
HAL Id: hal-01082683
https://hal.science/hal-01082683

Submitted on 14 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Case-Based Cooking with Generic Computer Utensils:
Taaable Next Generation

Emmanuelle Gaillard, Jean Lieber, Emmanuel Nauer

To cite this version:
Emmanuelle Gaillard, Jean Lieber, Emmanuel Nauer. Case-Based Cooking with Generic Computer
Utensils: Taaable Next Generation. Proceedings of the ICCBR 2014 Workshops, David B. Leake and
Jean Lieber, Sep 2014, Cork, Ireland. pp.254. �hal-01082683�

https://hal.science/hal-01082683
https://hal.archives-ouvertes.fr


Case-Based Cooking with Generic Computer

Utensils: Taaable Next Generation

Emmanuelle Gaillard, Jean Lieber, and Emmanuel Nauer

Université de Lorraine, LORIA — 54506 Vandœuvre-lès-Nancy, France
CNRS — 54506 Vandœuvre-lès-Nancy, France

Inria — 54602 Villers-lès-Nancy, France
firstname.lastname@loria.fr

Abstract. This paper presents the participation of the Taaable team
in the 2014 Computer Cooking Contest. The three challenges proposed
this year are addressed. The basic challenge is addressed with a new ver-
sion of the Taaable system, built on Tuuurbine, a generic case-based
reasoning system over RDFS. The mixology challenge which requires
building recipes only by using a set of available foods is also directly
addressed using Tuuurbine conjointly with Revisor, an adaptation en-
gine implementing various revision operators. For the mixology challenge,
Revisor is used to compute ingredient substitutions and to adjust the
ingredient quantities. The taste score is evaluated as the probability that
the adapted cocktail is tasty, depending on the probabilities that the re-
trieved recipe and the adaptation performed are good. The text of the
preparation is adapted using textual substitutions. Finally, the original-

ity challenge addresses reasoning on knowledge built collaboratively by
an e-community, taking into account the reliability of knowledge units.
Keywords: case-based reasoning, belief revision, adaptation of ingredi-
ent quantities, adaptation of recipe preparations, knowledge reliability

1 Introduction

This paper presents the participation of the Taaable team in the three chal-
lenges of the 2014 Computer Cooking Contest (CCC): the basic challenge, the
mixology challenge, and the originality challenge.

The Taaable team has successfully participated in the previous CCCs,
winning in 2010 the main challenge and the adaptation challenge. The systems
developed by the Taaable team in the framework of the CCCs are based on
many methods and techniques in the area of knowledge representation (RDFS,
belief revision, linear algebra), knowledge management (data mining) and nat-
ural language processing (text adaptation). All these techniques are detailed
in [?] and have led to the creation of two generic tools: Tuuurbine1, a generic
case-based reasoning (CBR) system over RDFS [?] and Revisor2, an adapta-
tion engine based on the use of revision operators [?]. A third tool, MKM (for

1 http://tuuurbine.loria.fr
2 http://revisor.loria.fr



2 Emmanuelle Gaillard, Jean Lieber, and Emmanuel Nauer

meta-knowledge model) [?] is under study, to manage the reliability of knowledge
coming from an e-community and to reason on it.

For this edition of the CCC, three systems have been developed on the basis
of Tuuurbine with some interactions with Revisor for particular adaptations
and MKM for managing knowledge reliability. This paper details these systems:
Sections 2, 3 and 4 explain respectively how the basic, the mixology, and the
originality challenges are addressed.

2 Basic challenge

The basic challenge consists in proposing, according to a set of initial recipes, one
or more recipes matching a user query composed of a set of wanted ingredients
(at least one) and (optionally) a set of unwanted ingredients. This challenge is
the core challenge of the CCC since its first edition.

This year, the Taaable system was totally redesigned, as an instantia-
tion of the generic CBR Tuuurbine system [?]. Tuuurbine implements a
generic case-based inference mechanism in which adaptation consists in retriev-
ing similar cases and in replacing some features of these cases in order to adapt
them as a solution to a query. Searching similar cases is based on a generaliza-
tion/specialization process taking into account generalization costs, and adap-
tation rules. The whole knowledge (cases, domain knowledge, costs, adaptation
rules) is stored in a RDF store.

