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ORLICZ SPACES AND THE LARGE SCALE GEOMETRY OF

HEINTZE GROUPS

MATIAS CARRASCO PIAGGIO

Abstract. We consider an Orlicz space based cohomology for metric (measured) spaces
with bounded geometry. We prove the quasi-isometry invariance for a general Young
function. In the hyperbolic case, we prove that the degree one cohomology can be
identified with an Orlicz-Besov function space on the boundary at infinity. We give some
applications to the large scale geometry of homogeneous spaces with negative curvature
(Heintze groups). As our main result, we prove that if the Heintze group is not of Carnot
type, any self quasi-isometry fixes a distinguished point on the boundary and preserves
a certain foliation on the complement of that point.
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2010 Subject classification: 20F67, 30Lxx, 46E30, 53C30.

1. Introduction

In this article we are interested in the large scale geometry of Heintze groups. Homogeneous
manifolds with negative sectional curvature where characterized by Heintze in [Hei74].
Each such manifold is isometric to a solvable Lie group Xα with a left invariant metric, and
the group Xα is a semi-direct product N ⋊α R where N is a connected, simply connected,
nilpotent Lie group, and α is a derivation of N whose eigenvalues all have positive real
parts. Such a group is called a Heintze group.

A purely real Heintze group is a Heintze group Xα as above, for which the action of α on
the Lie algebra of N has only real eigenvalues. Every Heintze group is quasi-isometric to
a purely real Heintze group, unique up to isomorphism, see [Cor12, Section 5B]. In the
sequel we will focus only on purely real Heintze groups.

Let n be the Lie algebra of N , and Der(n) be the Lie algebra of derivations on n. We
denote by Exp : Der(n) → Aut(n) the matrix exponential. The group structure of Xα is
then given by a contracting action τ : R → Aut(N), where τ satisfies deτ(t) = Exp(−tα).
We will use the notation (x, t) to denote a point of Xα. Any left invariant metric on Xα is
Gromov hyperbolic, since any two such metrics are bi-Lipschitz equivalent. Assume that
Xα is equipped with a left invariant metric for which the vertical lines t 7→ (x, t) are unit-
speed geodesics. They are all asymptotic when t→ −∞, and hence, they define a “special”
boundary point denoted ∞. The boundary at infinity ∂Xα is a topological n-sphere, and
can be therefore identified with the one-point compactification N ∪ {∞}. The left action
of Xα on its boundary has two orbits, namely, N and ∞.

Two general problems motivate this work: first, to understand QIsom (Xα), the group of
self quasi-isometries of Xα; and second, the quasi-isometric classification of Heintze groups.
These problems have been approached by many authors and by means of several methods,
see for instance [Ham87, Pan89b, FM00, Pan07, Dym10, CT11, DP11, Pen11, Xie12, SX12,
Xie14a]. We refer the reader to [Cor12] for a survey on the subject.
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In this article, we focus on the Pointed Sphere Conjecture [Cor12, Conjecture 6. C. 9]. It
states that ∞ is fixed by the boundary homeomorphism of any self quasi-isometry of Xα,
unless Xα is isometric (for some left invariant metric) to a rank one symmetric space.

The conjecture is known to be true in the following cases. Recall that Xα is said to be of
Carnot type if the Lie algebra spanned by the eigenvectors corresponding to the smallest
eigenvalue of α is the whole algebra n [Cor12, Definition 2.G. 1].

• [Pan89b, Corollary 6. 9], the conjecture holds whenever Xα is not of Carnot type
and α is diagonalizable.

• [Xie12, SX12, Xie14a], the conjecture holds when N ≃ R
n is abelian.

• [Xie13], the conjecture holds when N ≃ H2n+1 is the real Heisenberg group of
dimension 2n+1 and α is diagonalizable. Also in [Xie14b], the conjecture is shown
to be true for a non-diagonalizable derivation when n = 1.

The idea behind the proofs is similar in all the three cases. It consists in finding a quasi-
isometry invariant foliation on ∂Xα which is singular at the point ∞. The leaves of this
foliation are the accessibility classes of points by rectifiable curves, with respect to an
appropriate visual metric on the boundary. To this end, Pansu consider Lp-cohomology,
and Xie consider the p-variation of functions on the boundary.

Following an original idea of Romain Tessera, and Pansu’s methods, we propose here an
approach based on the theory of Orlicz spaces [RR91]. This allows us to extend these
results to all Heintze groups which are not of Carnot type. We mention that Orlicz spaces
based cohomologies have been considered recently also in [Kop13, KP13].

The next theorem is our main result. Let µ1 be the smallest eigenvalue of α, and let H1 be
the closed connected subgroup of N whose Lie algebra is spanned by the µ1-eigenvectors
belonging to the µ1-Jordan blocks of maximal size. It is a non-trivial and proper subgroup
of N when Xα is not of Carnot type, see Section 1.2 for more details.

Theorem 1.1. Let Xα be a purely real Heintze group that is not of Carnot type. The
boundary homeomorphism of any self quasi-isometry of Xα fixes the special boundary point
∞. Furthermore, in this case, it preserves the left cosets of the subgroup H1.

Another important ingredient in our approach is a localization technique. Let us motivate
it by considering the following examples. Let N = R

2 and consider the Heintze group
Xi := Xαi

, i = 1, 2, 3, where

(i) α1 =

(

1 0
0 1

)

(ii) α2 =

(

1 0
0 µ

)

(iii) α3 =

(

1 1
0 1

)

,

and µ > 1. Notice that X1 is isometric to the real hyperbolic space H
3. The degree one

Lp-cohomology of Xi can be identified with a Besov space on the boundary [Pan89a, BP03].
Let us consider the quasi-isometry invariant Banach algebra of continuous Besov functions
Ap(∂Xi). The dependence on p of this algebra is summarized in Figure 1.1.

One way to isolate the point ∞ is suggested by the following construction which appears
in [Shc14]. Let Zi be the Heintze cone defined as the quotient space of Xi by the discrete
group of translations Z

2. The boundary ∂Zi is the union of a torus Ti and the isolated
point ∞. The dependence on p of Ap(∂Zi) is summarized in Figure 1.2. One would like
to define a similar cone with respect to any other point ξ ∈ ∂Xi.

The pull-back of a function u ∈ Ap(∂Zi) by the projection map is periodic and does not
define an element of Ap(∂Xi). Nevertheless, it satisfies a local integrability condition, i.e.
it belongs to the Fréchet algebra Ap

loc(∂Xi \ {∞}). The key point is that the dependence
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Figure 1.1. Dependence on p of Ap(∂Xi).
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Figure 1.2. Dependence on p of Ap(∂Zi).

on p of the algebras Ap
loc(∂Xi \ {ξ}) coincides with that summarized in Figure 1.2 when

ξ = ∞, and with that in Figure 1.1 when ξ ∈ R
2. This explains the case (ii).

