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Determination Of Relevant Models Structures for Self-Learning Energy 

Management System 

The energy issue is one of the major challenges of the 21st century. Building related 

energy consumption accounts for a large part of the total energy bill. Researchers are 

therefore developing performance monitoring, diagnosis and energy management 

systems to improve building consumption. Nevertheless, all these upcoming 

applications require reduced order models of the building envelope. Those models have 

to describe the physics while neglecting irrelevant details of the high order model. 

Many models are proposed in literature but models are related to a specific goal with a 

specific time scale. Consequently, assessing the relevance of a reduced order model for 

a specific goal is a key issue. This paper proposes an approach to determine relevant 

structures to fit energy management system with one hour time step and 24h as time 

horizon. Indeed, several methods to determine the dominant parameters for the 

modelling were tested. . This will help to simplify the model in order to improve the 

identification results. 

Keywords: parametric estimation, white box modelling, sensitivity analysis, parametric 

scattering 

Introduction 

Nowadays, the energy estimation methods for building are based on simulation: typical values 

are introduced in a model. But the variance of the prediction error only based on knowledge is 

approximately between 50% and 200% (C. Turner et al., 2008). Nevertheless, calibration 

allows reducing the uncertain values. Reduction thanks to a simplified physics is useful to 

reduce the number of uncertain variables, and at the same time, it improves the robustness of 

the calibration. The more parameters a model has, the more it is difficult to identify them. The 

so-called white-box models are considered for parameters estimation because they are able to 

establish a link with physics, which is useful for extrapolation to any kind of context, not only 

the one corresponding to the training datasets. The quality of a parameter estimation process 

consistent with energy management purpose is highly depending on the dataset but also on the 



model structure. A 1h time step allows taking into account the thermal inertia of the building 

and anticipate its behaviour in the short term to be able to manage energy. Indeed, a model 

has to be useful to fit specific goals. A very detailed model is not relevant for an energy 

management system because it contains too many parameters that cannot be properly 

estimated with a parameter estimation approach (S., Sarabi et al., 2013). The paper proposes a 

methodology to design a suitable model structure and to assess the consistency with learning 

purposes. 

Many models have been proposed in the scientific literature to represent the thermal 

behaviour of the buildings. A physical analogy of thermic with electric circuits has been 

widely used (G.G.J., Achterbosch et al., 1985 ; G. Hudson et al., 1999 ; N. Mendes et al., 

2001 ; G. Fraisse et al., 2002 ; M.M. Gouda et al., 2002 ; S. Wang, 2006). These models may 

be used to estimate the internal temperature and the heating/cooling energy demand of 

buildings (H. Park et al., 2011; K., Deng et al., 2010). 

In order to improve the identification process in simplifying the number of parameters, 

a sensitivity analysis is conducted. The sensitivity analysis methods deal with the impact of 

uncertain input parameters on the output variable. Generally, this kind of analysis allows 

reducing the complexity of a model in eliminating the parameters, which have a negligible 

effect on the output variable. This hypothesis will be tried to be validated with the PREDIS 

datasets. Thus, a given nominal value for those parameters is sufficient (A. Saltelli et al., 

2008). The method used for sensitivity analysis is the MORRIS method. Thanks to a 

sensitivity ranking, the parameters will be based on physical estimation in order to improve 

the identification process in simplifying the complexity of the model. Then, in order to 

improve the parametric scattering, a second ranking method of parameter to be fixed will be 

studied too. Both approaches will be compared and validated in order to provide the best 



model for a smart identification process, that is to say the results have to be accurate, 

reproducible and quickly recalibrated. 

1. Case Study 

The platform 

A detailed analysis of a platform, named PREDIS/Smart Building (H-A., Dang et al., 2013), 

has been done. It is composed of two rooms, an office and a classroom, surrounded by other 

rooms: corridor, others offices and technical rooms (fig1.a.). The studies room in the 

following paper will be the classroom but the same kind of study could be done for the office. 

The classroom is located at the first floor under an empty space which is called the shed. 

 

Figure 1 - location and 3D view of the classroom of PREDIS 

The floor is composed of concrete slab that absorbs temperature variations. Indeed, the 

other walls are just thin plates of plasterboard. The thermal inertia of a room depends on the 

mass of the materials that constitutes it. Thus, the thermal masses of the walls are very low 

compared to the slab. All the dynamics of the room are considered as related to the slab. That 

is why a 2R1C structure is next to the Tdown input in the equivalent electrical circuit. The 

HVAC resistance stands for the dual flow ventilation system and varies according to the fan 

speed.  



