Kloda Tomasz 
  
Luca Bruno D'ausbourg 
  
Santinelli 
  
Towards a More Flexible Timing Definition Language

Time-triggered languages permit to model real-time system temporal behavior by assigning system activities to the particular time instants. At these precise instants system observes the controlled object and, depending on the analysis of its state, invokes the appropriate actions. This fine-grained control of system temporal evolution enables value and time deterministic programming. Up-todate time-triggered frameworks allow to model multi-modal and multi-modular real-time systems. However, their timing verification imposes some constraints on the computational task model and system reactivity. By adapting scheduling analysis techniques based on the processor demand instead of processor utilization factor, these limitations can be overcome and a more flexible framework may be proposed.

Introduction

The development of embedded software is a highly platform dependent process. The main difficulty lies in both formulating the functional specification of the system and correctly determining its temporal behavior. While the former is facilitated by high level programming languages which abstract from many hardware aspects, getting the expected temporal characteristic of the system involves usually much more efforts due to the implementation of scheduling policies, synchronization and inter-processes communication protocols.

To answer the problem of managing efficiently these two crucial for the correctness of the system aspects, time-triggered languages were devised. These languages clearly separate the functional part of applications from their timing definition. Applications are specified through two descriptions: their time definition, expressed in a time-triggered language, and the functional code of tasks, expressed in any programming language (e.g. C). Functional code does not attempt to control time as the role of specifying this system's property is shifted completely towards time definition part which defines exact points in time at which communication and processing activities are initiated. The state of the system and its operational modes, can change only at these well-defined beforehand instants. A dedicated compiler generates, based on both descriptions, an execution control code that will have to be interpreted by a time-triggered execution system built on top of a selected target platform.

Clearly separating timing definition and functionality specification makes the application development process less platform oriented and allows designers to focus more on the abstract system control aspects than on the concrete execution mechanisms such as task scheduling or time management. The programming of these mechanisms is devoted to the compiler.

Logical Execution Time Time-triggered languages provide the designer with the powerful programming abstraction of Logical Execution Time (LET) [START_REF] Henzinger | Giotto: A Time-triggered Language for Embedded Programming[END_REF][START_REF] Kirsch | The Logical Execution Time Paradigm[END_REF]. The application designer assigns a LET to each task. The LET semantics fixes a time interval as an abstract and logical view of the task execution. The task is considered to start logically at the start instant of the LET interval. Its input data are read exactly at this start time. The task is considered to complete logically at the end instant of the LET interval. Its output data (the results of its computation) are produced exactly at this end instant even if the computation was physically terminated before. Such assumption leads to a well-defined and deterministic interaction between different parallel activities: it is always known at which time a value will be produced and then which value is in use at a given time. Therefore the observable behavior of the system is exactly the logical one and is independent from its physical execution as depicted on Figure 1.

Timing Definition Languages

The concept of LET was introduced for the first time within the Giotto [1,[START_REF] Henzinger | Giotto: A Time-triggered Language for Embedded Programming[END_REF] programming language. Giotto assigns a LET to each task that executes some piece of code. Subsequent task invocations are separated by a period that is equal to its LET. Different tasks communicate between them as well as with sensors and actuators, which exchange data with environment, by means of ports only. Reading of input ports and sensors take place exactly at the beginning of task LET interval while writing to output ports and actuators at its end. Several concurrent tasks may be grouped into a mode that is invoked when the environment or system is in some specific state that should by handled by this particular mode. Giotto program can be only in one mode at a time. Tasks are invoked within the mode, which is characterized by some period, at the declared frequencies and can be removed or added when switching from one mode to another. Giotto was further extended by xGiotto [START_REF] Ghosal | Event-Driven Programming with Logical Execution Times[END_REF] where tasks can be released also at the occurrence of the external events. Timing Definition Language (TDL) [START_REF] Farcas | Scheduling Multi-Mode Real-Time Distributed Components[END_REF][START_REF] Pree | TDL -Steps Beyond Giotto: A Case for Automated Software Construction[END_REF][START_REF] Templ | Timing Definition Language (TDL) Specification[END_REF], another successor of Giotto, introduces decomposition of large systems into executing concurrently modules (components). Each module runs in one mode at a time and can switch to another independently from other modules. Hierarchical Timing Language (HTL) [START_REF] Ghosal | A Hierarchical Coordination Language for Interacting Real-Time Tasks[END_REF] makes use of abstract tasks. These abstract tasks may be refined by groups of concrete tasks and each refining group of concrete tasks must behave in full accordance with the timing constraints of the abstract task it refines.

An Extended Timing Definition Language

Each of the above cited frameworks can be used successfully and introduces new features for the concepts laid down in Giotto. But all of them rely on the same task model structure. In this paper, we propose a new time-triggered framework, named Extended Timing Definition Language (E-TDL), that tries to enhance the basic task model used in TDL while keeping compositional and multi-modal structure brought by this language. Furthermore, introducing such a new task model permits to devise also new mode switching mechanisms.