Let us look at (iii) in more detail. The parabolic visual metric on ∂X3 \ {∞} = R
2 is

bi-Lipschitz equivalent to the function

̺ ((x1, y1); (x2, y2)) = max {|y2 − y1|, |(x2 − x1)− (y2 − y1) log |y2 − y1||} .
From this expression, we see that the projection functions, π1(x, y) = x and π2(x, y) = y,
have different regularity properties with respect ̺. That is, π2 is Lipschitz, while π1 satisfies
the inequality

|π1(v)− π1(w)| . ̺(v, w) log

(

1

̺(v, w)

)

. (1.1)

In particular, π1 is α-Hölder for any exponent α ∈ (0, 1). Therefore, both projections

belong to A
2/α
loc (∂X3 \ {∞}) for any α < 1, which explains Figure 1.2.(iii). In other words,

the Lp-cohomology in degree one is not sensible to the logarithmic term appearing in (1.1).
As we will show later, a well chosen Orlicz-Besov space detects the difference between π1
and π2, and we are able to distinguish ∞ in case (iii) also.

The quasi-isometry invariance of Orlicz-Besov spaces is not evident at first sight, we show
it for a class of Young functions which is sufficient for our purposes in Sections 3 and 4.
We deal with localization in Section 5.

As a by product, finer results regarding QIsom(Xα) are obtained. Let us outline them.

1.1. On the Orlicz cohomology of a hyperbolic complex and its localization. Let
X be a finite dimensional simplicial complex with bounded geometry. That is, there exists
a constant N such that any vertex of X is contained in at most N simplices. Suppose X
is equipped with a geodesic distance making each of its simplices isometric to a standard
Euclidean simplex. We further assume that X is uniformly contractible: it is contractible
and any ball B(x, r) in X is contractible in the ball B(x, r′), for some r′ ≥ r which depends
only on r. In the hyperbolic case, this condition is not restrictive.



4 MATIAS CARRASCO PIAGGIO

By a Young function we mean an even convex function φ : R → R+, with φ(0) = 0 and
limt→∞ φ(t) = +∞. For such a function, we introduce here the Orlicz cohomology, denoted
by ℓφH•(X), of the complex X. It consists on a direct generalization of the ordinary ℓp-
cohomology introduced in [BP03, Gro93, Pan89a], where φ(t) = φp(t) := |t|p. As in the
ordinary case, we show that it is a quasi-isometry invariant of X.

Suppose that X is in addition a quasi-starlike Gromov-hyperbolic space. Recall that quasi-
starlike means that any point of X is at uniformly bounded distance from some geodesic
ray. Inspired by the works of Pansu [Pan89a, Pan02, Pan08], and Bourdon-Pajot [BP03],
we identify the degree one Orlicz cohomology of X with an Orlicz-Besov functional space
on its boundary ∂X. To this end, we need to assume a decay condition on the Young
function.

Definition 1.1. Let φ be a Young function. We say that φ is doubling, if there exist t0 > 0
and K ≥ 2 such that φ(2t) ≤ Kφ(t) for all t ∈ [0, t0].

The doubling condition in the above definition is known in the literature as the ∆2(0)
condition. It admits several equivalent formulations, see for example [RR91, Thm. 3 Ch. 2].

Moreover, suppose that the boundary at infinity ∂X admits a visual metric ̺ which is
Ahlfors regular of dimension Q > 0. That is, the Q-dimensional Hausdorff measure H of
a ball of radius r ≤ diam ∂X is comparable to rQ. We refer the reader to [BH99, GdlH90,
Hei01] for basic background.

In the space of pairs ∂2X, consider the measure

dλ(ξ, ζ) =
dH ⊗ dH(ξ, ζ)

̺(ξ, ζ)2Q
.

If u : ∂X → R is a measurable function, we define its Orlicz-Besov φ-norm as

〈u〉φ := inf

{

α > 0 :

∫

∂2X
φ

(

u(ξ)− u(ζ)

α

)

dλ(ξ, ζ) ≤ 1

}

. (1.2)

Then, the Orlicz-Besov space is by definition

Bφ (∂X, ̺) := {u : ∂X → R measurable : 〈u〉φ <∞} . (1.3)

We denote by R the functions on ∂X which are constant H-almost everywhere. Then the
space Bφ (∂X, ̺) /R when equipped with the norm 〈·〉φ is a Banach space.

Theorem 1.2. Let φ be a doubling Young function, and ̺ be an Ahlfors regular visual
metric on ∂X. There exists a canonical isomorphism of Banach spaces between ℓφH1(X)
and Bφ(∂X, ̺)/R. In particular, ℓφH1(X) is reduced.

Notice that by [BP03, Prop. 2.1], any Ahlfors regular compact metric space Z is bi-
Lipschitz homeomorphic to ∂X for some geometric hyperbolic complex X as above, and
the quasi-isometry class of X depends only on the quasi-symmetry class of Z. In particular,
Orlicz-Besov spaces are quasisymmetry invariants of Z. When the metric space Z is the
Euclidean n-sphere, and φ = φp, this Orlicz-Besov space coincides with the classical Besov

space B
n/p
p,p [Tri83].

In order to quantify the influence of a point ξ ∈ ∂X to the nullity of the cohomology spaces,
we introduce a local version of the ℓφ-cohomology. This provides us with an interesting
tool capable to distinguish local features of the quasiconformal geometry of the boundary.
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Given a quasi-isometric embedding ι : Y → X, where Y is another hyperbolic simplicial
complex with bounded geometry, one can define the pull-back of cochains ι∗, see for ex-
ample [BP03]. For ξ ∈ ∂X, denote by Y(X, ξ) the collection of all such quasi-isometric
embeddings with ι(∂Y ) ⊂ ∂ξX. We define the space of locally φ-integrable k-cochains of
X (with respect to ξ) as

ℓφloc(Xk, ξ) :=
{

τ : Xk → R : ι∗(τ) ∈ ℓφ(Yk), ∀ ι ∈ Y(X, ξ)
}

.

Here Xk and Yk denote the set of k-simplices of X and Y respectively. We emphasize the
fact that the cochains are defined globally, but the integrability condition is “local”. As we

will show in Section 5, ℓφloc(Xk, ξ) is a Fréchet space and the coboundary operators

δk : ℓφloc(Xk, ξ) → ℓφloc(Xk+1, ξ)

are Lipschitz continuous.

Definition 1.2. Consider a point ξ ∈ ∂X. We define the local ℓφ-cohomology of X with
respect to ξ as

ℓφlocH
k(X, ξ) := ker δk/im δk−1.

The reduced local ℓφ-cohomology is defined as usual taking the quotient by im δk−1.

Notice that by definition, the local ℓφ-cohomology is a quasi-isometry invariant of the
pair (X, ξ). More precisely, if F : X → X ′ is a quasi-isometry between two hyperbolic

simplicial complexes as above, then ℓφloc(X, ξ) is isomorphic as a topological vector space

to ℓφloc(X
′, F (ξ)). We denote also by F the boundary extension.

As for the global cohomology, we can identify the local Orlicz cohomology in degree one
with a local Orlicz-Besov space on the parabolic boundary ∂ξX := ∂X \ {ξ}. We suppose
that ∂ξX is equipped with an Ahlfors regular parabolic visual metric ̺ξ. We define the
local Orlicz-Besov space on ∂ξX as

Bφ
loc (∂ξX, ̺ξ) :=

{

u : ∂ξX → R : 〈u〉φ,ξ,K <∞, ∀ compact K ⊂ ∂ξX
}

,

where 〈·〉φ,ξ,K is the seminorm defined as in (1.2), but replacing ̺ by ̺ξ and integrating
over the compact K.

