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Performance of piezoelectric shunts for
vibration reduction
O Thomas, J Ducarne and J-F Deü

Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Métiers,
2 Rue Conté, 75003 Paris, France

E-mail: olivier.thomas@cnam.fr

Abstract
This work addresses passive reduction of structural vibration by means of shunted
piezoelectric patches. The two classical resistive and resonant shunt solutions are considered.
The main goal of this paper is to give closed-form solutions to systematically estimate the
damping performances of the shunts, in the two cases of free and forced vibrations, whatever
the elastic host structure is. Then it is carefully demonstrated that the performance of the
shunt, in terms of vibration reduction, depends on only one free parameter: the so-called
modal electromechanical coupling factor (MEMCF) of the mechanical vibration mode to
which the shunts are tuned. Experiments are proposed and an excellent agreement with the
model is obtained, thus validating it.

(Some figures may appear in colour only in the online journal)

1. Introduction

Piezoelectric materials are proposed for many applications,
especially in the field of dynamics where their properties
of coupling mechanical stress and strain with an electric
circuit are used to detect, measure, or control the vibrations.
Some of today’s active research fields that use piezoelectric
materials are energy harvesting, passive or semi-passive
structural vibration damping, active vibration control, shape
adaptation and structural health monitoring [1]. Piezoelectric
materials have also become more widely used in micro/nano
electromechanical systems (M/NEMS) as an alternative to the
traditional electrostatic transduction technique [2–4].

In this paper, the specific application of passive reduction
of structural vibration by means of shunted piezoelectric
patches is addressed both theoretically and experimentally.
The two simplest shunt circuits are considered: a simple
resistor (resistive shunt or R-shunt) or a resistor in series
with an inductor (resonant shunt or RL-shunt). Compared to
active control techniques, these passive techniques have the
advantage of being simple to implement, always stable and not
requiring digital signal processors and bulky power amplifiers.

The R- and RL-shunt techniques were proposed by
Hagood and Von Flotow in a pioneering paper of the
1990s [5], after an idea proposed in [6]. The two proposed

circuits are the electrical analogs of a Lanchester damper
for the resistive shunt and a tuned mass damper (or
Frahm damper) for the resonant shunt [7]. Since then,
several improvements and variations have been proposed.
First, several associations (in parallel or in series) of the
resistor and the inductor were investigated and compared
in [8] and [9]. Since RL-shunt tuning requires a very large
inductor (of several tens of henrys) for usual mechanical
frequencies, some authors have proposed the use of an
additional capacitance to reduce the optimal inductance, also
resulting in a reduction of the damping performances [10].
The same technique can be used in an opposite way, by
using a negative capacitance, to increase the coupling factor
and thus the shunt performances. This technique, however,
is active, can be unstable and relies on synthetic electrical
components [11, 12]. Since the effect of a simple RL-shunt
circuit is reduced to a narrow frequency band around the
mechanical resonance to which it is tuned, several techniques
have been proposed to damp several resonances at the same
time: a RL-shunt network connected to a single piezoelectric
patch in [13], an array of interconnected RL-shunted patches
in [14–16] or a periodic array of independent shunted patches
in [17, 18]. To overcome the perfect tuning limitation of
the RL-shunt, adaptive circuits, in which the inductor is
automatically tuned to the mechanical resonance, have been
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proposed in [19, 20]. Those passive shunt techniques can
also be used to enhance active control techniques [21]. Some
recent works have proposed nonclassical piezoelectric patch
shapes to enhance the efficiency of the shunt [22]. Finally,
some semi-passive techniques, commonly known as ‘switch’
techniques, have recently been proposed to overcome the
above cited drawbacks of the RL-shunt of large inductance
and fine tuning. They are based on repeated changes of
the electrical impedance synchronously with oscillation of
the structure (see [23] and reference therein). Three review
articles and a recent book on the subject of adaptive
structures may also by cited [1, 24–26], as well as a recent
application [27].

The main goal of this paper is to systematically evaluate
the performances, in term of vibration attenuation, of a either
R- or a RL-shunt connected to a piezoelectric patch glued on
a host elastic structure. The vibration reduction brought by
the shunt is measured with two indicators: an added damping
factor for the free vibration case and a gain reduction in
the forced vibration case. Closed-form expressions for those
indicators are obtained, which are, to the knowledge of the
authors, original. It is shown that those indicators depend only
on two parameters: the so-called modal electromechanical
coupling factor (MEMCF) and the structural damping. The
same result is found for the optimal electrical parameters
(the resistor and inductor values) used to tune the shunts on
a particular mode. As a consequence, since the structural
damping is in most practical cases problem data, the only
parameter that has to be considered in the design of the shunt
is the MEMCF. In fact, several MEMCFs are defined for a
given structure with piezoelectric patches, each one being
associated with one piezoelectric patch and one vibration
eigenmode of the structure. Here they naturally appear in
the equations after expanding the model on the short circuit
vibration modes. Those MEMCFs are found very close to the
effective electromechanical coupling factor (EEMCF) defined
in [28] and their importance has been pointed out by several
authors in the past [5, 29, 30, 8, 31]. Analogous results
were also found when investigating switched shunting [23].
One of the quantitative results of the present study is that a
resistive shunt can be efficient in terms of vibration reduction
for structures that have very low structural damping. An
application example is turbojet blades [32]. That is why both
resistive and resonant shunts are considered with the same
importance in this study.

The outline of the paper is now described. In section 2,
a generic electromechanical model, obtained by modal
expansion, is proposed. In sections 3 and 4 the R- and
RL-shunts are considered. Closed-form expressions for the
optimally tuned electrical parameters are obtained in both the
free and forced vibration cases. The damping performances
are also estimated, which leads again to closed-form relations
that can be universally applied since they depend only on the
MEMCF and the structural damping. Finally, in section 5,
experiments in both free and forced vibration are proposed
to validate the strategy. In particular, estimation of the shunt
performance as a function of the MEMCF was found to be in
excellent agreement with the theory.

Figure 1. An arbitrary structure with a piezoelectric patch
connected to a resistive or a resonant shunt.

2. Model formulation

We consider an arbitrary elastic structure with one
piezoelectric patch, sketched in figure 1. We denote by U(x, t)
the displacement of any point x of the structure, at time t. A
resistive or a resonant shunt is connected to the piezoelectric
patch; V denotes the voltage between the electrodes, which is
also the shunt terminal voltage, and Q is the electric charge in
one of the electrodes. Considering the convention of sign for
V on figure 1, Q is precisely the charge in the upper electrode.
Several models for this coupled electromechanical system can
be obtained, either in an analytic fashion [33–35] or using a
finite-element discretization [36–39]. Then, a reduced order
model can be obtained by expanding the displacement U onto
N vibration eigenmodes:

U(x, t) =
N∑

i=1

Φi(x)qi(t). (1)

One can show that the modal coordinates qi(t) are solutions
of a problem of the form [39, 35]:

q̈i + 2ξiωiq̇i + ω
2
i qi − χiV = Fi, ∀i ∈ {1 . . .N}, (2a)

CV − Q+
N∑

i=1

χi qi = 0. (2b)

The electromechanical model of the problem is thus described
by N modal equations, corresponding to the balance law of
mechanical forces, and one electrical equation, associated
with the balance of electric charges on the piezoelectric
electrodes. Here, the short circuit eigenmodes are used.
They are the vibration modes of the structure with its
piezoelectric patch short-circuited (V = 0, ∀p = 1, . . . ,P).
Thus, (ωi,Φi) denotes the angular natural frequency and
mode shape of the corresponding ith mode, respectively. The
electromechanical coupling appears in those equations by a
modal coupling coefficient χi, that characterizes the energy
transfer between the ith mode shape and the piezoelectric
patch. Those coefficients can be computed in a particular
problem, either with an analytical model where closed-form
solutions are available [35] or by considering a finite-element
model [39]. The electric capacitance of the patch is denoted by
C. Finally, a modal structural damping term, of factor ξi, has
been added.

