
HAL Id: hal-01082722
https://hal.science/hal-01082722

Submitted on 14 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards EDF Schedulability Analysis of an Extended
Timing Definition Language
T. Kloda, B. d’Ausbourg, L. Santinelli

To cite this version:
T. Kloda, B. d’Ausbourg, L. Santinelli. Towards EDF Schedulability Analysis of an Extended Timing
Definition Language. 6th Workshop on Adaptive and Reconfigurable Embedded Systems (APRES
2014), Apr 2014, BERLIN, Germany. �hal-01082722�

https://hal.science/hal-01082722
https://hal.archives-ouvertes.fr

Towards EDF Schedulability Analysis of an

Extended Timing Definition Language

Tomasz Kloda Bruno d’Ausbourg Luca Santinelli

ONERA Toulouse, name.surname@onera.fr

Abstract—In a time-triggered system activities like releasing of
tasks, mode switches, sensor readings are all initiated at prede-
termined points in real-time. This paper proposes an extension
of a time-triggered compositional framework and presents, based
on the widely-applied methods, a condition for its schedulability.
The pessimism of this condition is then discussed and the new
challenges in the compositional analysis of time-triggered systems
are raised.

I. INTRODUCTION

The development of embedded software is a highly platform

dependent process. The main difficulty lies in both formulating

the functional specification of the system and correctly deter-

mining its temporal behavior. While the former is facilitated by

high-level programming languages which abstract from many

hardware aspects, getting the expected temporal characteristic

of the system involves usually much more efforts due to the

implementation of scheduling policies, synchronization and

inter-processes communication protocols.

To answer the problem of managing efficiently these two

crucial for the correctness of the system aspects, time-triggered

languages were devised for embedded programming. These

languages clearly separate the functional part of applications

and their timing definition. Applications are specified through

two descriptions: their timing definition, expressed in a time-

triggered language, and the functional code of tasks, expressed

in any programming language (C for example). At the final

stage, a dedicated compiler generates, based on the both

descriptions, a ready-to-run executable for a selected target-

platform. This allows control designers and developers to

focus on the control systems aspects instead of the platform

(hardware and operating system) without being interested in

where, how and when tasks are actually scheduled: this may

be on platforms with a single CPU or with many CPUs, on

platforms with a preemptive priority scheduling or not.

The basic functional units of time-triggered languages are

tasks that periodically execute some piece of code. Several

concurrent tasks may be grouped into a mode. Tasks are

invoked within the mode at declared frequencies and can be

removed or added when switching from one mode to another.

They communicate between them as well as with sensors and

actuators by means of ports.

Time-triggered languages provide a programming abstrac-

tion which was firstly introduced within the Giotto program-

ming language [12]. Giotto assigns to each task a Logical

The paper was presented at APRES 2014. Copyright retained by the authors.

Execution Time LET [13] which defines the precise instants

when the task exchanges data with the other tasks and the

environment. Task is invoked and reads its input ports at

the start of its LET interval, then performs a computation

whose results are made available on its output ports exactly

at the end of the LET. Figure 1 shows the difference between

the logical and physical execution of a task: the observable

temporal behavior of a task is independent from the platform

related factors such as processing speed, scheduling policy and

communication protocols.

Logical

Physical time

LET

output write
stopresumestart

input read

 release termination

suspend

Fig. 1: Logical Execution Time and its possible physical

execution.

Timing Definition Language (TDL) [9], [10], [23], a succes-

sor of Giotto, extends these concepts by allowing a decompo-

sition of large real-time systems into executing concurrently

modules (components). Each TDL module runs in one mode

at a time and can switch the modes independently of other

modules.

A. Problem Statement

While enabling timing and value predictability of pro-

grams, Giotto and TDL can be further extended towards

a more flexible and more realistic application modeling.

In both frameworks, the length of task LET and its pe-

riod are equal. Introducing a task model with an ini-

tial offset and the LET of a task terminating before the

end of its period is what we call the new framework

Extended Timing Definition Language (E-TDL) which is pre-

sented in Section II.