2.1 Tuuurbine founding principles

Tuuurbine is a generic CBR system over RDFS.3 The domain knowledge
is represented by an RDFS base DK consisting of a set of triples of the
form 〈C subClassOf D〉 where C and D are classes which belong to a same
hierarchy (e.g, food hierachy). Fig. 1 represents the domain knowledge for

the running examples by a hierarchy whose edges C
x

−→ D represent the
triples 〈C subClassOf D〉 The retrieval knowledge is encoded by a cost func-
tion, associating to a triple 〈C subClassOf D〉 ∈ DK a positive real number

cost(〈C subClassOf D〉). If C
x

−→ D is an edge of the figure 1 hierarchy then
cost(〈C subClassOf D〉) = x. This cost can be understood intuitively as the
measure of “the generalization effort” from C to D.

A Tuuurbine case case is described by a set of triples of the form
〈URIcase prop val〉, where URIcase is the URI of case, val is either a resource

3 RDF and RDFS are W3C recommendations. RDF (Resource Description Frame-

work) represents data about resources by the way of triples of resources
〈subject predicate object〉, where the resource predicate is a property. A URI
(Unique Resource Identifier) is an identifier of a resource. RDFS gives some
semantics—and thus, inference possibilities—to RDF by the mean of inference rules
associated to some resources. For example, the property subClassOf is related to

the inference rule
〈C subClassOf D〉 〈D subClassOf E〉

〈C subClassOf E〉
i.e., if C is a

subclass of D which is a subclass of E then C is a subclass of E.



Taaable Next Generation 3

Liquid

FruitJuice Syrup
Alcohol

Citrus

Fruit

Juice

Apple

Juice

Pineapple

Juice

Guava

Juice

Multi

Fruit

Juice

Fruit

Syrup

Mint

Syrup
Beer Liquor

StrawberrySyrup GrenadineOrangeJuice LemonJuice

0.08 0.08
0.02

0.14 0.14 0.14
0.19 0.13 0.10

0.01 0.01
0.10 0.11

0.60 0.62
0.68

Fig. 1. The hierarchy forming the domain knowledge used in the running example with
the generalization costs used as retrieval knowledge.

representing a class of the ontology or a value and prop is an RDF property
linking case to a hierarchy class or to the value. For simplification, in this paper,
we represent a case by a conjunction of expressions only of the form prop : val.
For example, the “Cocktail mexicanos” recipe, is represented by the following
index R, which means that “Cocktail mexicanos” is a cocktail recipe made from
beer, strawberry syrup and pineapple juice (ing stands for ingredient).

R = dishType : CocktailDish

∧ ing : Beer ∧ ing : StrawberrySyrup ∧ ing : PineappleJuice
(1)

For instance, the first conjunct of this expression means that the triple
〈URIcase dishType CocktailDish〉 belongs to the knowledge base.

2.2 Tuuurbine query

A Tuuurbine query is a conjunction of expressions of the form sign prop : val
where sign ∈ {ǫ,+, !,−}, val is a resource representing a class of the ontology
and prop is an RDF property belonging to the set of properties used to represent
cases. For example,

Q = +dishType : CocktailDish

∧ ing : Beer ∧ ing : PineappleJuice ∧ !ing : Liquor
(2)

is a query to search “a cocktail with beer, pineapple juice but without liquor”.
The signs ǫ (empty sign) and + are “positive signs”: they prefix features

that the requested case must have. + indicates that this feature must also occur
in the source case whereas ǫ indicates that the source case may not have this
feature, thus the adaptation phase has to make it appear in the final case.

The signs ! and − are “negative signs”: they prefix features that the requested
case must not have. − indicates that this feature must not occur in the source
case whereas ! indicates that the source case may have this feature, and, if so,
that the adaptation phase has to remove it.



4 Emmanuelle Gaillard, Jean Lieber, and Emmanuel Nauer

2.3 Tuuurbine retrieval process

The retrieval process consists in searching for cases that best match the query.
If an exact match exists, the corresponding cases are returned. For the query Q

given in (2), the “Cocktail mexicanos” recipe is retrieved without adaptation.
Otherwise, the query is relaxed using a generalization function composed of one-
step generalizations, which transforms Q (with a minimal cost) until at least one
recipe of the case base matches Γ (Q).

