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Abstract:  10 

Visible, Near-Infrared and Short Wave Infrared (VNIR/SWIR, 350-2500 nm) hyperspectral 11 

imaging spectroscopy may provide estimated soil properties maps. The performance of the 12 

estimations is usually assessed with figures of merit such as the Standard Error of Calibration, 13 

the Standard Error of Prediction or the Ratio of Performance Deviation. All of these 14 

parameters are estimated during model building and validation stages to evaluate global 15 

model performance. Beyond these global indicators, evaluation of uncertainty affecting each 16 

prediction is a major trend in analytical chemistry and chemometrics, but not yet in 17 

hyperspectral imagery. Several approximate expressions and resampling methods have been 18 

proposed for the estimation of prediction uncertainty when using multivariate calibration from 19 

laboratory spectra. Based on these works, this paper proposes a mapping and analysis of the 20 

uncertainties affecting predictions obtained from VNIR/SWIR airborne data, using several 21 

methods. An application to real VNIR/SWIR airborne data related to clay content allowed us 22 

to compare these different methods. A focus on different specific cases yielded some insights 23 

on the uncertainty sources and showed that uncertainty analysis could guide the user to better 24 

sampling, better calibration and finally better mapping. 25 
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1- Introduction 32 

Since two decades, laboratory Visible, Near-Infrared and Short Wave Infrared (VNIR/SWIR, 33 

350-2500 nm) spectroscopy has been proven as a good alternative to costly physical and 34 

chemical laboratory soil analysis for the estimation of a large range of soil properties (e.g. 35 

Ben-Dor & Banin, 1995, Viscarra Rossel, 2006, Cécillon et al., 2009). These works opened 36 

the way to VNIR/SWIR hyperspectral imaging spectroscopy for estimating soil properties. 37 

VNIR/SWIR hyperspectral imaging spectroscopy may provide a global view of the area under 38 

study at high spatial resolutions, and may provide characterization of several soil properties 39 

simultaneously. Ben Dor et al. (2002) started this research way, with multivariate calibration 40 

statistics applied to remotely-sensed data. Since then, the VNIR/SWIR hyperspectral imaging 41 

spectroscopy benefits from an increasing number of methodologies developed in lab soil 42 

property prediction studies, including Partial Least Square Regression (e.g. Gomez et al., 43 

2008a), Support Vector Machine Regression (e.g. Stevens et al., 2010), Multiple Linear 44 

Regression (e.g. Bayer et al., 2012), Stepwise Multiple Linear Regression (e.g. Lu et al., 45 

2013) and Regression Rules (Budiman & McBratney, 2008). And several studies have been 46 

successfully conducted to map soil properties such as Clay, Calcium Carbonate, Iron, Soil 47 

Organic Carbon… (e.g., Ben-Dor et al., 2007, Selige et al., 2006, Gomez et al., 2008b, 48 

Gomez et al., 2012a, Stevens et al., 2010). 49 

Nevertheless, whatever the regression methods, the number of samples in the 50 

calibration database, the scales of study or the studied soil properties, the quality of the 51 

mapping results are expressed by using the performance of the models with global figures of 52 

merit such as standard error of calibration (SEC) and standard error of prediction (SEP), 53 

respectively referred to as Root Mean Squared Error of Calibration (RMSEC) and Root Mean 54 

Squared Error of Prediction (RMSEP). The coefficient of Determination (R²) and the Ratio of 55 

Performance Deviation (RPD) are also used as a measure of multivariate model prediction 56 

accuracy. The ratio of performance to interquartile (RPIQ), which is the ratio of the 57 

interquartile (IQ = Q3–Q1) to the RMSEP has been recently proposed as an alternative to the 58 

RPD to better take into account the shape of the distribution (Bellon-Maurel et al., 2010). All 59 

of these parameters are estimated during model building and validation stages to evaluate 60 

global model performance. Selige et al. (2006) used the Partial Least Square Regression 61 

(PLSR) method with 72 soil samples in their calibration database to map Sand content over 7 62 

km², from HYMAP VNIR/SWIR hyperspectral data. Gomez et al. (2012b) used the PLSR 63 

method with 95 soil samples in their calibration database to map Clay content over 300 km², 64 

from AISA-DUAL VNIR/SWIR hyperspectral data. And both researches expressed the 65 
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quality of their mapping results by using the performance of their PLSR models (calculation 66 

of the figures of merit) associated to a visual pedological expertise of the soil maps. Finally, 67 

some researches added a geostatistical analysis to study the spatial structure of the predicted 68 

soil property (e.g. Schwanghart & Jarmer 2011, Gomez et al., 2012a). 69 

Added to the global performance indicators, visual pedological expertise and 70 

geostatistic analysis, the accuracy, precision, trueness and uncertainty of each new prediction 71 

should have to be provided, in association to the predicted values, to better characterize the 72 

quality of the maps of predictions. In this paper, we chose the following definitions, also 73 

described by Zeaiter et al., 2004. The “accuracy” of new predictions is the distance between 74 

the predicted value and the “true” value (ISO 5725-1:1994). And the “uncertainty” of new 75 

predictions is defined as “a parameter associated with the result of a measurement that 76 

characterizes the dispersion of the values that could reasonably be attributed to the 77 

measurand” (AFNOR NFX07-001:1994), and is related to the variance of the prediction. The 78 

accuracy and the uncertainty are two uncorrelated indicators of quality of the predictions. A 79 

predicted value can be close to the “true” value (high accuracy), but associated to a high 80 

uncertainty (high variance). And inversely, a predicted value can be far to the “true” value 81 

(low accuracy), but associated to a low uncertainty (low variance). The accuracy would be the 82 

more interesting criteria to obtain, but the estimation of the accuracy for each new prediction 83 

is still an inaccessible scientific challenge.  84 

The uncertainty of new predictions has been firstly studied by Phatak et al. (1993), 85 