With E-TDL it is necessary to guarantee safe execution dur-

ing multimodal operation inside every module. In section I-C

are cited some methods [24], [11] that can be adapted to

our case in order to provide a schedulability condition. They

address mainly event-triggered systems where the execution of

some activity is a consequence of the occurrence of an event

whose arrival cannot be predefined beforehand. Hence, it can

be supposed that in all modules the events which produce the

biggest demand may arrive at the same time.

Time-triggered systems observe the state of the controlled

object only at specified time instants and initiate appropriate

activities only at these instants. In that case, time instants of

tasks activations are precisely defined and it is known whether

tasks are launched simultaneously or not. Consequently it may

be avoided to consider the synchronous case in analysis when

it is well known that this case never occurs.

Compositional analysis of such systems should be able

to exhibit the relations between the start of the intervals in

different modules and compare only these that can actually

start at the same time. Therefore, the analyses that are well-

suited for event-triggered systems can be overestimating in the

time-triggered context.

B. Contribution

A short description of E-TDL is presented and a sufficient

condition for the feasibility of an E-TDL system running on a

single CPU under the EDF scheduling policy [14] is proposed.

The condition is based on the event-triggered paradigm what

results in some degree of pessimism. An example is used to

point our future works in a direction that permits to reduce this

pessimism by taking into account the time-triggered aspect of

the system.

C. Related Work

Many different protocols and methodologies attempting to

ensure the schedulability of a system across mode switches

have been proposed in the literature. Protocols known as

synchronous [25], [4], [20] do not release new tasks until

all old mode tasks are completed. On the contrary, asyn-

chronous protocols, both for Fixed Priority [26], [18], [20]

and EDF [3], [7], define that during transition phase the last

activations of old mode tasks and new mode tasks can be

executed simultaneously. In TDL and E-TDL, systems can be

composed of many modules and each module can undergo

mode transitions that are defined only in its local scope. For

systems designed in a compositional manner, an approach

based on the real-time calculus (RTC) [24] is developed in

the work of Stoimenov et al. [22]. Fisher [11] proposed

a schedulability test for EDF where the allocation of the

processing resources for each subsystem is represented by an

explicit-deadline periodic resource model [8] and a sporadic

task model [16] is chosen. Servers can also dynamically adapt

their parameters of resource reservation. The feasibility under

multi-moded resource reservation was studied by Santinelli et

al. in [21].

Concerning the schedulability analysis of time-triggered

systems, some of the most significant contributions were made

notably by Farcas [9] for TDL and Martinek for the Giotto

in Ada [15] framework. The latter extends a Giotto’s task

model with the notion of deadline but, since Giotto is not

a compositional framework, these results cannot be applied in

this instance.

Closely related to our work is RTComposer framework

proposed by Alur and Weiss [2]. Scheduling requirement of

each component is described by a finite state automaton [1].

Compositional analysis consists in verifying that the prod-

uct of the automata of all the components, intersected with

constraints imposed by the platform, is not empty. In our

approach, we opt for processor demand criterion [5], [6],

a technique that is well-suited and widely applied for EDF

schedulability analysis.

II. EXTENDED TDL MODEL

An E-TDL periodic task τi = (Φi, Ci, LETi, Ti) is char-

acterized by an offset Φi, a worst-case execution time Ci, a

Logical Execution Time LETi (that gives its relative deadline

Di) and a period Ti.

The offset Φi is restricted to be smaller than the period

(0 ≤ Φi < Ti) and LETi has to be large enough that task

could be executed within it (Ci ≤ LETi ≤ Ti − Φi).