 

Figure 2 - equivalent electrical circuit of the classroom[CS1] 

The equivalent electrical circuit stands for the heat exchanges between the classroom 

and the adjacent rooms and contains all the heat supply of the room. Indeed, on the left, there 

are the adjacent room’s temperatures of the empty space, the corridor, the office and the down 

temperature. They are relied to the classroom temperature with thermal resistances and 

capacitance with stand for the insulation and inertia of the wall, respectively. On the right, 

there are the injected heat inputs which are directly connected to the classroom 

temperature.[AL2] 

The following table lists the parameters identified in Fig. 2 and their description[CS3] 

Rspace, Roffice, 

Rcorridor The thermal resistances of the adjacent rooms 

RL, R0, R1 The thermal resistances of the down room 

C The thermal capacitance 

efficiency The efficiency of the dual flow ventilation system 

fEast, fSouth, fWest The coefficients of the solar flux 

Tw0 The initial temperature of the slab 

Presidual 

The residual power in order to adjust the uncertainties about power 

inputs 

airLeak The leakage coefficient of the dual flow ventilation system 



Table 1 - List of parameters to be identified 

Each interface is composed of wall and often of glasses. According to the different 

layers of materials, the thermal resistances are calculated thanks to the following equation: 
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    (1) 

Where: 

S is the surface; 

h is the heat transfer coefficient; 

e is the thickness of a layer; 

 is the thermal conductivity of a layer. 

The previous equation describes a situation where an interface is composed of wall 

and glasses and where each area has two layers. If the layers are opaque, then there is not the 

term 
1

ℎ1/2
 between the two layers. 

The calculation of the thermal capacitance is done as following: 

𝐶𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = ∑ 𝑉𝑙𝑎𝑦𝑒𝑟 ∗ 𝑑𝑙𝑎𝑦𝑒𝑟 ∗ 𝐶𝑝
𝑙𝑎𝑦𝑒𝑟

𝑎𝑙𝑙 𝑙𝑎𝑦𝑒𝑟𝑠

 

Where: 

Vlayer is the volume of the layer; 

dlayer is the density of the layer; 

Cp
layer is the heat capacity of the layer. 

These calculations give the initial values of the parameters. [AL4]Then, uncertainties 

and the fact that the building is evolving over time are taken into account by the introduction 

of uncertainty bounds on parameters that delimit the search space. The parameters values are 

sought in those validity ranges. If the identified values are beyond, it would not be considered 

as a good result because there is no physical meaning. 



The temperatures of adjacent rooms are obtained by sensors. The sensors have a 

relative accuracy of more or less 0.5 degrees. The heat inputs are obtained by calculation from 

measured variables. Heating is computed from the temperature difference upstream and 

downstream of the hot water coil and the water flow. All these variables are the inputs of our 

model because they all contribute to the temperature of the classroom, which is the output. 

To perform this study, a first dataset of thirty days was used. Because of technical 

problems with the recording of the data, this dataset is the longest that we have without errors 

and gap. The dataset was recorded between October and November of 2013. [CS5] It was 

divided in two datasets – one for the identification and one for the validation.[CS6] Hence, they 

have been recorder under the same kind of conditions.[AL7] 

The data obtained from sensors are not always reliable (incorrect or missing values), 

which has to be taken into account in the parameter estimation process. Furthermore, because 

of the spectral poverty of the signals, it is even more difficult to identify parameters because 

of a resulting lack of estimability. 



 

Figure 3 - Tout and Tclassroom spectrum[CS8] 

This figure shows the spectral content of the outdoor temperature and of the 
classroom temperature of the dataset used for the study. The poverty of the signal 
spectrum of the classroom temperature could be a reason of the identification difficulty 
of the model.[AL9] 

Problem Statement 

The following equations are written for the equivalent electrical circuit:[AL10] 
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With Req =
1

1

RHVAC
+

1

Rcorr
+

1

Roff
+

1

Rspace
+
1

RL
+
1

R1

; 

 Φtot = Φoccupants +Φelec +Φheating + fEast ∗ ΦSunEast + fSouth ∗

ΦSunSouth + fWest ∗ ΦSunWest; 

RHVAC =
1

(1−efficiency)∗cair∗pair∗
(airLeak+0.61∗Ventilmode)

3600

; 



 
Where cair stands for the air specific heat, pair for the air density and Ventilmode 

corresponds to the ventilation mode among four modes: recycling, low exchange, high 

exchange and free cooling. All these modes are bearings fixed to discretize the ventilation 

variable.  

