'T* Iy A2~ ABT* and the field equations

of EM (first set of Maxwell equations) are invariant under any local diffeomorphism f € aut(X).
By duality, we get the sequence A*T* @ A'T ?d—(d) AT @ N°T ?d—(d) AT* @ A3T which is locally

isomorphic (up to sign) to A3T* A2 AT and the induction equations 0; F7 = JI of
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EM (second set of Maxwell equations) are thus also invariant under any f € aut(X). Indeed, using
the last lemma and the identity 0;; f'F“ = 0, we have:

0

1
Oy (A
Accordingly, it is not correct to say that the conformal group is the biggest group of invariance of
Maxwell equations in physics as it is only the biggest group of invariance of the Minkowski con-
stitutive laws in vacuum [21]. Finally, according to Proposition 3.3 both sets of equations can be
parametrized independently, the first by the potential, the second by the so-called pseudopotential
(See [15], p 492 for more details).

g 1 9 y 1 . 1 3
OifF0; f1FiI) = Za" fka—yk(aj fLFIy = Za,-(aj flFIy = Zaj flo,Fi

Now, with operational notations, let us consider the two differential sequences:

N
y B, od®y)

where D; generates all the CC of D. Then Dy oD = 0 <= ad(D) ocad(D;) = 0 but ad(D) may not
generate all the CC of ad(D1). Passing to the module framework, we just recognize the definition
of extl,(M). Now, exactly like we defined the differential module M from D, let us define the
differential module N from ad(D). Then exth(N) = ¢(M) does not depend on the presentation
of M. More generally, changing the presentation of M may change N to N’ but we have ([15],p
651)([16],p 203):

THEOREM 3.12: The modules N and N’ are projectively equivalent, that is one can find two
projective modules P and P’ such that N & P ~ N’ & P’ and we obtain therefore ext’;(N) =~
ext's(N'),Vi > 1.

Having in mind that D is a A-algebra, that A is a left D-module with the standard action
(D,A) — A: (P,a) — P(a) : (d;,a) — 0;a and that D is a bimodule over itself, we have only
two possible constructions leading to the following two definitions:

DEFINITION 3.13: We define the inverse system R = homa(M,A) of M and set R, =
hom (M, A) as the inverse system of order q.

If G = gr(M) is the graded module of M with G = ©72,G,, we have the short exact se-
quences 0 = My, = My11 — Gg41 — 0 of modules over A and it is tempting to compare them
to the dual short exact sequences 0 — g1 — Rq+1 — R4 — 0 that were used in the previous
section. However, applying hom 4 (e, A) to the first sequence does not in general provide a short
exact sequence (See the end of Example 3.20), unless the first sequence splits, that is if we replace
vector bundles over X used in Section 2 by finitely generated projective modules over A. One can
also use a localization by introducing the field of fractions K = Q(A) in order to deal only with
finite dimensional vector spaces over K or use the fact that K = Q(A) is an injective module over
A and deal with hom (e, K) in order to obtain exact sequences. From the injective limit of the
filtration of M we deduce the projective limit R = R — ... — Ry — ... — Ry — Ry. It
follows that f, € Ry : yl’j — f]f € A with aZ”f[f = 0 defines a section at order g and we may set
fso = f € R for a section of R. For a ground field of constants &, this definition has of course
to do with the concept of a formal power series solution. However, for an arbitrary differential
ring A or differential field K, the main novelty of this new approach is that such a definition has
nothing to do with the concept of a formal power series solution as illustrated in the next examples.
Nevertheless, in actual practice, it is always simpler to deal with a differential field K in order to
have finite dimensional vector spaces at each order ¢ for applications.

Now, if A, B are rings and s M, gL 4, g N are modules, using the second part of Lemma 3.1 and
the relation [® am = la®m with the left action b(l@m) = bl@m,Va € A,Vb € B,Vl € L,Ym € M,
we may provide the so-called adjoint isomorphism as in ([25], Th 2.11, p. 37):

¢ : homp(L®AM, N) — homa(M, homp(L, N))
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saying that there is a one-to-one correspondence between maps of the form L ® M — N and maps
of the form M — hom(L,N) or, fixing an element m € M, providing a parametrization set of
maps of the form L — N in both cases.

With more details, starting with a B-morphism f : L& 4 M — N, one may define a A-morphism
o(f) : M — homp(L,N) by the formula (o(f)(m))(l) = f(l ® m). It follows that such a ¢ is
a monomorphism because it is defined on the basis of simple tensors in L& oM and it remains
to check that it is also an epimorphism by constructing an inverse 1. For this, starting with a
A-morphism g : M — hompg(L, N), we just define ¥(g) = f by f(l®m) = (g(m))(l). We have in
particular:

(e()am))(l) = f(l©am) = f(la@m) = (p(f)(m))(la) = ale(f)(m))(1)
and thus ¢(f)(am) = a(¢(f)(m)) in a coherent way with hom4 and Lemma 3.1.

With M = pM,L = sDp,N = 4A and 1 € A C D, one obtains the isomorphism:

homa(M, A) = homa(D®pM, A) ~ homp (M, hom (D, A))
where (¢(f)(m))(1) = f(m) if we identify m with 1 ® m and D* = hom (D, A) is an injective
module because of Baer’s criterion when A = K = k is a field of constants, that is when D is
a commutative ring ([25], Th 3.20, p. 67) or ([2], Proposition 11, p 18)(See [24], in particular
chapter 4, for more details). It follows that extl,(M,D*) = 0,V¥i > 0 (See section 2.4 in [7]).
However, though M is a left D-module by assumption and homa (D, A) is also a left D-modules
with (Qh)(P) = h(PQ),Vh € homa(D,A),VP,Q € D because of Lemma 3.1, there is no similar
reason 7 a priori 7 that homa(M, A) could also be a left D-module. Moreover, we notice that
(ah)(P) = h(Pa) # h(aP) = a(h(P)),Va € A unless A is a field k of constants.

ACCORDINGLY, THIS APPROACH IS NOT CONVENIENT AND MUST BE MODIFIED
WHEN A IS A TRUE DIFFERENTIAL RING OR K IS A TRUE DIFFERENTIAL FIELD,
THAT IS WHEN D IS NOT COMMUTATIVE.

DEFINITION 3.14: We may define the right differential module M* = homp (M, D).

The next crucial theorem will allow to provide the module counterpart of the differential geo-
metric construction of the Spencer operator provided in Section 2 (Compare to [2] and [15]). For
a more general approach, we shall consider a differential ring A with unity 1 and set D = A[d] as
in ([15], chapter IV).

THEOREM 3.15: When M and N are left D-modules, then homa (M, N) and M®4N are left
D-modules. In particular R = hom (M, A) is also a left D-module for the Spencer operator.
Moreover, the structures of left D-modules existing therefore on M® 4N and hom (N, L) are now
coherent with the adjoint isomorphism for mod(D):

¢ : homp(M®aN, L) — homp(M,homa(N,L)) ,YL,M,N € mod(D)

Finally, if M and N are right D-modules, then hom 4 (M, N) is a left D-module. Moreover, if M
is a left D-module and N is a right D-module, then M® 4N is a right D-module. It follows that
we have also R = hom (M, A) ~ homp(M, D*) but in a quite different framework.

Proof: Let us define for any f € homa(M,N):

(af)(m) =af(m) = f(am) VYa € A,YNm € M

(&) (m) = &f(m) — f(Em) VE=¢'d € T,Yme M
Tt is easy to check that £a = a€+£(a) in the operator sense and that £én—n& = [, n] is the standard
bracket of vector fields. We have in particular with d in place of any d;:

((da) f)(m) = (d(af))(m) = d(af(m)) — af(dm) (9a) f(m) + ad(f(m)) — af(dm)
(a(df))(m) + (9a) f(m)
((ad + Ba) f)(m)
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We may then define for any m @ n € M® 4N with arbitrary m € M and n € N:

alm®n)=am@@n=m®an € MQuN
Emen)=éme@n+meétne Mo sN

and conclude similarly with:

(da)(m®@n) =d(la(m®n)) = dlam®n)
= d(am)®n+amdn
= (da)m@n+a(dm)@n+am ® dn
= (ad+ da)(m@mn)

Using A or K = Q(A) in place of N, we finally get (dlf),’j = (dzf)(yﬁ) = 8ifl’f - ;,f+11- that is we
recognize exactly the Spencer operator that we have used in the second part and thus:

(di(djf))ﬁ = 8ijf;’f - (3if;f+1j + 3jf[f+1i) + f;’f+1i+1j = di(d;f) =d;(dif) = di; f

In fact, R is the projective limit of 7¢*" : Ryy, — Ry in a coherent way with jet theory ([18],[19]).
In the more specific case of D* = homa(D, A), the upper index k is not present and we have thus
(af), = af, with (d;f), = 0ifu — fu+1,,Vf € D*,Va € A, Vi =1,...,n (Compare to [23], chapter
4, where the Spencer operator is lacking). This left D-module structure on D* is quite different
from the one provided by Lemma 3.1 but coincide with it up to sign when A = k.

