Emmanuelle Gaillard

Jean Lieber

Emmanuel Nauer

Case-Based Cooking with Generic Computer Utensils: Taaable Next Generation

Keywords: case-based reasoning, belief revision, adaptation of ingredient quantities, adaptation of recipe preparations, knowledge reliability the inference

This paper presents the participation of the Taaable team in the 2014 Computer Cooking Contest. The three challenges proposed this year are addressed. The basic challenge is addressed with a new version of the Taaable system, built on Tuuurbine, a generic case-based reasoning system over RDFS. The mixology challenge which requires building recipes only by using a set of available foods is also directly addressed using Tuuurbine conjointly with Revisor, an adaptation engine implementing various revision operators. For the mixology challenge, Revisor is used to compute ingredient substitutions and to adjust the ingredient quantities. The taste score is evaluated as the probability that the adapted cocktail is tasty, depending on the probabilities that the retrieved recipe and the adaptation performed are good. The text of the preparation is adapted using textual substitutions. Finally, the originality challenge addresses reasoning on knowledge built collaboratively by an e-community, taking into account the reliability of knowledge units.

Introduction

This paper presents the participation of the Taaable team in the three challenges of the 2014 Computer Cooking Contest (CCC): the basic challenge, the mixology challenge, and the originality challenge.

The Taaable team has successfully participated in the previous CCCs, winning in 2010 the main challenge and the adaptation challenge. The systems developed by the Taaable team in the framework of the CCCs are based on many methods and techniques in the area of knowledge representation (RDFS, belief revision, linear algebra), knowledge management (data mining) and natural language processing (text adaptation). All these techniques are detailed in [?] and have led to the creation of two generic tools: Tuuurbine1 , a generic case-based reasoning (CBR) system over RDFS [?] and Revisor2 , an adaptation engine based on the use of revision operators [?]. A third tool, MKM (for meta-knowledge model) [?] is under study, to manage the reliability of knowledge coming from an e-community and to reason on it.

For this edition of the CCC, three systems have been developed on the basis of Tuuurbine with some interactions with Revisor for particular adaptations and MKM for managing knowledge reliability. This paper details these systems: Sections 2, 3 and 4 explain respectively how the basic, the mixology, and the originality challenges are addressed.

Basic challenge

The basic challenge consists in proposing, according to a set of initial recipes, one or more recipes matching a user query composed of a set of wanted ingredients (at least one) and (optionally) a set of unwanted ingredients. This challenge is the core challenge of the CCC since its first edition.

This year, the Taaable system was totally redesigned, as an instantiation of the generic CBR Tuuurbine system [?]. Tuuurbine implements a generic case-based inference mechanism in which adaptation consists in retrieving similar cases and in replacing some features of these cases in order to adapt them as a solution to a query. Searching similar cases is based on a generalization/specialization process taking into account generalization costs, and adaptation rules. The whole knowledge (cases, domain knowledge, costs, adaptation rules) is stored in a RDF store.

Tuuurbine founding principles

Tuuurbine is a generic CBR system over RDFS. [START_REF] Cojan | Applying belief revision to case-based reasoning[END_REF] The domain knowledge is represented by an RDFS base DK consisting of a set of triples of the form C subClassOf D where C and D are classes which belong to a same hierarchy (e.g, food hierachy). Fig. 1 A Tuuurbine case case is described by a set of triples of the form U RI case prop val , where U RI case is the URI of case, val is either a resource representing a class of the ontology or a value and prop is an RDF property linking case to a hierarchy class or to the value. For simplification, in this paper, we represent a case by a conjunction of expressions only of the form prop : val. For example, the "Cocktail mexicanos" recipe, is represented by the following index R, which means that "Cocktail mexicanos" is a cocktail recipe made from beer, strawberry syrup and pineapple juice (ing stands for ingredient).

R = dishType : CocktailDish ∧ ing : Beer ∧ ing : StrawberrySyrup ∧ ing : PineappleJuice (1)
For instance, the first conjunct of this expression means that the triple U RI case dishType CocktailDish belongs to the knowledge base.