The E-TDL Task Model Classically, a time-triggered task τ i = (C i , LET i ) is defined by its worst case execution time C i and the Logical Execution Time LET i that is equal to its period T i (T i ≡ LET i ). The input ports of τ i are read at the beginning of LET i interval, τ i executes for at most C i time within LET i and its computation results are written on the output ports exactly at the end instant of LET i . A new instance of τ i is then released immediately to repeat this cycle. In this model, task periods and LETs are always the same even though they denote two different notions. The task period should denote the time intervals that separate subsequent task invocations. The task LET denotes its logical and abstract computation time. By distinguishing these two notions, it would be possible to shorten the response time of a task without unnecessarily increasing the frequency of its executions. Moreover, the start time of a task could be moved forward allowing a later read of inputs and thus giving more freedom in the modeling of the inter-task data flows. Therefore, we suggest to characterize an E-TDL task τ i = (Φ i ,C i , LET i , T i ) with four parameters: an offset Φ i , a worst case execution time C i , a Logical Execution Time LET i and a period T i . An E-TDL n -th task instance (n ∈ N) is invoked at time t r = Φ i + nT i when its input ports are read. It may run for at most C i time units in the LET i interval till the time instant t d = Φ i + nT i + LET i when its results are written onto its output ports. Figures 2 and3 show the difference between the both task models. E-TDL Mode Switch When the system detects a condition change in its environment, it can follow this evolution by switching from its current operating mode to a new mode. Some tasks are deleted from the currently executed task set, others are added and still others modify their parameters or remain unaffected. Mode switching mechanisms are a bit different in Giotto [START_REF] Henzinger | Giotto: A Time-triggered Language for Embedded Programming[END_REF] and in TDL. In both cases, the well timedness condition ensures that mode switches do not terminate logical execution of any task. In TDL mode switches may occur only at time instants when all tasks are logically completed. In Giotto, if a mode switch occurs when a task is logically running, then the same task must be present, with the same timing properties, in the new mode. So, a mode switch jumps to the time point in the new mode where the logical execution of unchanged tasks is exactly in the same state it was in the previous mode. E-TDL follows the same mode switching rule as in TDL: mode switches occur only when all tasks are logically completed. Because periods and LETs are the same in TDL, mode switches may occur only at time instants corresponding to hyperperiods of tasks in the current mode. The E-TDL task model allows tasks to be logically completed before the end of their periods. This fact may generate additional intervals where all tasks are logically completed. Mode switches may occur during these intervals without breaking the well timedness rule. The allowable mode switch points, in the two E-TDL tasks mode of Figure 4, are depicted by the blue intervals with inclined lines. Moreover, by aborting execution of some group of tasks, whose outputs, in new conditions, are no longer vital for the consistency of the system, the number of valid switching points may be increased. In [START_REF] Felix | Mode Switching in GIA An Ada based Real-Time Framework[END_REF] Martinek et al. applied such mode switch mechanism together with a sporadic task model (τ i = (C i , LET i , T i )) to the Giotto. E-TDL aims to integrate the above mentioned propositions in the compositional framework, containing multiple parallel applications, while in Giotto only one program is executed at a time.

Schedulability Analysis

To ensure that a system modeled with E-TDL respects all its timing constraints, processing time demanded by tasks should be quantified and compared to the available resources. In a first stage of our study, we consider Earliest Deadline First (EDF) [START_REF] Liu | Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment[END_REF] scheduling algorithm. The results obtained for TDL [START_REF] Farcas | Scheduling Multi-Mode Real-Time Distributed Components[END_REF] are based on the processor utilization criterion [START_REF] Liu | Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment[END_REF] because the LET of tasks is equal to their period. These results cannot be generalized for E-TDL. So, the processor demand criterion [START_REF] Sanjoy | Algorithms and Complexity Concerning the Preemptive Scheduling of Periodic, Real-Time Tasks on One Processor[END_REF] should be applied in this case. The processor demand criterion states that a task set is feasible if the cumulative demand of the computation made by tasks in any interval is never larger than this interval length. Real Time Calculus [START_REF] Stoimenov | Reliable Mode Changes in Real-Time Systems with Fixed Priority or EDF Scheduling[END_REF] proposes a method that supports any task activation pattern, not only a purely periodic one with uni-modal behavior, and performs compositional analysis of the system where different modules execute concurrently. The maximal demand that can be generated by each individual module over any interval of given length is computed. Then, the demands from different modules are summed up and compared to the minimal available resources for this interval length. If it occurs that the timing definition specifies that the summed up intervals cannot be observed simultaneously, the result of the test can be overestimated. We take this observation as the starting point of our future work. We would like to reduce this pessimism by considering only the global schedules that are made up of task activation patterns from the distinct modules that start at the same time instant.

Figure 1 :

 1 Figure 1: Logical Execution Time.

Figure 2 :Figure 3 :

 23 Figure 2: Giotto/TDL task model.

Figure 4 :

 4 Figure 4: E-TDL mode switch instants.