Moreover, E-TDL semantics do not allow the j − th instance

(j ∈ N+) of task τi started in the time interval [(j − 1)Ti, jTi]
to be finished after time jTi. Taking into account the above

mentioned constraints, an E-TDL task τi may be implemented

by a periodic real-time task whose releases and deadlines are

expressed as follows:

ri,j = Φi + (j − 1)Ti ≤ jTi, (1)

di,j = Φi + LETi + (j − 1)Ti ≤ jTi. (2)

Φi

(j − 1)Ti

Ci
ri,j

read write

di,j

Ti

LETi ≡ Di

jTi

Ci
ri,j+1

read write

di,j+1

Ti

LETi ≡ Di

(j + 1)Ti

Fig. 2: E-TDL task model.

The LET semantics imposes that a task reads periodically

its inputs exactly when it is released and delivers its outputs

exactly at the end of its LET interval.

An E-TDL system consists of multiple modules running on

the same node. All modules of the system, referred hereafter

as Modules, run concurrently sharing common processing

resources. Each module Mj ∈ Modules, from a scheduling

point of view, is considered independent from the others.

At a time module Mj executes one of its modes from

the set Modes[Mj]. One of them is the initial start mode.

A mode is invoked and performs appropriate actions when

the environment is in some specific state that should by

handled by this particular mode [17]. Each mode mk executes

periodically, within its mode period π[mk], a set of E-TDL

tasks τ [mk]. A mode period is restrained to be a common

multiple of the periods of all tasks in the mode.

π[mk]
def

= n H(mk) (3)

where H(mk) is a hyperperiod of all tasks in the mode mk,

H(mk)
def

= lcm{Ti | τi ∈ τ [mk]} (4)

n ∈ N+

The amount of time elapsed since the start of the last period

of the mode mk is named mode time δk and is set to 0 every

time a mode period is started. As mode time δk evolves in the

mode period π[mk] (0 ≤ δk ≤ π[mk]), appropriate actions,

like releasing or terminating tasks, are triggered. When the

condition change in the environment or inside the system is

observed, the current operating mode stops its activities and

a new mode is entered instantaneously with a mode time

set to zero. These transitions are described in E-TDL by

mode switches which define precisely at which exact mode

time mode switch conditions are evaluated and transitions can

take place if the mode switch conditions are satisfied. During

execution of mode mk the conditions to switch from mode

mk to mode mk+1 are checked periodically every mode-switch

period Tsw(mk,mk+1). The instants δms, at which this check

occurs and which are multiple of Tsw(mk,mk+1), are named

mode switch instants. Mode that can be activated or reactivated

from the mode time δms in the mode mk belongs to the set

next modes(mk, δms):

next modes(mk, δms) =

{mk+1 | ∃Tsw(mk,mk+1) : δms mod Tsw(mk,mk+1) = 0} ∪

{mk | δms = π[mk]}. (5)

Every mode switch period Tsw(mk,mk+1) is restricted to

be a common multiple of all the task periods of the mode in

which it was declared:

Tsw(mk,mk+1) mod H(mk) = 0 ∧

∃n ∈ N+, n Tsw(mk,mk+1) = π[mk].(6)

Such a choice of mode switch instants entails that a mode

switch may occur only at time instants when no current mode

task is running. The new mode is activated without any delay

at zero mode time instant (δk = 0). Mode switches are local

within a module as a mode switch can occur in a particular

module while tasks of all the other modules are running.

III. SCHEDULABILITY ANALYSIS FOR E-TDL

FRAMEWORK

The above presented model imposes on each module of the

system a set of possible execution patterns that can be observed

during its temporal evolution. In what follows, the behavior

of every module is characterized and the processing resources

the module demands over time are quantified. This permits

to provide a sufficient condition for the schedulability of the

whole system under mode transitions.

A. Execution Trace of an E-TDL Module

In [9] Farcas proposed a mode-switch graph which allows

to exhibit all the modes of a given module and the transitions

it can undergo. Modes are represented by the vertices and

transitions by the edges of the graph. An edge is traced from

the vertex denoting a source mode to the vertex denoting a

destination mode if a mode switch between these two modes

is defined. The mode switch period labels the edge.