With ¢(f) = g, the third result is entrelacing the two left structures that we have just pro-
vided through the formula (g(m))(n) = f(m ® n) € N defining the map ¢ whenever f €
homp(M®aN, L) is given. Using any £ € T, we get successively in L (Compare to [2], Proposition
2.1.3, p 54):

(€(g(m)))(n) =

£((g(m))(n)) — (g(m))(&n)
£
= f
f
f

((g
(f(m®@n)) = f(m@¢n)
(E(m@mn)) - f(m @ &n)
= fEm®n+meén) - f(meEn)
(Em @ n)

= (9(&m))(n)
and thus &(g(m)) = g(§ém),Vm € M or simply £og=go&.
For any g € homp(M,homg(N, L)), we may define the inverse ¢ of ¢ through the formula
¥(g)(m @ n) = (g(m))(n) € L by checking the bilinearity over A of (m,n) — (g(m))(n) and
studying as before the action of any £ € T'.
Finally, if M and N are right D-modules, we just need to set (£f)(m) = f(m&) — f(m)E,VE €
T,Ym € M and conclude as before. Similarly, if M is a left D-module and N is a right D-module,
we just need to set (m®@n){ =m@né —E&mn.
The last result is even more tricky and we provide two different proofs.

If M is finitely presented, applying homp(e, D*) to a free presentation DP Popm s M 0, we
obtain the exact sequence 0 — homp(M, D*) — D*™ — D*P because homp(D,D*) = D*. As
any module over D is a module over A, applying hom (e, A) to the same sequence, we get the
exact sequence 0 — homy (M, A) — D*™ — D*P and thus an isomorphism R = homu (M, A) ~
homp (M, D*).

More generally, when M = pM,N = pDp and L = pA, it follows that we have an isomor-
phism homp(M®aD, A) ~ homp(M,D*). Let us construct an isomorphism M® D ~ DR M
of bimodules over D. Indeed, we may use for M® 4D the left structure over D provided by the
previous result with M = pM and D = pD while introduing a right structure over D by defining
(m®P)Q = m® PQ. Similarly, we may use for D® 4 M the right structure provided by the last re-
sult with D = Dp and M = p M while introducing a left structure by defining Q(P®@m) = QP®@m.
We obtain for example:

QUPem)n) =Q(Pn@m—P@nm)=QPn@m— QP @nm = (Q(P ®m))n
The isomorphism is obtained by setting (Compare to [1], Prop. 2.2.8 and [26], Prop. 4.1.3):

Poam=P1®m)— P(m®1)
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mP=(m®1)P— (1@m)P
and checking that :

QP®m)=QP®m — QP(m®1)=Q(P(m®1))
(meP)Q=(m1)PQ — (1@m)PQ = ((1®m)P)Q
both with:

EMP)=(EmR P+ (me1)EP — (1®E&m)P+ (1@m)EP
= (1®&mP+(E@m—-—1&m)P
= ((@m)P

and thus E(m® 1)P = £(1®@m)P, thatism® 1 — 1 ®@ m.
Using an induction on ord(P), we have successively:

PE@m=P(1om) — PElm®1)=PEmal4+mef) =PEnel)+Pme1)¢
— Pl®&m)+P(¢@m)—(1®&m)) =PE@m)

and obtain therefore a functorial isomorphism D®a M ~ M® 4D of bimodules over D.

Using Lemma 3.1 with the bimodule structure of M® 4 D over D, we may endow homp(M® 4D, A)
with a structure of left D-module by setting (Qf)(m®P) = f((m®@P)Q) = f(m®PQ). We obtain
therefore a morphism M — A :m — f(m ® 1) well defined over A and transforming hom 4 (M, A)
into a left D-module with (Pf)(m®1) = f(m® P) because (af)(m®1) = f(m®a) = f(am®1) =
flam®1)) = af(m®1),Ya € A on one side and ({f)(m®1) = &{(f(m® 1)) — f(Em® 1) =
fEmel4+meE) —f(Emel)=f(m®E),¥¢ € T on the other side. A similar approach may be
adopted with the bimodule structure of D® 4 M over D.

It follows that homp (M, homa(D,A)) =~ homp(M®aD,A) ~ homp(DRs M, A) ~ hom (M, A)
because a@m =1® am,Ya € A C D,Ym € M.

With more details, if we set go(f) = ¢ and define ¢ : homp(D®s M, A) — homp(M,D*) by
(g(m))(P) = f((1 ® m)P) when f € homp(D®&4M, A), we get successively:

);
E(gm))(P) = &((g(m))(P )) (9(m))(€P)
( )$P)
( &p
(

m)&p)
m)P

I
&
—
&
é

( -
( -1
(1o m) ) 7
¢ i
1

Il
R TR T

(1®
(1®
(@m)P) = (1®@&m)P)

)+ f(T@Em)P)

(€®

= (9(&m))(P)

and thus &(g(m)) = g(§ém) or simply £ o g = g o £ again.

It is finally important to notice that the left and right D-structures that can be given to p D® o4 p M
and Dp® 4 pM respectively do not allow to provide a bimodule structure on D® 4 M. Indeed, we
have on one side:

(E(P@m))n

(EP@m+ P®&m)n
EPnam—EP@nmm+ Pn®&m — P ném

while we have on the other side:

E((P ®m)n) §(Pnem — P ®@nm)
EPn@m+Pne@&m —EP@nm — P®&nm

and thus (£(P @ m))n — (P ®@m)n) = P ® [€,n]Jm # 0 unless D is a commutative ring.

Q.ED.

When A is an integral domain with field of fractions K = Q(A), then it is known from ([2],
See Example 1, p 18) that K is an injective A-module as it is divisible by A (See [25], Theorem
3.23 and Example 3.20 below). It thus follows from the previous results and the diagram of ([2],
Proposition 11, p 18) that homa (D, K) is an injective D-module because of the isomorphisms
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homp(M,hom (D, K)) ~ homp(D@aM,K) ~ homs(M, K). Indeed, with more details, if we

have a monomorphism 0 — M’ Lo M of D-modules, applying hom (e, K) to this exact se-
quence, we get an epimorphism hom(f, 1x) with the notation used in [2] and thus an induced
epimorphism homp(f, Lnom,(p,k)). However, we emphasize once more that the left D-structure
on homa (D, K) used in [2] is coming from the right action of D on D = Dp through the formula
(EN(P) = f(PE),VE € T\)Wf € homa(D, K) and therefore does not provide in general the struc-
ture of differential module defined by the formula (£f)(P) = £(f(P)) — f(£P) as in the theorem.

COROLLARY 3.16: When M € mod(D) is any differential module, there is a sequence:

0= AOT* @M 5 AMT*@AM ~ ... 5 A*T* @4 M — 0
Accordingly, with R = homa(M, A) = \°T*® s R, there is a sequence:

0 — sola(M) — A’T* @R —~5 N'T*®4R 5 ... 5 A"T*@ 4R — 0

where sola(M) = homp(M, A). The corresponding deleted de Rham sequence DR(R):

0 — AT*"@ 4R L5 ANIT*® 4R 5 ... Y5 A"T*@4R — 0

only depends on the exterior derivative and the Spencer operator.
Proof: With any differential module M € mod(D), we define an operator:

V o A T*@AM — NTIT*@4M : AT @ My — AT @ Moy

extending the exterior derivative by the formula:

Viw@m)=do®m+dr' A\w®dim, Yw € AT*Ym € M

We obtain easily:

Viw®@m)=d*we@m+dr' Adr! Aw® diym = 0.

The corresponding de Rham sequence DR(M) may not be exact. Indeed, if M = A with the
canonical action of P € D on a € A given by a — P(a), then DR(A) is just the Poincaré sequence
and the first operator V = d is for sure not injective. On the contrary, when M = D, things are
much more delicate and DR(D) is exact unless at A"T*® 4D where we have to add a surjective
map A"T*@4D — A"T* : a® P — o.P : adz' A ... Ada™ — ad(P)(a)dzt A ... A dz™ as we shall
see in Theorem 3.23.