It is convenient to rewrite equation (2a) with Q as the
electrical unknown. By introducing equation (2b) into (2a)
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to eliminate V , one obtains the following set of equations,
equivalent to equation (2a):

q̈i + 2ξiωiq̇i + ω
2
i qi −

χi

C

N∑
j=1

χjqj +
χi

C
Q = Fi,

∀i ∈ {1 . . .N}. (3)

Those equations can be rewritten to introduce a dimensionless
coupling factor ki by using the following change of variables:

V̄ =
√

C V, Q̄ =
Q
√

C
. (4)

Note that V̄ and Q̄ are not dimensionless. Using equations (3)
and (2b), the modal electromechanical problem is then
written:

q̈i + 2ξiωiq̇i + ω
2
i qi + ωiki

N∑
j=1

ωjkjqj − ωikiQ̄ = Fi, (5a)

V̄ − Q̄+
N∑

i=1

ωiki qi = 0. (5b)

The dimensionless modal electromechanical coupling factor
ki has been introduced and is defined by:

ki =
χi

ωi
√

C
. (6)

Its physical meaning is as follows. If the above model
is truncated to its jth one mode only (qi = 0 ∀i 6= j),
equation (5b) becomes:

q̈j + 2ξjωjq̇j + ω̂
2
j qj − ωjkjQ̄ = Fj, (7)

where

ω̂j = ωj

√
1+ k2

j . (8)

The above defined frequency ω̂j is the natural frequency of the
mechanical oscillator (7) with Q̄ = 0. As a consequence, ω̂ is
an approximation of the jth system’s natural frequency in open
circuit as long as the natural frequencies are far enough from
one another, so that the single mode approximation is justified.
If we denote by ωSC

j and ωOC
j the jth natural frequencies

of the electromechanical system respectively in short circuit
(SC) and open circuit (OC) conditions, we have ωj = ω

SC
j (by

definition of ωj) and ω̂j = ω
OC
j . Then, equation (8) shows that

the MEMCF kj is close, in absolute value, to the jth effective
coupling factor keff,j [28]:

|kj| ' keff,j =

√√√√√ (ωOC
j )

2
− (ωSC

j )
2

(ωSC
j )

2 . (9)

This formula is convenient in practice, since ωOC
j and ωSC

j can
be easily measured, to obtain a good approximation of |kj|. For
more details, the reader can refer to [39, 23, 35].

The above formulation can be extended to a network
of patches connected in series or in parallel to a single
shunt circuit, giving an equivalent coupling factor kj that

measures the energy transfers between the electric circuit and
the jth mode through the electric network. Examples of two
collocated patches are given in [39, 35] and used in section 5
of the present paper.

3. Resistive shunt

The case of a resistive shunt, where the electric circuit
connected to the piezoelectric patches is simply a resistance
of constant R, is considered in this section (figure 1). In this
case, the relationship between V and Q is simply given by
Ohm’s law, V = −RQ̇. Then, using the reduced parameters of
equations (4) leads to the replacement of equation (5b) by

τe
˙̄Q+ Q̄−

N∑
i=1

ωikiqi = 0, (10)

where the resistive shunt time constant is

τe = RC. (11)

In the following, the shunt optimization and performance esti-
mation will be done by considering only one structural mode.
Thus, the N degrees of freedom model of equations (5a) and
(10) is truncated to the jth mechanical mode (i.e. qi ≡ 0,∀i 6=
j):

q̈j + 2ξjωjq̇j + ω̂
2
j qj − ωjkjQ̄ = Fj, (12a)

τe
˙̄Q+ Q̄− ωjkjqj = 0. (12b)

3.1. R-shunt free response

3.1.1. R-shunt optimal tuning: pole placement technique.
The so-called pole placement technique (PP) [5] is used here
to optimize the vibration reduction in the time domain. It
consists in finding the value τPP

e of τe that minimizes the
time decay of qj and Q. One has to maximize the real parts
of the three poles of the transfer function associated with
equations (12a) and (12b) in free oscillation (i.e. with Fj ≡ 0).
A numerical solution shows that one pole is real negative and
the two others are complex conjugates, which allows us to
denote them by λ1 = −σ and λ2,3 = −µ±jω, where σ , µ and
ω are three real positive numbers. One has thus to maximize
σ and µ. It can be numerically shown that σ is about 1000
times higher thanµ, for various values of τe. The consequence
is that the time decay of qj(t) and Q(t) is mainly governed
by exp(−µt). As a consequence, the PP criterion consists in
finding the value of τe that maximizes µ.

An analytical estimation of τPP
e can be obtained by

neglecting the structural damping ξj [5, 8]. By imposing
∂µ/∂τe = 0, one obtains the following optimal value for τe
(see appendix A.1 ):

τPP
e =

1

ωj(1+ k2
j /2)

. (13)

The corresponding values for σ , µ and ω are

σR
= ωj, µR

= ωjk
2
j /4,

ωR
= ωj

√
1+ k2

j /2− k4
j /16.

(14)
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Figure 2. Optimal value of the dimensionless electric time constant
τPP

e , for resistive shunt, as a function of coupling factor kj. The
quantity τPP

e ωj is shown instead of τPP
e . ‘—’. value of equation (13)

with no structural damping ξj; ‘− ◦ −’, numerical values τPPnum
e for

several values of the structural damping ξj (for ξj ∈ {1%, 0.1%,
0.01%}, all curves are merged).

One can verify that, as stated above, for usual values of kj
(small as compared to 1), we have σR

� µR.
If the structural damping is not neglected, we have

numerically estimated the value τPPnum
e that maximizes µ (by

computing the poles of equations (12a) and (12b) with ξj 6= 0),
for several values of ωj, kj and ξj. Figure 2 shows that for
small values of ξj (for ξj < 1%), no significant differences
are obtained between τPPnum

e and τPP
e , so that the optimal

value of τe with the PP criterion, for ξj < 1%, is τPP
e given

by equation (13).
One can remark that if kj is small compared to 1,

1+ k2
j /2 '

√
1+ k2

j H⇒ 1/τPP
e ' ωj

√
1+ k2

j = ω̂j. (15)

From a physical point of view, it means that the optimal value
τe of the electric time constant is close to the inverse of the
open circuit angular frequency.