Tuuurbine query

A Tuuurbine query is a conjunction of expressions of the form sign prop : val where sign ∈ {ǫ, +, !, -}, val is a resource representing a class of the ontology and prop is an RDF property belonging to the set of properties used to represent cases. For example,

Q = +dishType : CocktailDish ∧ ing : Beer ∧ ing : PineappleJuice ∧ !ing : Liquor (2)
is a query to search "a cocktail with beer, pineapple juice but without liquor". The signs ǫ (empty sign) and + are "positive signs": they prefix features that the requested case must have. + indicates that this feature must also occur in the source case whereas ǫ indicates that the source case may not have this feature, thus the adaptation phase has to make it appear in the final case.

The signs ! and -are "negative signs": they prefix features that the requested case must not have. -indicates that this feature must not occur in the source case whereas ! indicates that the source case may have this feature, and, if so, that the adaptation phase has to remove it.

Tuuurbine retrieval process

The retrieval process consists in searching for cases that best match the query. If an exact match exists, the corresponding cases are returned. For the query Q given in (2), the "Cocktail mexicanos" recipe is retrieved without adaptation. Otherwise, the query is relaxed using a generalization function composed of onestep generalizations, which transforms Q (with a minimal cost) until at least one recipe of the case base matches Γ (Q).

A one step-generalization is denoted by γ = prop : A prop : B, where A and B are classes belonging to the same hierarchy with B ⊒ A, and prop is a property used in the case definition. This one step-generalization can be applied only if A is prefixed by ǫ or ! in Q. If A is prefixed by !, thus B is necessarily the top class of the hierarchy. For example, the generalization of !ing : Rum is ǫing : Food, meaning that if rum is not wanted, it has to be replaced by another food. Classes of the query prefixed by + and -cannot be generalized.

Each one-step generalization is associated with a cost denoted by cost(A B). The generalization Γ of Q is a composition of one-step generalizations γ 1 , . . .

γ n : Γ = γ n • . . . • γ 1 , with cost(Γ) = n i=1 cost(γ i).
For example, for :

Q = +dishType : CocktailDish ∧ ing : Beer ∧ ing : Grenadine ∧ ing : PineappleJuice ∧ !ing : Liquor (3)
Grenadine is relaxed to FruitSyrup according to the domain knowledge of Fig. 1 . At this first step of generalization, Γ (Q) = dishType : CocktailDish ∧ ing : Beer ∧ ing : FruitSyrup ∧ ing : PineappleJuice ∧ !ing : Liquor, which matches the "Cocktails mexicanos" recipe described in (1).

Tuuurbine adaptation process

When the initial query does not match existing cases, the cases retrieved after generalization have to be adapted. The adaptation consists of a specialization of the generalized query produced by the retrieval step. According to Γ (Q), to R, and to DK, the ingredient StrawberrySyrup is replaced with the ingredient Grenadine in R because FruitSyrup of Γ (Q) subsumes both StrawberrySyrup and Grenadine. Tuuurbine implements also an adaptation based on rules where some ingredients are replaced with others in a given context [?]. For example, in cocktail recipes, replacing PineappleJuice and StrawberrySyrup with OrangeJuice and Grenadine is an example of an adaptation rule. This rule based adaptation is directly integrated in the retrieval process by searching cases indexed by the substituted ingredients for a query about the replacing ingredients, for example by searching recipes containing PineappleJuice and StrawberrySyrup for a query about OrangeJuice and Grenadine.

Fig. 2 presents the Taaable interface running on query (3). The cocktail recipe "Cocktail mexicanos" which contains StrawberrySyrup, Beer, PineappleJuice and not Liquor is retrieved. Tuuurbine suggests to replace StrawberrySyrup with Grenadine.

Using Tuuurbine to build the new Taaable system

The Taaable knowledge base is WikiTaaable4 , the knowledge base made available for this CCC edition. WikiTaaable is composed of the four classical knowledge containers: (1) the domain knowledge contains an ontology of the cooking domain which includes several hierarchies (about food, dish types, etc.), (2) the case base contains recipes described by their titles, the dish type they produce, the ingredients that are required, the preparation steps, etc., (3) the adaptation knowledge takes the form of adaptation rules as introduced previously, and (4) the retrieval knowledge, which is stored as cost values on subclassof relations and adaptation rules.