Theorem 1.3. Let φ be a doubling Young function, and ̺ξ be an Ahlfors regular parabolic
visual metric on ∂ξX. There exists a canonical isomorphism of Fréchet spaces between

ℓφlocH
1(X, ξ) and Bφ

loc(∂ξX, ̺ξ)/R. In particular, ℓφlocH
1(X, ξ) is reduced.

These identifications are very useful to define several quasi-isometry invariants. Consider
a family of doubling Young functions {φi : i ∈ I} indexed on a totally ordered set I, and
suppose that it is non-decreasing in the sense that if i ≤ j in I, then φi � φj (see Section
2 for the definition of the relation �). We define the critical exponent of I as

p 6=0(X, I) := inf
{

i ∈ I : ℓφiH1(X) 6= 0
}

. (1.4)

Notice that by Theorem 1.2, there is a canonical inclusion ℓφ1H1(X) ⊂ ℓφ2H1(X) whenever
φ1 � φ2. When the family of Young functions is given by {φp : p ∈ [1,+∞)}, this exponent
is the well known critical exponent associated to the ℓp-cohomology of X. An analogous
exponent p 6=0(X, ξ, I) can be defined for the local Orlicz cohomology.

Finer invariants can be given following the ideas of [Bou07, BK13, BK12]. Consider the
algebra of continuous Orlicz-Besov functions

Aφ = Aφ (∂X, ̺w) :=
{

u ∈ Bφ (∂X, ̺w) : u is continuous
}

.
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It is a unital Banach algebra when equipped with the norm Nφ(u) := ‖u‖∞ + 〈u〉φ. The

spectrum of Aφ, denoted by Sp
(

Aφ
)

, is a Hausdorff compact topological space invariant
by Banach algebra isomorphisms. In particular, the spectrum, as well as its topological
dimension s(φ) := dimT Sp (Aφ), are quasi-isometry invariants of X. For instance, given
an indexed family {φi : i ∈ I} as before, the function s : I → N ∪ {∞}, i 7→ s(i) = s(φi),
provides another quasi-isometry invariant of X.

The spectrum of Aφ is a quotient space of ∂X, where the equivalence relation is given by

ξ ∼φ ζ if, and only if, u(ξ) = u(ζ), ∀u ∈ Aφ.

The ℓφ-equivalence classes provide a partition of ∂X which must be preserved by the
boundary homeomorphism of any self quasi-isometry of X.

The same considerations can be carried out for the local Orlicz cohomology, by considering

the unital Fréchet algebra Aφ
loc (∂ξX, ̺ξ) of continuous Orlicz-Besov functions on the para-

bolic boundary ∂ξX. In particular, the boundary homeomorphism of a self quasi-isometry

of X which fixes the point ξ, must preserve the local ℓφ-cohomology classes of ∂ξX.

1.2. On quasi-isometries of Heintze groups. We will focus on the global and local
Orlicz cohomology in degree one of Xα, for the family of doubling Young functions given
by

φp,κ(t) =
|t|p

log (e+ |t|−1)κ
, (p, κ) ∈ I = [1,+∞)× [0,+∞). (1.5)

In order to simplify the notation, we indicate the Orlicz spaces and the norms associated
to the functions φp,κ with the superscript “p, κ”. The set of pairs (p, κ) ∈ I is endowed
with the lexicographic order, so we obtain a non-decreasing family of Young functions as
in the previous section.

We will define a non-decreasing sequence of closed Lie subgroups of N ,

{e} = K0 ≤ H1 ≤ K1 ≤ H2 ≤ K2 ≤ · · ·Hd ≤ Kd = N,

whose left cosets will be identified with local cohomology classes for appropriate choices of
the parameters p and κ.

Denote by µ1 ≤ · · · ≤ µd the distinct eigenvalues of α, and let B be a basis of n on which
α assumes its Jordan canonical form. In the basis B, we have the decomposition

α =
d
⊕

i=1

ki
⊕

j=1

J(µi,mij). (1.6)

Here J(µi,mij) denotes a Jordan block of size mij associated to the eigenvalue µi. Let Vi
be the generalized eigenspace associated with µi.

Let k0 =W0 = {0}, and for each i ∈ {1, . . . , d}, let

Wi =

i
⊕

r=1

Vr, and ki = LieSpan (Wi) .

That is, ki is the Lie sub-algebra of n generated by Wi. Define Ki to be the closed Lie
subgroup of N whose Lie algebra is ki. Note that the set of left cosets N/Ki is a smooth
manifold, and the canonical projection is a smooth map.

For each i ∈ {1, . . . , d}, we also let mi = max{mij : 1 ≤ j ≤ ki} be the maximal size of the
Jordan blocks with eigenvalue µi. Consider the µi-eigenvectors belonging to the Jordan
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blocks of size mi, and denote by V 0
i the vector space their span. Finally, consider hi ≤ ki

the Lie subalgebra spanned by Wi−1 ⊕ V 0
i , and Hi its corresponding closed Lie subgroup.

Notice that hi = ki only when mi = 1.

The parabolic boundary ∂∞Xα can be identified with N . A left invariant parabolic visual
metric ̺∞ can be defined on N , and so that τ acts as a dilation. From this, one easily
checks that ̺∞ is Ahlfors regular (see Section 6 for more details). In the statement of the
next theorem we write Ap,κ

loc for Ap,κ
loc (N, ̺∞)

Theorem 1.4 (Local classes with respect to ∞). For each i ∈ {1, . . . , d}, consider the
exponent pi = tr(α)/µi, and set pd+1 = 1.

(1) Suppose p ∈ (pi+1, pi) and κ ≥ 0. The spectrum of Ap,κ
loc is homeomorphic to N/Ki.

(2) Suppose p = pi and mi = 1.

(a) If κ ≤ 1, the spectrum of Ap,κ
loc is homeomorphic to N/Ki.

(b) If κ > 1, the spectrum of Ap,κ
loc is homeomorphic to N/Ki−1.

(3) Suppose p = pi, κ ∈ (1 + pi(mi − 2), 1 + pi(mi − 1)], and mi ≥ 2 . The spectrum
of Ap,κ

loc is homeomorphic to N/Hi.

In particular, in all cases, the (p, κ)-local cohomology classes on N coincide with the lefts
cosets of the corresponding subgroup.

Let i(α) = min{i : Ki = N}. Then the local critical exponent satisfies

(pi(α), 0) ≤ p 6=0 (Xα,∞, I) ≤
(

pi(α), 1 + pi(α)
(

mi(α) − 2
)+
)

,

where a+ = max{a, 0}.
The picture is quite different for the local cohomology with respect to the points of N .

Theorem 1.5 (Local cohomology with respect to ξ ∈ N). The local ℓ p,κ-cohomology of
Xα with respect to a point ξ ∈ N is trivial if, and only if, (p, κ) ≤ (p1, 1 + p1(m1 − 1)).