3.1.2. Vibration reduction estimation. Since, as explained
above, the system’s free oscillations are mainly governed by
the term exp(−µt), µ measures the total damping of the
system, including both structural damping and that due to the
resistive shunt. We use as a shunt performance indicator the
following damping factor, defined by ξR

tot = µ
R/ωR. In the

case of no structural damping (ξj = 0), ξR
tot takes the form (see

equations (14))

ξR
tot

∣∣∣
ξj=0
= ξR

0 =
k2

j

4
√

1+ k2
j /2− k4

j /16
'

k2
j

4
. (16)

To consider the case of non-zero structural damping, we
define the added damping factor by subtracting the structural
damping from the total damping: ξR

add = ξ
R
tot − ξj. Figure 3

shows ξR
add as a function of kj, for several values of structural

damping ξj. ξR
add is numerically evaluated by computing the

poles of equations (12a) and (12b) with τe = τ
PPnum
e . Since

Figure 3. Added damping ξR
add in the case of a resistive shunt, for

several values of structural damping ξj (for ξj ∈ {1%, 0.1%,
0.01%}, all curves are merged). ‘—’, ξR

add = ξ
R
0 of equation (16);

‘− ◦ −, ξR
add is numerically computed with τe = τ

PPnum
e .

all curves are almost merged into a single one, we can verify
that τPP

e remains a good estimation for the optimal electric
time constant, for ξj up to 10%. This last result enhances
the validity range of τ pp

e , reduced to ξj < 1% at the end of
section 3.1.1.

Moreover, this shows that the added damping ξR
add does

not depend on the structural damping ξj, so that it is perfectly
known by its value with no structural damping: ξR

add ' ξ
R
0 .

As a consequence, the total damping with resistive shunt is
known analytically by the following formula (valid for ξj <

10%):

ξR
tot = ξj + ξ

R
add ' ξj + ξ

R
0 (17)

with ξR
0 defined by equation (16).

The above results show that the damping effect of the
resistive shunt is significant only for low structural damping.
For instance, if kj = 0.15, ξR

add ' 0.6%, so that ξR
tot ' 0.6 +

ξj (%). For ξj of the order of 10%, ξR
tot ' ξj and the effect of

the resistive shunt is negligible.

3.2. R-shunt forced response

3.2.1. R-shunt optimal tuning: transfer function technique.
In the case of forced vibration, the so-called transfer
function (TF) criterion [5] is used. It consists of choosing
the value of the shunt electric resistance R (corresponding
to dimensionless parameter τe) that minimizes the peak
amplitude of the frequency response function (FRF) modulus.
The frequency response function displacement/force (under
harmonic forcing of frequency �), associated with equa-
tions (12a) and (12b), is written as

H(�) =
1+ jτe�

ω2
j − (1+ 2τeξjωj)�2 + j�(τeω̂

2
j + 2ξjωj − τe�2)

.

(18)
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Figure 4. Frequency response function with a resistive shunt for several values of the electric time constant τe (i.e. for various resistances
R): (a) ξj = 0: with no structural damping; (b) with structural damping ξj = 0.1%.

As suggested in [5, 7, 40], the optimization problem is
solved by exploiting the fact that if the structural damping
ξj is neglected, there exists a point F that is common to all
gain curves |H(�)| when τe is varied (see figure 4(a)). The
coordinates (ωF,HF) of F can be obtained by remarking that
among all possible gain curves, it is common to two particular
ones: the one in short circuit (R = 0⇒ τe = 0) and the one
in open circuit (R = +∞ ⇒ τe = +∞), for which |H(�)|
has simple mathematical forms. Imposing |H(ωF)|τe=0 =

|H(ωF)|τe=+∞ leads to

ωF = ωj

√
1+ k2

j /2, HF =
2

ω2
j k2

j

. (19)

Then, since F is common to all gain curves, the optimum one
(the one that has the lowest peak amplitude) has its peak at
point F. The corresponding optimum value τTF

e of τe with this
transfer function criterion thus verifies

∂

∂�
|H(�)|2�=ωF

= 0. (20)

Evaluating the above equation leads to

τTF
e =

1
ωF
=

1

ωj

√
1+ k2

j /2
. (21)

Since the above value is valid with no structural
damping, we have numerically computed the value τTFnum

e
that minimizes the peak amplitude of |H(�)| in the case ξj 6=

0. We have shown that no significant difference is obtained
between τTF

e and τTFnum
e as long as the structural damping is

small (lower than 10%), so that the optimal value with the
transfer function criterion, for any value of ξj, is τTF

e given by
equation (21).

3.2.2. Vibration reduction estimation. To estimate the
vibration reduction brought by the resistive shunt, we define
the following quantity, referred to as the attenuation (in

decibels), by

AdB = 20 log
HSC

Hshunt
(22)

where HSC is the FRF peak amplitude in short circuit
situation and Hshunt is the one with the shunt connected to
the piezoelectric patches. It represents the reduction of the
vibration level brought about by the shunt, with reference to
the short circuit situation (see figure 4(b)).

In the short circuit situation, the FRF amplitude at the
resonance is

HSC = |H(ω̃j)|τe=0 =
1

2ξjω
2
j

1√
1− ξ2

j

, (23)

where ω̃j = ωj

√
1− 2ξ2

j is the resonance frequency in short

circuit.
With non-zero structural damping, the gain curves no

longer cross at point F (see figure 4(b)). However, if ξj
is small, the location of the optimal gain curve (the one
which has the lowest peak amplitude) is very close to the
one with ξj = 0 and its peak is thus very close to point
F. Consequently, a good estimation of the gain curve peak
amplitude with the shunt optimally tuned is then obtained by
the gain at point F: Hopt = |H(ωF)|with τe = τ

TF
e . After a few

mathematical developments, the maximal attenuation brought
by the resistive shunt can be written as

AR
dB = 20 log

HSC

Hopt
' 20 log

HSC

|H(ωF)|τe=τTF
e

= 20 log
k2

j + 2
√

2ξj

√
2+ k2

j

4ξj

√
1− ξ2

j

. (24)

The approximation used to obtain the above analytical
result is now verified, by numerically computing Hopt as the
maximum value of |H(�)| as a function of�, with τe adjusted
to its optimal numerical value τTFnum

e . Since no noticeable
difference is observed for ξj < 10% (see figure 5), the level
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Figure 5. Attenuation AR
dB due to a resistive shunt as a function of

coupling factor kj, for several values of structural damping ξj. For
each value of ξj, two curves are merged: the one of equation (24)
and the one numerically computed with τe = τ

TFnum
e .

of attenuation of vibration due to the resistive shunt is given
by equation (24).

The above equation (24) is useful to evaluate the
performance of a resistive shunt, that depends only on the
modal coupling factor kj and the structural damping ξj.
Figure 5 shows AR

dB as a function of kj for several values
of ξj. In the same way as in the case of the free response
(section 3.1.2), the effect of the resistive shunt is significant
only for low structural damping. For instance, if kj = 0.15, up
to 35 dB of attenuation are obtained with structural damping
of ξj = 0.01% whereas only 0.5 dB are observed with ξj =

10%. Moreover, one can remark that AR
dB does not tends to

zero when the coupling coefficient kj tends to zero. This
is a consequence of the definition of AR

dB: Hopt is the gain
at the frequency ωF , which tends to natural frequency ωj,
which slightly differs from the resonance frequency ω̃j used
to calculate HSC (equations (23) and (24)).

