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DOMAIN DECOMPOSITION METHOD BY INTEGRAL EQUATIONS FOR STUDYING ELECTROMAGNETIC DIFFRACTION FROM LARGE METALLIC STRUCTURES

In this paper, we present a non-overlapping domain decomposition method by integral equations in the frequency domain for the resolution of wave scattering from metallic objects. The objective is to use multi-domain modelling to process multi-scale structures. This method is flexible thanks to an independance between sub-domains and relying on the local resolution of these sub-domains. Moreover, the convergence is improved compared to a classical resolution. This method is achieved for predicting radar cross-sections, studying antennas radiation and EMC applications.

I. INTRODUCTION

This paper deals with a computational method developed to combine domain decomposition and integral equations. The resolution of the Maxwell equations by integral equations is very useful to study the wave scattering from non-penetrable objects or homogeneous objects represented by a surface impedance. These methods present the advantage to generate a surfacic mesh of the object which is better than a volumic mesh as in the finite element methods. However, these methods lead to a dense linear system. Combining a multi-domain approach with integral equations should permit to solve some problems we meet with a classic mono-domain approach. Such a method has been proposed in [START_REF] Peng | Integral Equation Based Domain Decomposition Method for Solv-Penetrable Objects[END_REF]. Nevertheless, the formulation does not permit to solve opened structures and a random meshing can accidentelly lead to a singular linear system. In this paper, we present a more general formulation correcting these problems. The resolution of the linear system relies on a local resolution of the sub-domains.

II. MONO-DOMAIN INTEGRAL EQUATIONS

The total electromagnetic field (E, H) of frequency f can be decomposed in an incident field (E source , H source ) and the field (E sc , H sc ) scattered by the object. The studied PEC (Perfectly Electric Conductor) object takes up the domain Ω with the boundary Γ of exterior normal n. Solving integral equations on a PEC object consists in computing electric currents j = n × H which are the tangential traces of the magnetic field. The fields scattered by the structure can be computed knowing the electric currents on Γ. From the Stratton-Chu formulae [START_REF] Van Bladel | Electromagnetic Fields[END_REF] and by application of the method of moments, the Electric Field Integral Equations (EFIE) and Magnetic Field Integral Equations (MFIE) can be developed. The scalar product a, b Γ = Γ a • b dΓ and the test and basis Rao-Wilton-Glisson (RWG) functions Φ ∈ H div (Γ) are defined [START_REF] Rao | Electromagnetic Scattering by Surfaces of Arbitrary Shape[END_REF]. This is the EFIE with our operator (B -S) [START_REF] Barka | Integration of Antennas Onboard Vehicles and Diffraction by Large and Complex Structures With Multiple-Domain-Multiple-Methods Techniques[END_REF]:

(B -S) (j, Γ) , Φ Γ = IE source , Φ Γ (1) 
This is the MFIE with our operator I 2 + ıQ × [4]:

I 2 + ıQ × j, Φ Γ = I n × H source , Φ Γ (2) 
The EFIE and MFIE can suffer of internal resonances and a solution is the Combined Field Integral Equations which consists in combining EFIE and MFIE such as

CF IE = αEF IE + (1 -α)M F IE with α ∈ ]0; 1[.

III. MULTI-DOMAIN INTEGRAL EQUATIONS

III.1. Sub-domain decomposition

Consider a PEC object Ω divided in two non-overlapping sub-domains such as Ω = Ω 1 ∪ Ω 2 . The boundaries of these domains are noted Γ, Γ 1 and Γ 2 . The normal vectors n, n1 and n2 are exterior to the surfaces. Note that all the surfaces of the sub-domains are PEC. The surfaces 

Γ i 1 = Γ 1 ∩Γ 2 and Γ i 2 = Γ 2 ∩Γ 1 which did not exist

III.2. Formulation

Two sets of equations permit to develop the Integral Equations -Domain Decomposition Method (IE-DDM) formulation. The first set is the CFIE applied to each subdomain and the second set is a coupling equation linking 

. Practical domain decomposition of a real aircraft

sub-domains to each other. The following formulation is exposed for an object decomposed in two sub-domains but it can be extended to any decomposition. CFIE on one sub-domain describes the total field on the structure is the sum of the incident field on the subdomain with the field scattered by the sub-domain. The coupling equations describe that the incident wave is not the only source that illuminates the first sub-domain. Indeed, the field scattered by the second sub-domain is like a second source for the first sub-domain. MFIE formulation leads to a simplified form on the interfaces Γ i 1 and Γ i 2 . which renders the opposition of currents j 1 and j 2 on this surface. Consequently, the EFIE formulation is the same on each point of the sub-domain, but we modify the MFIE formulation on the interface. Finally, compared to [START_REF] Peng | Integral Equation Based Domain Decomposition Method for Solv-Penetrable Objects[END_REF], we propose a new formulation allowing both EFIE, MFIE and CFIE resolutions. Consider the first sub-domain, the weak formulation on the exterior boundary