In particular, p 6=0(Xα, ξ, I) = (p1, 1 + p1(m1 − 1)) for any ξ ∈ N . Theorem 1.1 follows
therefore from Theorems 1.4 and 1.5, see Section 6. Notice that in the Carnot type case,
p 6=0(Xα,∞, I) = p 6=0(Xα, ξ, I) = (p1, 1) for any ξ ∈ N . As an immediate consequence, we
obtain the following result for the global cohomology.

Corollary 1.6. The critical exponent of the ℓ p,κ-cohomology of Xα is given by

p 6=0(Xα, I) = (p1, 1 + p1(m1 − 1)) .

Moreover, the ℓ p,κ-cohomology is also trivial at this critical exponent.

As an example, consider the Heintze group X3 introduced at the beginning of this section.
The critical exponents are in this case is p 6=0(X3,∞, I) = (2, 3) and p 6=0(X3, ξ, I) = (2, 1)
for any ξ ∈ R

2. The subgroup H1 is R × {0}. Notice that even though the conformal
dimension of ∂X3 is equal to 2, it is not attained. This is proved in [HP11][Thm. 1. 8]
by techniques of two dimensional conformal dynamics which do not apply to the higher
dimensional case. We refer the reader to [MT10] for an account on conformal dimension.

The κ-coordinate of the critical exponent can be interpreted as a second order quasi-
isometry invariant “dimension” of a hyperbolic complex X as above. When the Ahlfors
regular conformal dimension Q of ∂X is attained, the critical exponents satisfy the in-
equality p 6=0(X, ξ, I) ≤ (Q, 1) for any ξ ∈ ∂X, see Lemma 5.2.
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Corollary 1.7. If m1 ≥ 2, the Ahlfors regular conformal dimension of ∂Xα is not attained.

The pointed sphere conjecture is not settled in the Carnot type case. Our methods do
not apply, essentially, because Carnot groups equipped with Carnot-Carathéodory metrics
are Loewner spaces [Hei01]. In particular, they contain “a lot of rectifiable curves”, which
makes difficult to distinguish points by invariants strongly related to the moduli of curves.

The restrictions imposed on self quasi-isometries of Xα preserving a foliation at infinity
are manifest in the rigidity results due to Xie, in the case when N is abelian or isomorphic
to a Heisemberg group. It is there shown that self quasi-isometries are almost-isometries,
i.e. a (1,C)-quasi-isometry. This question is motivated by the work of Farb and Mosher on
abelian-by-cyclic groups [FM00]. We apply Xie’s approach to our more general context.

Corollary 1.8. Let Xα be a purely real Heintze group, and suppose that the normalizer
of h1, Nn(h1) = {v ∈ n : [v, w] ∈ h1, ∀w ∈ h1}, is strictly bigger than h1. Then, any self
quasi-isometry of Xα is an almost isometry.

The Corollary 1.8 applies, in particular, in the case when N is abelian or isomorphic to
a Heinsemberg group, and Xα is not of Carnot type, generalizing therefore the previous
known results.

We obtain also results regarding the quasi-isometric classification of Heintze groups. It is
conjectured that two purely real Heintze groups are quasi-isometric if, and only if, they are
isomorphic [Ham87, Cor12]. By [Pan89c, Theorem 2], the conjecture is true when Xα and
Xβ are both purely real Heintze groups of Carnot type. Notice that if α1 is the restriction
of α to h1, then H1 ⋊α1

R is a Heintze group of Carnot type. Also, that if there exists a
quasi-isometry between two Heintze groups Xα and Xβ , then there exists a quasi-isometry
sending ∞ to ∞ [Cor12, Lemma 6.D.1]. From Pansu’s theorem and Theorem 1.4, we
obtain the following consequence.

Corollary 1.9. Let Xα and Xβ be two purely real Heintze groups. If they are quasi-

isometric, then H
(α)
1 ⋊α1

R and H
(β)
1 ⋊β1

R are isomorphic. In particular, if Xα is of
Carnot type and Xβ is not, then they are not quasi-isometric.

In the abelian type case, that is, when N is abelian, the algebra is not playing any role,
and we obtain another, and more direct, proof of the following result of Xie.

Corollary 1.10. [Xie14a, Theorem 1.1] Let Xα and Xβ be two purely real Heintze groups
of abelian type. If they are quasi-isometric, there exists λ > 0 such that α and λβ have the
same Jordan form. In particular, Xα and Xβ are isomorphic.

We refer the reader to [Cor12, Section 6.B] for more details about the quasi-isometric
classification of Heintze groups. Notice that Theorem 1.4 provides new invariants related
to the sizes of the Jordan blocks of α. We were not able to compute the spectrum of Ap,κ

loc
for all the possible values of (p, κ). One could expect to show, by a more refined analysis,
that the Jordan form of the derivation α, up to scalar multiplication, is a quasi-isometry
invariant of the Heintze group, generalizing thus the first conclusion of Corollary 1.10.

1.3. Notations and conventions. To make the notation clearer we will write the con-
stants in sans-serif font, e.g. C, K, etc.. If f and g are non-negative real functions defined
on a set A, we say that f . g if there exists a constant C, such that f(a) ≤ Cg(a) for all
a ∈ A. If both inequalities are true, f . g and g . f , we say that f and g are comparable
and we denote it by f ≍ g.
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2. Preliminaries on the theory of Orlicz spaces

2.1. Generalities. In this section we recall some basic facts about Orlicz spaces which
will be used throughout this articles. We refer to [RR91] for a general treatment. Recall
that a Young function is an even convex function φ : R → R+ which satisfies φ(0) = 0,
and limt→∞ φ(t) = +∞. Note that we require φ to be finite valued, so in particular, φ is
locally Lipschitz. We will also assume that φ(t) 6= 0 if t 6= 0.

Any Young function can be represented as an integral

φ(t) =

∫ |t|

0
φ′(s)ds,

where φ′ : R+ → R+ is nondecreasing left continuous and φ′(0) = 0 [RR91, Cor. 2 Ch. 1].
The function φ′ coincides with the derivative of φ except perhaps for at most a countable
number of points.

Let the space Ω be given with a σ-algebra and a σ-finite measure µ. For any measurable
function f on Ω, the Luxembourg norm of f is defined as

‖f‖φ = inf

{

α > 0 :

∫

Ω
φ

(

f

α

)

dµ ≤ 1

}

∈ [0,+∞],

where it is understood that inf(∅) = +∞. The Orlicz space Lφ(Ω, µ) is the vector space of
measurable functions f on Ω such that ‖f‖φ < ∞ [RR91, Thm. 10 Ch. 3]. Up to almost

everywhere null functions, Lφ(Ω, µ) is a Banach space with the norm ‖ · ‖φ. As usual, we

simply write ℓφ(Ω) when µ is the counting measure.