4. Resonant shunt

The case of a resonant shunt, where the electric circuit
connected to the piezoelectric patches is a resistance R and an
inductance L in series, is considered in this section (figure 1).
In this case, the relationship between V and Q is V = −RQ̇−
LQ̈. Then, using the reduced parameters of equations (4) leads
to the replacement of equation (5b) by

1

ω2
e

¨̄Q+
2ξe

ωe

˙̄Q+ Q̄−
N∑

i=1

ωikiqi = 0, (25)

where the resonant shunt frequency ωe and damping factor ξe
are defined by

ωe =
1
√

LC
, ξe =

RCωe

2
=

R

2

√
C

L
. (26)

In the following, shunt optimization and performance
estimation will be done by considering only one structural
mode. Thus, the N degrees of freedom model of equa-
tions (5a) and (25) is truncated to the jth mechanical mode

(i.e. qi ≡ 0,∀i 6= j):

q̈j + 2ξjωjq̇j + ω̂
2
j qj − ωjkjQ̄ = Fj, (27a)

1

ω2
e

¨̄Q+
2ξe

ωe

˙̄Q+ Q̄− ωjkjqj = 0. (27b)

4.1. RL-shunt free response

4.1.1. RL-shunt optimal tuning: pole placement technique.
As in the case of a resistive shunt (section 4.1.1), the
pole placement (PP) technique is used here to optimize the
vibration reduction in the time domain. It consists in finding
the values (ωPP

e , ξ
PP
e ) of (ωe, ξe) that minimize the time decay

of qj and Q. By numerically computing the four poles λi of
the transfer function of equations (27a) and (27b), it can be
shown that their real parts have a maximum absolute value
when the four poles degenerate to two complex conjugates,
denoted here by λ1 = λ2 = −µ + jω and λ3 = λ4 = −µ −

jω. An analytical estimation of (ωPP
e , ξ

PP
e ) can be obtained

by neglecting the structural damping ξj. One obtains (see
appendix A.2):

ωPP
e = ωj(1+ k2

j ), ξPP
e =

|kj|√
1+ k2

j

. (28)

The corresponding values for µ and ω are

µRL
=
|kj|ω̂j

2
, ωRL

= ω̂j

√
1− k2

j /4. (29)

If the structural damping is not neglected, one can
numerically estimate the values ωPPnum

e and ξPPnum
e that

maximize µ (by computing the transfer function poles with
ξj 6= 0), for several values of ωj, kj and ξj. For small
values of ξj (for ξj < 1%), no significant differences are
obtained between (ωPPnum

e , ξPPnum
e ) and (ωPP

e , ξ
PP
e ), as shown

on figure 6. Consequently, the optimal values of ωe and ξe
with the PP criterion, for ξj < 1%, are ωPP

e and ξPP
e given by

equation (28). In the same manner as in the resistive shunt
case, one can remark that if kj is small compared to 1, ωPP

e '

ωj and ξPP
e ' |kj|. The optimal value of the electric frequency

is close to the mechanical natural frequency and the optimal
value of the electric damping factor is close to the coupling
factor.

4.1.2. Estimation of vibration reduction. As shown before,
all transfer function poles have the same real part −µ. As in
the case of a resistive shunt, we use as a shunt performance
indicator the following damping factor, defined by ξRL

tot =

µRL/ωRL. In the case of no structural damping (ξj = 0), ξRL
tot

takes the form (see equations (29))

ξRL
tot

∣∣∣
ξj=0
= ξRL

0 =
|kj|√

4− k2
j

' |kj|/2. (30)

Again, the case of non-zero structural damping is considered
by defining the added damping factor ξRL

add = ξ
RL
tot −ξj. Figure 7

shows ξRL
add as a function of kj, for several values of structural

damping ξj. ξRL
add is numerically evaluated by computing
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Figure 6. (a) Optimal value of the dimensionless electric frequency ωPP
e for resonant shunt, as a function of coupling factor kj. The quantity

ωPP
e /ωj is shown instead of ωPP

e . (b) Optimal value of the dimensionless electric damping ξPP
e for resonant shunt, as a function of coupling

factor kj. ‘—’, value of equation (28) with no structural damping (ξj = 0); ‘− ◦−’, numerical values ωPPnum
e and ξPPnum

e for several values of
the structural damping ξj (For ξj ∈ {1%, 0.1%, 0.01%}, all curves are merged).

Figure 7. Added damping ξRL
add in the case of a resistive shunt, for

several values of the structural damping ξj. ‘—’, ξRL
add is computed

with (ωe, ξe) = (ω
PP
e , ξ

PP
e ) (all curves are merged for ξj ∈

{1%, 0.1%, 0.01%}). ‘©’, ξRL
add is computed with

(ωe, ξe) = (ω
PPnum
e , ξPPnum

e ) (all points are merged).

the transfer function poles with (ωe, ξe) = (ω
PPnum
e , ξPPnum

e ).
Since all curves are almost merged into a single one, one
can verify that (ωPP

e , ξ
PP
e ) remains a good estimation for the

optimal electric parameter, for ξj up to 10%. This last result
enhances the validity range, reduced to ξj < 1% at the end of
section 4.1.1.

Moreover, it shows that the added damping ξRL
add does not

depend on the structural damping ξj, so that it is perfectly
known by its value with no structural damping: ξRL

add ' ξ
RL
0 .

As a consequence, the total damping with a resonant shunt
is known analytically by the following formula (valid for
ξj < 10%):

ξRL
tot = ξj + ξ

RL
add ' ξj + ξ

RL
0 (31)

with ξR
0 defined by equation (30).

The damping effect of the resonant shunt is shown here
to be much more powerful than that of the resistive shunt.
For instance, if kj = 0.15, ξRL

add = 7.5% whereas ξR
add = 0.6%.

Consequently, even for high structural damping such as ξj of
the order of 10%, the resonant shunt has a significant effect.

4.2. RL-shunt forced response

4.2.1. Shunt optimal tuning: transfer function technique. In
the same way as in the resistive shunt case, the transfer
function (TF) criterion is used here. The frequency response
function displacement/force (under harmonic forcing of
frequency �), associated with equations (27a) and (27b), is
written as

H(�) =

{
1−

�2

ω2
e
+ 2jξe

�

ωe

}
×

{
�4

ω2
e
−�2

(
1+

ω̂j
2

ω2
e
+ 4ξeξj

ωj

ωe

)

+ ω2
j + 2j�

[
ξe

ωe
(ω̂j

2
−�2)+ ξjωj

(
1−

�2

ω2
e

)]}−1

.

(32)

As suggested in [5, 7, 40], the optimization problem is solved
by exploiting the fact that if the structural damping ξj is
neglected, for a given ωe value, there exist two points F−

and F+ that are common to all gain curves |H(�)| when ξe is
varied (see figure 8(a)). If ωe is varied, the vertical positions of
F− and F+ change in an opposite way. Consequently, finding
the optimum values of ωe and ξe is done in two steps. First,
one has to chose ωe so that the vertical positions of F− and
F+ are the same (figure 8(a)). It leads to ωe = ω

TF
e with

ωTF
e = ω̂j = ωj

√
1+ k2

j . (33)

If ωe = ω
TF
e and ξe is varied, for low values, the gain

curve shows two peaks at almost the same amplitude, and
for high values the two peaks collapse into only one, tending
to the open circuit condition (for ξe → +∞). The optimum
choice for ξe would be to make both peaks coincide with
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Figure 8. Frequency response function with resonant shunt for several values of the electric damping factor ξe (i.e. for various resistances
R). (a) With no structural damping (ξj = 0) and detuned condition (ωe < ωTF

e ): (1) short circuit (ωe →+∞); (2) open circuit (ξe →+∞);
(3) ξe = 0; (4), (5) increasing non-zero ξe = 0. (b) With structural damping ξj = 0.1% and tuned condition (ωe = ω

TF
e ).