A one step-generalization is denoted by γ = prop : A  prop : B, where A

and B are classes belonging to the same hierarchy with B ⊒ A, and prop is a
property used in the case definition. This one step-generalization can be applied
only if A is prefixed by ǫ or ! in Q. If A is prefixed by !, thus B is necessarily
the top class of the hierarchy. For example, the generalization of !ing : Rum is
ǫing : Food, meaning that if rum is not wanted, it has to be replaced by another
food. Classes of the query prefixed by + and − cannot be generalized.

Each one-step generalization is associated with a cost denoted by cost(A 
B). The generalization Γ of Q is a composition of one-step generalizations γ1,
. . . γn: Γ = γn ◦ . . . ◦ γ1, with cost(Γ ) =

∑n

i=1 cost(γi). For example, for :

Q = +dishType : CocktailDish

∧ ing : Beer ∧ ing : Grenadine ∧ ing : PineappleJuice ∧ !ing : Liquor
(3)

Grenadine is relaxed to FruitSyrup according to the domain knowledge of
Fig. 1 . At this first step of generalization, Γ (Q) = dishType : CocktailDish ∧
ing : Beer ∧ ing : FruitSyrup ∧ ing : PineappleJuice ∧ !ing : Liquor, which
matches the “Cocktails mexicanos” recipe described in (1).

2.4 Tuuurbine adaptation process

When the initial query does not match existing cases, the cases retrieved after
generalization have to be adapted. The adaptation consists of a specialization
of the generalized query produced by the retrieval step. According to Γ (Q), to
R, and to DK, the ingredient StrawberrySyrup is replaced with the ingredient
Grenadine in R because FruitSyrup of Γ (Q) subsumes both StrawberrySyrup

and Grenadine.Tuuurbine implements also an adaptation based on rules where
some ingredients are replaced with others in a given context [?]. For exam-
ple, in cocktail recipes, replacing PineappleJuice and StrawberrySyrup with
OrangeJuice and Grenadine is an example of an adaptation rule. This rule
based adaptation is directly integrated in the retrieval process by searching
cases indexed by the substituted ingredients for a query about the replacing
ingredients, for example by searching recipes containing PineappleJuice and
StrawberrySyrup for a query about OrangeJuice and Grenadine.

Fig. 2 presents the Taaable interface running on query (3). The cock-
tail recipe “Cocktail mexicanos” which contains StrawberrySyrup, Beer,
PineappleJuice and not Liquor is retrieved. Tuuurbine suggests to replace
StrawberrySyrup with Grenadine.



Taaable Next Generation 5

Fig. 2. Example of adaptation in the Taaable interface.

2.5 Using Tuuurbine to build the new Taaable system

The Taaable knowledge base is WikiTaaable4, the knowledge base made
available for this CCC edition. WikiTaaable is composed of the four classical
knowledge containers: (1) the domain knowledge contains an ontology of the
cooking domain which includes several hierarchies (about food, dish types, etc.),
(2) the case base contains recipes described by their titles, the dish type they
produce, the ingredients that are required, the preparation steps, etc., (3) the
adaptation knowledge takes the form of adaptation rules as introduced previ-
ously, and (4) the retrieval knowledge, which is stored as cost values on subclass-
of relations and adaptation rules.

In WikiTaaable, all the knowledge (cases, domain knowledge, costs, adap-
tation rules) is encoded in a triple store, because WikiTaaable uses Semantic
Media Wiki, where semantic data is stored into a triple store. So, plugging Tu-
uurbine over the WikiTaaable triple store is quite easy because it requires
only to configure Tuuurbine by giving the case base root URI, the ontology
root URI and the set of properties on which reasoning may be applied.

3 Mixology challenge

The mixology challenge consists in retrieving a tasty cocktail that matches a
user query according to a set of available foods.

First, the set of available foods must be managed. A specific interface, called
“My fridge”, allows to store the set of available foods in a database. Fig. 3 shows
that a user may indicate the foods she has, by selecting the available foods in
a list or by entering them in an input zone. The food list on the left-hand
side contains the initial list of available foods proposed by the CCC organizers.

4 http://wikitaaable.loria.fr/



6 Emmanuelle Gaillard, Jean Lieber, and Emmanuel Nauer

Fig. 3. The “My fridge” interface allowing the user to select the set of available foods.