If K ≥ 1 is any constant, the identity map LKφ(Ω, µ) → Lφ(Ω, µ) is continuous and
bijective, and therefore, by the open mapping theorem, ‖ · ‖Kφ and ‖ · ‖φ are equivalent
norms:

∃C = C(K, φ) s.t. ‖ · ‖φ ≤ ‖ · ‖Kφ ≤ C‖ · ‖φ. (2.1)

Let us point out that when the measure µ is finite, the Orlicz space Lφ(Ω, µ) is contained
in L1(Ω, µ) and the inclusion is continuous [RR91, Cor. 3 Ch. 1]. In particular, in locally
compact spaces equipped with a regular measure, Orlicz integrable functions are locally
integrable.

We will not need the Hölder inequality in this paper, but let us remark that it holds exactly
as in the ordinary case by considering ψ : R → [0,+∞] the convex conjugate of φ [RR91,
Thm. 3 Ch. 1]. This inequality serves also to define the Orlicz spaces by means of the so
called Orlicz norm instead of the Luxembourg norm.

The main difficulty in dealing with the norm ‖ · ‖φ is that it is not comparable to the
function

f 7→ φ−1

(∫

Ω
φ(f)du

)

. (2.2)
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This is only the case when φ is equivalent to an ordinary power function φp, p ≥ 1.
Nevertheless, we will be able to avoid this difficulty by applying Jensen’s inequality in
order to exchange φ and an integral or a sum symbol.

2.2. Decay conditions. For the Orlicz spaces considered here, only the decay properties
of φ for small values of t will be relevant for us. Roughly speaking, we do not want our
Young functions to be too small near zero. This is precisely the meaning of Definition 1.1,
and we will mainly work in this article with doubling Young functions.

Here are some important features of Orlicz spaces of doubling Young functions. First,
notice that since φ′ is non-decreasing, we have

tφ′(t)

φ(t)
≥ 1 for all t > 0.

A useful way to check the doubling property is by considering the exponent

pφ = lim sup
t→0

tφ′(t)

φ(t)
∈ [1,+∞].

Then, φ is doubling if and only if pφ < +∞ [RR91, Cor. 4 Ch. 2]. It is important to note
that when φ is doubling, then

f ∈ Lφ(Ω, µ) if, and only if,

∫

Ω
φ(f)dµ <∞,

see [RR91, Thm. 2 Ch. 3]. Moreover, when φ is doubling, if {f, fn : n ∈ N} is a sequence
in Lφ(Ω, µ), then

‖fn − f‖φ → 0 if, and only if,

∫

Ω
φ(fn − f)du→ 0,

see [RR91, Thm. 12, Ch. 3]. In particular, when µ is a Radon (resp. volume) measure
on a locally compact Hausdorff space (resp. Riemannian manifold) Ω, then the usual
approximation by continuous (resp. smooth) functions in the ‖ · ‖φ norm holds.

A doubling Young function has polynomial decay with exponent p for any p > pφ. That is,
there exist t0 > 0, and c > 0, such that φ(t) ≥ c tp for t ∈ [0, t0]. In general, the converse
is not true. We also remark that when φ is doubling of constant K, then tφ′(t) ≤ Kφ(t) for
all t ∈ [0, t0].

All these conditions are imposed for small values of t. When dealing with discrete Orlicz
spaces, the behavior of φ at infinity is essentially irrelevant. To justify this, let us introduce
the following equivalence relation among Young functions.

Define φ1 � φ2 if there are constants a, b ∈ R+ and t0 > 0, so that φ2(t) ≤ aφ1(bt) for
t ≤ t0. We say that φ1 ∼ φ2 for small t, if φ1 � φ2 and φ2 � φ1.

Lemma 2.1. Suppose that Ω is a countable set, and let φi, i = 1, 2, be a pair of equivalent
Young functions for small t. Then the norms ‖ · ‖φ1

and ‖ · ‖φ2
are equivalent.

In particular, given a doubling Young function φ, applying Lemma 2.1 if necessary, we can
change φ by an equivalent (for small t) Young function, so that the doubling condition 1.1
is satisfied with t0 = +∞.

The following lemma will be used later in Section 4.

Lemma 2.2. Let φ be a doubling Young function with constants K and t0 = +∞. Then
for all y ∈ R+ and x ∈ [0, 1] we have xKφ(y) ≤ φ(xy).
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Proof. For each x ∈ [0, 1], define the function τx : R+ → R+ by τx(y) = φ(xy)/φ(y).
Notice that τx(y) ≤ 1 because x ≤ 1 and φ is increasing. Since tφ′(t) ≤ φ(t) for all t ∈ R+,
we have

log

(

1

τx(y)

)

=

∫ y

xy

φ′(t)

φ(t)
dt ≤

∫ y

xy

K

t
dt = log

(

1

xK

)

.

That is, τx(y) ≥ xK. This finishes the proof. �

3. Orlicz cohomology and quasi-isometry invariance

In this section, we extend the classical notion of Lp-cohomology by considering the larger
class of Orlicz spaces. It can be defined as a simplicial, coarse, or De Rham cohomology,
depending on the structure of the space under consideration. For our later applications
in Section 6, it will be more natural to work with differential forms. Nevertheless, the
quasi-isometry invariance is easier to prove in the simplicial context.

In contrast to the Lp case, the identification of the discrete and continuous cohomologies
is less clear for a general Young function. We will prove it for the degree one cohomology,
by using the coarse definition as an intermediary (see Section 3.2).

3.1. The simplicial Orlicz chomology. We first prove the quasi-isometry invariance of
the simplicial Orlicz cohomology. It is remarkable that this result is true for any Young
function φ, and therefore, in great generality. The proof follows the same lines as the
classical proof for the ℓp case, see [BP03].

Let X be a finite dimensional, uniformly contractible, simplicial complex with bounded
geometry, see the Introduction for the definition. We denote the geodesic distance on X
by | · − · |. For k ∈ N, let Xk be the set of k-simplices of X, and let Ck(X) be the vector
space of k-chains on X, i.e. finite real linear combinations of the elements in Xk.

We will use the following notations: if c is a chain in X, the length of c, denoted by ℓ(c),
is the number of simplices in supp(c), ‖c‖∞ = max |c(σ)|, and ‖c‖1 =

∑ |c(σ)|. Note that
our assumptions imply that there exists a function NX : [0,+∞) → N such that any ball
of radius r ≥ 0 contains at most NX(r) simplices. We write N = NX(1) for short.

Let φ be a Young function. The k-th space of φ-integrable cochains of X is by definition
the Banach space ℓφ(Xk); i.e. the space of functions ω : Xk → R such that

‖ω‖φ := inf







α > 0 :
∑

σ∈Xk

φ

(

ω(σ)

α

)

≤ 1







<∞.

The standard coboundary operator δk : ℓφ(Xk) → ℓφ(Xk+1) is defined by duality: for
ω ∈ ℓφ(Xk) and σ ∈ Xk+1, let δk(ω)(σ) = ω(∂σ).

By the convexity of φ, and the bounded geometry assumption, δk is well defined and is a
bounded operator. The proof relies on the following argument which will be used several
times in this article. Let us explain it in detail.