Denham (1997), and Hoskuldsson (1988) who assumed the hypothesis of negligible errors in 86 

predictors. Those works were expanded by Faber and Kowalski (1997) who included errors in 87 

the predictors under the general errors-in-variables model. A drawback of their approach is 88 

that the original expression is derived under the assumption that the errors in the predictors 89 

have constant variance (the homoscedastic case). Later Faber and Bro (2002) proposed a new 90 

expression which accommodated for heteroscedastic and correlated errors. But in fact, the 91 

expression was derived under the assumption that the errors in predictors are identically and 92 

independently distributed (i.i.d.) and the authors conjectured that it applied to most types of 93 

heteroscedasticity. More recently, Fernandez-Ahumada et al. (2012) proposed a new 94 

expression for the variance of the prediction adapted to any linear calibration models, like, 95 

e.g. PLSR. This formulation respects the specificities of spectrometry and particularly the 96 

spectral error structure which is induced by the high colinearity of the variables. 97 

Based on these works, this paper proposes an analysis process of the uncertainty 98 

affecting predictions obtained from VNIR/SWIR airborne data. A bootstrap procedure allows 99 
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the calculation of a variance of predictions of each VNIR/SWIR airborne spectrum, which 100 

would represent the sum of all the sources on uncertainty and would be considered as the 101 

“true” variance. In addition, the distance between the spectral predictors and the spectral 102 

calibration samples are calculated as two uncertainties expressions: i) in a Principal 103 

Component Analysis (PCA) space (Mahalanobis Distance) and ii) in the multivariate model 104 

space (Leverage). Finally, the expression for the variance of prediction proposed by 105 

Fernandez-Ahumada et al. (2012) is adapted to the VNIR/SWIR airborne data. The adaptation 106 

of this formula allows taking into account the spatial dimension of these remote sensing data 107 

and allows the spatialisation of the total variance of predictions, and each term of the formula: 108 

i) variance of predictions due to the multivariate model, ii)  variance of predictions due to the 109 

spectra and iii)  interaction between these two effects. The proposed analysis process uses the 110 

spatial dimension of the VNIR/SWIR airborne data to express the uncertainties in the form of 111 

maps. 112 

This process of uncertainty analysis has been performed on recent study of a clay 113 

content mapping by VNIR/SWIR AISA-Dual airborne data over a Tunisia area (Gomez et al., 114 

2012b). First, all the uncertainty expressions are calculated and analyzed on a validation 115 

database. Secondly, all the uncertainty expressions are calculated, mapped and analyzed on a 116 

test area and different specific cases highlighted some specific interest of these uncertainty 117 

expressions.  118 

 119 

2. Materials 120 

 121 

 2.1 Notations 122 

In the following paper, capital bold characters will be used for matrices, e.g. A; small bold 123 

characters for column vectors, e.g. ai will denote the ith column of A; row vectors will be 124 

denoted by the transpose notation, e.g. a’. Lowercase non bold italic characters will be used 125 

for scalar variables, e.g. indices i. Uppercase non bold italic characters will be used for scalar 126 

constants, e.g the number of samples N. If needed, matrix dimensions will be indicated, e.g A 127 

(N×P). The trace of a square matrix A will be noted tr(A). 128 

  129 

2.2 Site description 130 

The study area is located in the Cap Bon region in northern Tunisia (36°24’N to 36°53’N; 131 

10°20’E to 10°58’E), 60 km east of Tunis, Tunisia (Figure 1). This 300 km² area includes the 132 

Lebna catchment, which is mainly rural (>90%) and devoted to cereals in addition to legumes, 133 
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olive trees, natural vegetation for breeding and vineyards. It is characterized by rolling areas, 134 

with an altitude between 0 and 226 m. The climate varies from humid to semi-arid, with an 135 

inter-annual precipitation of 600 mm and an inter-annual potential evapotranspiration of 1500 136 

mm. The soil pattern of the Lebna catchment arises mainly from variations in lithology. The 137 

changes in the landscape between Miocene sandstone and marl outcrops induce large 138 

variations in the physical and chemical soil properties (map of Zante et al., IRD production). 139 

Furthermore, the distance between successive sandstone outcrops decreases steeply along a 140 

sea-mountain direction, which results in variations in the soil property patterns as well 141 

(Gomez et al., 2012b). The soil materials were redistributed laterally along the slopes during 142 

the Holocene, which add to the complexity of the soil patterns. The main soil types are 143 

Regosols, Eutric Regosols (9.6%) preferentially associated with sandstone outcrops, Calcic 144 

Cambisol, and Vertisol preferentially formed on marl outcrops and lowlands. The 145 

southeastern region of the study area has a flatter landscape with sandy Pliocene deposits 146 

yielding Calcosol and Rendzina.  147 

[Figure 1] 148 

 149 

2.3 VNIR/SWIR hyperspectral data 150 

On November 2, 2010, an AISA-Dual hyperspectral airborne image was acquired for the 151 

study area with a spatial resolution of 5 m (Figure 1b). The area of the image is approximately 152 

12 km x 24 km. The AISA-Dual spectrometer measured the reflected radiance in 359 non-153 

contiguous bands covering the 400- to 2450-nm spectral domain, with 4.6 nm bandwidths 154 

between 400 and 970 nm and 6.5 nm bandwidths between 970 and 2450 nm. The 155 

instantaneous field of view (IFOV) was 24 degrees. The radiance units were converted to 156 

reflectance units using ASD spectrometer measurements of uniform surfaces (parking lots, 157 

asphalt, concrete) that were collected at the same time during the over flight. An empirical 158 

line correction method was used to calibrate each flight line to the reflectance. Topographic 159 

corrections were performed using a digital elevation model built from the ASTER data and 160 

ground control points. In this study, we removed 1) the spectral bands in the blue part of the 161 

spectral domain (between 400 and 484 nm) due to noise in these bands and 2) the spectral 162 

bands between 1339 and 1464 nm as well as between 1772 and 2004 nm due to vibrational-163 

rotational H2O absorption bands. Consequently, 280 AISA-Dual spectral bands were 164 

retained. 165 

When the image was acquired (November 2010) the bare soils represented 46.3 % of the 166 

study area. The rest of the area was covered by green vegetation, consisting mainly of olive 167 
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trees, native forests, green plants and vineyards. To isolate the bare soil areas, pixels with 168 

normalized difference vegetation index (NDVI) values over an expert-calibrated threshold 169 

were masked: a value of 0.20 was determined after considering twenty parcels that had been 170 

visually inspected on the field. Water areas were also masked using an expert-calibrated 171 

threshold: pixels with a reflectance of less than 8% at 1665 nm were removed. Finally, urban 172 

areas were masked using a map of urban areas. A first clay content predicted map over the 173 