Figure 9. Frequency response function with a resonant shunt, in
tuned condition (ωe = ω

TF
e ) and with structural damping ξj = 0.1%,

for several values of the electric damping factor ξe close to the
optimum one: (1) ξe = ξ

−
e ; (2) ξe = ξ

+
e ; (3) ξe = (ξ

+
e + ξ

−
e )/2;

(4) ξe = ξ
TF
e .

points F− and F+. This is actually impossible. However, there
exist two particular values of ξe, denoted ξ−e and ξ+e , so that
the left peak of the gain curve coincides with F− and the right
peak with F+, respectively. The corresponding gain curves
are shown in figure 9, along with the one associated with the
mean value of ξ−e and ξ+e . The chosen optimal value for ξe is
obtained by a truncated Taylor expansion of (ξ+e + ξ

−
e )/2 and

is (see appendix A.3)

ξTF
e =

√
3
8

kj. (34)

Since the above optimum values (ωTF
e , ξTF

e ) are valid
with no structural damping, one can numerically compute the
values (ωTFnum

e , ξTFnum
e ) that minimize the peak amplitude of

|H(�)| in the case ξj 6= 0. One can show that no significant
difference is obtained as long as the structural damping is
small (lower than 10%).

4.2.2. Estimation of vibration reduction. To estimate the
vibration reduction brought about by the resonant shunt, we
use the same quantity as for the resistive shunt: the attenuation
AdB defined by equation (22) and shown in figure 8(b).
With non-zero structural damping, the gain curves no longer
cross at point F+ and F− but remain very close to this
condition (see figure 9) if ξj is small. A good estimation of
the gain curve peak amplitude with the shunt optimally tuned
is then obtained by the gain at point F−: HRL

opt = |H(ω
−)|

with ωe = ω
TF
e and ξe = ξ

TF
e . Using symbolic mathematical

manipulations, one can show that the maximal attenuation
brought by the resonant shunt can be written as

ARL
dB = 20 log

HSC

Hopt
' 20 log

HSC

|H(ω−)|ωe=ωTF
e ,ξe=ξTF

e

= 10 log f (kj, ξj), (35)

where f (kj, ξj) is a function of kj and ξj only, whose expression
is given by equation (A.16) in appendix A.3.

The approximation used to obtain the above analytical
result is now verified, by numerically computing Hopt as the
maximum value of |H(�)| as a function of �, with (ωe, ξe)

adjusted to their optimal numerical values (ωTFnum
e , ξTFnum

e ).
Since insignificant differences are observed for ξj < 10%
(see figure 10), the vibration level attenuation brought
by the resonant shunt is given by equation (35)). The
a priori analogous expression for f (kj, ξj) obtained by
considering the gain close to point F+ (i.e. with Hopt =

|H(ω+)|ωe=ωTF
e ,ξe=ξTF

e
) has also been tested. It has been found

that it gives a slightly different estimation of ARL
dB , less

accurate that the one of equation (35).
The above equation (35) is useful to evaluate the

performance of the resonant shunt, that depends only on
the modal coupling factor kj and the structural damping ξj.
Figure 10 shows ARL

dB as a function of kj, for several values
of ξj. In the same way as in the case of the free response, the
resonant shunt is much more powerful than the resistive shunt,
even for high structural damping. For instance, if kj = 0.15,
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Figure 10. Attenuation ARL
dB brought about by the resonant shunt as

a function of coupling factor kj, for several values of structural
damping ξj. For each value of ξj, two curves are almost merged: ‘—’
the one of equation (35) and ‘– – –’ the one numerically computed
with (ξe, ωe) = (ξ

TFnum
e , ωTFnum

e ).

up to 55 dB of attenuation are obtained with ξj = 0.01% of
structural damping and 3 dB are observed with ξj = 10%. As
for AR

dB, ARL
dB does not tends to zero when kj tends to zero, for

the same reason.

5. Experiments

In order to validate some of the theoretical results of
this paper, experiments have been performed on the beam
sketched in figure 11. Some of the present experimental results
have been used to validate a finite-element model in [39] and
an analytical model in [35]. The beam is made of aluminum
and the piezoelectric material is PIC151. The beam and patch
lengths are lb = 170 mm and lp = 25 mm, their thicknesses
are hb = 2 mm and hb = 0.5 mm, their common width is
b = 20 mm and the patch position is x− = 0.5 mm. The patch
length has been chosen first and then, knowing lp/lb = 0.147,
the patch thickness has been selected as close as possible to
the optimal one found in [35], to maximize the piezoelectric
coupling k1 of the first mode.

The two piezoelectric patches are carefully bonded on
the beam with an Araldite 2011 epoxy adhesive [41]. The
whole bonding procedure, based on the one used for a strain
gauge [42], is fully detailed in [43]. The obtained epoxy layer
thickness has been measured to about 0.02 mm, which justifies
the perfect bonding hypothesis of the model. The piezoelectric

patches have wrapped electrodes and are installed on the
beam with opposite poling directions. They are connected in
series to the shunt circuit. The shunt circuit can be either a
simple resistor (practically realized with potentiometers) for
the resistive shunt, or a resistor in series with an inductor for
the resonant shunt (figure 1). In the latter case, the practical
values for the inductance L necessary to tune the RL-shunt
on one mechanical resonance (of the order of 100 H for
the first beam modes) are too large to be realized with a
passive electronic component. A synthetic inductor, realized
with operational amplifiers, is here used. The practical details
are gathered in appendix B.

The beam is clamped with a laboratory made vice, with
one of its chops articulated with respect to the other to
obtain a boundary condition as perfect as possible (figure 11).
An non-contact electromagnetic driving system is used,
composed of a small magnet glued on the structure with bees’
wax, subjected to the magnetic field created by a coil, fed
by a broadband noise electrical signal. This exciter is fully
described in [44]. The force acting on the beam is estimated
by measuring the current intensity in the coil, proportional to
the force. Current monitoring available on the power amplifier
is used for this. The beam motion is obtained with a laser
Doppler vibrometer, that measures the velocity of the beam
at one point.

5.1. Shunt performance in forced vibrations

The beam is studied under six electromechanical conditions,
enumerated below:

• (SC): the shunt is short-circuited with a wire (it imposes
V = 0 on figure 1);

• (OC): the shunt is left open (it imposes I = Q̇ = 0 on
figure 1);

• (R1): a resistive shunt, tuned to the first beam mode (1F),
is connected to the piezoelectric patches;

• (R2): a resistive shunt, tuned to the second beam mode
(2F), is connected to the piezoelectric patches;

• (RL1): a resonant shunt, tuned to the first beam mode (1F),
is connected to the piezoelectric patches;

• (RL2): a resonant shunt, tuned to the second beam mode
(2F), is connected to the piezoelectric patches.