Let ω ∈ ℓφ(Xk) and σ ∈ Xk+1, and suppose that ∂σ 6= 0. Note that for any α > 0, we
have by convexity

φ

(

δk(ω)(σ)

αN

)

≤ φ

(

δk(ω)(σ)

α‖∂σ‖1

)

≤ 1

‖∂σ‖1
∑

σ′∈supp(∂σ)

φ

(

ω(σ′)

α

)

. (3.1)
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Summing over σ ∈ Xk+1, we obtain

∑

σ∈Xk+1

φ

(

δk(ω)(σ)

αN

)

≤ N

∑

σ′∈Xk

φ

(

ω(σ′)

α

)

.

By (2.1), ‖ω‖Nφ . ‖ω‖φ < ∞. In particular, the set of α > 0 such that the sum on the
right hand side is bounded from above by N

−1 is not empty, and we can take α arbitrarily
close to ‖ω‖Nφ. For such an α, we have

∑

σ∈Xk+1

φ

(

δk(ω)(σ)

αN

)

≤ 1, (3.2)

which implies ‖δk(ω)‖φ ≤ α. Taking infimum, we get ‖δk(ω)‖φ ≤ N‖ω‖Nφ. Therefore,
‖δk(ω)‖φ . ‖ω‖φ, where the multiplicative constant depends only on N and φ.

Definition 3.1. The k-th ℓφ-cohomology space of X is by definition the topological vector
space

ℓφHk(X) := Ker δk/Im δk−1.

The reduced cohomology is defined by taking the quotient by Im δk−1; it is a Banach space.

We focus now on the quasi-isometry invariance of the ℓφ-cohomology spaces. Recall that
a function F : X → Y between two metric spaces is:

(1) quasi-Lipschitz if there exist constants Λ ≥ 1 and C ≥ 0 such that

∀ x, y ∈ X, |F (x)− F (y)| ≤ Λ|x− y|+ C.

(2) uniformly proper if there exists a function DF : R+ → R+ such that for any ball
B(y, r) in Y , we have diam

(

F−1(B(y, r))
)

≤ DF (r).

(3) a quasi-isometry if it is quasi-Lipschitz and there exists a quasi-Lipschitz function
G : Y → X such that G ◦ F and F ◦G are at bounded distance from the identity.

We can now state the main result of this section.

Theorem 3.1 (Quasi-isometry invariance). Let φ be any Young function, and X, Y be
two uniformly contractible simplicial complexes with bounded geometry.

(1) Any quasi-Lipschitz uniformly proper function F : X → Y induces continuous
linear maps F ∗ : ℓφH•(Y ) → ℓφH•(X).

(2) If F,G : X → Y are two quasi-Lipschitz uniformly proper functions at bounded
distance, then F ∗ = G∗.

(3) If F : X → Y is a quasi-isometry, then F ∗ is an isomorphism of topological vector
spaces.

The same statements hold for the reduced ℓφ-cohomology.

The proof relies on the following two key lemmas which are proved in [BP03, Section 1].
They serve to define pull-backs and homotopies from quasi-isometries.

Lemma 3.2 ([BP03]). Let X and Y be two uniformly contractible simplicial complexes
with bounded geometry. Any quasi-Lipschitz uniformly proper function F : X → Y induces
maps cF : X• → C•(Y ) verifying the following conditions:

(1) cF commutes with the boundary operator, i.e. cF (∂σ) = ∂cF (σ), and
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(2) for each k ∈ N, there are constants Nk and Lk, depending only on k and the
geometric data of X, Y and F , such that

‖cF (σ)‖∞ ≤ Nk, and ℓ(cF (σ)) ≤ Lk.

The map cF : X• → C•(Y ) is constructed by induction on k. For k = 0 and σ ∈ X0, cF (σ)
is defined to be any vertex of Y at uniformly bounded distance from F (σ). The induction
can be carried out since X is uniformly contractible.

Lemma 3.3 ([BP03]). Let F,G : X → Y be two quasi-Lipschitz uniformly proper functions
at bounded uniform distance. Then there exists a homotopy h : X• → C•+1(Y ) between cF
and cG. That is, a map verifying

(i) for σ ∈ X0, ∂h(σ) = cF (σ)− cG(σ), and
(ii) for σ ∈ Xk, k ≥ 1, ∂h(σ) + h(∂σ) = cF (σ)− cG(σ).

As before, ‖h(σ)‖∞ and ℓ(h(σ)) are uniformly bounded on Xk by constants N
′
k and L

′
k,

depending only on the geometric data of X, Y, F and G.

The homotopy h is also defined by induction on k. For k = 0 and σ ∈ X0, h(σ) is defined
to be any 1-chain in Y verifying

∂h(σ) = cF (σ)− cG(σ), ℓ(h(σ)) . |cF (σ)− cG(σ)|, and ‖h(σ)‖∞ = 1.

Proof of Theorem 3.1. Let us prove (1). For ω ∈ ℓφ(Yk), define the pull-back

F ∗(ω) : Xk → R, F ∗(ω)(σ) = ω (cF (σ)) , σ ∈ Xk.

We show that F ∗(ω) belongs to ℓφ(Xk). The proof will also show the continuity of F ∗.
For α > 0, by convexity of φ, we have

∑

σ∈Xk

φ

(

F ∗(ω)(σ)

NkLkα

)

≤
∑

σ∈Xk

∑

σ′∈supp cF (σ)

φ

(

ω(σ′)

α

)

.

For fixed σ′ ∈ Yk, the uniform properness of F implies that the set of σ ∈ Xk for which
σ′ ∈ supp cF (σ), is contained in a ball of X of radius r = DF (2Lk + Λ + C). Then, their
number is bounded by NX(r). This implies

∑

σ∈Xk

∑

σ′∈supp cF (σ)

φ

(

ω(σ′)

α

)

≤ NX(r)
∑

σ′∈Yk

φ

(

ω(σ′)

α

)

.

As in (3.2), this gives ‖F ∗(ω)‖φ ≤ NkLk‖ω‖(NX(r)φ) . ‖ω‖φ.
Denote by δXk and δYk the coboundary operators of X and Y respectively. Then δXk ◦F ∗ =

F ∗ ◦ δYk , since cF commutes with the boundary operator. Thus, F ∗ induces a continuous

linear map F ∗ : ℓφHk(Y ) → ℓφHk(X). This also holds for the reduced cohomology by the
continuity of F ∗.

Let us prove (2). Suppose that ‖F −G‖∞ <∞. For ω ∈ ℓφ(Yk+1), define the pull-back

h∗(ω) : Xk → R, h∗(ω)(σ) = ω (h(σ)) , σ ∈ Xk.

As in the proof of (1), by the convexity of φ, we have

∑

σ∈Xk

φ

(

h∗(ω)(σ)

N′
kL

′
kα

)

≤
∑

σ∈Xk

∑

σ′∈supph(σ)

φ

(

ω(σ′)

α

)

.

For fixed σ′ ∈ Yk+1, the set of σ ∈ Xk for which σ′ ∈ supp h(σ), is contained in a
ball of radius r′ which depends only on L

′
k and the geometric data of X,Y, F and G.
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Therefore, as in (1), we obtain ‖h∗(ω)‖φ ≤ N
′
kL

′
k‖ω‖(NX(r′)φ) . ‖ω‖φ. This shows that

h∗ : ℓφ(Yk+1) → ℓφ(Xk) is a bounded operator. By Lemma 3.3, we have

h∗ ◦ δYk + δXk−1 ◦H∗ = F ∗ −G∗,

which implies that F ∗ and G∗ induce the same map in ℓφ-cohomology.