Lebna Catchment was obtained from a multivariate PLSR model using these AISA-Dual 174 

airborne data (Gomez et al., 2012b). 175 

In this paper, the attention will be focused on a test area for the analysis of the 176 

uncertainty maps. This test area is a 6.67 km² area centered on the Kamech catchment, which 177 

had high percentage of bare soils during the image acquisition and exhibited contrasting soil 178 

patterns (Figure 1b, Figure 2). The bare soils represent 49.2% of the test area and 10705 179 

AISA-Dual pixels. Over this area, six pixels have been selected to study in detail the 180 

expressions of uncertainty affecting predictions proposed in this paper. Three of these test-181 

pixels are located on the center of bare soil fields and three other test-pixels are located on the 182 

boundary of fields (Figure 2). 183 

 [Figure 2] 184 

 185 

 2.4 Soil samples data base 186 

129 soil samples were collected on the Lebna catchment. Of these samples, 58 were collected 187 

in October 2008, 30 in October 2009, and 41 in November 2010. All of the samples were 188 

composed of five sub-samples collected to a depth of 5 cm at random locations within a 189 

10×10 m square centered on the geographical position of the sampling plot, as recorded by a 190 

Garmin GPS instrument. All of these soil samples were collected in fields that were bare 191 

during the hyperspectral data acquisition in November 2010, between 20 and 180 m of 192 

altitude. After homogenizing the sample, approximately 20 g was devoted to soil property 193 

analysis. The initial samples were air-dried and sieved with a 2 mm sieve prior to being 194 

transported to the laboratory for analysis. The determination of clay content (granulometric 195 

fraction < 2 µm) was determined according to the method NF X 31-107 (Baize and Jabiol, 1995). 196 

The clay content of the 129 soil samples varies between 46 and 777g/kg and follows a normal 197 

distribution. 198 

 199 

3. Prediction Model: PLSR 200 
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The Partial Least Square Regression (PLSR) method (Wold et al.; 2001) was used to establish 201 

relationships between the soil clay content and the VNIR/SWIR hyperspectral imaging data. 202 

The spectroscopic and chemometric analyses were implemented in R (Version 1.17).  203 

 Prior to quantitative statistical analysis, the reflectance was converted into “pseudo 204 

absorbance” (log [1/reflectance]). Noise reduction was achieved through standard pre-205 

treatments: a Savitzky–Golay filter with second-order polynomial smoothing and window 206 

widths of 30 nm (Savitzky and Golay, 1964) for noise removal, plus a Standard Normal 207 

Variate correction (Barnes et al., 1993) for additive and multiplicative effect removal.   208 

The dataset was split into a calibration set (97 = 3 /4 of the total database, denoted as 209 

BD_Calib) and a validation set (32 = 1 /4 of the total database, denoted as BD_Valid). For 210 

each PLSR model, the reference values were sorted in an ascending order. The method i) 211 

starts by selecting the sample with the lowest reference value and put it in a calibration set, ii)  212 

then the next three samples are put in the validation set, iii) then the procedure is continued by 213 

alternately placing the following in the validation set and the next three samples in the 214 

calibration set. Because a limited number of samples were available, a leave-one-out cross-215 

validation procedure was adopted to verify the prediction capability of the PLSR model for 216 

the calibration set (Wold, 1978). Each time, N−1 samples were used to build the regression 217 

model from all N samples within the dataset. Based on this model, the value for the soil 218 

property of the sample not used in developing the model was predicted. This procedure was 219 

repeated for all N samples, resulting in predictions for all of the calibration samples. 220 

 Outliers are commonly defined as observations that are not consistent with the 221 

majority of the data (Chiang et al., 2003; Pearson, 2002), such as observations that deviate 222 

significantly from normal values. An outlier can be defined as (i) a spectral outlier, when the 223 

sample is spectrally different from the rest of the samples or (ii) a concentration outlier, when 224 

the predicted value has a residual difference significantly greater than the mean of the 225 

predicted values. One method for identifying spectral outliers uses the principle of the 226 

Mahalanobis distance (Mark and Tunnell, 1985) applied to PCA-reduced data. In the present 227 

study, a value of 3 based on the Mahalanobis distance was selected for the identification of 228 

outliers. An analysis was carried out to detect outliers for all of the samples in the calibration 229 

set, and the detected spectral and concentration outliers were deleted from the calibration set.  230 

 231 

In this paper, we only provide a brief description of the PLSR model that is fully 232 

detailed in Wold et al. (2001). The PLSR model is developed from a training set of N 233 

observations (number of spectra in the calibration dataset) with K X-variables (number of 234 
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wavelengths in the spectra) denoted �� (k=1,…,K), and M Y-variables (number of soil 235 

property) denoted �� (m = 1,…M). These training data forms the two matrices X and Y of 236 

dimensions (� � 	�) and (� � 		) respectively. As all the factorial methods, the main 237 

principle of PLSR is: i) to find a subspace of the spectral space 
� on which the spectra are 238 

projected, yielding a matrix of N scores �	
� � 	�) ; ii) to perform a linear regression between 239 

T and Y. The first step is carried out iteratively, by searching loadings u and v, respectively 240 

from 
� and  
� such as ���²
��, ��� is maximal. The scores T are thus given by T=XU. 241 

The linear regression between T and Y produces an estimate Ŷ � �
�’�����’�, so that 242 

replacing T by XU finally yields: Ŷ � ��
�’�’������’�’�. The final regression coefficients 243 

are given by  � 	�
�’�’������’�’�. In the case where Y contains only one response, b is a 244 