Definition 1 (Mode-Switch Graph). For a module

Mj ∈ Modules its mode-switch graph is defined

by the set Modes[Mj] and the set of transitions

{(mk,mk+1, Tsw(mk,mk+1))|mk,mk+1 ∈ Modes[Mj],
∃δ : mk+1 ∈ next modes(mk, δ)}.

mk mk+1

mk+2

Tsw(mk,mk+1)

π[mk] π[mk+1]

π[mk+2]

Tsw(mk,mk+2)

. . .

. . .

Fig. 3: Example of a mode-switch graph.

Over the course of its execution, a module can remain in

the current mode or switch to one of its successive modes.

The behavior of a module can be described by a walk that

travels through its mode-switch graph, visiting modes for any

time that is multiple of one of its mode switch periods and

jumping to another modes at the time instants of the mode

switch evaluation.

Definition 2 (Walk in a Mode-Switch Graph). A walk

w = ((m1, µ1), . . . , (mn, µn)) of an E-TDL mode-switch

graph is a sequence of n pairs where m1, . . . ,mn are the

subsequent modes in the mode-switch graph and µk is defined

as the number of:

• (for k < n: µk ∈ N+) times the condition of mode switch

to mk+1 has been checked in mk before entering mk+1,

• (for k = n: µk ∈ N0) full periods π[mk] spent in mk.

The first mode in the walk w is designated as head(w)
and the last mode as tail(w). The length of a walk

w = ((m1, µ1), . . . , (mn, µn)) can be expressed as:

|w| =
n
∑

k=1

µkTsw(mk,mk+1) (7)

To simplify notation, for k = n, as there is no next mode

in the walk w, we use term Tsw(mk,mk+1) interchangeably

with π[mk].
The notion of walk permits to describe the execution traces

that lie between mode switch instant δms when the module is

in head(w) and mode instant 0 when the module is in tail(w).
Every trace of a module execution can be seen as a walk w

preceded and followed by two intervals. Both of them cover

an execution pattern that can be observed within a mode single

run (between its mode time 0 and its period end). The interval

that precedes w starts at time ts and finishes at the time when

the module enters mode head(w). The interval that is observed

from the end of w, starts when module is in mode tail(w) at

mode time 0 and finishes at time tf . Figure 4 illustrates the

proposed interval [ts, tf] decomposition.

Definition 3 (Module’s Execution Trace). An execution trace

of an E-TDL module Mj ∈ Modules over a time interval

[ts, tf] is denoted by σMj
= (ms, δs, δ

′

s, w,mf , δf) where

• ms ∈ Modes[Mj] is the mode executing before walk w

• δs : 0 < δs ≤ π[ms] is the mode time related to ts
• δ′s : δs ≤ δ′s ≤ π[ms] is the mode time of mode ms

• w is a walk in the mode-switch graph of module Mj

• mf ∈ Modes[Mj] is the mode executing after walk w

• δf : 0 ≤ δf < π[mf] is the mode time related to tf ,

and the following conditions are fulfilled:

• head(w) ∈ next modes(ms, δ
′

s)
• if tail(w) 6= mf :

mf ∈ next modes(tail(w), π[tail(w)]) and tail(w) is

executed at least one time at the end of w

• tf − ts = δ′s − δs + |w|+ δf

0 δsTsw(ms,m1) δ′s Tsw(m1,m2) 2 ∗ Tsw(m1,m2) Tsw(m2,m3 = mf) δf π[m3]
ts tf

ms m1 m2 m3 = mf

w = ((m1, 2), (m2, 1), (m3, 0))

Fig. 4: Example of a module’s execution trace

Short intervals, within which no more than one mode’s

period is executed, can be represented, in accordance with

the above definition, as σMj
= (ms, δs, δ

′

s, ∅, ∅, 0).