Second, the system must provide recipes using only the available foods. The
expressiveness of Tuuurbine queries can express this kind of request using the
ǫ and ! prefixes. Section 3.1 explains how the user query is transformed to take
into account only the available foods. For the mixology challenge, Tuuurbine
is only used to retrieve cases. The retrieved cases are then adapted using Re-
visor/PL (see Section 3.2) to compute the ingredient substitutions, and using
Revisor/CLC (see Section 3.3) to adapt quantities. The adaptation of the text
of the preparation is explained in Section 3.4 and the automatic evaluation of
the taste is described in Section 3.5.

3.1 Query building

For the mixology challenge, where an answer must only contain the avail-
able foods, the query may be built by adding to the initial user query the
minimal set of classes of the food hierarchy that subsume the set of foods
which are not available, each class being negatively prefixed by !. For ex-
ample, assume that AppleJuice and PineappleJuice are the only available
fruit juices, that Beer is the only available alcohol, that MintSyrup and
Grenadine are the only available syrups, and that the user wants a cock-
tail recipe with Beer but without SugarCane. The initial user query will be
Q = +dishType : CocktailDish ∧ ǫing : Beer ∧ !ing : SugarCane. According to
Fig. 1, CitrusFruitJuice, GuavaJuice, StrawberrySyrup and Liquor will be
added to this initial query with a ! for expressing that the result cannot con-
tain one of these non available classes of food, which includes their descendant
classes. The extended query EQ submitted to Tuuurbine will be:

EQ = Q ∧ !ing : CitrusFruitJuice ∧ !ing : GuavaJuice

∧ !ing : StrawberrySyrup ∧ !ing : Liquor



Taaable Next Generation 7

For this example, Tuuurbine retrieves the “Cocktail mexicanos”
recipe with the adaptation “replace StrawberrySyrup with Food”, due to
!ing : StrawberrySyrup.

In order to replace StrawberrySyrup by something more specific than Food,
Revisor/PL is used.

3.2 Revisor/PL

Revisor/PL is a belief revision engine in propositional logic. It can be used to
adapt a source case to answer a query according to the revision-based adaptation
principle [?]. Let∔ be a revision operator. The∔-adaptation is defined as follows:

CompletedTarget = (RevisorDK∧RevisorCase) ∔ (RevisorDK∧RevisorQuery)

Intuitively, the source case is modified minimally so that it satisfies the query.
The source case, the query and the domain knowledge are represented in propo-
sitional logic. Replacing strawberry syrup in the “Cocktail mexicanos” recipe is
formalized for Revisor/PL as follows:

RevisorCase = StrawberrySyrup

RevisorQuery = ¬StrawberrySyrup

RevisorDK = (Liquid ⇔ Alcohol ∨ Syrup ∨ Juice)

∧ (FruitSyrup ⇔ StrawberrySyrup ∨ Grenadine)

∧ (Syrup ⇔ FruitSyrup ∨ MintSyrup)

∧ (Alcohol ⇔ Beer)

∧ (Juice ⇔ AppleJuice ∨ PineappleJuice)

RevisorCase is a conjunction of propositional variables, each of them corre-
sponding to the classes of EQ which have been generalized in Food by Tuuur-
bine. RevisorQuery is the intersection between classes generalized in Food by
Tuuurbine and all the classes that do not include, according to the special-
ization relation, a class representing a food available in the fridge. Classes are
prefixed with a positive sign in RevisorCase and prefixed with a negative sign
in RevisorQuery.

Only the part of the domain knowledge used during the reasoning is trans-
lated into propositional logic. So, building RevisorDK depends on the classes
which are in the source case, in the query and in the set of available foods. Al-
though MintSyrup, Grenadine and StrawberrySyrup are not the only syrup in
the ontology, in the formalization they are the only ones: StrawberrySyrup is the
only syrup in RevisorCase and RevisorQuery, and Grenadine and MintSyrup

are the only syrups available in the food list.
RevisorDK is a conjunction of terms ParentClass ⇔

∨
i DirectSubClassi

meaning that a ParentClass implies to have one of its DirectSubClassi and,
conversely, a DirectSubClassi implies to have its ParentClass. For example,
the first line of RevisorDK consists in asserting that Alcohol, Syrup or Juice



8 Emmanuelle Gaillard, Jean Lieber, and Emmanuel Nauer

are Liquid and, conversely, the only available Liquid are Alcohol, Syrup or
Juice.