K-vector, usually called “b-coefficients” which is generally analyzed as a spectrum. The k 245 

columns of U also are K-vectors and are called latent variables. 246 

 247 

 The prediction performances of PLSR models were evaluated using the coefficient of 248 

determination R²
cal and R²

val of predicted against measured values in the calibration and 249 

validation set respectively. The root mean square errors of calibration (RMSEC) and the root 250 

mean square errors in the validation set (RMSEP) were also analyzed for all the models. The 251 

ratio of performance to deviation (RPD), which is the ratio of the standard deviation in the 252 

validation set to the RMSEP, was used as an index of model accuracy. 253 

 254 

4. Measurements of uncertainty affecting predictions  255 

The estimation !	"of the y value for a new sample x can be written as:  256 

!# � $
�c, �c,	�&'(, ��  (1) 257 

where
�c, �c� contains the calibration spectra and the calibration responses; Model represents 258 

the calibration action, including preprocessing, choice of dimensions, etc. Thus, each 259 

prediction relies on a chain of operations, each of them adding a source of uncertainty: 260 

- Uncertainty on spectra was assumed to be identical for calibration and test spectra. It 261 

is mainly due to the device repeatability (Ud) and to the spatial positioning (Us) 262 

- Uncertainty on reference lab values (Uy) 263 

- Uncertainty on model building (Um) may originate from 2 main causes, with Um = 264 

Uc + Ul. The first one (Uc) is related to the choice made for building the calibration 265 

set. The second one (Ul) is related to the choice of model dimension.  266 
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In this study, the following choices were made: Ud was considered negligible in comparison 267 

with Us and Uy was neglected. Us was modeled as a variance-covariance matrix ΣΣΣΣx computed 268 

on the 9 point neighborhood of x. Uc and Ul were modeled and merged in a unique variance-269 

covariance matrix ΣΣΣΣb computed by means of bootstrap (Efron, 1982).  270 

Seven expressions related to the uncertainty affecting predictions were computed, as 271 

described in the following sections.  272 

 273 

4.1. Bootstrap procedure 274 

A bootstrap procedure was performed to obtain a variance value which integrated all the 275 

sources of uncertainty previously described. Figure 3a describes the workflows and can be 276 

summary as: 277 

1st step: N drawing with replacement of N samples among the calibration dataset.  278 

2sd step: For each of the N selected samples, the associated AISA-Dual spectrum was 279 

randomly sampled among a grid of 3x3 pixels, centered on the location of the 280 

selected samples. To favor the central pixel, the sampling followed a normal 281 

distribution in line and column, with a standard deviation of 0.6. 282 

3rd step: Drawing the number of latent variable, from 3 to 7, following a normal 283 

distribution centered on 5 with a standard deviation of 0.97. 284 

4th step: For each new AISA-Dual spectrum x for which is looked for the clay content 285 

estimated value, the associated AISA-Dual spectrum was randomly sampled among a 286 

grid of 3x3 pixels, centered on the pixel x. To favor the central pixel, the sampling 287 

followed a normal distribution in line and column, with a standard deviation of 0.6. 288 

This 4th step is the same for the validation dataset BD_Valid, than for the entire 289 

image.  290 

These four steps were done R times, producing R bootstrap (training) data sets and so 291 

producing R PLSR models, R prediction values for each new pixels and (R x K) b-292 

coefficients. In this study the number of iterations R was 999. Predicted outcomes by cross-293 

validation and corresponding performance indicators R²
cal, and RMSEC were calculated for 294 

the calibration set at each R bootstrap iteration. Predicted outcomes and corresponding 295 

performance indicators R²val, RMSEP, and RPD were also calculated for the validation set, at 296 

each of the R bootstrap iterations. 297 

 298 

4.2. Expressions of the uncertainty using bootstrap 299 
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Bootstrap was used to obtain a variance value )*+
,"�-., where no assumptions were 300 

considered. At the end of the R iterations, the variance )*+
,"�-. of the R predictions for each 301 

pixel of the AISA-Dual image was calculated (Figure 3). In case of the bootstrap would 302 

integrate all the sources on uncertainty (on spectra, reference lab values, model building), the 303 

variance  )*+
,"�-. would represent the sum of all the sources on uncertainty and would be 304 

considered as the “true” variance, following: 305 

var
,"�23 � Ud 6 Us 6 Uy 6 Um  (2) 306 

 307 

4.2 Expressions of the uncertainty using spectral distance 308 

a. Mahalanobis Distance 309 

The Mahalanobis distance (MD) may be used to detect the outliers that are observations 310 

sitting at the periphery of the data cloud, which can have a stronger influence than average on 311 

the fitted model. In the framework of linear regression, the farer a sample from the center of 312 

the model, the higher its prediction uncertainty. The MD of a spectrum is calculated 313 

independently of the bootstrap procedure (Figure 3b), as the distance of this spectrum to the 314 

center of the calibration set, in a PCA-reduced dimension. So the MD of a VNIR/SWIR 315 

spectrum � is calculated from the calibration database, following: 316 

	:
�� � 	;	
� < μ>�′@	��
� < μ>�    (3) 317 

Where x 
� � 	1� is a VNIR/SWIR spectrum, μ> 
� � 	1� is the mean of the N calibration 318 

VNIR/SWIR spectra and S 
� � 	�� is the variance-covariance matrix of the N calibration 319 

spectra. The principle of the Mahalanobis distance is described in detail in Mark and Tunnell, 320 

1985. Generally, a MD value superior to 3 is considered to reflect an outlier with regard to the 321 

calibration set (Mark and Tunnell, 1985). The MD is related to the uncertainty on model 322 

building (Um), over the hypothesis that the PCA space is close to the PLSR space. 323 

 324 

b. Leverage  325 

The leverage (H) may be also used to diagnose how atypical a new vector of predictor is. The 326 

leverage value of a spectrum B is the distance of this spectrum to the center of the calibration 327 

set, within the multivariate model. The leverage measures the variation within the multivariate 328 

model, so the H measurement is dependent on the model, contrary to the Mahalanobis 329 

distance. Although the H measurement is dependent on the model, it is calculated 330 

independently of the bootstrap procedure (Figure 3b). The leverage of a VNIR/SWIR 331 

spectrum B is calculated following (Martens, 1991): 332 
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C
�� � 		 D�′	
	�′����	D�   (4) 333 