Figure 11. Sketch and photograph of the experimental setup.
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Figure 12. Experimental frequency response function of the beam of figure 11, measured near the beam free end, for six electromechanical
conditions: (SC), short circuit; (OC), open circuit; (R1), (RL1), resistive and resonant shunt tuned to mode 1F; (R2), (RL2), resistive and
resonant shunt tuned to mode 2F. (a) General view showing the first four beam resonances and mode shapes, measured by a scanning laser
vibrometer. (b) Detail of mode 1F resonance. (c) Detail of mode 2F resonance.

In each condition, the beam’s frequency response function,
between the point forcing and the tip displacement, is
measured and shown in figure 12.

The natural frequencies of the beam, in short circuit (SC)
as well as in open circuit (OC) conditions, are first estimated
by measuring the frequency peaks of the corresponding FRFs
(figure 12). Since the damping is very low and because a
high frequency resolution (78 mHz) is used for the measured
FRFs, the resonance peaks are very sharp and the resonance
frequencies give a good estimation of the natural frequencies.
The first four natural frequencies (corresponding to three
flexural modes 1F, 2F and 3F, and one torsional mode 1T) in
both conditions (denoted as fj in SC and f̂i in OC) are given in
table 1. The damping factor of the first two modes is measured
by the frequency bandwidth 1ω at −3 dB below the short
circuit resonance peak, with the formula ξj = 1ωj/(2ωj). An
estimation of keff,j with equation (9) is also given in the same
table, which is of the order of 14% for the first two modes. The
1T torsional mode has a low coupling coefficient compared
to those of the flexural modes. It would be zero in theory,

since the extensional motion of the piezoelectric patches are
not activated when the beam undergoes torsion.

Now, the vibration response of the beam connected to
the four shunt circuits is analyzed. Theoretical values of the
optimal resistance and inductance are indicated in table 1.
They are computed using the formula gathered in table 3, with
the experimental short circuit frequencies fj = ωj/(2π) and
the equivalent theoretical capacitance of the two piezoelectric
patches connected in series C = C0/2 = 9.16 nF, with the
capacitance of each patch being C0 = ε33blp/hp, with ε33 =

2068ε0 the permittivity of PIC 151 [39, 45]. The high values
for the inductances justify the use of the synthetic inductor.
In both conditions, R-shunt and RL-shunt, the tuning was
carefully adjusted manually to obtain the highest attenuation.
The final experimental values of the electrical parameters have
not been measured, but they are close to the theoretical ones.
The experimental attenuations (in decibels) achieved by the
shunts are gathered in table 1 and are shown in figures 12(b)
and (c). Since the structure is lightly damped, the vibration
reduction achieved by the shunts is excellent: the resistive
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Figure 13. (a) Shunt circuit connected to the piezoelectric patches with an added capacitance Ca in parallel. (b) Attenuation AdB achieved
by resistive and resonant shunts as a function of coupling factor k1 of mode 1F, for the measured damping ξ1 = 0.17%. ‘—’, theoretical
results from equations (24) and (35); ‘◦’, experimental results obtained by artificially increasing the electric capacitance of the piezoelectric
patches.

Table 1. Experimental results in forced vibration (Exp., experimental; Th., theoretical).

Mode 1F Mode 2F Mode 1T Mode 3F

Frequencies Short circuit (SC) fj Exp. (Hz) 51.64 337.0 853.0 936.3
Open circuit (OC) f̂j Exp. (Hz) 52.17 340.2 854 940.0

Structural damping factors ξj Exp. (%) 0.34 0.28 — —

Effective coupling factors keff,j Exp. (adim) 0.144 0.138 0.050 0.089

Optimal parameters R-shunt resistance Th. (k�) 335 51 — —
RL-shunt inductance Th. (H) 1020 23.9 — —
RL-shunt resistance Th. (k�) 58.62 8.65 — —

Attenuations AdB R1-shunt Exp. (dB) 7.9 2.9 <0.5 1.5
Th. (dB) 8.1 — — —

R2-shunt Exp. (dB) 3.4 8.3 <0.5 3.5
Th. (dB) — 8.6

RL1-shunt Exp. (dB) 24.9 0 <0.5 0.5
Th. (dB) 24.1 — — —

RL2-shunt Exp. (dB) 0.7 24.9 <0.5 1
Th. (dB) — 25.7 — —

shunts reduce the first two resonance peaks by about 8 dB
whereas the resonant shunts reduce them by 25 dB. The
selectivity of the two shunt techniques is also visible: the
resistive shunt has a more broadband effect than the resonant
shunt. The R-shunt tuned on mode 1F significantly reduces
the 2F response (3 dB) and vice versa, whereas the resonant
shunt effect on other modes is negligible.

The theoretical values of the attenuation achieved by the
shunt are also given in table 1. They have been computed with
equations (24) and (35), using the measured values of keff,j '

kj and ξj. Considering that the experimental determination of
keff,j and ξj is associated with poor confidence, the agreement
between experiments and theory for AdB is excellent, thus
validating the closed-form expressions obtained in this paper.

5.2. Electromechanical coupling variation

In this section, an experimental validation of the theoretical
vibration reduction AdB obtained in sections 3.2.2 and 4.2.2
is proposed, by artificially reducing the electromechanical

coupling to measure several points on figures 5 and 10. For
this, a known capacitance is added in parallel to the shunt
(figure 13(a)). The equivalent capacitance of the piezoelectric
patches is then artificially increased, which leads to a decrease
in the electromechanical coupling factor. This feature has
been observed in [10]. Moreover, this technique is also used
in the opposite way with a negative (synthetic and active)
capacitance, to increase the coupling factor and improve the
shunt performance [12].

Quantitatively, if a capacitance Ca is added in parallel to
the electrical circuit (figure 13(a)), the following equations
hold:

V =
Qa

Ca
, Q = Qs − Qa, (36)

where Qa and Qs are the charges that flow respectively through
Ca and the shunt. Equation (2b) can be replaced by

(C + Ca)V − Qs +

N∑
i=1

χi qi = 0 (37)
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Figure 14. Time evolution of the beam tip velocity after initial static deflection and zero initial velocity: (a) short circuit (black) and open
circuit conditions (gray); (b) with resistive shunt tuned on mode 1F; (c) with resonant shunt tuned on mode 1F. ‘– – –’, exponential
envelopes.

so that C+Ca is now the equivalent capacitance viewed by the
shunt. It thus leads to the replacement of C by C + Ca in the
reduced parameter definitions (4), so that kj in equation (6) is
replaced by the reduced coupling factor:

k̃j =
kj

β
, with β =

√
1+

Ca

C
, (38)

which shows the reduction effect of a positive added
capacitance Ca. All equations have the same form, with kj

replaced by k̃j, Q̄ replaced by Q̄s/β and V replaced by βV̄ .
The mechanical part is consequently unchanged.

The first (1F) mode of the beam is considered and
increasing capacitances Ca are added in parallel to the
piezoelectric patches. For each capacitance, the effective
coupling factor keff,1 of the first mode is estimated
by measuring the open circuit and short circuit natural
frequencies. In fact, only the open circuit natural frequency
changes with the added capacitance. The structural damping
ξ1 is also measured with the frequency bandwidth method.
Its value is ξ1 = 0.17%, different from the value measured
for the experiments of section 5.1, probably because of
the clamped boundary, since the beam has been unmounted
between both experiments. Then, both resistive and resonant
shunts are tuned on the first mode and the corresponding
attenuation AdB is measured. Then, these experimental gain
reductions are compared with the theoretical ones, calculated
by equations (24) and (35) with the above measured values
of k1 ' keff,1 and ξ1, on figure 13(b). It shows an excellent
agreement and thus validates the theoretical results of
sections 3.2.2 and 4.2.2. Below coupling factors of 4%, it has
been found difficult to properly tune the resonant shunt.