In WikiTaaable, all the knowledge (cases, domain knowledge, costs, adaptation rules) is encoded in a triple store, because WikiTaaable uses Semantic Media Wiki, where semantic data is stored into a triple store. So, plugging Tuuurbine over the WikiTaaable triple store is quite easy because it requires only to configure Tuuurbine by giving the case base root URI, the ontology root URI and the set of properties on which reasoning may be applied.

Mixology challenge

The mixology challenge consists in retrieving a tasty cocktail that matches a user query according to a set of available foods.

First, the set of available foods must be managed. A specific interface, called "My fridge", allows to store the set of available foods in a database. Fig. 3 shows that a user may indicate the foods she has, by selecting the available foods in a list or by entering them in an input zone. The food list on the left-hand side contains the initial list of available foods proposed by the CCC organizers. Second, the system must provide recipes using only the available foods. The expressiveness of Tuuurbine queries can express this kind of request using the ǫ and ! prefixes. Section 3.1 explains how the user query is transformed to take into account only the available foods. For the mixology challenge, Tuuurbine is only used to retrieve cases. The retrieved cases are then adapted using Revisor/PL (see Section 3.2) to compute the ingredient substitutions, and using Revisor/CLC (see Section 3.3) to adapt quantities. The adaptation of the text of the preparation is explained in Section 3.4 and the automatic evaluation of the taste is described in Section 3.5.

Query building

For the mixology challenge, where an answer must only contain the available foods, the query may be built by adding to the initial user query the minimal set of classes of the food hierarchy that subsume the set of foods which are not available, each class being negatively prefixed by !. For example, assume that AppleJuice and PineappleJuice are the only available fruit juices, that Beer is the only available alcohol, that MintSyrup and Grenadine are the only available syrups, and that the user wants a cocktail recipe with Beer but without SugarCane. The initial user query will be Q = +dishType : CocktailDish ∧ ǫing : Beer ∧ !ing : SugarCane. According to Fig. 1, CitrusFruitJuice, GuavaJuice, StrawberrySyrup and Liquor will be added to this initial query with a ! for expressing that the result cannot contain one of these non available classes of food, which includes their descendant classes. The extended query EQ submitted to Tuuurbine will be:

EQ = Q ∧ !ing : CitrusFruitJuice ∧ !ing : GuavaJuice ∧ !ing : StrawberrySyrup ∧ !ing : Liquor
For this example, Tuuurbine retrieves the "Cocktail mexicanos" recipe with the adaptation "replace StrawberrySyrup with Food", due to !ing : StrawberrySyrup.

In order to replace StrawberrySyrup by something more specific than Food, Revisor/PL is used.

Revisor/PL

Revisor/PL is a belief revision engine in propositional logic. It can be used to adapt a source case to answer a query according to the revision-based adaptation principle [?]. Let ∔ be a revision operator. The ∔-adaptation is defined as follows:

CompletedTarget = (RevisorDK∧RevisorCase) ∔ (RevisorDK∧RevisorQuery)
Intuitively, the source case is modified minimally so that it satisfies the query. The source case, the query and the domain knowledge are represented in propositional logic. Replacing strawberry syrup in the "Cocktail mexicanos" recipe is formalized for Revisor/PL as follows:

RevisorCase = StrawberrySyrup RevisorQuery = ¬StrawberrySyrup RevisorDK = (Liquid ⇔ Alcohol ∨ Syrup ∨ Juice) ∧ (FruitSyrup ⇔ StrawberrySyrup ∨ Grenadine) ∧ (Syrup ⇔ FruitSyrup ∨ MintSyrup) ∧ (Alcohol ⇔ Beer) ∧ (Juice ⇔ AppleJuice ∨ PineappleJuice)
RevisorCase is a conjunction of propositional variables, each of them corresponding to the classes of EQ which have been generalized in Food by Tuuurbine. RevisorQuery is the intersection between classes generalized in Food by Tuuurbine and all the classes that do not include, according to the specialization relation, a class representing a food available in the fridge. Classes are prefixed with a positive sign in RevisorCase and prefixed with a negative sign in RevisorQuery.