Where � 
� � 	1� is a VNIR/SWIR spectrum, D� 
� � 	1� is the score vector of x for the 334 

multivariate model, and � 
� � 	E� is the X-scores matrix of the multivariate model (see 335 

section 3). The leverage is related to the uncertainty on model building (Um). 336 

 337 

4.3 Expressions of the uncertainty using the Fernandez-Ahumada et al. (2012) 338 

formula  339 

a. Total Variance of predictions  340 

As a measure of uncertainty of the estimations by PLSR model, a variance model, proposed 341 

by Fernandez-Ahumada et al. (2012), has been applied in this study. This proposal for 342 

variance modeling is based on the EIV-model initialy proposed by Faber and Kowalski 343 

(1997), which considers all sources of uncertainty affecting predictors, the dependent 344 

variables and model coefficients.  The difference between the classical EIV-model and the 345 

new variance model proposed by Fernandez-Ahumada et al. (2012) is that the latter model is 346 

constructed based on assumptions related to the predictors, the spectral bands. The 347 

formulation is described in detail in Fernandez-Ahumada et al. (2012), and can be resumed 348 

by: 349 

var
!#�FG�HIJI � K1 6 L
MN ′O� 6 P′O P	 6 K1 6 L

MN tr
O�O � 6
RSTUV

M   (5) 350 

Where !# is the prediction, P is the centered � spectrum used for the prediction,   is the K-351 

vector of the b-coefficients of the model, N is the number of the calibration samples, O  is the 352 

variance-covariance matrix of the b-coefficients, O� is the variance-covariance matrix of the  353 

spectrum x, and WXYZ[  is the laboratory ! variance,. 354 

The four terms of equation (5) from left to right are related to: T1) the hyper spectral 355 

data uncertainty, T2) the model coefficients uncertainty, T3) the dependency between spectral 356 

and model uncertainties and T4) the laboratory reference measurement uncertainty. Term T4 357 

is constant all over the image and is certainly small with regards to the three other terms. So 358 

in this study the variance model was confined to the first three terms, formulated by: 359 

var
!#�FG�HIJI � K1 6 L
MN ′O� 6 P′O P	 6 K1 6 L

MN tr
O�O �   (6) 360 

Each term of the equation (6) and their calculation are described in the following sections.  361 

 362 

b. Variance of predictions due to the spectrum x 363 
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The first term of the formula of Fernandez-Ahumada et al. (2012) (denoted T1, Figure 3d) 364 

expresses the variance of predictions caused by the uncertainty of hyperspectral data x for 365 

each pixel: 366 

\1 � K1 6 L
MN ′O�     (7) 367 

Where N is the number of samples in the calibration set,   is the model coefficients (here the 368 

mean of the R b-coefficients vectors obtained in the bootstrap procedure), and O� is a 369 

variance-covariance matrix that describes the uncertainty of the spectrum x. In this study, the 370 

variance-covariance matrix O�	of the spectrum x was calculated following: 371 

Σ^ � cov
`
���    (8) 372 

Where G(x) is a 
9 � 	�� matrix where each line is a spectrum belongs to the grid of 3x3 373 

pixels centered on the spectrum x. So the matrix O�	
� � 	�� attempts to reflect the influence 374 

of surrounding areas on reflection values of the center pixel x (Figure 3c).  375 

Since especially reflectance values of vegetated or surrounding bare soil parcels are 376 

hypothetically influential for the variance of the clay content, the algorithm used the full 377 

image, i.e. the variance-covariance matrix O� of a pixel at the edge of a parcel, and also 378 

included spectral information of the pixels that are normally masked because they are 379 

considered vegetated area. The term T1 is related to the uncertainty on spectra due to the 380 

spatial positioning (Us). It reflects how the uncertainty of the spectrum x is amplified by the 381 

model. 382 

 383 

c. Variance of predictions due to the PLSR model 384 

The second term of the formula of Fernandez-Ahumada et al. (2012) (denoted T2, Figure 3d) 385 

expresses the variance of predictions due to the uncertainty on the multivariate model: 386 

\2 � P′O P   (9) 387 

Where P	is the centered spectrum of x and O  is the variance-covariance matrix 
� � 	�� of 388 

the b-coefficients. In this study, the variance-covariance matrix O  was calculated using the b-389 

coefficients obtained at each of the R iterations of the bootstrap (Figure 3a), following: 390 

Oc � cov
d�    (10) 391 

Where B is the matrix 
e � 	�� where the i th line contains the b-coefficients of the i th iteration 392 

of the bootstrap. This second term is considered as a distance between the spectrum and the 393 

model center, weighted by the model noise. It depends mainly on three factors: (i) the length 394 

of the centred spectra z, which is related to the classical concept of leverage, (ii) the norm of 395 

O 	and (iii) the colinearity between z and O . The term T2 is related to the uncertainty on 396 
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model building (Um). It reflects how the uncertainty of the model is amplified by the 397 

spectrum x. 398 

 399 

d. Variance of predictions due to the intersection of the multivariate model 400 

and the spectrum variances 401 

The third term of the formula of Fernandez-Ahumada et al. (2012) (denoted T3, Figure 3d) 402 

expresses the intersection of the variance of predictions due to the multivariate model and the 403 

spectrum x: 404 

\3 � K1 6 �
MN tr
O�O �     (11) 405 

The quantity tr
O�O �		measures the common part of the instances of O�	and O  (Fernandez-406 

Ahumada et al., 2012). A low value of the term T3 would signify that the uncertainty of the 407 

model and the spectrum, O  and O�	respectively, are different and could cancel each other out. 408 

A high value of the term T3 would signify that the uncertainty of the model and the spectrum, 409 

O  and O�	respectively, are similar and could be accumulated. 410 

[Figure 3] 411 

 412 

5. Results 413 

5.1 Global performances of the models – preliminary results 414 

The VNIR/SWIR spectra extracted from the AISA-DUAL image at the locations of the 97 415 

soil samples of the calibration data set were used to build PLSR-based prediction models. 416 