B. Workload Characterization of an E-TDL Module

To determine the schedulability of an E-TDL system, the

workload generated by each module should be precisely

quantified. An E-TDL execution trace is the combination of

two types of intervals. Before and after its walk no more than

one mode period is executed. The walk itself constitutes a

sequence of intervals that span over some number of mode

switch evaluation periods. Based on the concept of demand

function [5], the next two definitions evaluate the workloads

in such intervals.

Definition 4 (Demand Function for a Walk). For a given

walk w its demand function df(w) can be calculated as:

df(w)
def

=
∑

(mk,µk)∈w

µkTsw(mk,mk+1)U(mk) (8)

where U(mk) is the processor utilization factor of mode mk:

U(mk)
def

=
∑

τi∈τ [mk]

Ci

Ti

. (9)

Definition 5 (Demand Function within a Mode). Let

δk and δ′k be the mode times of the mode mk such that

0 ≤ δk < δ′k ≤ π[mk]. The demand function df(mk, δk, δ
′

k)
within a mode mk is the cumulative execution time required by

all the task instances in mk having its releases and deadlines

between δk and δ′k.

df(mk, δk, δ
′

k)
def

= (10)
∑

τi∈τ [mk]

(⌊

δ′k−Φi−LETi

Ti

⌋

−

⌈

δk−Φi

Ti

⌉

+1

)

0

Ci

The foregoing definitions can be applied to express the

workload generated by an E-TDL module execution trace σMj

(see Definition 3) that has been observed in a time interval

[ts, tf].

Definition 6 (Demand Function). If an E-TDL execution

trace σMj
= (ms, δs, δ

′

s, w,mf , δf) is observed in the time

interval [ts, tf] in module Mj ∈ Modules, the total cumula-

tive demand dfMj
(ts, tf), required by Mj over this interval is

given as:

dfMj
(ts, tf)

def

= df(ms, δs, δ
′

s) + df(w) + df(mf , 0, δf)(11)

Depending on the past stimuli, different execution traces

can be observed in the time interval [ts, tf]. Let ΣMj
(ts, tf)

be the set of all execution traces that can potentially appear

between the time instants ts and tf .

Example 1. Consider module M1 with two modes

Modes[M1] = {m1,m2} characterized by the same mode

period π[m1] = π[m2] = π. Module M1 can go from mode

m1 to m2 if at the period end of the former some sensor

reading is above a particular value. Given an interval [ts, tf]
where ts = π and tf = 2π, then the execution traces

which can be observed within it lie in the set ΣMj
(ts, tf) =

{σMj
= (m1, π, π, w,mf , 0)|w ∈ {(m1, 1), (m2, 1)}, mf =

head(w)}.

If MaxdfMj
(ts, tf) designates the largest value of demand

functions dfMj
(ts, tf) for execution traces within the set

ΣMj
(ts, tf), then the highest demand for processing time of

module Mj over any time interval is given by the following

definition.

Definition 7 (Demand Bound Function). The demand bound

function dbfMj
(∆) denotes the maximal cumulative require-

ment of computation for module Mj ∈ Modules during any

time interval [ts, ts + ∆] that can be generated by some E-

TDL execution trace σMj
∈ ΣMj

(ts, ts + ∆) where ∆ is a

non-negative integer.

dbfMj
(∆)

def

= max
ts

{MaxdfMj
(ts, ts +∆)} (12)

C. Schedulability of an E-TDL System

Under EDF, the schedulability analysis of an asynchronous

task set where deadlines are less than periods is performed us-

ing the processor demand criterion [5], [6]. The schedulability

of a task set can be proved if the cumulative demand of the

computation made by its tasks in any interval is never larger

than the length of this interval. The following theorem adapts

this reasoning to the E-TDL framework. It verifies if, for any

time interval, the total amount of processing time requested

by individual modules to complete their execution traces does

not exceed the interval’s length.

Theorem 1 (Schedulability of an E-TDL System). Let be

an E-TDL system defined by a set of modules Modules such

that:
∑

Mj∈Modules

max
mk∈Modes[Mj]

{U(mk)} ≤ 1 (13)

If for every time interval ∆ > 0 :
∑

Mj∈Modules

dbfMj
(∆) ≤ ∆ (14)

then the E-TDL system is schedulable under EDF on one

processor.