We also notice that DR(M) = DR(A)®4 M as we are only concerned with the corresponding trun-
cated sequences. Moreover, if R is the inverse system of M, we may construct DR(R) as before,
replacing m € M by f € R and using the Spencer operator defined in the last theorem. Looking
for the kernel of the first operator f — da’ ® d;f, we obtain d;f = 0 & 9;(f(m)) = f(d;m) &
diof=fody,Vi=1,..,n,Ym € M and thus f € homp(M, A) as claimed (See Example 3.20).
We now study the possibility to endow DR(R) with a filtration as in the differential geometric
setting of the first Spencer sequence, keeping in mind that, when g, is involutive (2-acyclic) and
gq+1 is a vector bundle over X, then gq1, is a vector bundle over X for any r > 0(r > 1) (See
[14],[27] or [15] II1.2.22,23 for more details). With m = n = 1, K = Q(x), the counterexample
Yz — Y = 0 = 2Yze = 0 is well known.

In any case, DRgiy,+r(R) starting with Rg4n4, projects onto DRyypn4r—1(R) and the kernel of
this projection is just (up to sign) the Spencer d-sequence:

5 * 0 4 *
0— 9q+n+r — T ®gq+n+1‘71 — ... — A"T ®gq+r —0

which is exact at the generic term ... 2 AT ® Jg+r N ..., Yr > 0 whenever g, is involutive.
However, as explained with details in ([14],[15]), a main formal problem is that the first Spencer
sequence is formally exact (each operator generates the CC of the preceding one) but is not strictly
ezact (roughly the operators involved are not formally integrable and thus far from being involu-
tive). Indeed, considering the system 0; f* — ff = 0 when ¢ = 1 and using crossed derivatives,
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we obtain the new first order equations 0; fjk — 0;fF = 0. This is the reason for introducing the
second Spencer sequence with Spencer bundles C,. = Cy, = A"T* ® Ry /§(A""'T* ® g441) provid-
ing epimorphisms A"T* ® R, — Cy, = 0 and Cy, — AN"T* ® R;—1 — 0. Moreover, the second
Spencer sequence being strictly exact with first order involutive operators, the sequence {Cy41,,}
projects onto the sequence {C,,} and we get the same projective limit as before if we replace
vector bundles by projective modules over A.

It remains to compare the Spencer sequences thus obtained with the so-called Spencer sequence
that can be found in the litterature on differential modules ([1],[7],[15],[26]), namely:

0 — DOAMO AT 25 Do Mo AT L
L DOAMANT L DoAM —s M — 0

where we set, using the right structure over D of the bimodule D® 4 M and a hat for omission:

FPRMO&G A AE) = T(-1)THPOmMERG AL AGA AL )
+Zi<j(—1)i+jP QMR & EGINE N AGEN NN ANE

Comparing to the standard definition of the exterior derivative, it is easy to check that d* od* = 0
while the last two maps are P@m Q& = (P@m){ = PEQ@m — P®&m and PQ®m — Pm. The
left structure induced by D = pD commutes with d* and we have for example:

QI'(PRE@m)=QPE@m— QP @tm=d (QP®E@m) =d*"QP®E@m) Ve T,YP € D

or simply Q((P®m)¢) = (Q(P ®m))¢ with Q(P®m) = QP @ m. Meanwhile, the right structure
induced by D = Dp is used in order to act with £ on the right as in the last theorem. The
corresponding deleted sequence is denoted by SP(M) and we have SP(M) = SP(A)®@a M. Tt is
important to notice that the construction of SP(M) does not depend on any assumption made on
the filtration of M.

We notice that SP(M) is filtred by the complexes:

0= Dg—n®@aMRAN"T = ... = Dy 1@aM@AT - Dg@aM — M — 0

The associated graded complex is the tensor product by M over A of the Koszul complex:

0= A"T@4Sg-nT = N ' TR4Sy—ni1T — .. & T®@4Sy1T — ST — 0

because we have the short exact sequences 0 — D,y — Dy — ST — 0,Vq > 0. This complex is
thus exact because it is the dual of the trivial Spencer d-sequence and M is locally free under the
assumptions already made. Accordingly, SP(M) is a resolution of M but without any practical

interest in view of the size of the modules invoved.
However, when M is a filtred differential module, then SP(M) is filtred by SP,(M), namely:

0 — DOAM,_n@AN'T 55 D@AM, 1 @aA" T L5

L D@AM,_ @ANT L D@AM, — M —0
and the construction is compatible because Dy M,_, C My_,41. The associated graded complex is
the tensor product by D of the dual of the Spencer d-sequence for the symbol and is thus exact, a
result allowing to stabilize the cohomology of SP,(M) when ¢ is large enough and to get therefore
a resolution of M as its inductive limit is a resolution.

When F is a (finite dimensional) vector bundle over X /(finitely generated) projective module
over A, we may apply the correspondence Joo(E) <> DRQAE* : Jo(E) <> Dy®@4E* between jet bun-
dles and induced left differential modules in order to be able to use the double dual isomorphism
E ~ E** in both cases. Hence, starting from a differential operator E RN F', we may obtain a
finite presentation D® 4 F’ L, D® AF — M — 0 and conversely. We shall apply this procedure in
order to study two particular cases before considering the general situation (Compare to [1], 1.5.1,
p 29 where this motivating reference to differential geometry is lacking). Also, using the ”local
trivialty of projective modules”, when M is projective/locally free over A (care), we recall that the
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functor M® 4e is exact ([15], Proposition 1.2.45, p 156; [25]). As we saw in section 2, this situation
is realized, for example, when 7Tg+1 : Rg41 — Ry is an epimorphism of vector bundles over X and
gq is involutive. In a word and contrary to Grobner algorithm, this is a modern version of the Janet
algorithm for realizing the idea of Riqier to "cut” the set of all derivatives of the unknowns into
the ”parametric” and ”principal” subsets, under the condition that certain determinants should
not vanish ([6], [23]).

When M = A we may refer to the Poincaré sequence in section 2 and obtain the following
strictly exact resolution of A with induced left differential modules:

0 = DOAA'T 25 Do AT L DT D A0

because we have in this case g, =0,¥¢ > 1 G, =0,Vg>1andthus A=My=M; =...=M
as the gradient operator is a finite type trivially involutive first order operator. The operator d* is
simply defined by the formula:

d(P@diy, Ao Adi)) =Y (1) 7'Pd;, @dy, Ao Adi, A Ny,

This elementary example explains the need to introduce the bimodule D on the left of the tensor
products in order to obtain operators acting on the right as left D-linear maps and conversely by
exchanging the words ”left” and "right”.

When M = D, the cokernel of the canonical inclusion 0 — SP,_1(D) — SP,(D) is the ten-
sor product by D over A of the Koszul complex already provided. This complex is the dual of
the Spencer d-sequence starting with S,7* and is thus exact Vg > 0. As SPy(D) reduces to
0— D “2 D — 0 because D®sA =D and DD, = D,Vq > 0, we can use an induction on ¢
showing that SP(D) is a resolution of D.

In the general case, denoting by HJ (M) the homology at A*T'®aM, s of SP;(M), we have
to show that Hj(M) = 0,Vq > 0. As we can always suppose that M, is involutive and de-
fined by an involutive presentation of order ¢, then DMy, = M,Vr > 0 and we just need
to prove that HS(M) = 0,¥s > 0 in order to prove that SP,.(M) is a resolution of M,
Vr > 0 and thus that SP(M) is a resolution of M. However, we have already exhibited in
this case the strict short exact sequence 0 — I — D' — M — 0 providing the short exact
sequences 0 — I,y — Dfl_” — Mgyr — 0,¥r > 0. Introducing the short exact sequence
0 — SP,(I) — SP,(D") — SP,(M) — 0 of complexes, we deduce from the ”snake theorem”
in commutative algebra the following long exact connecting sequence ([2], p 29; [15], p 196-199;
[25], p 171):

s l s s—1
o= Hi(D') = H; (M) — H; (1) — ...

However, we have H; (D') = 0 from the preceding particular case and we have H;=(I) = 0 from
the inductive assumption. It folows that Hj (M) = 0 and the short exact sequence of complexes
is in fact a resolution of the corresponding short exact sequence of differential modules, a result
showing that SP(M) is a resolution of M.

Finally, acting component by component and using the adjoint isomoprphism for mod(D) of the
preceding theorem while changing the position of the terms in the tensor products, we get:

homp(SP(A)@a M, A) = homp(SP(A), homa(M,A)) = DR(R)
because homp(DRAN"T, M) = homa(ANT, M) = N"T*®@ M as A"T is free over A with dimen-
sion n!/(r!(n — r)!) and thus homp(SP(A), M) ~ DR(M),YM € mod(D). As a recapitulating
comment, we may say that SP(M) is made by left D-modules with left D-linear maps obtained by
means of actions on the right while DR(M® 4 D) is made by right D-modules with right D-linear
maps obtained by means of actions on the left. Setting n = r + s, the conversion procedure that
we shall recall in Theorem 3.23 allows to obtain:

homA(/\"T*, AST*®AMq+S_n®AD) = /\TT®AMq_T®AD
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as a link between the two complexes.
Q.E.D.