Only one spectral outlier was identified among the 97 calibration data. So all the PLSR 417 

models have been built from 96 VNIR/SWIR spectra. Moreover, the VNIR/SWIR spectra 418 

extracted from the AISA-DUAL image at the locations of the 32 soil samples of the 419 

validation data set were used to validate the PLSR-based prediction models. 420 

Following the classes of RPD defined by Chang and Laird (2002), a correct prediction 421 

was obtained by PLSR model from the 96 AISA-DUAL spectra for clay content prediction, 422 

with R²
val and RPD values greater than 0.7 and 1.4, respectively, and with RMSEP around 423 

94g/kg (Table 1). A correct prediction was also obtained by bootstrap-PLSR models with R²val 424 

and RPD values greater than 0.5 and 1.4, respectively, and with RMSEP around 109 g/kg 425 

(Table 1).  426 

[Table 1] 427 

 428 

5.2 Uncertainty analysis on validation data set 429 
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The seven uncertainty expressions described in section 4 have been firstly calculated for the 430 

32 samples of the BD_Valid. The correlations between these uncertainty expressions (Table 431 

2) and their ranges (Figure 4) have been studied. 432 

The variance model var
!#�ghijklk is very highly correlated to T2 (R ≈ 1, Table 2). 433 

So the most part of var
!#�mno�YpY is due to the uncertainty on the multivariate model. 434 

Moreover, the variance var
!#�23 of the R predictions for each AISA-DUAL spectra of the 435 

validation data set is highly correlated to the variance model var
!#�ghijklk and to the term 436 

T2 (R = 0.91, Table 2). So the “true” variance of predictions, expressed by var
!#�23 is mostly 437 

due to the uncertainty on the multivariate model, and in minority to the uncertainty on the 438 

spectra.  439 

The correlation between the “true” variance of predictions var
!#�23 and the 440 

Mahalanobis Distance MD is modest (R = 0.52, Table 2). As the Mahalanobis Distance is 441 

related to the uncertainty on model building (Um), over the hypothesis that the PCA space is 442 

close to the PLSR space, this low correlation is coherent. Indeed the PCA space is not the 443 

same than the PLSR space, so the Mahalanobis Distance does not represent correctly the 444 

uncertainty on model building (Um).  445 

The absence of correlation between the “true” variance of predictions var
!#�23 and 446 

the Leverage H reveals that H represents a minor part of Um. The leverage H is an adaptation 447 

of the formula of var
!#� in classical linear regressions to factorial regressions. In classical 448 

linear regressions, the only source of uncertainty is associated to y, so var
!#� � P′	
�’���L	P, 449 

because var
 � � 
�’���L . The leverage H uses this formula in the latent variables space. So 450 

H is a simplified version of T2, which express the uncertainty on model building over the 451 

hypothesis that the only source of uncertainty comes from y. In this case of spatialisation of 452 

uncertainties from VNIR/SWIR hyperspectral data, this expression H of the uncertainty seems 453 

to be inadequate or, a minima too limited to express reality of source of uncertainty on model 454 

building.  455 

Finally, we can observe that uncertainty values of T1 were lower compared to values 456 

of T2 which is 200 times superior, and the range of the T1 values was also low (Figure 4). 457 

And no correlation appears between the uncertainty expressions and the residues (R<0.4, 458 

Table 2).  459 

Thresholds corresponding to the 95th percentile of variance distributions were set, so 460 

that abnormally high values can be filtered. Values of 3, 0.2, 5000, 5000 and 5000 were 461 

calculated for MD, H, T2,	var
!#�23 and var
!#�ghijklk respectively (Figure 4). These 462 
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thresholds have been used in next sections to study and identify some area associated to high 463 

uncertainties. 464 

[Table 2] 465 

[Figure 4] 466 

 467 

5.3 Uncertainty mapping on Kamech area 468 

The higher values of the seven uncertainty expressions were gathered on the East part of the 469 

area, which may correspond to some isolated houses (black rectangle on Figure 5a). Urban 470 

pixels have been masked in the pre-treatment of the AISA-DUAL data, using an urban vector 471 

layer of the region which took into account the bigger towns of the region. But some isolated 472 

houses, not referenced in the urban map of the region, could be missed by this mask pre-473 

treatment and seem to be identified by each of these uncertainty maps (Figure 5 and 6). Over 474 

the 10750 studied pixels, only 108 pixels had the combination MD > 3, H > 0.2, T2 > 6000, 475 

var
!#�23	>  5000 and var
!#�ghijklk > 5000. So the thresholds defined from the validation 476 

database may be used to mask some missed no-soil area. 477 

The higher values of T1 (except those on the urban area) were located at the boundary 478 

of the fields (Figure 6a) which is coherent. Indeed these high values of T1 were the 479 

consequence of the calculation of Σx which used the grid of 
3 � 3� pixels centered of the 480 

studied pixel associated to the spectrum x. If the studied pixel associated to the spectrum x is 481 

located on the boundary of the field, its Σx will include the heterogeneity of the boundary 482 

(field, ditch, road or path).  483 

The new maps of uncertainty expressions, using the thresholds defined from the 484 

validation database, offered more details (Figure 7). Two parts of the Kamech area have high 485 

values of var
!#�23, H, T2 and var
!#�ghijklk: one field on the south of the area and the band 486 

North-East South-West highlighted by black boxes in Figure 7d. These areas are covered by 487 

cultivated fields, mostly bare during the hyperspectral flight. A low proportion of dry 488 

vegetation may be missed by the masking pre-treatment and may modify the signal that we 489 

consider as “soil signal”. As well soil humidity can modify the signal and no mask can be 490 

done to classify and remove specific humid area. As no ground truth exists on both areas, no 491 

explanation can be affirmed. But these areas of high uncertainty of prediction could be 492 

considered as interesting sites for a next and additional sampling. 493 

High values of var
!#�23 were also observed at the boundary of the fields (Figure 7a). 494 

As the bootstrap includes a random sample of the spectra among the pixels of the grid of 495 


3 � 3� pixels centered of the studied pixel x (Figure 3), the var
!#�23 uncertainty expression 496 
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integrates the spectral heterogeneity of the studied pixels. The map of term T1, even restricted 497 

to a small range, did not highlight particular areas with high uncertainties (map not shown). 498 