5.3. An example in free vibrations

Some experimental results in free vibrations are now
described. The beam is subjected to an initial static deformed
position, created by a constant electric current fed to the
coil. At the initial time, the electric current is reduced to
zero (by opening a switch) and a very reproducible free
vibration regime is obtained. It is recorded in the four
following conditions: with the piezoelectric patches in short
circuit (SC), in open circuit (OC) and connected to resistive

and resonant shunt tuned to the first beam resonance with
the transfer function criterion (R and RL). The two latter
conditions have the same tuning as those used for the forced
response of section 5.1. The obtained time evolutions are
shown in figure 14. Since the constant force that imposes
the static initial position is localized near the tip of the
beam, the associated deflection is very close to the first
(1F) beam mode shape. As a consequence, the two shunts,
tuned on the 1F mode, have a large damping effect on
the oscillations, clearly visible on figure 14. In the case of
the resonant shunt, a slight beating phenomenon is visible,
probably stemming from a slight mistuning of the electrical
frequency (corresponding to the inductance), so that the two
poles of the transfer function do not have the same frequencies
(their imaginary part), which is the optimal condition of the
PP criterion (section 3.1.1). This mistuning can be either due
to an experimental uncertainty or to the slight difference in
tuning condition between the transfer function criterion and
the PP criterion (see table 3). High frequency oscillations, not
damped by the resonant shunt and related to the higher modes,
are also observable at the end of the signal. Finally, another
interesting feature is that the slight difference between the
open circuit and the short circuit natural frequencies is clearly
visible on figure 14(a), since the pseudo-periods of the two
oscillations are slightly different, thus leading to a progressive
phase shift.

In each of the four conditions (SC, OC, R and RL),
a decaying exponential can be adjusted to fit the envelopes
of the free vibration curves, in order to estimate equivalent
damping factors. Those exponential envelopes are shown in
figure 14 and the corresponding damping factors are collected
in table 2 (third row). By subtracting the experimental
damping factor in both shunt conditions from its value
in short circuit, added damping factors ξadd are obtained
(fourth row) and can be compared to their theoretical values
(fifth row), estimated with equation (16) for the resistive
shunt and equation (30) for the resonant shunt, that depends
only on the electromechanical coupling factor. The latter
(second row) is here estimated with equation (9), where the
natural frequencies in short and open circuit f SC

1 and f OC
1

(first row) are the average periods of oscillations of the
system in SC and OC conditions, estimated with the curves
of figure 14(a).
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Table 2. Experimental results in free vibration (Exp., experimental; Th., theoretical).

SC OC R RL

First mode natural frequencies f SC
1 , f OC

1 (Hz) Exp. 45.55 46.58 — —
EEMCF keff,1 (%) Exp. 21.5 — —
Damping factors ξ (%) Exp. 0.6 — 1.7 9

Added damping factors ξadd = ξ
shunt
− ξSC (%) Exp. — — 1.1 8.4

Added damping factors ξadd = ξ
shunt
− ξSC (%) Th. — — 1.15 10.7

Table 3. Optimal electrical parameter values for the tuned resistive and resonant shunt and associated performances. All parameters are
dimensioned. ωj is the jth structure’s natural angular frequency with the shunt short-circuited (in (rad s−1)), (kj, ξj) are the dimensionless jth
modal coupling factor and damping factor and C is the equivalent piezoelectric patch capacitance (in (F)). The R and L values are obtained
by combining equations (11), (13) and (21) for the resistive shunt, and equations (26), (28), (33) and (34) for the resonant shunt.

Free response Forced response
Pole placement criterion Transfer function criterion

Resistive shunt Opt. resistance R = 1
Cωj(1+k2

j /2)
R = 1

Cωj

√
1+k2

j /2

Performances ξR
add =

k2
j

4
√

1+k2
j /2−k4

j /16
'

k2
j
4 AR

dB = 20 log
k2
j +2
√

2ξj
√

2+k2
j

4ξj
√

1−ξ2
j

Resonant shunt Opt. resistance R =
2kj

Cωj (1+k2
j )

3/2 R =
√

3
2

kj

Cωj

√
1+k2

j

Opt. inductance L = 1

Cω2
j (1+k2

j )
2 L = 1

Cω2
j (1+k2

j )

Performances ξRL
add =

|kj|√
4−k2

j

'
|kj|

2 ARL
dB = ARL

dB (kj, ξj),
equations (35) and (A.16)

In fact, a different beam than the one of sections 5.1
and 5.2, with longer piezoelectric patches, has been used in
the present experiments. This explains why its characteristics
are different from those of table 1: the frequencies are
smaller, the MEMCF is larger (21.5%) and it is more damped
(ξ = 0.6% in SC/OC). However, an excellent match between
experimental and theoretical values for the added damping is
obtained. This further validates the closed-form expressions
presented in this paper.

6. Conclusion

In this paper we first addressed the tuning of both resistive
and resonant shunts. The optimal values for the electrical
parameters of both R- and RL-shunts, in both free and forced
vibration conditions, have been obtained, revisiting some
results of the literature obtained in the case of no structural
damping. Those classical results have been extended with
some numerical validations, showing that they are still valid
for damping factors up to 10%. Those parameters are gathered
in table 3. They depend only on: (i) the natural frequency
in short circuit of the considered vibration mode as well as
its modal coupling factor, and (ii) the equivalent electrical
blocked capacity of the patches. The tuned values of the
electrical parameters differ, depending on the optimization
criterion used (PP or transfer function). However, for small
values of the coupling factor kj, both criteria lead to almost
the same values, except for the optimal resistance of the
RL-shunt, which differs by a factor of about 2/

√
3/2 '

1.6. An analogous result has been obtained in the cases of
synchronous switch systems [23].

Then, performance indicators were derived for both
R- and RL-shunts. An added damping factor ξadd and an
attenuation level AdB were defined for, respectively, the free
and forced vibration cases. Closed-form expressions have
been obtained and are recalled in table 3. In all cases, the
performances are only functions of the piezoelectric coupling
factor kj and the structural damping factor ξj of the jth targeted
vibration mode. As a consequence, the present results can be
used for any mechanical host structure provided its modal
coupling factor and the modal damping is known. Since
kj is very close to the effective coupling factor keff, that
depends on the natural frequencies in open and short circuit
(equation (9)), the shunt performances are thus very easy
to estimate with figures 3, 5, 7 and 10 and table 3. Those
results are fully validated in section 5 and in figure 13 with
original experiments, obtained by artificially degrading the
electromechanical coupling by adding a capacitance in the
shunt.