REMARK 3.17: When D = ®oj, is an arbitrary but regular operator of order ¢, we may ” cut ”
the Janet sequence at Fy in two parts by introducing the systems B, = im(p,(®)) C J.(Fp) with
By = Fy and B,1+1 C p.(B1) projecting onto B,.,Vr > 0. When D is involutive, then By C J;(Fp)
is also involutive with B,.41 = p,(B1),¥r > 0 and we have the ”truncated diagram ” linking the
second Spencer sequence to a part of the Janet sequence:

0 0 0
\ \ \
c 2 oo 02 D, S0
3 \ \
Jq D Dy D,

0—-FE—= CyE) — Ci(E) — - Cn(E) —0
1 @ 1@, 1@,
) N A ACEN D F, 50
2 A \:
0 0 0

where the epimorphisms @4, ..., ®,, are successively induced by the epimorphism &y = ®, the canon-
ical projection of Co(E) = J4(E) onto Fy = J4(E)/R, with Cy = R,. It is known that the central
sequence is locally exact. As we already pointed out that g, was a vector bundle, introducing
the projection R,_q of R, into Jy,_1(E), we have C,, ~ A"T* @ Ry_1, Cp(E) ~ AN"T* ®@ Jy,_1(E)
and thus F,, ~ A"T* ® (Jy—1(E)/Ry—1). It is not at all evident that the dual of this diagram is
nothing else but the resolution of the short exact sequence 0 — I — D™ — M — 0 considered in
Proposition 3.6. Indeed, dualizing the diagram of Proposition 2.7, we obtain at once the following
commutative and exact diagram:

0 0 0
T ) T

AN AT@AGe1 & ANT9AG, < Z(NT®AG,) + 0
I T 0

/\T_1T®AGq+1 — N'T®RaM, — Ccr +~0
T 1) T

0 — ANT@AM,; = NTRM,; <0
T T
0 0

Applying the dual Spencer operator A"T®4M, — A" 'T®4M,+1, we obtain the strictly exact
second Spencer sequence SSP,(M):

0= D®4C; = DR4Ch_1 — ... > DR4Cy - DR®aMy — M — 0

which is a resolution of M stabilizing the filtration at order q only by means of induced differential
modules. Accordingly, the last two differential morphisms, induced by the morphisms P®&®@m —
P¢®@m—P®E&m and P®m — Pm of the sequence ... = D®sT®aMy; = DRaMgy1 — M — 0,
dualize the exact sequence 0 — Ryyr41 — Jr+1(Co) — J,(C1) as in ([15], p 367-369).

In the opinion of the author based on thirty years of explicit applications to mathematical
physics (general relativity, gauge theory, theoretical mechanics, control theory), the differential
geometric framework is quite more natural than the differential algebraic framework, the simplest
example being the fact that the so-called Cosserat equations of elasticity theory, discovered by the
brothers Eugene and Frangois Cosserat as early as in 1909, are nothing else but the formal adjoint
ad(D1) of the first Spencer operator D; for the Killing equations in Riemannian geometry ([14],
[15], [20], [21]). In particular, it must be noticed that the very specific properties of the Janet
sequence, namely that it starts with an involutive operator of order ¢ > 1 but the n remaining
involutive operators Dy, ..., D,, are of order 1 and in (reduced) Spencer form cannot be discovered
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from the differential module point of view. However, the importance of the torsion-free condi-
tion/test for differential modules is a novelty brought from the algebraic setting and known today
to be a crucial tool for understanding control theory ([15]). Finally, the situation in the present
days arrived to a kind of "wicious circle ” because the study of differential modules is based on
filtration and thus formal integrability while computer algebra is based on Grébner bases as a way
to sudy the same questions but by means of highly non-intrinsic procedures as we saw.

We may compare the previous differential algebraic framework with its differential geomet-
ric counterpart. Indeed, using notations coherent with the ones of the previous section, if now
D =®oj,: E— Fis an operator of order ¢ with dim(E) = m,dim(F) = p, we may consider

(D ) . .
the exact sequences 0 — R, — Jgir(E) pLQ J-(F) by introducing the r-prolongation of @,
induce the Spencer operator D : Ryy,11 — 1" ® Ry, when 7 > 0 and pass to the projective limit
R = R.. In actual practice, when » = 1 we have a;“fl’f =g = a;“f[jﬂi + (aia',g”)f[f = g7 and
thus aZ“(&ifo - 5+1z‘) = 0;9" — g7, a procedure that can be easily extended to any value of r > 0.

As a byproduct, the link existing with infinite jets can be understood by means of the following
commutative and exact diagram:

0o R - JE Y g
$d +d ld
0> T*®R — T oJE "X T gJF)
where df = dx’ ® d;f. Hence, using the Spencer operator on sections, we may characterize R by

the following equivalent properties (See [14], Proposition 10, p 83 for a nonlinear version that can
be used in Example 2.26):

1) f € R is killed by p,(®) (no differentiation of f is involved ), ¥r > 0.
2) f € R=d;f € R (a differentiation of f is involved ), Vi = 1,...,n.

As an equivalent differential geometric counterpart of the above result, we may also define the
r-prolongations py(Rq) = Jr(Rq) N Jg+r(E) of a given system R, C J4(E) of order ¢ by applying
successively the following formula involving the Spencer operator of the previous section:

pl(Rq) = Jl(Rq) N Jq+1(E) = {fq+1 € Jq-‘rl(E) | fq € Rg; D fqr €T ®Rq}

Now, if we have another system Rqy1 C p1(Rq) C Jg41(E) of order ¢ + 1 and projecting onto Ry,
we have the commutative and exact diagram:

0 0
1 \
0= gg+t1 — p1(9q)
\ \
0— Rq+1 —  pP1 (Rq)
1 1
0= R, = R, —0
1 3
0 0

Chasing in this diagram, it follows that R,+1 = p1(Ry) if and only if g,4+1 = p1(g,) (Compare to

Proposition 1.2.5 in [7]). Otherwise, we may start afresh with R((Il) = 78" (Rg41) (See Lemma
II1.2.46 in [15] for details).

REMARK 3.18: As we shall see through the following examples, when a section f € R : yfj —
fl’f € A is given, it may not provide a formal power series solution. Accordingly, it may be useful
to provide f as a formal (in general infinite) summation £ = f/jag = 0 called modular equation by
Macaulay ([9], §59, p 67) and to set d;E = (aifl’ff ”f_‘_li)a’]: = 0. Equivalently, one can use 9; on the
coefficients of E in A and set d;a}, = 0if pu; = 0 or d;all = —al i if wi >0. When A=K =kFkisa
field of constants and m = 1, we recover exactly the notation of Macaulay (up to sign) but the link
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with the Spencer operator has never been provided. With n =3,m =1,¢ = 2, K = Q(z!, 2%, 2?),
the nice but quite tricky example y33 — 2%y;1 = 0,920 = 0 provided by Janet (See [14] and [16]
for more details) is such that par = {y, Y1,Y2,Y3,Y11,Y12,Y13,Y23, Y111, Y113, Y123, y1113} and can be
generated by the unique modular equation F = a3 4+ 221333 4+ ¢12333 = 0 with do E = 0, because
Y12333 — Y1113 = 0, %1333 — 22y1113 = 0 and all the jets of order > 5 vanish (Exercise).

EXAMPLE 3.19: Coming back to Example 2.11 where dim(g2) = 3,dim(gs) = 1,944r =
0,Vr > 0 and g3 is 2-acyclic, we have the following commutative and exact diagram where
dim(E) = 1,dim(Fy) = 3,dim(Fy) = 18 — 15 = 3 (From the second row):

0 0 0 0
A 1 \: 2
0— gs — SsT* — S3T* ® Fy - T"®F, —0
1o 16 1o H
1o 1o 1o 1
0= AT*®gs — NT*RST* — NT*QT*®F — 0
16 16 16
0= A T"®g — ANT"Q ST — N3T* ® Fy — 0
A A \:
0 0 0

and the long exact sequence where dim(Fy) =28 — 45+ 18 = 1:

0—)SGT*—>S4T*®F0—>SQT*®F1—>F2—>O

providing the following free resolution with second order operators:

0=D—->D>D 5D M-=0

where the Euler-Poincaré characteristic is equal to 1 —3 +3 —1 = 0 as M is defined by a finite
type system. With a slight abuse of language while shifting the various filtrations, we may say that
we have a strict resolution because all the operators involved, being homogeneous, are formally
integrable though not involutive. We finally notice that the first and second Spencer sequences
coincide because we have dim(R) = dim(R3) =1+3+3+1=8as g4 = 0.