So the uncertainties seem to be due to the PLSR models, more than to the spectral 499 

heterogeneity of the neighborhood. The var
!#�23 and var
!#�ghijklk maps which are very 500 

similar (Figure 7a and d) confirm the high correlation found between both uncertainty 501 

expressions from the validation database (Table 2). So the uncertainty expression developed 502 

by Ahumada-Fernandez et al. (2012) expressed here the same trends than the “true” variance. 503 

[Figure 5] 504 

[Figure 6] 505 

[Figure 7] 506 

 507 

5.4 Analysis of selected pixels 508 

To understand the sources of uncertainty and their links, the uncertainty expressions of 6 test-509 

pixels were analyzed (Figure 2). Three of them are located on the center of bare soil fields for 510 

which homogeneous surface conditions might be supposed. And three of them are located on 511 

field boundaries for which heterogeneous surface conditions might be supposed. 512 

The pixel Pix_Soil1 has low values of uncertainties, whatever the expressions (MD, H, 513 

T1, T2, T3, var
!#�23 and var
!#�ghijklk, Table 3). This pixel may represent the ideal pixel, a 514 

“no risky” pixel. It is located in the center of a bare soil field, in an area with stable surface 515 

conditions which involves stable spectral conditions. The uncertainties MD and H are weak, 516 

which means that the spectrum x of Pix_Soil1 might be close to spectra of the calibration data 517 

base (verified but not shown). The uncertainty T1 of Pix_Soil1 is weak with a low value of 518 

tr
O�� (0.2), which means that the neighbor spectra are weakly variable (verified but not 519 

shown), and the uncertainty OB on the spectrum x is not amplified by the model coefficients  . 520 

Finally, the uncertainty T2 of the model is weak with a less intense spectrum P, and it is not 521 

amplified by the model variance covariance matrix O . 522 

The pixel Pix_Urban has high values of uncertainties, whatever the expressions (MD, 523 

H, T1, T2, T3, var
!#�23 and var
!#�ghijklk, Table 3). This pixel which is located in an urban 524 

area, represents an “incorrectly masked” pixel. The uncertainties MD and H are high, which 525 

means that the spectrum x of Pix_Urban might be far from spectra of the calibration data 526 

base. Indeed, the albedo of Pix_Urban spectrum is twice as high as spectra of the five others 527 

test-spectra (Figure 8) and the shape of this spectrum does not correspond to a soil spectrum, 528 

which can explain the high values of uncertainty expressions MD, H and T2. Located in an 529 
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urban area with unstable surface conditions on 15x15m, the neighbor spectra of Pix_Urban 530 

are more variable which explain that O� and T1 are high. 531 

The pixel Pix_BoundaryField1 has high T1, whereas the six other uncertainty 532 

expressions are weak (Table 3). This pixel which is located at the boundary between two 533 

fields with different surface soil conditions (due to plowed, rugosity, dry and/or green 534 

vegetation …) may represent a “to be monitored” pixel. The high value of T1 which is related 535 

to the neighbor spectra variability and the amplification of O� by the model coefficients	 , is a 536 

logical result of this location. 537 

The pixel Pix_Soil2, even though located in a center of bare soil field as Pix_Soil1 538 

(Figure 2), has high T2 and	var
!#�23, whereas the five others uncertainty expressions are 539 

weak (Table 3). So high uncertainties linked to the PLSR models, are revealed for the clay 540 

prediction of this pixel Pix_Soil2. As seen in section 5.2, H is a simplified version of T2, 541 

which expresses the uncertainty on model building (Um) over the hypothesis that the only 542 

source of uncertainty comes from y. For this pixel, the term T2, which takes into account the 543 

colinearity between P and O , reveals more uncertainty than classical expression H (which is 544 

under the threshold of 0.2, Table 3). So the spectrum x associated to the pixel Pix_Soil2, 545 

although associated to low spectral distances H and MD to the calibration soil spectra, is 546 

highly sensitive to the PLSR models. 547 

The pixel Pix_Soil3 has moderate T1 uncertainty, whereas the six others uncertainty 548 

expressions are weak (Table 3), as obtained for Pix_BoundaryField1. This moderate 549 

uncertainty T1 leads to focus the attention to the neighbor spectra. tr
O�� is around 0.5 so 550 

superior to the value obtained for Pix_Soil1, which means that the neighbor spectra of 551 

Pix_Soil3 are more variable than neighbor spectra of Pix_Soil1. Moreover the uncertainty O� 552 

on the spectrum x of Pix_Soil3 is more amplified by the model coefficients	  than uncertainty 553 

O� on the spectrum x of Pix_Soil1. This amplification is due to higher albedo of neighbor 554 

spectra of Pix_Soil3, compared to the calibration soil spectra. 555 

The pixel Pix_BoundaryField2, even though located in supposed heterogeneous 556 

surface conditions, has low values of uncertainties, whatever the expressions (MD, H, T1, T2, 557 

T3, var
!#�23 and var
!#�ghijklk, Table 3), as obtained for Pix_Soil1. Due to the location at 558 

the boundary of fields, higher T1 are expected as Pix_BoundaryField1. This low uncertainty 559 

T1 is due to a weak difference of soil surfaces conditions, in particular a weak difference of 560 

vegetated conditions, between both fields on both sides of Pix_BoundaryField2. Indeed, the 561 

NDVI values of the masked pixels of the grid centered on the Pix_BoundaryField2 are 562 
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included from 0.21 to 0.28, whereas those of the no-masked pixels of this grid are included 563 

from 0.18 to 0.19. For the comparison, the NDVI values of the masked pixels of the grid 564 

centered on the Pix_BoundaryField1 are included from 0.21 to 0.28 (as Pix_BoundaryField2), 565 

whereas those of the no-masked pixels of this grid are significantly lower (from 0.11 to 0.15), 566 

indicating different vegetated conditions. 567 

[Figure 8] 568 

[Table 3] 569 

 570 
6. Discussion  571 

Values of uncertainty expression T2, which is related to the uncertainty on model building 572 