Finally, (3) results from (2) since F ∗ ◦G∗ and G∗ ◦ F ∗ are the identity maps. �

3.2. The degree one coarse Orlicz cohomology. Let (X, d) be a complete proper
metric space equipped with a Radon measure µ. We say that X has bounded geometry if

0 < v(r) = inf
x∈X

{µ (B(x, r))} ≤ V (r) = sup
x∈X

{µ (B(x, r))} <∞, ∀ r > 0. (3.3)

We say that X has the midpoint property if there exists a constant cX ≥ 0 such that for
all x, y ∈ X, there is some z ∈ X with

max {d(z, x), d(z, y)} ≤ d(x, y)

2
+ cX .

This property is satisfied for instance, if X is (1, c)-quasi-isometric to a geodesic metric
space, with a mid-point constant equal to 3c. In the rest of this section we suppose that
X has bounded geometry and satisfies the mid-point property. This and the next section
are inspired by [Pan89a, Shc14] and we will closely follow the ideas there exposed.

A kernel in X is a bounded function κ : X ×X → R+ such that

(1) for all x ∈ X,
∫

X
κ(x, y)dµ(y) = 1, and

(2) there are constants ε > 5cX , δ > 0 and R > 0 such that

κ(x, y) ≥ δ if d(x, y) ≤ ε and κ(x, y) = 0 if d(x, y) ≥ R.

Such a kernel always exists, consider for example

κ(x, y) =
1

µ (B(x, r))
1{d(x,y)<r} (with r > 5cX). (3.4)

The positivity radius of a kernel κ is the best constant εκ for which (2) is verified. The
convolution of two kernels κ1 and κ2 is the kernel given by

κ1 ∗ κ2(x, y) =
∫

X
κ1(x, z)κ2(z, y)dµ(z).

Notice that by the definition of cX , the positivity radius of self convolutions of a kernel κ
satisfies

εκ∗2 ≥ 6

5
εκ, and in particular, εκ∗2m → +∞ when m→ +∞.

This implies that given any two kernels κ1 and κ2 on X, there is some m ∈ N and some
constant C (depending only on the kernels) such that

κ1 ≤ Cκ∗2
m

2 . (3.5)

Given a kernel κ, we denote by µκ the measure κ dµ ⊗ dµ on X2 = X × X. The space
of (φ, κ)-integrable cocycles on X is the closed subspace of Lφ

(

X2, µκ
)

given by the mea-
surable functions ω : X × X → R verifying ω(x, y) = ω(x, z) + ω(z, y) for almost every
x, y, z ∈ X. We denote by Zφ,κ(X) the Banach space of (φ, κ)-integrable cocycles on X.
We write ‖ · ‖φ,κ for the corresponding Luxembourg norm of a cocycle.
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Given a measurable function u : X → R, we can define the cocycle Du(x, y) = u(x)−u(y).
We obtain in this way a bounded operator D : Lφ(X,µ) → Zφ,κ(X). We define the coarse

Lφ
κ-cohomology in degree one as the quotient Lφ

κH1(X) := Zφ,κ(X)/Im(D).

Observe that by (3.5), different kernels define equivalent φ-norms when restricted to cocy-
cles. That is, the integrability condition is independent of the kernel. Notice also that a
measurable function u : X → R with ‖Du‖φ,κ <∞ is in L1

loc(X).

We need to define the convolution of functions and cocylces with respect to a kernel κ.
Given a measurable function u : X → R, we define the convolution

u ∗ κ(x) =
∫

X
u(z)κ(x, z)dµ(z), (3.6)

and given a cocycle ω : X ×X → R, we define the convolution

ω ∗ κ(x, y) =
∫

X2

ω(z, z′)κ(x, z)κ(y, z′)dµ(z)dµ(z′). (3.7)

Notice the following two important facts about convolutions. First, that it commutes with
the coarse coboundary operator: D(u ∗ κ) = (Du) ∗ κ. And second, that

ω ∗ κ− ω = Du, where u(x) =

∫

X
ω(x, z)κ(x, z)dµ(z).

This implies that ω ∗ κ is a cocycle, and by Jensen’s inequality, that ‖u‖φ ≤ ‖ω‖φ,κ. This
also shows that the convolution induces the identity map in cohomology.

Proposition 3.4. Let X and Y be two complete proper metric spaces equipped with Radon
measures µX and µY satisfying the conditions (3.3) and satisfying the midpoint property.
Let F : X → Y be a (Λ, c)-quasi-isometry between them. Then there are kernels κ, κY in
Y and κX in X such that the map

F ∗ : ω 7→ (ω ∗ κ) ◦ F
induces an isomorphism from Lφ

κY
H1(Y ) to Lφ

κX
H1(X).

Proof. Choose R > max{Λ+ 2c, 5cY }, and consider the kernel κ on Y given by (3.4) with
r = R. Note that for any z ∈ Y , we have

vX(1)

VY (R)
≤ I(z) ≤ VX(Λ(R+ 2c))

vY (R)
, where I(z) =

∫

X
κ(F (x), z)dµX(x), (3.8)

and vX , VX , vY , and VY , denote the functions defined in (3.3) for X and Y respectively.

We let now

RX = 2

(

R− 2c

Λ

)

+ Λ (5cY + 1 + 3c) ,

and consider the kernel κX on X given by (3.4) with r = RX . Finally, define the kernel
κY on Y given by

κY (z, z
′) =

1

I(z)

∫

X2

κX(x, y)κ(F (x), z)κ(F (y), z′)dµX(x)dµX(y).

One checks that κY is bounded (by (3.8)), that its positivity radius is at least 5cY +1, and
that κY (z, z

′) = 0 if d(z, z′) > 2R+ ΛRX + c.

By construction, and by Jensen’s inequality, ‖(ω ∗κ) ◦F‖φ,κX
≤ ‖ω‖φ,κY

for any cocycle ω
on Y . This shows that F ∗ maps Zφ,κY

(Y ) on Zφ,κX
(X). Moreover, by (3.8) and Jensen’s

inequality again, one checks that ‖(u ∗ κ) ◦ F‖φ . ‖u‖φ for any measurable function
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u : Y → R. Since D ((u ∗ κ) ◦ F ) = ((Du) ∗ κ) ◦ F , we see that F ∗ induces a continuous

map from Lφ
κY
H1(Y ) to Lφ

κX
H1(X). Since quasi-isometries at bounded distance induce

the same maps in cohomology, this shows that F ∗ induces an isomorphism. �

3.3. Comparision between the De Rham and the simplicial Orlicz cohomologies.

In this section we identify the De Rahm cohomology with the coarse cohomology for a
simply connected complete Riemannian manifold M with Ricci curvature bounded from
below and positive injectivity radius. We denote by dx the volume element of M and notice
that M satisfies conditions (3.3). Also, M is quasi-isometric to a geometric simplicial graph
XM , see [Kan85].