EXAMPLE 3.20: With n = 1,m = 1,¢g = 2,A = Q[z] = K = Q(x) an thus k = Q, let
us consider the second order system ., — xy = 0. We successively obtain by prolongation
Yoxx — TYe —Y = 0, Yrxxe — ny - ny =0, Yzxxoze — 33293: - 4$y =0, Ycxxrrr — 695%: - (xg +4)y =0
and so on. We obtain the the corresponding board:

Order y ya: yl‘r yacmz y:l?mml’ yzfcmca: ymzzxmm
2 —x 0 |1 0 0 0 0
3 —1 —x | 0 1 0 0 0
4 —2? 2101 0 1 0 0
5 —4x —z2] 0 0 0 1 0
6| —(z*+4)| -6z | 0 0 0 0 1

Let us define the sections f’ and f” by the following board where d = d,:

section y Yz Yz | Yzaz | Yzzzzr | Yzzzzo Yzrzxaxzzx
/1110« 1 z? 4z 23 +4
710 1 0 x 2 x? 6x
' | 0 | —z] 0 | =22 | —22 | —23 —622
af’ | =1 0 | —z| =1 | —2%2 | —da | —2®—4
in order to obtain df’ = —zf”,df” = —f’. Though this is not evident at first sight, the two

boards are orthogonal over K in the sense that each row of one board contracts to zero with each
row of the other though only the rows of the first board do contain a finite number of nonzero
elements. It is absolutely essential to notice that the sections f' and f” have nothing to do with
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solutions because df’ # 0,df” # 0 on one side and also because d?f’ — zf’ = —f” = 2df’ # 0
even though d?f” — zf” = 0 on the other side. As a byproduct, f’ or f” can be chosen separately
as unique generating section of the inverse system over K (care) and we may write for example
f' = E' = a® + 2a® + a®** 4 22a*** + ... = 0 while f* — E” = a® + 2a®*® + 2a"*** + ... = 0.
Finally, setting f = af’ + bf”, we have df = (0a)f' + (0b — xa)f” = 0 & 0%a — xa = 0,b = da. If
a = P/Q with P,Q € Q[z] and @ # 0, we obtain easily :

Q?*0*P — 2Q0POQ — PQI*Q + 2P(0Q)? — zPQ* =0

If deg(P) = p,deg(Q) = g, the four terms on the left have the same degree p + 2¢ — 2 while the
last term has degree p+2¢+1and thus Q #0=P=0=a=0=b=0.

With D = A[d], ® = ypo—2y = 2 = dy® = Yoz —TYs—Y = Za, ... and D = Pojy, we have the finite
presentation 0 — D 2D~ Mo Using sections with foo —2f = g, foaz —fz — f = ga, -
and g, = jr(x), we may choose f = —1, f, =0, fz = 0,.... However, in a similar situation with
S =zy,—y = d® = 2ysy, ... and g, = j,.(z) too, we may choose f = 0, f,, = 1 but obtain = f,, = 1
which cannot be solved over A, an example showing why the divisibility of K over A is needed in
order to get the short exact sequence 0 — hom (M, K) — homu (D, K) — hom (D, K) — 0.

EXAMPLE 3.21: Withn=1,m = 2,q = 2,k = Q, let us consider the system y., = 0,y2 = 0.
Setting 2! = y!, 22 = yl, 23 = y?, we obtain the involutive system:

1 2 _

295 -z =0 T
Z§ = 0 T
zy = 0|z

Setting d = d,., then m = (d) kills y. and y?, that is 22 and 23. Tt follows that the CK data for
z = g(z) are {g(z) = ¢*(0), ¢*(z) = ¢*(0), ¢°(x) = ¢>(0)} and we have the finite basis:

‘ 2t 22 28 ‘ 2L 22 23 ‘ 2L 22 23,
g |1 0 0]0 0 0] O0 0 0
g |0 1 0|1 0 0] O 0 0
g0 0 1,0 0 0| O 0 0

As dg = 0,dg’ = —g,dg” = 0, a basis with only two generators may be {g’,¢”}. However, if we
work with the differential field K = k(z) instead of k, we may introduce y = y? — xy' which must
satisfy Y. = 0 over k and there is a unique generator according to ([19], Example 3.8).
Similarly, with the system yl, —y' = 0,92 = 0, we may consider the involutive system:

2l—22 = 0| w
22—t = 0|2
23 =0 T
and consider now:
|28 2% 2P|z 2D 2|, 22, 2 |
g 1 0 00 1 O 1 0 0
g |0 1 0|1 0 O 0 1 0
g10 0 1|0 0 O 0 0 0
We obtain dg = —¢',dg’ = —g,dg” = 0 and thus:

h=g—¢",dh=—¢ ,d®h=g< g=d?h,g = —dh,g” = d®h —h

that is a unique generator h as in ([9],§72, p 81). We may also introduce y = y? — y' which must
satisty yzze — Yo = 0 and there is a unique generator as in ([19], Example 3.8).

EXAMPLE 3.22: Withn=3,m=3,p=2,q =2,k = Q, let us consider the differential module
M defined by the second order system:
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{y;‘?g—y% = 0|1 2 3
yss— i —y* =0 1 2 e

Using the only non-multiplicative variable involved in the board, the system is not formally inte-
grable and we may consider anew the second order system:

do-ul = 0[1 23
Yss—yi—y® = 0|1 2 e
Yls —yla+ys = 0| 1 e e

The coordinate system is not d-regular and we may change the coordinates with z' — 2!, 22 —
2%, 23 — 2% + 2! in order to get the involutive system with a3 = 1:

Ysz — Y3 — U1 - 0|1 2 3
Y33+ yis — Y3 —ylaty3 = 0|1 2 3
Y3z —y3 — i — — 0|1 2 e

We obtain therefore the strict free resolution 0 — D — D3 — D3 —s M — 0.
Localizing the initial system or using computer algebra, we obtain:

(x3)%y® = x1y' =0, 0cexs — Dy* — x1y> = 0= x1((x3)°y* — (xexs — )y' =0

Accordingly, z = y3; — yis + y' generates t(M) as we get d1z = 21 = 0. The torsion-free module
M’ = M/t(M) is defined, in the initial coordinate system, by the second order system:

dooul =012 3
Yis—yis+y' = 0|1 2 3
Yos—yi—y? = 01 2 e
Yis —Yia+y3 = 0 | 1 e

The coordinate system is not J-regular and we may change the coordinates with z! — 2!, z? —
22 4+ 2%, 23 — 23 in order to obtain the second order involutive system:

Y3z — s — u1 = 0123
Y3s — Y33+ y' = 0|12 3
Yz — y5 — i —y° = 0|1 2 e
Yss T Uiz — Yz —Yla+ys = 0 [ 1 2 e

and the strict free resolution 0 — D? — D* — D3 — M’ — 0.
Using double duality, one can exhibit the injective parametrization £33 = y!, &3 — € = 3%, & = 32
in the original coordinate system (exercise) and thus M’ ~ D is free. Also, using the solution of
the Bose conjecture ([16],p 216-219), one can define M’ by the only two PD equations (exercise):
{ygg—yég—i—yl =0
Y>+ Yo — Yl +yi = 0
As the second PD equation provides 33, there is no CC and we get the free resolution 0 — D? —
D?® — M’ — 0 which is however not strict (See [19] for more details on strict morphisms and
resolutions). Finally, integrating by part A?(y3; — yi) + A (y3; — y? — ¥*) and permuting the
coordinates with (123) — (312), we get the adjoint system A3 = 0,A\} = 0,23, + A\, — A} =0
leading to &3 = 0 and we check that m—a3 = 3—1 =2 = p—a3, a general result not evident at all.

As D = pDp is a bimodule, then M* = homp(M, D) is a right D-module according to
Lemma 3.1 and we may thus define a right module N, by the ker/coker long exact sequence

04— N, «— Fr & Fr +— M* «— 0.
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THEOREM 3.23: We have the side changing procedures M = pM — M, = N"T*® M and
N = Np = Ny = homa(A"T*, N,.) with (M,.); = M and (N;), = N.

Proof: According to the above Theorem, we just need to prove that A™T™* has a natural right
module structure over D. For this, if & = ada® A... Adx™ € A™T* is a volume form with coefficient
a € A, we may set a.P = ad(P)(a)dz* A ... Adx™ when P € D. As D is generated by A and T', we
just need to check that the above formula has an intrinsic meaning for any ¢ = ¢%d; € T. In that
case, we check at once:

& = —0;(a)dx' A ... Adx™ = —L(&)a

by introducing the Lie derivative of « with respect to £, along the intrinsic formula £(§) = i(£)d +
di(§) where () is the interior multiplication and d is the exterior derivative of exterior forms.
According to well known properties of the Lie derivative, we get :

a.(ag) = (af).a —alla),  o.(&n—ns) = —[L(§), L] = —L([¢, n))a = e.[§, 7).