Only the part of the domain knowledge used during the reasoning is translated into propositional logic. So, building RevisorDK depends on the classes which are in the source case, in the query and in the set of available foods. Although MintSyrup, Grenadine and StrawberrySyrup are not the only syrup in the ontology, in the formalization they are the only ones: StrawberrySyrup is the only syrup in RevisorCase and RevisorQuery, and Grenadine and MintSyrup are the only syrups available in the food list.

RevisorDK is a conjunction of terms ParentClass ⇔ i DirectSubClass i meaning that a ParentClass implies to have one of its DirectSubClass i and, conversely, a DirectSubClass i implies to have its ParentClass. For example, the first line of RevisorDK consists in asserting that Alcohol, Syrup or Juice are Liquid and, conversely, the only available Liquid are Alcohol, Syrup or Juice.

The result returned by Revisor/PL is:

(RevisorDK ∧ RevisorCase) ∔ (RevisorDK ∧ RevisorQuery) ≡ RevisorDK ∧ RevisorQuery ∧ Grenadine
The substituting classes of EQ being generalized in Food by Tuuurbine are classes in Revisor/PL that do not have descendants in the ontology; and which are also in the set of available foods. In the example, the substituting class for StrawberrySyrup is Grenadine.

Revisor/CLC

The result of Revisor/PL can be read as ingredient type substitutions, but does not manage the quantities of the ingredients of the resulting recipe. This is performed by Revisor/CLC, another adaptation by revision engine of the Revisor library, in the form of conjunction of linear constraints (on real numbers and integers). The same engine (with no name at that time) was used for the same purpose in the Taaable system presented in the 2010's CCC, so, since this paper concentrates on new aspects of Taaable, only a short presentation of this quantity adaptation is given, through an example.

The recipes are formalized as conjunctions of equality constraints, e.g.:

RevisorCase = (Beer g = 12) ∧ (Champagne g = 0) ∧ (PineappleJuice g = 12) ∧ (StrawberrySyrup g = 3)
where i g is the mass in grams of ingredient i. Since Revisor/PL has indicated the substitution from beer to champagne, beer has to be removed, indicated by RevisorQuery = (Beer g = 0)

Finally, the domain knowledge is expressed as a conjunction of constraints of the form i g ≥ 0 (i.e., the mass of i is nonnegative) and of constraints indicating how to compute the total amount of sugar, the volume, the alcohol quantity, etc. For the latter, the constraint is:

totalAlcohol g = 0.055 × Beer g + 0.12 × Champagne g (other ingredients involved in this adaptation process do not have alcohol).

Let RevisorDK be the conjunction of all these constraints. Then, Revisor/CLC revises RevisorDK ∧ RevisorCase by RevisorDK ∧ RevisorQuery, providing a new conjunction of constraints making RevisorQuery precise and tending to the preservation of sugar, volume and alcohol. In this example, this adaptation amounts to the following substitutions (making more precise the result of Revisor/PL), converted in volumes: Note that the quantities of pineapple juice and strawberry syrup have been altered by Revisor/CLC in order to compensate the change in volume and sugar when replacing beer with champagne.

Adaptation of the textual preparation

Replaced ingredients in the ingredient list of a recipe have also to be replaced in the textual preparation of the recipe. Text occurrences of the replaced ingredients are substituted with the replacing ingredients. A set of rules allows to identify plurals of the ingredient in the text, and replace with the plural form of the replacing ingredients. For example, the textual preparation of "Cocktail mexicanos": "In a beer glass, add the strawberry syrup. Complete with beer, ..." is adapted to "In a champagne glass, add the strawberry syrup. Complete with champagne, ...", according to the substitution of Beer to Champagne.