The result returned by Revisor/PL is:

(RevisorDK ∧ RevisorCase) ∔ (RevisorDK ∧ RevisorQuery)

≡ RevisorDK ∧ RevisorQuery ∧ Grenadine

The substituting classes of EQ being generalized in Food by Tuuurbine are
classes in Revisor/PL that do not have descendants in the ontology; and which
are also in the set of available foods. In the example, the substituting class for
StrawberrySyrup is Grenadine.

3.3 Revisor/CLC

The result of Revisor/PL can be read as ingredient type substitutions, but
does not manage the quantities of the ingredients of the resulting recipe. This
is performed by Revisor/CLC, another adaptation by revision engine of the
Revisor library, in the form of conjunction of linear constraints (on real numbers
and integers). The same engine (with no name at that time) was used for the
same purpose in the Taaable system presented in the 2010’s CCC, so, since
this paper concentrates on new aspects of Taaable, only a short presentation
of this quantity adaptation is given, through an example.

The recipes are formalized as conjunctions of equality constraints, e.g.:

RevisorCase = (Beerg = 12) ∧ (Champagneg = 0)

∧ (PineappleJuiceg = 12) ∧ (StrawberrySyrupg = 3)

where ig is the mass in grams of ingredient i. Since Revisor/PL has indicated
the substitution from beer to champagne, beer has to be removed, indicated by

RevisorQuery = (Beerg = 0)

Finally, the domain knowledge is expressed as a conjunction of constraints of the
form ig ≥ 0 (i.e., the mass of i is nonnegative) and of constraints indicating how
to compute the total amount of sugar, the volume, the alcohol quantity, etc. For
the latter, the constraint is:

totalAlcoholg = 0.055× Beerg + 0.12× Champagneg

(other ingredients involved in this adaptation process do not have alcohol).
Let RevisorDK be the conjunction of all these constraints. Then, Revi-

sor/CLC revises RevisorDK ∧ RevisorCase by RevisorDK ∧ RevisorQuery,
providing a new conjunction of constraints making RevisorQuery precise and
tending to the preservation of sugar, volume and alcohol. In this example, this
adaptation amounts to the following substitutions (making more precise the re-
sult of Revisor/PL), converted in volumes:

12 cl Beer 5.5 cl Champagne

12 cl PineappleJuice 19.6 cl PineappleJuice

3 cl StrawberrySyrup 1.9 cl StrawberrySyrup



Taaable Next Generation 9

Note that the quantities of pineapple juice and strawberry syrup have been
altered by Revisor/CLC in order to compensate the change in volume and
sugar when replacing beer with champagne.

3.4 Adaptation of the textual preparation

Replaced ingredients in the ingredient list of a recipe have also to be replaced
in the textual preparation of the recipe. Text occurrences of the replaced ingre-
dients are substituted with the replacing ingredients. A set of rules allows to
identify plurals of the ingredient in the text, and replace with the plural form
of the replacing ingredients. For example, the textual preparation of “Cocktail
mexicanos”: “In a beer glass, add the strawberry syrup. Complete with beer, ...”
is adapted to “In a champagne glass, add the strawberry syrup. Complete with
champagne, ...”, according to the substitution of Beer to Champagne.

3.5 Automatic taste evaluation

Our taste score relies on the probability that the adapted cocktail is tasty. This
probability depends on the probability that the retrieved recipe is good and
on the probability that the adaptation is good. Without additional information
about how the recipes of the CCC base are good, we consider them all as being
good and thus, the probability of being a good recipe is always 1. Therefore, the
probability that the adapted cocktail is tasty depends only on the adaptation.
The probability that an adaptation is good relies on the adaptation cost. As this
adaptation cost varies on the interval [0,+∞[, the probability of Γ to be a good
adaptation is computed as P (Γ is good) = e−cost(Γ ). This probability is finally
multiplied by 5 and rounded to get a tasty score on a 0− 5 scale.