The above theorem gives only a sufficient condition for

schedulability of an E-TDL system.

Example 2. Given two positive-integers π and ε such

that ε < π, and an E-TDL system composed of modules

M1 and M2. Module M1 can run in one of two modes

Modes[M1] = {m1,m
′

1} both having the same mode period:

π[m1] = π[m′

1] = π at the end of which each one can

jump to the other mode. Module M2 has only one mode

Modes[M2] = {m2} with the mode period π[m2] = 2π.

All the modes are single-task and their task sets are as

follows: τ [m1] = {τ1 = (0, ε, ε, π)}, τ [m′

1] = {τ ′1 =
(ε, π − ε, π − ε, π)}, τ [m2] = {τ2 = (0, 2(π − ε), 2π, 2π)}.

M1

M2

τ1 τ ′1 τ1 τ1 τ ′1

Φ = ε

τ2 τ2,1 τ2,2 τ2

π[m1] = π π[m′

1] = π π[m1] = π π[m1] = π

π[m2] = 2π π[m2] = 2π

∆ = 2π

m1 m′

1
m1 m1 m′

1

m2 m2 m2

Φ = ε

Fig. 5: A sample run of the E-TDL system from Example 2.

It can be seen from the above figure that the system is

schedulable. However, for the interval ∆ = 2π the condition of

Theorem 1 (Equation 14) is not satisfied. The demand bound

functions over an interval of this length for the individual

modules are:

• dbfM1
(∆) = ε+ π for σM1

= (m′

1, ε, π, (m1, 1),m1, ε)
• dbfM2

(∆) = 2(π − ε) for σM2
= (m2, 0, 2π, ∅, ∅, 0)

The cumulative demand is dbfM1
(∆)+dbfM2

(∆) = 3π−ε >

2π as 0 < ε < π. The summed up demands are associated

with intervals that will never completely overlap due to

the timing control of tasks in the time-triggered paradigm.

Since these demands will never be simultaneous, adding them

overestimates the cumulative demand.

IV. CONCLUSION AND FUTURE WORK

In this work we proposed an extension to TDL for which

we applied a scheduling analysis based on the processor

demand criterion. In the future, we would like to reduce

the pessimism of the solution from Theorem 1 by taking

into account the time-triggered character of the system. The

mode-switch graph should be examined more carefully to find

out what are the allowable instants of mode starts and then,

similarly to the feasibility test for asynchronous task sets

proposed by Pellizzoni [19], construct the global schedules

that are made up of execution traces occurring at the same

time in the distinct modules. Furthermore, a maximal length

of the interval on which the schedulability condition is checked

should be estimated.

REFERENCES

[1] R. Alur and G. Weiss. Regular Specifications of Resource Requirements
for Embedded Control Software. In IEEE Real-Time and Embedded

Technology and Applications Symposium, pages 159–168, 2008.

[2] R. Alur and G. Weiss. RTComposer: A framework for Real-Time
Components with Scheduling Interfaces. In Proceedings of the 8th ACM

International Conference on Embedded Software, EMSOFT ’08, pages
159–168, New York, NY, USA, 2008. ACM.

[3] B. Andersson. Uniprocessor EDF Scheduling with Mode Change.
In Proceedings of the 12th International Conference on Principles of

Distributed Systems, OPODIS ’08, pages 572–577, Berlin, Heidelberg,
2008. Springer-Verlag

[4] C. M. Bailey. Hard real-time operating system kernel. Investigation of

mode change. Task 14 Deliverable on ESTSEC Contract 9198/90/NL/SF

British Aerospace Systems Ltd., 1993

[5] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and Complexity
Concerning the Preemptive Scheduling of Periodic, Real-Time Tasks on
One Processor. Real-Time Syst., 2(4):301–324, Oct. 1990.