A conclusion is that the shunt performances decrease
drastically when the structural damping increases. However,
even if the RL-shunt has the best performance, the R-shunt
is indeed efficient for very low structural damping factors.
As a consequence, this technique, often considered less
in the literature due to its poor performance, is probably
an interesting alternative to the RL-shunt in the case of
mechanical structures with very low structural damping [32].
It has the advantages of being very simple to implement, of
requiring no synthetic electronic components and of having a
tuning not as demanding as that of the RL-shunt. However,
it can work only if the coupling factor kj is finely optimized,
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by carefully choosing its position, geometry and thickness, as
proposed in [35, 32].

Appendix A. Electrical optimization details

A.1. Resistive shunt, pole placement criterion

We denote by AR the coefficient matrix of equations (12a) and
(12b). The transfer function poles λi thus verifies

det AR
= τeλ

3
+ (2ξjωjτe + 1)λ2

+ (τeω̂
2
j + 2ξjωj)λ+ ω

2
j = 0 (A.1)

that can be rewritten as

det AR
=

3∑
i=1

τe(λ− λi) = τ
3
e λ

3
+ τe(2µ+ σ)λ2

+ τe(µ
2
+ ω2

+ 2µσ)λ+ τeσ(µ
2
+ ω2). (A.2)

Then, identifying the two above equations terms by terms and
imposing ξj = 0 leads to

τe(2µ+ σ) = 1, (µ2
+ ω2

+ 2µσ) = ω̂2
j ,

τeσ(µ
2
+ ω2) = ω2

j .
(A.3)

Eliminating ω and σ in those three equations leads to

8τeµ
3
− 8µ2

+ (2τeω̂
2
j + 2/τe)µ− ω

2
j k2

j = 0. (A.4)

Derivating equation (A.4) with respect to τe shows that

∂µ

∂τe
= 0 H⇒ 8µ2

+ 2ω̂2
j − 2/τ 2

e = 0. (A.5)

Finally, eliminating µ between equations (A.5) and (A.4)
gives the value τPP

e of τe and the corresponding values for ω,
µ and σ (equations (13) and (14)).

A.2. Resonant shunt, pole placement criterion

We denote by ARL the coefficient matrix of equations (27a)
and (27b). The transfer function pole λi thus verifies

det ARL
=
λ4

ω2
e
+

2
ωe

(
ξe + ξj

ωj

ωe

)
λ3

+

(
ω̂2

j

ω2
e
+ 4ξeξj

ωj

ωe
+ 1

)
λ2

+ 2
(
ξe

ωe
ω̂2

j + ξjωj

)
λ+ ω2

j = 0. (A.6)

that can be rewritten as

det ARL
=

4∑
i=1

1
ωe
(λ− λi)

=
1
ωe
(λ+ µ− jω)2 (λ+ µ+ jω)2 . (A.7)

Then, expanding and identifying the above expression with
equation (A.6) and imposing ξj = 0 leads to

2ξe

ωe
=

4µ

ω2
e
, 1+

ω̂2
j

ω2
e
=

2

ω2
e
(2µ2

+ ω2),

2ξeω̂
2
j

ωe
=

4µ

ω2
e
(µ2
+ ω2), ω2

j =
(µ2
+ ω2)

2

ω2
e

.

(A.8)

After a few mathematical operations to solve those four
equations for the four unknowns ωe, ξe, µ and ω,
equations (28) and (29) are obtained. Those results have been
previously obtained by [5, 8] with different notation.

A.3. Resonant shunt, transfer function criterion

The first step is to write the modulus of H(�) (equation (18))
with ξj = 0 in the following form:

|H(�)|2 =
A0 + A2ξ

2
e

B0 + B2ξ2
e

(A.9)

with

A0 =

(
1−

�2

ω2
e

)2

, A2 = 4
�2

ω2
e
, (A.10)

B0 =

[
�4

ω2
e
−�2

(
1+

ω̂2
j

ω2
e

)
+ ω2

j

]2

,

B2 =
4�2

ω2
e
(ω̂2

j −�
2).

(A.11)

Then, the frequencies ω− and ω+ of points F− and F+ verify

|H(ω)|ξe=0 = |H(ω)|ξe→+∞,

⇒ A0B2 = A2B0,

⇒ ω2
± =

ω̂2
j

2

(
1+

ω2
e

ω̂2
j

±

√
1+

ω4
e

ω̂4
j

−
2

1+ k2
j

)
. (A.12)

The gain in points F− and F+ is obtained with
equation (A.12) and ξe →+∞:

|H(�)|2 =
A2

B2
=

1

(ω̂2
j −�

2)
2 . (A.13)

Then, the optimal value ωTF
e = ω̂j (equation (33)) is obtained

by imposing |H(ω+)|2 = |H(ω−)|2. Their common value is

|H(ω±)|ξj=0,ωe=ωTF
e
=
√

2
√

1+ k2
j /ω̂

2
j /kj. (A.14)

The values ξ±e for which the gain curve has one peak at
point F± are obtained following the method introduced in [46]
and fully explained in [47], for tuned mass dampers (TMD).
It must be emphasized that the present RL-shunt coupled to
a one degree of freedom mechanical oscillator is the analog
of the TMD presented in [47], with the absorber damper
connected to the ground. However, an exact analogy is not
possible since in the classical TMD, the important parameter
to optimize is the mass ratio ma/mp (of the absorber and the
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primary system, using the notations of [47]), whereas in the
RL-shunt it is the coupling factor kj, equivalent to the stiffness
ratio ka/kp of the TMD. As a consequence, the results of [47]
cannot be used here as they are. So, following the method
of [46, 47], one obtains

ξ±e =

√
3
8

kj

√
2√√

1+ kj2(±
√

2kj + 2
√

1+ k2
j )

'

√
3
8

kj

√
2√

2±
√

2kj

. (A.15)

whose mean value is close to ξTF
e =

√
3/8kj (equation (34)).

Finally, the attenuation is obtained with the gain
|H(ω−)|ωe=ωTF

e ,ξe=ξTF
e

at point F−, without neglecting the
structural damping ξj, by symbolic computations. One shows
that ARL

dB = 10 log f (kj, ξj) with

f (kj, ξj) =
n(kj, ξj)

8(6k2
j + 8− 3kj

√
2
√

1+ k2
j )ξ

2
j (1− ξ

2
j )
,

(A.16)

with

n(kj, ξj) = 8[9k4
j + 17k2

j + 8− kj
√

2
√

1+ k2
j (6k2

j + 7)]ξ2
j

+ 16
√

3kj(1+ k2
j )(
√

2
√

1+ k2
j − kj)ξj

− 3k3
j

√
2 (1+ k2

j )
3/2
+6k6

j + 14k4
j + 8k2

j . (A.17)

One can verify that ξj = 0 in the above expression leads to
expression (A.14).

Appendix B. Synthetic inductor

The modified version of the Antoniou synthetic inductor
proposed in [48] is used and shown in figure B.1. Its
equivalent electric impedance is

Z(�) =
V

I
= jLeq�− Req, with Leq =

CR3R1

R2
P2,

Req =
R1

R2
P1.

P2 and P1 are two resistive potentiometers that enable us to
tune the equivalent inductance Leq and a negative resistance

Req. In our experiments, Req has been set to zero, since
no parasitic resistance had to be canceled. The amplifiers
used were type OPA 445 AP, selected for their relatively high
operating voltage [49]. Care must be taken regarding ground
loops and shorts, as this inductor is grounded and the structure
may or may not be isolated from the ground and circuit,
particularly in the series shunt case.
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