For example, for Q = +dishType : CocktailDish ∧ ing : Vodka ∧
ing : SparklingWater ∧ ing : BrownSugar ∧ !ing : Mint, Tuuurbine suggests
the “Gin fizz easy” cocktail (containing SparklingWater, Gin, SugarCane,
Lime and not Mint) and to replace Gin with Vodka and SugarCane with
BrownSugar. On the retrieval step, Vodka has been generalized to Liquor

with cost(Vodka  Liquor) = 0.061 and BrownSugar has been general-
ized to Sugar with cost(BrownSugar  Sugar) = 0.011. The taste score is
round(e−(0.061+0.011) × 5) = 5.

4 Originality challenge

For the originality challenge, we propose to improve the CBR system Taaable
by taking into account knowledge reliability. MKM (meta-knowledge model) is
a model for managing reliability of the knowledge units that are used in the rea-
soning process. For this, MKM uses meta-knowledge such as belief, trust and
reputation, about knowledge units used by Taaable and about the e-community
users of Taaable. This set or meta-knowledge can be used to compute a relia-
bility score for each knowledge unit (KU). The reliability score in MKM is used



10 Emmanuelle Gaillard, Jean Lieber, and Emmanuel Nauer

both to select relevant knowledge to conduct the reasoning process, and to rank
results provided by the CBR engine.

Let reliability be the function which returns the reliability score of a KU
ku for the e-community, computed from quality, trust, and reputation scores.

4.1 Plugging the MKM on Tuuurbine

As proposed in [?], MKM may be used to extend an existing CBR system by
adding a filtering process and a ranking process.

Filtering is used to select the most reliable set of knowledge according to
the query. All the KUs with a reliability score higher than a given threshold are
selected to be used by the CBR engine (the KUs with a reliability score lower
than the threshold are not used by the CBR engine as if there were removed
from the knowledge base).

Ranking computation is used to order the set of results according to the
meta-knowledge associated to the KUs involved in the computation of the results.
For each result R, an inferred reliability, denoted by inferred reliability(R)
is computed. The inferred reliability of a result is the probability that the result
will be satisfactory (e.g., for a cooking application, the probability that this is
the recipe of a tasty dish); this probability depends on the probability that the
retrieved case is satisfactory, that each KU used in the adaptation is satisfactory,
and we assume that these probabilities are independent one from another. Each
probability is equivalent to the reliability score of the KU. Computation of the
reliability score is detailed in [?].

4.2 Model implementation

The MKM has been integrated with aTaaable, a French version of Taaable,
on which an e-community has been constituted. aTaaable contains knowledge
units, created and evaluated on the Web, by the aTaaable users. With MKM,
each knowledge unit is associated to a reliability score. Because the set of CCC
recipes and the domain ontology are equivalent in the French version and the
English version, reliability scores of knowledge units in the French Taaable is
used by the English Taaable system.

4.3 Example of results using Taaable with and without the MKM

Let CBRs (s for standard) be the system Taaable without the MKM and
CBRr (r for reliability) be the system Taaable with the MKM. Let Q =
Grenadine ∧ GuavaJuice be the query. Table 1 presents the 3 first recipes re-
turned by CBRs andCBRr with their original ingredients, their reliability scores
and their adaptation ids which corresponds to an adaptation id of Table 2, that
presents adaptations involved in the retrieved recipes.

In this example, adaptations have been computed by the generalization-
specialization process for the query. Please refer to [?] for details about
generalization-specialization and similarity measures between classes.

The first three results of CBRs are, in this order:



Taaable Next Generation 11

id name idx(Ri) system reliability adaptation

R1 Bora bora AppleJuice ∧ PineappleJuice ∧
LemonJuice ∧ Grenadine

CBRr +
CBRs

0.76 A2

R2 Tequila sunrise Tequila ∧ OrangeJuice ∧
Grenadine

CBRr 0.73 A3

R3 Bacardi cocktail Rum ∧ Grenadine ∧ LemonJuice CBRr 0.72 A4

R4 Spice shoot Grenadine ∧ Tabasco ∧ Vodka CBRs 0.73 A5

R5 MTS cocktail Martini ∧ MultifruitJuice ∧
TripleSec ∧ CaneSugarSyrup

CBRs 0.40 A1

Table 1. The first three recipes returned by CBRs and CBRr for Q = Grenadine ∧
GuavaJuice, with their reliability scores and their adaptation ids in Table 2.

id adaptation reliability

A1 MultifruitJuice GuavaJuice 0.52
A2 PineappleJuice GuavaJuice 0.38
A3 OrangeJuice GuavaJuice 0.35
A4 LemonJuice GuavaJuice 0.33
A5 Vodka GuavaJuice 0.11 (filtered)

Table 2. Adaptations of the recipes of Table 1, with their reliability score.