Automatic taste evaluation

Our taste score relies on the probability that the adapted cocktail is tasty. This probability depends on the probability that the retrieved recipe is good and on the probability that the adaptation is good. Without additional information about how the recipes of the CCC base are good, we consider them all as being good and thus, the probability of being a good recipe is always 1. Therefore, the probability that the adapted cocktail is tasty depends only on the adaptation. The probability that an adaptation is good relies on the adaptation cost. As this adaptation cost varies on the interval [0, +∞[, the probability of Γ to be a good adaptation is computed as P (Γ is good) = e -cost(Γ) . This probability is finally multiplied by 5 and rounded to get a tasty score on a 0 -5 scale. For example, for Q = +dishType : CocktailDish ∧ ing : Vodka ∧ ing : SparklingWater ∧ ing : BrownSugar ∧ !ing : Mint, Tuuurbine suggests the "Gin fizz easy" cocktail (containing SparklingWater, Gin, SugarCane, Lime and not Mint) and to replace Gin with Vodka and SugarCane with BrownSugar. On the retrieval step, Vodka has been generalized to Liquor with cost(Vodka Liquor) = 0.061 and BrownSugar has been generalized to Sugar with cost(BrownSugar Sugar) = 0.011. The taste score is round(e -(0.061+0.011) × 5) = 5.

Originality challenge

For the originality challenge, we propose to improve the CBR system Taaable by taking into account knowledge reliability. MKM (meta-knowledge model) is a model for managing reliability of the knowledge units that are used in the reasoning process. For this, MKM uses meta-knowledge such as belief, trust and reputation, about knowledge units used by Taaable and about the e-community users of Taaable. This set or meta-knowledge can be used to compute a reliability score for each knowledge unit (KU). The reliability score in MKM is used both to select relevant knowledge to conduct the reasoning process, and to rank results provided by the CBR engine.

Let reliability be the function which returns the reliability score of a KU ku for the e-community, computed from quality, trust, and reputation scores.

Plugging the MKM on Tuuurbine

As proposed in [?], MKM may be used to extend an existing CBR system by adding a filtering process and a ranking process.

Filtering is used to select the most reliable set of knowledge according to the query. All the KUs with a reliability score higher than a given threshold are selected to be used by the CBR engine (the KUs with a reliability score lower than the threshold are not used by the CBR engine as if there were removed from the knowledge base).

Ranking computation is used to order the set of results according to the meta-knowledge associated to the KUs involved in the computation of the results. For each result R, an inferred reliability, denoted by inferred reliability(R) is computed. The inferred reliability of a result is the probability that the result will be satisfactory (e.g., for a cooking application, the probability that this is the recipe of a tasty dish); this probability depends on the probability that the retrieved case is satisfactory, that each KU used in the adaptation is satisfactory, and we assume that these probabilities are independent one from another. Each probability is equivalent to the reliability score of the KU. Computation of the reliability score is detailed in [?].

Model implementation

The MKM has been integrated with aTaaable, a French version of Taaable, on which an e-community has been constituted. aTaaable contains knowledge units, created and evaluated on the Web, by the aTaaable users. With MKM, each knowledge unit is associated to a reliability score. Because the set of CCC recipes and the domain ontology are equivalent in the French version and the English version, reliability scores of knowledge units in the French Taaable is used by the English Taaable system.

Example of results using Taaable with and without the MKM

Let CBR s (s for standard) be the system Taaable without the MKM and CBR r (r for reliability) be the system Taaable with the MKM. Let Q = Grenadine ∧ GuavaJuice be the query. Table 1 presents the 3 first recipes returned by CBR s and CBR r with their original ingredients, their reliability scores and their adaptation ids which corresponds to an adaptation id of Table 2, that presents adaptations involved in the retrieved recipes.

In this example, adaptations have been computed by the generalizationspecialization process for the query. Please refer to [?] for details about generalization-specialization and similarity measures between classes.

The first three results of CBR s are, in this order: The first three results of CBR r are, in this order:

1. r s1 : Bora bora with adaptation PineappleJuice GuavaJuice; 2. r s2 : Tequila sunrise with adaptation OrangeJuice GuavaJuice; 3. r s1 : Bacardi cocktail with adaptation LemonJuice GuavaJuice.

s s1 is not returned by CBR r because even if the case entitled "Spice shoot" has a reliability score of 0.73, the adaptation knowledge Vodka GuavaJuice has been filtered because its low reliability score.