Using the anti-isomorphism ad : D — D : P — ad(P), we may also introduce the adjoint functor
ad : mod(D) — mod(D°P) : M — ad(M) with for(M) = for(ad(M)) and m.P = ad(P)m,Vm €
M,VP € D. We obtain:

m.(PQ) = ad(PQ)m = (ad(Q)ad(P))m = ad(Q)(ad(P)m) = (m.P).Q,VP,Q € D

We have an A-linear isomorphism ad(M) ~ M, : m — m ® « in mod(D°P). Indeed, with
a = dx' A ... Adz"™ and any d among the d; in place of &, we get m.d = ad(d)m = —dm in
ad(M) while (m ® a)d = —dm ® a,¥Ym € M in M, because div(d) = 0 and thus L(d)a = 0.
Accordingly, the previous isomorphism is right D-linear.

In order to study the case of D = pD, considered as a left D-module over D, we shall compare
ad(D), D, and Dp. According to the last isomorphism obtained, we just need to study the iso-
morphim ad(D) ~ Dp : P — ad(P). Indeed, we get P — P.Q = ad(Q)P # PQ and obtain
therefore P.QQ — ad(P.Q) = ad(ad(Q)P) = ad(P)ad(ad(Q)) = ad(P)Q, a result showing that this
isomorphism is also right D-linear.

Q.E.D.

REMARK 3.24: The above results provide a new light on duality in physics. Indeed, as the
Poincaré sequence is self-adjoint (up to sign) as a whole and the linear Spencer sequence for a
system of finite type is locally isomorphic to copies of that sequence, it follows in this case from
Proposition 3.4 that ad(D,;1) parametrizes ad(D,) in the dual of the Spencer sequence while
ad(Dy41) parametrizes ad(D,) in the dual of the Janet sequence, a result highly not evident at first
sight because D,. and D,41 are totally different operators. The reader may look at [20] and [21] for
recent applications to mathematical physics (gauge theory and general relativity).

We shall now study with more details the module M versus the system R when D = K[d]. First
of all, as K is a field, we obtain in particular the Hilbert polynomial dimg (My4,) = dimg (Rgyr) =
%rd + ... where the intrinsic integer « is called the multiplicity of M and is the smallest non-zero
character. We use to set d(M) =d = cdp(M) = cd(M) =n—d =r,rkp(M) = rk(M) = o if
cd(M) = 0 and 0 otherwise. Now, If M is a module over D and m € M, then the cyclic differential
submodule Dm C M is defined by a system of OD or PD equations for one unknown and we may
look for its codimension c¢d(Dm). A similar comment can be done for any differential submodule
M’ C M. Sometimes, a single element m € M, called differentially primitive element, may gener-
ate M if Dm = M as in Example 3.15. Using the results of ([7]), we get:

PROPOSITION 3.25: t.(M) = {m € M | cd(Dm) > r} is the greatest differential submodule
of M having codimension > r and does not depend on the presentation or filtration of M.

PROPOSITION 3.26: cd(M) = r <= o} " # 0,007 = .. = o =0 < t,(M) #
Mt,—1(M) = .. =1ty(M) = t(M) = M and this intrinsic result can be most easily checked by

using the standard or reduced Spencer form of the system defining M.
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We are now in a good position for defining and studying pure differential modules along lines
similar to the ones followed by Macaulay in ([9]) for studying unmized polynomial ideals.

DEFINITION 3.27: M is r-pure <= t,(M) = 0,t,_1(M) = M <= cd(Dm) = r,Ym € M.
More generally, M is pure if it is r-pure for a certain 0 < r < n and M is pure if it is r-pure for
a certain 0 < r < n. In particular, M is O-pure if ¢(M) = 0 and, if ed(M) = r but M is not
r-pure, we may call M/t,.(M) the pure part of M. Tt follows that t,._1(M)/t.(M) is equal to zero
or is r-pure (See the picture in [15], p 545). When M = ¢,_1(M) is n-pure, its defining system
is a finite dimensional vector space over K with a symbol of finite type (see Example 2.11 of 2-
acyclicity). Finally, when ¢,_1 (M) = t,.(M), we shall say that there is a gap in the purity filtration:

0=tn(M) C bty (M) C ... C (M) C to(M) = t(M) C M

EXAMPLE 3.28: If K = Q and M is defined by the involutive system y33 = 0,y23 = 0,913 = 0,
then z = y3 satifies d3z = 0,d2z = 0,d12z = 0 and cd(Dz) = 3 while 2’ = y only satisfies dzz’ =0
and cd(Dz') = 1. We have the purity filtration 0 = t3(M) C to(M) = t1(M) C to(M) =t(M) =M
with one gap and two strict inclusions.

When £ is a field of constants, then D = k[d] is isomorphic to the polynomial ring A = k[x] and
we shall generalize the criterion of Macaulay in ([9], §41, p. 43) as follows when cd(M) = r by set-
ting x = (X', x”) with X’ = (x1, -+, Xn—r) and X” = (Xn—r+1, ---, Xn) While introducing similarly d =
(d,d”) with &' = (dy,...,dn—) and d” = (dp—ry1, .., dn) or p = (@', ") with ¢/ = (p1, .., in—r)
and 1" = (fn—pt1, s fhn). For such a purpose we recall a few results about the localization used in
the primary decomposition of a module M over a commutative integral domain A which are not so
well known ([15],[18],[19]). We denote as usual by spec(A) the set of prime ideals in A, by maz(A)
the subset of mazimal ideals in A and by ass(M) = {p € spec(A)|30 # m € M,p = anna(m)}
the (finite) set {pi,...,p:} of associated prime ideals, while we denote by {p1,...ps} the subset
of minimum associated prime ideals. It is well known that M # 0 = ass(M) # . We re-
call that an ideal q C A is p-primary if ab € q,b ¢ ¢ = a € rad(q) = p € spec(A). We
say that a module @ is p-primary if am = 0,0 # m € Q = a € p = rad(q) € spec(A)
when q = anna(Q) or, equivalently, ass(Q) = {p}. Similarly, we say that a module P is p-
prime if am = 0,0 # m € P = a € p € spec(A) when p = anna(P). It follows that
any p-prime or p-primary module is r-pure with n — r = trd(A/p). Accordingly, a module M
is r-pure if and only if a = anny(M) admits a primary decomposition a = gq; N ... N g and
rad(a) = p1 N ... N ps with cd(A/p;) = ed(M) = r,Vi = 1,...,s. In that case only, the monomor-
phism 0 — M — @®yeqss(m)Mp induces a monomorphism 0 — M — Q1 @ ... & Qs called
primary embedding where the primary modules @); are the images of the localization morphisms
M — M,, = S;lM with S; = A — p; inducing epimorphisms M — Q; — 0 for i = 1,...;s.
Macaulay was only considering the case M = A/a with a primary decomposition a = g1 N ... N gs.

THEOREM 3.29: M is r-pure if and only if S(x')z € I requires z € I that is a residue z = 0
in M.

Proof Let I C F be the module of equations of M = F/I and consider a primary decompo-
sition I = NI; of I in F. We may pass to the residue by introducing short exact sequences
0 — I, > F — @; — 0 providing induced epimorphisms M — @; — 0 both with a monomorphism
0 — M — @;Q; called primary embedding ([15], p 113). The @; are primary modules and we may
introduce the primary ideals q; = ann(Q;) with p; = rad(q;) € spec(A) in order to obtain the
primary decomposition a = Ng; as in ([15], p 112).

If M is not r-pure, then a is mixed and we may suppose that cd(A4/p;) > r. Then we may choose
S € q and z ¢ I, while 2 € I;,S € A = Sz € I;,Vi < t and thus Sz € N;<¢I;, that is to
say Sz € NI; = I though z ¢ I because z ¢ I,. Conversely, if M is r-pure, then a is unmixed
with s = t necessarily, each associated prime has codimension 7, no one can thus contain S and
Sz € I = z € I from the next argument.

Let us prove that, if b C A is an ideal such that I C I : b= J # [ in F, then b C p; for a certain 1.
Indeed, if z € J C F,z ¢ I, then bz € I,Vb € b and thus bz = 0 with z # 0 in M. Accordingly, b is
a zero-divisor in M and thus b € Up; the set of all zero-divisors of M ([15], p 101). Equivalently,
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z ¢ I, for a certain i because otherwise we should have z € NI; = I.But I; is primary in F with
bzelICl;,z¢1I; and thus b € p; = b C p; in any case. Hence, if I : m # I for m € max(A), then
m = p; for a certain i and thus m € ass(M).

Q.E.D.