For a better understanding of the equations, all the parameters are bolded.  

Hence, the A, B, C, D matrix of the state-space system can be calculated as following: 

{Ẋ = AX + BU
Y = CX + DU

     (2) 

With: 

 X the state space variable which stands for the slab temperature 

 Y the output which is the classroom temperature 

 U the matrix of solicitations which gather adjacent rooms temperatures and 

internal heat flows. 

Thanks to the fmincon function of Matlab, the model is optimized with an active-set 

algorithm in order to minimize the gap between the temperature obtained by sensors and the 

one obtained by the model in adjusting the parameters values.[AL11] 

The algorithm tries to minimize the average error between the temperature obtained by 

simulation and the temperature obtained by sensors in adjusting the values of the parameters 

in the validity ranges.[CS12] In order to assess the quality of the model, the identification 

process is computed several times and each time, the initial parameter values are obtained by 

random guesses between the validity ranges. 

Thus, some statistics about the error behaviour can be done and the parameter 

scattering between the validity ranges can be observed. 



These aspects which will be called “quality criteria” thereafter were observed for the 

initial model with 14 parameters. [AL13]Let us see this kind of results for the initial model 

[CS14]with 14 parameters to be identified. 

 

Figure 4 - Error scattering 

This histogram shows all the average errors obtained for all the identifications. This 

value is the one that the algorithm tries to minimize. So, a small width and a small average 

value are the characteristics of a good model which should always converge to the same 

value. The following curves stand for the best identification obtained among all the 

identifications and which can be seen on the left side of the previous histogram.  

 



 

Figure 5 – Identification and validation 

 



 

Figure 6 - parametric scattering 

The previous graphic shows the parametric scattering on their respective validity 

ranges. Several parameters are very scattered. This result reflects a difficulty of the algorithm 

to identify them. 

Finally, this approach which consists in making several identifications in order to find 

the best one is a first method to obtain a good model. The aim of this paper is to improve how 

to find the best model trying to improve both the scattering results and the time calculation. 

The complexity of the model compared to the poverty of the inputs signals could be a reason 

for those bad results. So the number of parameters has to be reduced in fixing the parameters 

which have the less impact on the output variable and which disturb the algorithm during the 

identification process. 



Reduction method 

The quality of a model is highly dependent on his structure and the choice of its parameters. 

Some parameters are scattered in the validity ranges (each identification give a different 

value). This result reflects the difficulty of the algorithm to identify a parameter. A sensitivity 

analysis can allow solving the identifiability issues. 

This is in order to improve the quality of the model that a local sensitivity analysis was 

conducted. The purpose of this analysis is to classify the parameters from the less sensitive to 

the more sensitive and to fixe one by one the less sensitive ones.  Each new model, which has 

one parameter less, is computed several times in order to observe the error behaviour and the 

parametric scattering. 

Comparing the results, the best approach has to be found. First of all, a global 

sensitivity analysis with MORRIS method (A. Saltelli, 2008) was conducted. Then, an 

approach which will fixed one by one the more scattered parameters in order to improve the 

global scattering (on error and on parameters) was tested.  

The results were compared and the model with less parameters to be identified which 

give the better result compared to the initial model with 14 parameters will be validated.  

2. Sensitivity Analysis 

The purpose of a sensitivity analysis is to prioritize the sources of uncertainty in order to 

reduce the output variability and to simplify the model. The MORRIS method has been use to 

classify the parameters by sensitivity. 

Method description 

The MORRIS (M.D. Morris, 1991) method is a qualitative method which allows classifying 

the parameters in three groups depending on their effects: 



 The negligible effects 

 The linear effects without interactions 

 The non-linear effects with or without interaction 

The MORRIS method measure the sensibility of each parameter thanks to the 

expectancy calculation of the variations: μi
∗ = E(|dXi|). If the value is important then the 

effects are significant (in average) and the model is sensitive to variations. 

It also measures interactions and non-linear effects with the standard deviation: : σi
∗ =

σ(dXi). If the value is important, then the effects are differents from each others and depends 

on either the input (then the effect is non-linear) or the others parameters (then there is 

interaction). 

The method has been applied to our parameters. The following figure shows the 

obtained results. 

 

Figure 7 - sensitivity ranking of the parameters with the MORRIS method 

This sensitivity analysis implies this ranking of the parameters: 



 

 

Table 2 - Sensitivity Ranking (from the least sensitive to the most sensitive) with the 

MORRIS method 

 

Result of the reduction by the sensitivity analysis order 

So, the parameters were kept fixed to their nominal values one by one following the 

sensitivity ranking. Each time, the algorithm is computed several times and the quality criteria 

are finally compared. 

