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Investigation of the electron emission properties of Silver: from technical Ag surfaceto ion-
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INTRODUCTION

When a solid is hit by incident electrons, the ggdransfer can result in the emission of seconétegtrons
(SE) and backscattered electrons (BSE). Electraisséon (EE) is at the origin of Multipactor effettat can
occur in several rf devices under vacuum. To imerthve modelling of this effect and the estimatidrit®
threshold, it is capital to know accurately somepgrties of the emitted electrons such as (i) #eorsdary
electron emission yield (SEY), (ii) the electronckscattered yield (BSEY) and (jii) the energy disition
N(E). These properties are ordinarily extractednfrmeasurements performed on materials of high ypurit
evaporated [1] or ion cleaned [2] under ultra-higituum conditions (UHV). However, the used matsrilrf
devices are technical and are usually exposed daglsmonths to ambient atmosphere. Thus, their crfa
properties are extremely different from that of thek of pure metals. Since the emitted secondegtrmns
have a low energy (a few eV) and are generatedgyadofew nanometers depth; obviously, the tabul&id
properties of pure materials are far from beingesentative of technical materials. For instanoe,maximum

of the electron emission yield (EEY) of pure alumim is lower than 1 [1], while that of technicatalinium is
higher than 2.8. The purpose of this paper isudysexperimentally electron emission of technidaks and to
establish the relation to the EE properties of pecanical silver. Technical Ag surface (exposedttnosphere)

is mainly composed by A§ and other deposited compounds, like water arfibnacompounds. Indeed, Ag is
widely used as coating material in waveguides. Meaments are performed in an UHV experimental ifgcil
named CELESTE and located at ONERA. A special éxysertal protocol was developed to extract relevant
guantities. The electron emission yield EEY is stigated from very low incidence energy (few eVRaD0eV.
The energy distribution of the emitted electrons waonitored with means of an electron analysertep by
step Ar ion “cleaning” was performed in situ. Therface composition is monitored by Auger electron
spectroscopy (AES) during cleaning process and B&EYell as the energy distribution of the emittlegtteons
were measured at each step. The effect of inoedangle on the EEY was also investigated. An olvdrap of
the EEY was observed during the ion cleaning psocEse maximum of the EEY decreases from 2.2663 1.
and the first crossover energy increases from 200el25 eV during the ion cleaning process. Thecefdf the
ion-cleaning on the EEY tends to be supressed adftging of the vacuum chamber.

PRINCIPLE

The principle of the experimental protocol is reygngted in figure 1. EEY measurements, AES andrelect
emission spectra were performed before and aftdr @asion step. Similar protocol has been useddmtini et

al [3]. All the measurements were performed in thd EGTE facility. This facility is entirely dedicategind
designed to the study of electron emission. A dinpd-molecular pump associated with an oil-freamary
pump allows the system to be maintained at a vadewsi down to 5x18mbar. The tank is grounded. The
sample holder allows the variation of the electirmidence angle from 0° (normal incidence angle§@d. An
ELG-2 electron gun from Kimball Instrument was usédhe electron beam was pulsed during EEY
measurements to limit conditioning effect and wastiouous during spectra acquisition. The Tectragan
used has an energy range of 50eV to 5000eV. Theci©Omielectron analyser can record spectra from 0O to
2000eV with an accuracy of 0.5meV. The sample wagatively biased to -9V during EEY and AES
measurements.
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Fig.1.Schematic representation of experimentalps€ELESTE
RESULTS
Sample

The sample was Ag (Ag00470/31) of high purity (294) provided by Goodfellow Company. It was expofad
more than 3 years to ambient atmosphere. It haagesof a 0.5 mm thick square plaque (32x3Z)mRoughness
measurements by Zygo interferometry performed @nstimple prior to the experiments revealed an geera
roughness of 160 nm. The sample has been waslettidoyol before mounting in the measurement systéree

it was outgassed in Ultra High Vacuum for 10 degfote the first measurement.