Using standard localization techniques, we get at once (See [19] for more details):

COROLLARY 3.30: There is an exact sequence 0 — ¢.(M) - M — k(x') ® M and the
differential module M is thus r-pure if and only if cd(M) = r and there is a monomorphism
0 — M — k(x') ® M. In that case, k(x’) is playing the part of k in the localization of M
which is finite type over k(x’)[d”]. If M is defined over D = K[d], then M is r-pure if and only
if cd(M) = r (the classes n —r 4+ 1,...,n are full in any presentation) and the differential module
defined by the equations of class 1+...4class (n — r) of a Spencer form is torsion-free.

When 1 € S is a multiplicative subset of an integral domain A and M is a module over A, we
have S™'M = S~'A® 4 M. When M is finitely presented over A, we obtain for any other module
N over A the so-called localizing isomorphism as in ([15], p 153) or( [24], Th 3.84,p. 107)), namely:

S~ homs(M,N) ~ homs(M,S™IN) ~ homg-1,(S~1M,S7IN)

by introducing S~!'f : ST'M — S7IN : sz — sy over ST'A whenever f: M — N :z —y
with y = f(x) is given over A.
As M is finitely presented, we obtain with S = k[x'] C k[x] the isomorphism:

homy iy (k(x') @ M, k(X)) = k(X') @ homy (M, k) = k(X') ® R

providing the localized system over k(x’)[d”], on the condition to consider k' = k(x’) as a new field
of constants for d” along lines first proposed by Macaulay ([9],§43,77) in order to extend maps
M — k to maps k(x') ® M — k(x’), that is to maps k' ® M — k’. Moreover, the new differential
module M” = M/t,.(M) is r-pure in any case and provides a subsystem R” C R.

COROLLARY 3.31: The differential module M is r-pure if and only if cd(M) = r and there is
an isomorphism R” ~ R.

As the first order CC of an involutive system are automatically in reduced Spencer form, we
may just use the column n — r of the Janet board in order to discover that the above relative
localization 7 Kkills 7 the equations of class 1 up to class n — r — 1 as we can divide by x,_, and
thus only depends on the equations of strict class n — r providing the nonzero intrinsic character
a when r < n (Compare to [9], §43 and see [19], Proposition 5.7 for more details). Accordingly,
as the value of this intrinsic character @ may be computed for a Spencer form defining M and
we look for the dimension of k' ® M as a vector space over k' which is equal to @ when k" # k,
we obtain the following rather striking result which could not even be imagined without involution:

COROLLARY 3.32: The localized system is finite type with a (finite) dimension equal to «
when &' # k and to dimy (M) < co when k' = k as there is no need for localization in this case.

A differential module M is O-pure if and only if it is torsion-free. We have to(M) = t(M)
and M /t(M) is torsion-free. In that case, using an absolute localization, one can find an absolute
parametrization by embedding M into a free module of rank o = af < m, that is a parametrization
by means of « arbitrary functions of n variables. As a natural generalization, following Macaulay
([9]) while using a relative localization as in the previous corollaries, one can obtain ([18], [19]):

COROLLARY 3.33: When M is r-pure, one can find a relative parametrization by means of
a = ay~" arbitrary functions of n —r variables, that is a parametrization by means of a functions
which are constrained by a system of partial differential equations with no equation of class n — r
and full classes n — r + 1, ...,n defining an r-pure parametrizing module L with projective dimen-

sion equal to r, according to the corresponding Janet board of Section 2, both with an embedding
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M C L. (Compare to [1], p 494) (See [19], Section 4, for examples and counterexamples).

EXAMPLE 3.34: With n = 3,m = 1,k = Q, the module defined by the system y33 = 0,y23 =
0,920 = 0,913 — y2 = 0 is primary and 2-pure. However, the module defined by the system
y33 = 0,723 = 0,920 = 0,13 = 0 is also of codimension 2 but is not 2-pure because we ob-
tain by localizing/tensoring by k(x1) the relations y;3 = 0 = x1y3 = 0 = y3 = 0. Accord-
ingly, the module defined by the subsystem y3 = 0,y22 = 0 is 2-pure. We have nevertheless
a=3-—1=2and par = {y,y2} in both cases. Finally, the first system admits the general solution
y = f(z) = a(z!) +d1c(x!)2? + c(x!)x® which may not be easily related to the CK data (exercise).
We let the reader work out the Spencer forms of the two systems and check Corollary 3.30 directly.
Indeed, for the first system with a = 2, setting 2! = y, 2% = y1, 2% = y2, 2* = y3, one obtains the
relative parametrization:

(y,2) & (2" = 9,22 =4n,2° = 21,2" = 2)
coming from the localized equations ;2! — 22 = 0,x12* — 2% = 0 with the following involutive
differential constraint:

z3=0 |, y3—2z =20 1 2 3
22=0 yo —21 =0 1 2 e

coming from the other equations of class 2 and 3 by substitution. The elimination of z provides
of course the initial system of Macaulay and one obtains z = g(z) = c(x!) , that is a differential
isomorphism (y, z) <+ (a(x!), c(z!)) explaining this new concept.

EXAMPLE 3.35: With n = 4,m = 1,q = 5,k = Q, we shall use modern methods in order
to revisit the quite tricky example presented by Macaulay in ([9],§85,p 94), changing slightly the
notations. The fifth order system defined by two equations of order 5 and four equations of order
4 as follows:

Y23344 — Y11333 = 0 s Y22444 — Y13344 = 0
Yaaaa = 0,9y3444 = 0,93334 = 0,93333 =0

is neither formally integrable nor involutive. However, using one prolongation, we may obtain the
following equivalent involutive system in which we have separated the equations of order 4 and 5
both with the various classes at order 5, namely 1 of class 4, 5 of class 3, 6 of class 2 and 4 of class 1:

Ya4444 =0

Y3a444 = 0,y33444 = 0, y33344 = 0, y33334 = 0,y33333 = 0

Y24444 = 0,y23444 = 0,Y23344 — Y11333 = 0,Y23334 = 0, 923333 = 0, Y22444 — Y13344 = 0

Y14444 = 0,Y13444 = 0,Y13334 = 0,Y13333 = 0

Yaaaa = 0, Y3444 = 0,Y3334 = 0, 93333 = 0
Such a system defines a differential module M with c¢d(M) = 2 and o« = 15 — 6 = 9 because
the classes 3 and 4 are full. This module is 2-pure (exercise) but the interest of such an example
is to examine the localized system with respect to k(x1,x2) = k(x’) = k’ through the following
involutive system of finite type with 5 equations of order 4 and a new equation of order 3:

Yasas = 0

(x1)
X2

2
Y3444 = 0, Y3344 — Y333 = 0, 93334 =0, %3333 =0

3
gigs Y3z =0

Dividing by x2 in a coherent way with the proof of the last corollary, we get for example:

o Lo W
o o I~

Yaa4 —

D =y13444 = 0,V = yo3404 = 0= d2® = y10344a = A1V = & = (x1/x2) ¥

We have thus pars = {y, Y3, Y4, Y33, Y34, Y14, Y333, Y334, Y344} providing o = 9 linearly independent
modular equations/sections with a unique generating one with coefficients in k[x1, x2], namely:

E = (X2)3a333 + (X1)3a444 + (X1X2)2a3344 =0

32



where only one single determinant is needed (we have chosen (x2)?) in order to get polynomial
coefficients ([18], Proposition 5.3.1). Indeed, applying the (Spencer) operators ds and dy in a con-
venient succession, one may obtain the 8 additional modular equations/sections:

a*** =0,a** =0,a" =0,6* =0,6* =0,a" =0,a®> = 0,0 =0

a result not evident at first sight (exercise). We finally notice that ysss is killed by (ds,ds) €
max(k'[ds,d4]), in a coherent way with ([18]).

We now explain and illustrate the way to use systems intead of modules for studying primary
decompositions in the commutative framework as already explained. For simplicity, let us consider
a primary decomposition with two components giving rise to a monomorphism 0 — M — Q' & Q"
where @', Q" are primary modules, both with two epimorphisms M — Q' — 0,M — Q" — 0,
respectively induced by the localization morphisms M — My, M — My when M is pure
(unmixed annihilator) with ass(Q') = {p’},ass(Q”) = {p”} and ass(M) = {p’,p”}. Setting
R’ = hom(Q', k), R" = hom(Q", k) and using the fact that homy(D, k) is injective, we get an
epimorphism R’ ® R” — R — 0 both with two monomorphisms 0 -+ R’ — R,0 — R"” — R proving
that R', R”,R' + R", R’ N R" are subsystems of R. The following proposition ([18], Prop 4.7), not
evident at first sight, explains the aim of Macaulay ([9], end of §79, p 89) and allows to use various
subsystems for studying R instead of decomposing M.

PROPOSITION 3.36: One has R = R’ + R”. Accordingly R ~ R' & R” or, equivalently,
R'NR” =0if and only if p’ +p” = A.