The following figure allows to observe how evolves the error scattering during the 

reduction process. Indeed, the horizontal axis stands for the number of parameters that have to 

be identified – the others are fixed – whereas the meaning error is on the vertical axis. Hence, 

the largeness of the gap between the horizontal curves shows the ability of the algorithm to 

converge always toward the same error value or not. If the gap is small, it means that the 

algorithm is quite stable. The lowest curve gives information about the best accuracy that can 

be achieved by the model. The best compromise would give an error with a gap as small as 

possible while maintaining a good precision. 

The results were observed with a validation dataset. For each model, the identified 

parameters were used to compute the output variable without identification. 



 

Figure 8 - evolution of the meaning error scattering for the reduction by the MORRIS 

sensitivity analysis method 

By looking at the curves, there is no optimal configuration of fixed parameters. 

Indeed, despite a decrease of the scattering, the accuracy is rising. 

The following figure shows the evolution of the normalized standard deviation for 

each parameter. The red curve stands for the average normalized standard deviation. 

A good reduction would improve the global scattering of the parameters and the red 

curve should decrease. 



 

Figure 9 - Evolution of the parametric scattering for the reduction by the MORRIS sensitivity 

analysis method 

Conclusions 

Because the sensitivity analysis did not give satisfying results, another way of fixing the 

parameters was studied. Indeed, the parameters were fixed according to their scattering and 

classifying by their standard deviation.  

3. Reduction of the number of parameters by reduction of the scattering 

Let us see if the simplification of the model according to the scattering parameters value gives 

better results than previously. 

Method 

The following process was used: 

 Step 1 – The identification algorithm is computed n times which a different initial set 

of parameters obtained by random guesses between the validity ranges 

 Step 2 – The identified parameters values are observed between the validity ranges 



and classify by normalized standard deviation 

 Step 3 – The more scattered parameter is fixed 

The steps 1, 2 and 3 are repeated until it remains only two parameters. Then, the 

quality criteria are observed in order to choose the best model – the one which offers the best 

compromise between scattering, reliability and precision. 

This approach gives a new ranking for the parameters to be fixed which becomes as  

following: 

MORRIS 

scattering 

method 

fsolarWest airLeak 

fsolarSouth C 

fsolarEast Presidual 

airLeak efficiency 

RL RL 

Rcorridor Rspace 

R1 Tw0 

C Rcorridor 

efficiency R1 

Roffices R0 

Tw0 fsolarEast 

R0 fsolarSouth 

Rspace fsolarWest 

Presidual Roffices 

Table 3 - Ranking of the parameters for being fixed 

Results of the reduction 

As previously, the error behaviour and the parametric scattering evolution are observed and 

compared to the previous results. 



 

Figure 10 - Evolution of the parametric scattering for the reduction by the scattering method 

In red, this is the meaning standard deviation of all the remaining parameters with the 

reduction method with the parametric scattering. The green one corresponds to the average 

obtained with the MORRIS method. 

 



 

Figure 11 - evolution of the average error gap in identification and in validation, comparison 

of the two reduction methods 

The results given by the scattering reduction (in red) are much more relevant than the 

previous one (in blue). Indeed, two models seem to give good results, both in term of 

precision, stability and parametric scattering: the model with 11 parameters and the model 

with 9 parameters to be identified. 

Conclusion 

Thus, the method provides a model which presents several advantages compared to the first 

identification process which computed several optimizations and give the best one among all 

the identifications. 

Thereafter, the two models with 11 and 9 parameters will be tested on other datasets 

and will be called respectively: the 9-parameters-model and the 11-parameters-model. 



4. Validation 

In order to validate the previous models, some tests have to be done with others datasets: one 

in winter, with heating and one in summer without heating.  

First of all, the same process was tested on new datasets of PREDIS. This step will 

allow seeing if the same kind of results is obtained. Then the best models would be the 11 or 

the 9-parameters-model and the fixed parameters would be the same. If this is not the case, it 

would however allow seeing if a better model that the initial one can be found. Finally, the 9 

and 11-parameters-model will be tested in order to know if those models can work with most 

datasets or not. 