[6] G. C. Buttazzo. Hard Real-time Computing Systems: Predictable Schedul-

ing Algorithms And Applications (Real-Time Systems Series). Springer-
Verlag TELOS, Santa Clara, CA, USA, 2004.

[7] G. C. Buttazzo, L. Abeni, and S. S. S. Anna. Elastic Task Model For
Adaptive Rate Control. In IEEE Real-Time Systems Symposium, pages
286–295, 1998

[8] A. Easwaran, M. Anand, and I. Lee. Compositional Analysis Framework
Using EDP Resource Models. In RTSS, pages 129–138, 2007.

[9] E. Farcas. Scheduling Multi-Mode Real-Time Distributed Components.
PhD Thesis, Department of Computer Science, University of Salzburg,
July 2006.

[10] E. Farcas, C. Farcas, W. Pree, and J. Templ. Transparent Distribution of
Real-Time Components Based on Logical Execution Time. In LCTES,
pages 31–39, 2005.

[11] N. Fisher and M. Ahmed. Tractable Real-Time Schedulability Analysis
for Mode Changes under Temporal Isolation. In ESTImedia, pages 130–
139, 2011

[12] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A Time-
Triggered Language For Embedded Programming. In EMSOFT, pages
166–184, 2001.

[13] C. M. Kirsch and A. Sokolova. The Logical Execution Time Paradigm.
In Advances in Real-Time Systems, pages 103–120, 2012.

[14] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment. J. ACM, 20(1):46–61, 1973.

[15] N. F. Martinek and W. Pohlmann. Mode Switching in GIA – An
ADA Based Real-Time Framework. Department of Scientific Computing,
University of Salzburg.

[16] A. K. Mok. Fundamental design problems of distributed systems for
the hard-real-time environment. PhD Thesis, Laboratory for Computer
Science, Massachusetts Institute of Technology, USA, 1983.

[17] P. Pedro. Schedulability of Mode Changes in Flexible Real-Time

Distributed Systems. PhD Thesis, Department of Computer Science,
University of York, September 1999.

[18] P. Pedro and A. Burns. Schedulability Analysis for Mode Changes in
Flexible Real-Time Systems. In ECRTS, pages 172–179, 1998.

[19] R. Pellizzoni and G. Lipari. Feasibility Analysis of Real-Time Periodic
Tasks with Offsets. Real-Time Systems, 30(1-2):105–128, 2005.

[20] J. Real and A. Crespo. Mode Change Protocols for Real-Time Systems:

A Survey and a New Proposal. Real-Time Syst., 26(2) :161–197, March
2004

[21] L. Santinelli, G. C. Buttazzo, and E. Bini. Multi-Moded Resource Reser-
vations. In IEEE Real-Time and Embedded Technology and Applications

Symposium, pages 37–46, 2011.
[22] N. Stoimenov, S. Perathoner, and L. Thiele. Reliable Mode Changes

in Real-Time Systems with Fixed Priority or EDF Scheduling. In
Proceedings of Design, Automation and Test in Europe, 2009 , pages
99–104, Apr 2009. IEEE.

[23] J. Templ. Timing Definition Language (TDL) Specification 1.5 Tech-

nical Report T024, Department of Computer Science, University of
Salzburg, Austria, October 2008.

[24] L. Thiele, S. Chakraborty, and M. Naedele. Real-Time Calculus for

Scheduling Hard Real-Time Systems. In The 27th Annual International

Symposium on Computer Architecture(ISCA), volume 4, pages 101 –104
vol.4, 2000

[25] K. Tindell and A. Alonso. A very simple protocol for mode changes in

priority preemptive systems. Technical report, Universidad Politécnica de
Madrid, 1996

[26] K. Tindell, A. Burns, and A. Wellings. Mode changes in priority pre-

emptively scheduled systems. In Proceedings of the Real Time Systems
Symposium, pages 100–109, 1992