Γ b 1 is:                (B -S) (j 1 , Γ 1 ) , Φ Γ b 1 + (B -S) (j 2 , Γ 2 ) , Φ Γ b 1 = IE tg source 1 , Φ Γ b 1 I 2 + ıQ × (j 1 , Γ 1 ) , Φ Γ b 1 + I 2 + ıQ × (j 2 , Γ 2 ) , Φ Γ b 1 = I n1 × H source 1 , Φ Γ b 1 (3) On the interface Γ i 1 :    (B -S) (j 1 , Γ 1 ) , Φ Γ i 1 + (B -S) (j 2 , Γ 2 ) , Φ Γ i 1 = IE tg source 1 , Φ Γ i 1 Ij 1 + Ij 2 , Φ Γ i 1 = 0 (4)
The matrices are compressed with the ACA (Adaptive Cross Approximation) algorithm [START_REF] Bebendorf | Approximation of boundary element matrices[END_REF]. The hierarchical matrices [START_REF] Rjasanow | The Fast Solution of Boundary Integral Equations[END_REF] of the local CFIE matrices are built. Each block of the coupling matrix is either fully assembled or either compressed depending on the distance criterion between sub-domains. The ACA algorithm and his implementation in the proposed methodology are not detailed in this paper.

III.3. Linear system resolution

The linear system to solve is (A l + A c ) x = b. A l is a block matrix where the k th block is the local CFIE matrix of the k th sub-domain. A c is a coupling matrix linking sub-domains to each other. b is the right-hand side representing the incident wave. Practically, the linear system is preconditionned by A l , thus I + A -1 l A c x = A -1 l b is solved. This operation consists in solving local subdomains rather than the global object. At each global iteration, the local sub-domains are solved. The iterative algorithm GCR (Generalized Conjugate Residual) [START_REF] Eisenstat | Variational Iterative Methods for Nonsymmetric Systems of Linear Equations[END_REF] is used to solve the systems. The ACA (Adaptive Cross Approximation) algorithm previously evoked permits to accelerate the matrix-vector products during the resolution.

IV. NUMERICAL RESULTS

This algorithm was implemented in a program named IE-DDM. The computations are done sequentially on a workstation with 6GB of RAM. The aim of these results is to validate the precision of the IE-DDM method and to prove that the conditionning of the system is improved.

The IE-DDM results are compared with the mono-domain integral equations results implemented in the ELSEM3D software developed by ONERA/DEMR [START_REF] Simon | Extension des Méthodes Multipôles Rapi-des : Résolution pour des seconds membres multiples et applications aux objets diélectriques[END_REF]. We compare the currents on the structure, the RCS (Radar Cross Section) and the convergence of the iterative solver. The test concerns the diffraction of a wave by a Fokker F100 PEC aircraft decomposed in nine sub-domains. The decomposition is pictured in Fig. 2. The mono-domain aircraft is meshed with 93510 degrees of freedom and the multi-domain aircraft is meshed with 76995 degrees of freedom. The number of degrees of freedom of the sub-domains are indicated in Tab. 1. . The incident wave has a frequency of f = 1 GHz, is polarized along the x axis and illuminates the scatterer from the ẑ axis. The sub-domain meshes are totally independent from each others. The first results permit to evaluate the precision of the method. The convergence criterion of the iterative solver is fixed at ε = 10 -3 for both mono-domain and multidomain resolutions. A vizualization of the norm of the real part of the currents is represented in Fig. 4. This allows to assess quantitatively the method. The bistatic RCS for θ ∈ [-180 • ; 180 • ] is plotted in Fig. 5. This is a better qualitative indicator on the precision. We can observe a good agreement between the two curves. There is a small shift which can be explained by a difference of the step size of the meshes in certain regions. Finally, we compare the convergence of the iterative resolutions by ELSEM3D and IE-DDM with a convergence criterion ε = 10 -4 in Fig. 6. We note that the IE-DDM program converges despite a severe convergence criterion while the mono-domain resolution ELSEM3D fails to converge after 1000 iterations. We conclude that the IE-DDM formulation is a good preconditionner. We want to give some information about the computational costs. The ACA algorithm permitting to compress matrices and accelerating the matrix-vector products is a work in progress version. That means the code is not optimized especially about the computational times. Consequently, we cannot give precise information about these computational costs.

V. CONCLUSION

This paper presents a domain decomposition method by integral equations for the scattering of metallic targets. First, the formulation of the methodology is detailed for EFIE, MFIE and CFIE allowing processing both closed and opened conducting surfaces. Numerical results show the IE-DDM method is as accurate as a mono-domain resolution and improves the convergence. 

b 1 and Γ b 2 .

 2 in the original mono-domain problem are called interfaces. They are the junction between two sub-domains. The exterior boundaries which exist in the original problem are noted Γ This decomposition is pictured in Fig.1. The decomposition in nine domains of a F100 aircraft is presented in Fig.2.
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 1 Fig. 1. Description of the domain decomposition
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 3456 Fig. 3. Electric currents on a PEC F100 by ELSEM3D

Table 1 .

 1 Meshes number of degrees of freedom

		Number of degrees of freedom
	Mono-domain	93510
	Domain 1	4698
	Domain 2	2760
	Domain 3	13413
	Domain 4	3219
	Domain 5	18750
	Domain 6	11847
	Domain 7	11937
	Domain 8	5187
	Domain 9	5184
	Total multi-domain	76995