Reduction of the number of parameters to be identified 

As previously, for each model, n optimisations are computed and the parameter with the 

biggest standard deviation was fixed. The following table shows the order obtained for the 

new datasets compared to the old one: 

Initial 

dataset 

February's 

dataset 

June's 

dataset 

airLeak RL Rcorridor 

C Tw0 R1 

Presidual Presidual Tw0 

efficiency C C 

RL airLeak Presidual 

Rspace fsolarEast efficiency 

Tw0 R1 RL 

Rcorridor R0 R0 

R1 fsolarSouth Rspace 

R0 Rspace airLeak 

fsolarEast efficiency Roffices 

fsolarSouth Rcorridor fsolarWest 

fsolarWest fsolarWest fsolarEast 

Roffices Roffices fsolarSouth 

Table 4 - ranking of the parameters to be fixed for the new datasets 



The results are closed but not exactly the same. Let us see the quality criteria. The 

results are always compared to the initial dataset results. 

 

Figure 12- Evolution of the parametric scattering for two new datasets 

 

Figure 13 - Evolution of the meaning error gap for two new datasets 

For the dataset of June, the best model seems to be the model with 9 parameters to be 



identified whereas the best model for the dataset of February seems to be the model with 8 

parameters to be identified. 

Thus, despite the fact that the best model for this dataset does not match the best 

model of the initial dataset, this process nonetheless shows that a better model that the initial 

one with all the parameters and several identification exist for most datasets. 

 Thereafter, we will call this new model which stands for promptly the best 

model for this dataset will be called the « x-parameters-model ». This model will be compared 

to the others models in order to find the better compromise. 

Tests of the 9 and 11-parameters-model 

Because the process is obviously too long to give the best model, let us see if the models 

obtained with the initial dataset could give satisfying results. 

For the model with 11 parameters to be identified, three parameters have been fixed: 

Presidual, airLeak and the capacitance. As to the model with 9 parameters, efficiency and RL has 

been fixed in addition. 

For each model, the identification is computed several times in order to make 

statistics. Then, the results are compared to several situations: 

 The initial model with all the parameters 

 The 11-parameters-model : obtained with the initial dataset 

 The 9-parameters-model : obtained with the initial dataset 

 The x-parameters-model : the best model obtained with the studied dataset 

The table below shows the results taking into account the error behaviour with 

precision and scattering, the parametric scattering, the error for a validation dataset and the 

time calculation. 



 

JUNE 

All 

parameters 11-parameters 9-parameters x-parameters 

meaning error  

(deg C) 2,29 2,43 2,66 2,2 

standard deviation 

of all the 

identification 

errors (deg C) 0,17 1,41E-04 7,19E-11 5,33E-10 

meaning standard 

deviation of all the 

identified 

parameters 0,13 6,40E-03 6,34E-10 1,64E-08 

time calculation (s) medium fast fast long 

Figure 14 - results comparison for the dataset of June 

FEBRUARY 

All 

parameters 11-parameters 9-parameters x-parameters 

meaning error  

(deg C) 0,75 0,77 0,78 0,78 

standard deviation 

of all the 

identification 

errors (deg C) 0,05 0,006 1,28E-04 4,80E-06 

meaning standard 

deviation of all the 

identified 

parameters 0,1 0,04 0,0034 2,00E-04 

time calculation (s) medium fast fast Long* 

Figure 15 - Results comparison for the dataset of February 

* The time calculation of the x-parameters-model would be long because in order to 

find the best model for one precise dataset, all the reduction method describe above would be 

computed – that means several identifications by model. 

Or all the others models have already their number of parameters to be identified and 

there is just several identifications to be done for one model. 

Furthermore, the 9 and 11-parameters model would be very fast because the standard 

deviations of all the identification errors are very low, so just one identification would be 

sufficient. 



Conclusion 

Although there is a small loss of accuracy, the 9 and 11-parameters-models give a good 

compromise between precision, reliability, parametric scattering and time calculation. 

Furthermore, because the error and the parametric scattering remain very low, one 

identification would be sufficient so the time calculation would be very fast. 

Obviously, the less parameters to be identified a model has, the low precision 

becomes. But, taking into account the gain in reliability and time calculation, while 

maintaining acceptable accuracy, the 9-parameters-model seems to be the best model. 

Conclusion and Perspectives 

This approach gives encouraging results about the best way of modelling the building 

envelops. Indeed, it is interesting to take notice that in fixing the more scattered parameters, 

with the “scattering method”, the global scattering reduce, which is quite logical but thoses 

results are better than the method which fixed the less sensitive parameters. It would be 

interesting to test this model in energy management in order to check that it gives good 

temperatures forecast. 

Beyond this application on the PREDIS rooms, this approach gives a robust 

identification method which has to been tested on other buildings in order to validate it. 
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