1. ss1: Spice shoot with adaptation Vodka GuavaJuice;

2. ss2: Bora bora with adaptation PineappleJuice GuavaJuice;

3. ss3: MTS cocktail with adaptation MultifruitJuice GuavaJuice.

The first three results of CBRr are, in this order:

1. rs1: Bora bora with adaptation PineappleJuice GuavaJuice;

2. rs2: Tequila sunrise with adaptation OrangeJuice GuavaJuice;

3. rs1: Bacardi cocktail with adaptation LemonJuice GuavaJuice.

ss1 is not returned by CBRr because even if the case entitled “Spice shoot”
has a reliability score of 0.73, the adaptation knowledge Vodka  GuavaJuice

has been filtered because its low reliability score.

The first result returned by CBRr is rs1 which is only the second result
returned by CBRs. The inferred reliability of rs1 is 0.29 corresponding to the
products of the reliability score of its case and its adaptation. The inferred
reliability of ss2 is 0.26 and the inferred reliability of ss3 is 0.24.

This example illustrates that KUs which are not reliable (e.g.,
〈FruitJuice subClassOf Vodka〉 ∈ DK) are not used by CBRr and that a case
with a high reliability adapted thanks to a long generalization/specialization



12 Emmanuelle Gaillard, Jean Lieber, and Emmanuel Nauer

path5 can be better ranked than a case with a low reliability adapted by a
shorter generalization/specialization path (e.g., ss3 vs. rs3).

5 Conclusion

This paper has presented the three systems developed by the Taaable team for
its participation in the three challenges of the 2014 Computer Cooking Contest.
The three systems are based on many new tools developed by the Taaable team
based on the experience acquired in the previous contests: a generic CBR system
over RDFS called Tuuurbine, an adaptation engine implementing various revi-
sion operators called Revisor, and a meta-knowledge model called MKM that
manage the reliability of knowledge acquired on the Web by an e-community.

References

1. A. Cordier, V. Dufour-Lussier, J. Lieber, E. Nauer, F. Badra, J. Cojan, E. Gaillard,
L. Infante-Blanco, P. Molli, A. Napoli, and H. Skaf-Molli. Taaable: a Case-Based
System for personalized Cooking. In Stefania Montani and Lakhmi C. Jain, editors,
Successful Case-based Reasoning Applications-2, volume 494 of Studies in Compu-

tational Intelligence, pages 121–162. Springer, January 2014.
2. E. Gaillard, J. Lieber, E. Nauer, and A. Cordier. How case-based reasoning on

e-community knowledge can be improved thanks to knowledge reliability. In Inter-

national Conference on Case-Based Reasoning, 2014. In press.
3. J. Cojan and J. Lieber. Applying belief revision to case-based reasoning. In Henri

Prade and Gilles Richard, editors, Computational Approaches to Analogical Reason-

ing: Current Trends, pages 133–162. Springer, 2014.
4. E. Gaillard, J. Lieber, Y Naudet, and E. Nauer. Case-Based Reasoning on E-

Community Knowledge. In 21st International Conference on Case-Based Reasoning,
volume 7969, pages 104–118. Springer, 2013.

5. E. Gaillard, L. Infante-Blanco, J. Lieber, and E. Nauer. Tuuurbine: A Generic CBR
Engine Based On RDFS. In International Conference on Case-Based Reasoning,
2014. In press.

6. E. Gaillard, J. Lieber, and E. Nauer. Adaptation knowledge discovery for cooking
using closed itemset extraction. In The Eighth International Conference on Concept

Lattices and their Applications - CLA 2011, pages 87–99, 2011.
7. E. Gaillard, J. Lieber, Y. Naudet, and E. Nauer. Case-based reasoning on e-

community knowledge. In Case-Based Reasoning Research and Development, pages
104–118. Springer Berlin Heidelberg, 2013.

5 the generalization/specialization path between two concepts C and D is the minimal
set of edges linking C to D.