The first result returned by CBR r is r s1 which is only the second result returned by CBR s . The inferred reliability of r s1 is 0.29 corresponding to the products of the reliability score of its case and its adaptation. The inferred reliability of s s2 is 0.26 and the inferred reliability of s s3 is 0.24. This example illustrates that KUs which are not reliable (e.g., FruitJuice subClassOf Vodka ∈ DK) are not used by CBR r and that a case with a high reliability adapted thanks to a long generalization/specialization path5 can be better ranked than a case with a low reliability adapted by a shorter generalization/specialization path (e.g., s s3 vs. r s3).

Conclusion

This paper has presented the three systems developed by the Taaable team for its participation in the three challenges of the 2014 Computer Cooking Contest. The three systems are based on many new tools developed by the Taaable team based on the experience acquired in the previous contests: a generic CBR system over RDFS called Tuuurbine, an adaptation engine implementing various revision operators called Revisor, and a meta-knowledge model called MKM that manage the reliability of knowledge acquired on the Web by an e-community.

 represents the domain knowledge for the running examples by a hierarchy whose edges C x -→ D represent the triples C subClassOf D The retrieval knowledge is encoded by a cost function, associating to a triple C subClassOf D ∈ DK a positive real number cost(C subClassOf D). If C x -→ D is an edge of the figure 1 hierarchy then cost(C subClassOf D) = x. This cost can be understood intuitively as the measure of "the generalization effort" from C to D.

Fig. 2 .

 2 Fig. 2. Example of adaptation in the Taaable interface.

Fig. 3 .

 3 Fig. 3. The "My fridge" interface allowing the user to select the set of available foods.

 The hierarchy forming the domain knowledge used in the running example with the generalization costs used as retrieval knowledge.

									Liquid
					0.60			0.62	0.68
			FruitJuice					Alcohol	Syrup
	0.02		0.14	0.14	0.14	0.19		0.13	0.10	0.08	0.08
	Citrus Fruit Juice	Apple Juice	Pineapple Juice	Guava Juice	Multi Juice Fruit	Beer Liquor	Syrup Fruit	Syrup Mint
	0.10		0.11						0.01	0.01
	OrangeJuice	LemonJuice				StrawberrySyrup	Grenadine
	Fig. 1.								

Table 1 .

 1 The first three recipes returned by CBRs and CBRr for Q = Grenadine ∧ GuavaJuice, with their reliability scores and their adaptation ids in Table2.

	id	name	idx(Ri)			system reliability adaptation
	R1	Bora bora	AppleJuice ∧ PineappleJuice ∧	CBRr +	0.76	A2
			LemonJuice ∧ Grenadine	CBRs
	R2 Tequila sunrise Tequila ∧ OrangeJuice ∧	CBRr	0.73	A3
			Grenadine			
	R3 Bacardi cocktail Rum ∧ Grenadine ∧ LemonJuice	CBRr	0.72	A4
	R4 Spice shoot Grenadine ∧ Tabasco ∧ Vodka	CBRs	0.73	A5
	R5 MTS cocktail Martini ∧ MultifruitJuice ∧	CBRs	0.40	A1
			TripleSec ∧ CaneSugarSyrup	
		id	adaptation	reliability
		A1 MultifruitJuice	GuavaJuice	0.52
		A2 PineappleJuice	GuavaJuice	0.38
		A3 OrangeJuice	GuavaJuice	0.35
		A4	LemonJuice		GuavaJuice	0.33
		A5	Vodka	GuavaJuice	0.11 (filtered)

Table 2 .

 2 Adaptations of the recipes ofTable1, with their reliability score. 1. s s1 : Spice shoot with adaptation Vodka GuavaJuice; 2. s s2 : Bora bora with adaptation PineappleJuice GuavaJuice; 3. s s3 : MTS cocktail with adaptation MultifruitJuice GuavaJuice.

http://tuuurbine.loria.fr

http://revisor.loria.fr

RDF and RDFS are W3C recommendations. RDF (Resource Description Framework) represents data about resources by the way of triples of resources subject predicate object , where the resource predicate is a property. A URI (Unique Resource Identifier) is an identifier of a resource. RDFS gives some semantics-and thus, inference possibilities-to RDF by the mean of inference rules associated to some resources. For example, the property subClassOf is related to

http://wikitaaable.loria.fr/

the generalization/specialization path between two concepts C and D is the minimal set of edges linking C to D.