Eraosion parameters

The sample was sputtered with Argon ions in sev@eyls. The same parameters (1 keV, normal inogjdac
each erosion step were applied, only the erosioatidn of each step was varied. The ion currenasaed
using a Faraday cup was adjusted tquB/6m2. The results presented in this paper aresketwon the technical
sample (before erosion), (b) the sample at annradiate state corresponding to an erosion tim@ & Gin and
(c) the sample considered as pure after 132 mieradion (final state)The final state is considered reached
when both the AES spectra of contaminants and E& heached a steady state.

Surface composition

The AES microanalysis technique was used to motfiisurface and near surface chemical compogfiéon
nanometres in depth). After each erosion step,rab¥ES peaks (as Ag, C, O, S) were recorded ugdeV
electron excitation. The evolution of Ag, C and €aks at 3 main steps (a, b and c) are represanfigliies 2,

3 and 4. On the ‘as received’ sample, the silvakégure 2) is weak in comparison with the intediate and
final states (b and c). This feature implies thattean contamination layer thickness is compatahlee mean
AES escape depth (few nm). This is supported bylaige carbon contamination peak observed on tlersi
surface exposed to air. It should be noted that fleak is broadened to the higher energy rangéeat t
intermediate state. This broadening implies thelh@mical valance shift occurred during the clearpnaress.
Indeed, the carbon compounds were most probabymieated by ion bombardment resulting in a stagicall
increase of the number of different chemical bongdor carbon. Oxygen was also observed on theasved
Ag surface. The intensity of oxygen peak is wedkan that of carbon and decreases quickly. Thene imore
oxygen from the 3rd cleaning step, corresponding.5omin of erosion. This oxygen was probably ciorga in
deposited water layer on the sample, and probattiysignificantly in the carbon compounds since ¢hgbon
peak is still important after oxygen peak has digesped during erosion. The Ag AES peak increasgsglthe
cleaning process. The ion etching removes the oangdion layer resulting in a progressive increafsthe Ag
MNN AES transition. A peak shift was not observadhe case of Ag.
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Fig.2. Auger peak of Ag (biased-9V)

Carbon is still detected even after the finalestahs reached (c). Possible reasons for that isrbant surface
roughness that prevents evacuation of contaminatigek in asperities or carbon diffusion withinveil.
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Fig.3. Auger peak of carbon on Ag (biased -9V).
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Fig.4. Auger peak of oxygen on Ag (biased -9V).
Energy distributions

Electron emission spectra of Ag measured unden/28lectron irradiation are represented on figura Bhree
previously described states (a, b and c). Theielbatkscattered peaks of the three spectra ageclase in
intensity. For clarity, the three spectra were radized with respect to their elastic peak. Two majealitative
variations must be highlighted.

- The secondary electron peak decreases as adnraftihe erosion time. This trend is in good agreet with
the EEY evolution presented in figures 6 and 7.

-The inelastic backscattered electrons quantityemses. Note that a characteristic backscattered pe
corresponding to plasmon loss appears on pure A difference of Backscattered Electron Yield (B$E
between pure and technical silver had already bbeerrved for Ag in [4] in the energy range 100 @0@eV.
The increase of the inelastic BSE contribution banexplained by the fact that contaminant layer Ibagr
mean atomic number (carbon) than that of the bsilkef). Indeed, the BSEY increases as the meamiato
number of the target increases.
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Fig.5.Electron emission spectra of Aghcgn=20.4eV



Total electron emission yields

The experimental method used for EEY measuremsrdescribed in [2]. The EEY is plotted in figurea$ a
function of the incidence angle for air exposedsagple. The energy of first crossover)(Ehe energy at EEY
maximum (B, and the EEY, for ‘as received’ and ‘cleaned’ sample are giveiiable 1.
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Fig.6. EEY of Ag for several incidence angles.