(Um), are higher than values of uncertainty expression T1, which is related to the uncertainty 573 

on spectra due to the spatial positioning (Us) (Figure 4). These high values of uncertainty 574 

linked to model building (Um), may be explained by the modest performance of the PLSR 575 

model. Indeed as described in section 5.1, the clay prediction model obtained from the 96 576 

AISA-DUAL spectra is characterized by R²
val and RPD values around 0.7 and 1.4, 577 

respectively, and RMSEP value around 94g/kg (Table 1). So, these prediction models provide 578 

correct clay estimations, but cannot be qualified as accurate models. These model 579 

performances are in accordance with literature in which soil property estimated from 580 

VNIR/SWIR hyperspectral imagery data are less accurate than those estimated from Lab 581 

VNIR/SWIR data (e.g. Stevens et al., 2006, Lagacherie et al., 2008).  582 

The pixel Pix_Soil1 is representative of the “no risky” pixels. The uncertainty 583 

expressions obtained for the Pix_Soil1 (low values whatever the uncertainty expression, Table 584 

3) may be obtained for all the pixels of the AISA-DUAL image, if the mask process (section 585 

2.3) would be well done. Although this mask process was done carefully in this work, 586 

respecting field expertise to characterize the vegetated areas, using urban maps to identify the 587 

urban areas, and using spectral knowledge to remove water areas, the mask is inaccurate and 588 

some studied pixels do not correspond to soil. The pixel Pix_Urban is representative of these 589 

“incorrectly masked” pixels. The uncertainty expressions obtained for the Pix_Urban (high 590 

values whatever the uncertainty expression, Table 3) might be also obtained for all the pixels 591 

located in urban area, over roads and vegetated areas... From this result, we could imagine a 592 

new mapping process in four steps: 1) application of the process described in Figure 3 for a 593 

soil property mapping over all the pixels, whatever the pixel compositions, associated to the 594 

uncertainty expressions calculation 2) analysis of the uncertainty expressions, would allow to 595 

identify the “no-soil” pixels, which correspond to those associated to the seven uncertainty 596 

Author-produced version of the article published in Remote Sensing of Environment, 2015, N°156, p. 58-70. 
The original publication is available at http://www.sciencedirect.com/science/article/pii/S0034425714003861 
Doi: 10.1016/j.rse.2014.09.032



19 
 

expressions superior to the thresholds, 3) mask of these “no-soil” pixels and 4) new 597 

application of the process described in Figure 3 for a soil property mapping over the “soil” 598 

pixels, associated to the uncertainty expressions calculation. At this stage, an analysis of the 599 

uncertainty expressions T1, T2 and  �qr
!#�st  allows to identify the “to be monitored” pixels. 600 

This might allow new and better monitored soil sampling over the field, to take into account 601 

in the calibration database more soil variability.  602 

Another alternative of this new mapping process (or an additional first step) would be 603 

to build first, the maps of H and MD uncertainty expressions. Rejecting all pixels with H and 604 

MD superior to a threshold defined by validation data study would allow masking major parts 605 

of urban areas (Figure 5). Both maps could be obtained faster than other uncertainty 606 

expressions maps, because no bootstrap is needed (Figure 3). This alternative would improve 607 

the mask process.  608 

The VNIR/SWIR hyperspectral airborne imaging has been one of the emerging 609 

technologies selected for soil mapping and predicting soil properties by the Global Soil Map 610 

project GSM (www.globalsoilmap.net) (Lagacherie & Gomez, 2014). Indeed, the GSM 611 

project has proposed the construction of a new digital soil map of the world at a the spatial 612 

resolution of 90 m to assist in decision making for a range of global issues such as food 613 

production, climate change and environmental degradation (Mc Bratney et al., 2003, Sanchez 614 

et al., 2009). Digital Soil Mapping (DSM) approaches were recently developed for using the 615 

estimated soil properties maps restricted to bare soils, allowing the exhaustive mapping of 616 

some topsoil properties, based on block co-kriging methods (Lagacherie et al, 2012) and 617 

subsurface properties, based on statistical functions (Lagacherie et al, 2013). An improvement 618 

of the mask process thanks to the uncertainty maps, which is an unavoidable and recurrent 619 

step in remote sensing, might avoid misleading results and might improve results of these 620 

DSM approaches. Moreover, the uncertainty maps could be used to weight each pixel of the 621 

estimated soil properties maps, in the DSM approach, still to avoid misleading results and 622 

improve results. 623 

 624 

7. Conclusion 625 

The quality of a soil property map obtained by VNIR-SWIR hyperspectral imagery is usually 626 

assessed with an analysis of the regression model performances (calculation of the figures of 627 

merit whatever the model: PLSR, MLR …) associated to a visual pedological expertise of the 628 

soil property map and sometimes to geostatistical analysis to study the spatial structure of the 629 

predicted soil property. This paper shows the benefits of prediction uncertainties maps to 630 

Author-produced version of the article published in Remote Sensing of Environment, 2015, N°156, p. 58-70. 
The original publication is available at http://www.sciencedirect.com/science/article/pii/S0034425714003861 
Doi: 10.1016/j.rse.2014.09.032



20 
 

better mask the no-soil pixels, better define the soil sampling and so the calibration data set 631 

and better characterize the quality of the mapping results. In this way, this study uses twice 632 

information contained in the airborne hyperspectral data: i) the spectral information to create 633 

an estimated clay map, and ii)  the spatial information to produce prediction uncertainties 634 

maps. To reinforce these conclusions and the guideline, it would be interesting and important 635 

to enlarge this study to additional soil properties (one-to-one and also together in prediction 636 

models), additional multivariate models, and additional pedological context. 637 

In order to use the estimated soil property map as input data in environmental models 638 

(soil vulnerability to erosion, wheat yield in water limited situations…), the prediction 639 

uncertainties maps might provide confidence level on the input data. As well, in order to use 640 

the estimated soil property map as input data in Digital Soil Mapping approaches to 641 

exhaustive mapping, the prediction uncertainties maps might provide weighting information.  642 

Finally, future hyperspectral satellite sensors (HYPXIM, PRIMSA, ENMAP and 643 

HyspIRI) will offer huge coverage of Earth surface. Using uncertainty maps on these data 644 

would help to build correct calibrations without too much sampling effort. 645 

 646 
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