EXAMPLE 3.37: With n =3,m = 1,9 = 2,k = Q, the module defined by the homogeneous
involutive system y33 = 0,y23 — y13 = 0,y20 — y12 = 0 is 2-pure. Setting k(x’) = k(x1), the
corresponding localized system y33 = 0,923 — X1y3 = 0,922 — x1¥2 = 0 is again involutive with
par = {y,y2,y3}. We obtain therefore a basis of sections {f1, f2, f3} made by the three sec-
tions corresponding to (1,0,0),(0,1,0),(0,0,1). We notice that m” = (d3,ds — x1) = ann(ys)
while m’ = (d3,d3) = ann(y2 — x1y), each maximum ideal in k(x1)[d2,ds] leading to a unique
isotypical component of the socle of M. Denoting simply by M the localized module and by
R the corresponding system with subsystems R’ provided by m’ and R” provided by m”. It is
then easy to obtain the primary decomposition (exercise) a = (x3%, x3(x2 — x1), X2(x2 — Xx1)) =
((x3%, x2 — x1) N (X3, x2) = ¢’ N q” with rad(a) = p’ N p”. After localization, p’ is replaced by m’
while p” is replaced by m” with ds — (d2 — x1) = x1 and thus m’ +m” = k(x1)[d2, d3]. As for the
systems, R’ is defined by y33 = 0,32 — x1y = 0 while R” is defined by y3 = 0,32 = 0 and we have
RNR =0,RR® R’ ~R +R =R = dim(R) = dim(R')+dim(R”) =2+ 1 = 3. Finally, R
can be generated by the unique section f = fo 4+ f3 because dof + x1f = —f1,dsf = —f1 — x1./2.
The reader may study the involutive system y33 — y3 = 0,423 —y2 = 0,922 — y12 = 0,913 —y2 =0
providing a similar situation (exercise).

We are now ready for using the results of the second section on the Cartan-Ké&hler theorem. For
such a purpose, we may write the solved equations in the symbolic form y,,; —czﬁf Ypar = 0 With ¢ €
k and an implicit (finite) summation in order to obtain for the sections fp”-—cgfi fpar = 0. Using the
language of Macaulay, it follows that the so-called modular equations are E = fp,aP™" + fpara?®™ = 0
with eventually an infinite number of terms in the implicit summations. Substituting, we get at
once B = fpar(aP™ + cpli aP™) = 0. Ordering the y,q as we already did and using a basis
{(1,0,...),(0,1,0,...),(0,0,1,0, ...), ...} for the fp.r, we may select the parametric modular equa-
tions EPY" = aP*" + cpllaP™ = 0 and the same procedure could be used for the (finite type)
localized system with &’ in place of k and a finite number of such equations (Compare to (A)+(B)
in [9], §79 or to (1)+(2) in [12]).

When a polynomial P = a*x* € k[x] of degree ¢ is multiplied by a monomial x, with | v |=r,
we get X, P = atx,4.,. Hence, if 0 <| 1 |< ¢, the " shifted 7 polynomial thus obtained is such that
r <| p+ v |< g+ r and the difference between the maximum degree and the minimum degree
of the monomials involved is always equal to ¢ and thus fixed. This comment will allow to pro-
vide an example of a k[x]-linearly independent element of k[x]* = homy(k[x], k), namely a map
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@ = pp @ k[x] = k with pg = idj, such that x, = 1if pg = ... = p, = p(p +3)/2 for p=0,1,2, ...
and 0 otherwise. The reason for such a choice is that p(p +3)/2—(p—1)(p+2)/2 =p+11is
strictly increasing with p. Indeed, if p1 < di,...,pun < dy and agy, . p,) # 0, we may choose
p = maz{p1,....,pn}, set d = p(p + 3)/2 and shift P by (x1)? P1...(xn)? P» in such a way that
the contraction of ¢ by this shifted operator is equal to a,,.... ) 7 0, all the other lower terms
beeing in what we shall call a ”zero zone” of ¢ of length p +1 > p. Replacing x; by d; and
degree by order, we may use the results of section 2 in order to split the CK-data into m formal
power series of 0 (constants), 1,...,n variables that we shall call series of type i for i = 0,1, ...,n.
When a linear differential polynomial P = Py* = a‘,:yl’j € Dy ~ D™ is given we may at once
reduce it by using the previous reduction formulas in order to keep only the 4, as we have only
a finite number of them. We can thus decompose the reduction of P into m disjoint components,
each one belonging to a series of a certain type i = i(k) for i = 0,1,...,n. For this, we shall
set Ypar = {Ypar | 1 < k < m} with yie, = {yf | pirr = oo = g = 0.V5 < k < B} for
1<i<n-1, y’;ar = {yl’j | VBT < k < m} andy}’;ar =yF | V0 < k < B}} as a way to define
i(k) =0for 1 <k <pi, i(k) =ifor it <k < Bi and i(k) = n for B} < k < m. It just remains
to compose each section ;far = { fl’f} with ¢;(y in order to have values equal to 0 or 1. Such
a procedure can be extended mutatis mutandis by linearity to the parametric modular equations
EPeT = gP* + .. = 0 when D = k[d] in order to obtain m formal power series with zero zones
which cannot thus be killed by any operator.

However, as the following elementary example will show, this procedure cannot be applied to the
variable coefficient case, namely when K is used in place of k. Indeed, withn = 1,d, = d, K = Q(x)
and P = d? — %, if we contract PP =d°— §d3 — d? with the series f = (1,0,1,0,0,1,0,...) already
defined when n = 1, we get 1 — 1 = 0 though P does not kill f because df = (1,0,0,1,0,0,...) =
Pf=(1-%,...) and the contraction of P with fis 1 — £ # 0.

WE SHALL ESCAPE FROM THIS DIFFICULTY BY MEANS OF A TRICK BASED ON A
SYSTEMATIC USE OF THE SPENCER OPERATOR.

The idea will be to shift the series to the left (decreasing ordering), up to sign, instead
of shifting the operator to the right (increasing ordering). For this, we notice that we want
that the contraction of P = a*d, where | p |< g = ord(P) with f should be zero, that is
atf, =0 = (0;a")f, + a*(0;fu) = 0,Vi = 1,...,n. But d;P = a"d,1, + (0;a")d,, must also
contract to zero wih f that is a* f,41, + (0;a*)f, = 0. Substracting, we obtain therefore the
condition a*(0; f,, — fu+1,) = 0, that is P must also contract to zero with the shift d;f or even
dy f of f when f is made with 0 and 1 only. Applying this computation to the above example, we
get —df = (0,1,0,0,1,0,...) = d*f = (1,0,0,1,0,...) = —d>f = (0,0,1,0,...) and the contraction
with P provides the leading coefficient 1 # 0 of P like the contraction of d®P with d*f, that is the
same series can be used but in a quite different framework. We have therefore obtained the main
result of this paper, in a coherent way with the finite dimensional case existing when the symbol g,
of the defining system R, is finite type, that is when g4y, = 0 for a certain integer » > 0. Indeed,
applying the d-sequence inductively to gg4n+s for ¢ = r—1,...,0 as in ([14], Proposition 6,p 87), it is
known that g, is finite type and involutive if and only if g, = 0, that is to say dim(Ry) = dim(Ry—1):

THEOREM 3.38: If M is a differential module over D = K|[d] defined by a first order invo-
lutive system in the m unknowns y',...,4™ with no zero order equation, the differential module
R = homg (M, K) may be generated over D by a finite basis of sections containing m generators.

In the general situation, counting the number of CK data, we have aé +..tag = dim(g,) and
dim(Ry) = dim(gq) + dim(Ry—1). We obtain therefore the following result which is coherent with
the number of unknowns in the Spencer form R,y1 C J1(R,) (Compare to Theorem 2.3.1 in [8]):

COROLLARY 3.39: If M is a differential module over D = K[d] defined by an involutive system

R, C Jy(E), the differential module R = homg (M, K) may be generated over D by a finite basis
of sections containing dim(R,) generators.
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4 CONCLUSION

In 1916, Macaulay discovered new localization techniques for studying polynomial ideals after
transforming them into systems of partial differential equations in one unknown. As a byprod-
uct, he discovered the concept of formal integrability that will be studied later on successively by
Riquier, Janet and Grébner for many unknowns but in a computational way. Using the intrinsic
methods of the formal theory of systems of partial differential equations developped after 1960 by
Spencer and coworkers, both with its application to the study of differential modules, we have been
able to revisit the work of Macaulay and extend it from the constant to the variable coefficient
case. In particular, the duality existing between differential modules and differential systems is
crucially used in order to provide for the first time a link between the so-called inverse systems
of Macaulay and the Cartan-Kahler theorem known for involutive systems, even for systems with
coefficients in a given differential field. We hope that the many and sometimes tricky illustrating
examples presented through this paper will become test examples for a future use of computer
algebra.
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