E; at normal incidence increases from 20eV for theeasived sample as technical Ag (a) to 125eV astaee

(c) (cleaned sample). The shape of the EEY curse ettanges with a huge shift of the ERgdrom 250eV for

‘as received’ sample to 700eV for ‘pure’ Ag. EEY asarements are compared to that of literature doe B\g
(evaporated under UHV) at normal incidence fromildng et al. [5] and Bronsteiret al. [1]. Results are in very
good agreement, particularly with those of Bromsgtial., even if there is a small divergence over 1500 eV.
EEY values of Bruininggt al. are lower but the trend is quite similar. Thisfoons that the contamination layer
was well removed with the experimental protocol.
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Fig.7. EEY on pure Ag



Table 1. k, Eyaxand EE Y, Of ‘as received’ and ‘cleaned’ Ag

it 0 20 40 50 60
angle (°)
Surface AS. Cleaned AS. Cleaned AS. Cleaned AS. Cleaned AS. Cleaned
state received received received received received
=1 20 125 20 125 20 120 20 115 20 110
Ere 250 700 250 700 300 800 350 900 450 1000
EE - 2.26 1.67 2.35 1.67 2.64 1.82 2.87 1.81 3.13 2.03

In order to provide an overview of cleaning prolceffects on EEY, figure 8 shows the evolution &¥E(also
called TEEY for total electron emission yield) ap&rticular incident energies; 300 and 1200eV. fitnere is
divided in 3 parts.

In the first one, the sample is contaminated. Adech erosion step, the TEEY decreases below #viops
value. Thereafter, between two steps (of erositi@) EEY increases again. This implies that desp#adact
that the sample was under UHV, some contaminatiasickty redeposit on the surface. In figure 9 a
simplistic chemical composition profile of the sdms represented based on the Auger spectra. ilMee s
sample is probably covered by a carbon compoungs land a thin water layer. In the same figure an
estimation of eroded depth calculated on the bas$i®rosion rate of Ag tabulated in [6] and the
experimentally measured ion current. It should bedh that the erosion rate of contaminant is adstai
different from that of silver, which is not takemo account in our calculation.

In the second one, the TEEY at 1200 eV becomesehitjfan that at 300eV. This is in agreement with th
shift of TEEVYmax to high energies for pure silver (see table 1er€hafter the TEEY becomes stable in spite
of two successive erosion steps (at 500h and dt)6T4his feature implies that a steady state ishred, the
sample being considered as “pure”.
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Fig.8. Evolution of TEEY at 300 and 1200eV as &cfion of time.

iii. In the third part, the sample have been exposedirtdor 15 min, and then evacuated to UHV. Two
measurements have been performed (at 760h and.81@nyssover between the TEEY at 300 and 1200eV
is observed. The last measurements (1130h) weferpexd after an additional exposure of the sanpkert
for 24h. The TEEY converges to initial values doi¢hte deposition of a new contamination layer.
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Fig.9. Theoretical eroded thickness and simplistimple representation.



DISCUSSION

We have investigated in details the step by stepuéen of the EE properties from as received silsample
(technical sample) to sample considered as purémygprtant evolutions of TEEY spectrum shape asepked
during cleaning process. An overall decrease ofyikll was observed and in particular the firstssaver
energy shifts from 20 eV (technical sample) to &825(pure sample). The measured energy distributibasy
that the cleaning process leads to an increaseedhtlastic BSE yield. The electron energy logxsp (EELS),
not presented here, clearly reveal an importanease of the characteristic energy loss frequesunface and
volume plasmon losses) when the sample was cledheglobservation may explain the increase of tie¢aistic
BSE yield. When the sample is exposed to ambienospihere after the cleaning process, the sampbears
progressively its initial state properties, in &tigely short time. This last observation may explthe fact that
the EEY measured by us on many technical silvesileer plate samples over more than 5 years areraely
stable. The contamination layer built within a felays after sample processing plays the role oflestab
“passivation layer” whose properties replace thafgbe silver.

The presented results highlight the fact that tbe of tabulated electron emission data measuredodelled
very often on pure and clean materials for fundaaieénvestigations purpose, must be used with graation
in context of applications (rf devices exposedttoasphere).
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