Let Z∞
φ (M) be the space of closed smooth differential 1-forms in M . Equip it with the

Luxembourg norm: for ω ∈ Z∞(M),

‖ω‖φ = inf

{

α > 0 :

∫

M
φ

( |ωx|
α

)

dx ≤ 1

}

∈ [0,+∞].

Here, for x ∈ M , |ωx| is the operator norm of the linear map ωx : TxM → R. Denote
Z∞
φ (M) := {ω ∈ Z∞(M) : ‖ω‖φ < ∞}. Its completion Zφ(M) is the space of measurable

φ-integrable 1-forms on M which have zero weak exterior derivative.

The exterior derivative d : C∞
φ (M) → Z∞

φ (M) is a bounded operator when we consider

the norm ‖u‖φ + ‖du‖φ in the space of smooth functions. Let the operator d to be defined
in the completion of C∞

φ (M); that is, the space of φ-integrable functions on M which have
φ-integrable weak derivative. We define the Orlicz-De Rham first cohomology group of M
as the quotient normed space LφH1(M) := Zφ(M)/Im d. By integration, we can show
that

LφH1(M) ≃
{

u ∈ L1
loc(M) : ‖du‖φ <∞

}

/
{

u ∈ Lφ(M) : ‖du‖φ <∞
}

⊕ R.

The next lemma is a minor generalization of [Pan89a, Lemma 1. 12].

Lemma 3.5. For any 0 < r < inj(M), there exist a kernel κr on M and a constant Cr

such that for any u ∈ L1
loc(M) with ‖du‖φ <∞, the following inequality holds

‖Du‖φ,κr
≤ Cr‖du‖φ.

The constant Cr depends only on r and φ.

Proof. For a point x ∈M , let (v, t) ∈ T 1
xM × (0, r], y = exp(tv), be the polar coordinates

with origin x. Let π : T 1M → M be the canonical projection. We denote by ̺(x, y) the
volume element in that coordinates, so ̺(x, y)−1dy = dtdv. Notice that ̺(x, y) = ̺(y, x)
a.e., see [Pan89a, Lemma 1. 12]. Let also ϕs be the geodesic flow.

By the assumptions on u, there exists a sequence of smooth functions un on M which

converges to u in Lφ
loc(M) and a.e., and such that dun converges to du in Lφ(M). For each

n ∈ N, x ∈M and v ∈ T 1M , we have

|un (π (ϕt(v)))− un(x)| ≤
∫ t

0
|dun (ϕs(v))| ds. (3.9)

Taking limit as n → ∞, u satisfies (3.9) a.e.. Note that by convexity, the function φ(t)/t
is increasing. For α > 0, Jensen’s inequality implies

φ

(

u (π (ϕt(v)))− u(x)

α

)

≤ 1

r

∫ t

0
φ

(

r |du (ϕs(v))|
α

)

ds,
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Integrating this inequality over T 1
xM × (0, r], we get

∫

B(x,r)
φ

(

u(y)− u(x)

α

)

̺(x, y)−1dy ≤
∫

T 1
xM

∫ r

0
φ

(

r|dπϕt(v)u|
α

)

dtdv, for a.e. x ∈M.

Integrating now over x ∈M , we obtain
∫

d(x,y)≤r
φ

(

u(y)− u(x)

α

)

̺(x, y)−1dxdy ≤ Vol(Sn−1)r

∫

M
φ

(

r|dxu|
α

)

dx.

Letting κr(x, y) = min
{

1, ̺(x, y)−1
}

1{d(x,y)≤r}, we obtain ‖Du‖φ,κr
. ‖du‖φ, with a

multiplicative constant depending only on r and φ. �

In the statement of the next proposition, we denote κy :M → R, with y ∈M , the function
κy(x) = κ(x, y), where κ is a kernel on M . The next proposition is a generalization to the
general Orlicz case of [Pan89a, Prop. 1. 13].

Proposition 3.6. Let M be a simply connected complete Riemannian manifold with Ricci
curvature bounded from below and positive injectivity radius. Let κ be a smooth kernel on
M satisfying in addition that

C = ‖dκ‖∞ <∞ and |dxκz| ≥ δ > 0 if d(x, z) ≤ εκ.

Then there exists a kernel κ̃ on M , depending only on κ, such that the map u 7→ u ∗ κ
induces an isomorphism between Lφ

κ̃H
1(M) and LφH1(M). In particular, the Orlicz-De

Rham cohomology of M is isomorphic to the simplicial cohomology ℓφH1(XM ).

Proof. Consider the kernel κ̃ on M given by

κ̃(z, z′) :=
1

Iz

∫

M
|dxκz|κ(x, z′)dx, where Iz =

∫

M
|dxκz|dx.

Let a = δv(εκ), and b = CV (R). Notice that a ≤ Iz ≤ b, and that
∫

M2

|dxκz|κ(x, z′)dzdz′ =
∫

M
|dxκz|dz ∈ [a, b] .

Let u ∈ L1
loc(M) with ‖Du‖φ,κ̃ < ∞. Consider the cocycle ω = (Du) ∗ κ = D(u ∗ κ). For

any y ∈ M , the smooth function u ∗ κ satisfies d(u ∗ κ) = dωy, where ωy(x) = ω(x, y).
Then

|dx(u ∗ κ)| ≤
∫

M2

∣

∣u(z)− u(z′)
∣

∣ |dxκz|κ(x, z′)dzdz′, for all x ∈M.

By Jensen’s inequality, for any α > 0, we get
∫

M
φ

( |dx(u ∗ κ)|
α

)

dx ≤ b

a

∫

M2

φ

(

b|u(z)− u(z′)|
α

)

κ̃(z, z′)dzdz′.

That is, ‖d(u ∗κ)‖φ . ‖Du‖φ,κ̃, where the comparison constant depends only on κ, φ, and
the geometric data of M .

Consider now the bounded operator
{

u ∈ L1
loc(M) : ‖Du‖φ,κ̃ <∞

}

→
{

u ∈ L1
loc(M) : ‖du‖φ <∞

}

, u 7→ u ∗ κ

If u ∈ Lφ(M), then ‖Du‖φ,κ̃ <∞, and therefore ‖d(u∗κ)‖φ . ‖Du‖φ,κ̃ <∞. This implies

that T : Lφ
κ̃H

1(M) → LφH1(M), [u] 7→ [u ∗ κ] is a well defined bounded operator.
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We show now that this map is an isomorphism. Let u ∈ L1
loc(M) be such that ‖du‖φ <∞.

By Lemma 3.5, we have ‖Du‖φ,κ̃ <∞. Moreover, since

u ∗ κ(x)− u(x) =

∫

M
(u(y)− u(x))κ(x, y)dy, (3.10)

by Jensen’s inequality we get ‖u ∗ κ− u‖φ . ‖Du‖φ,κ̃. Then,

‖u ∗ κ− u‖φ + ‖d(u ∗ κ− u)‖φ . ‖Du‖φ,κ̃ + ‖du‖φ <∞.

That is, [u ∗ κ] = [u], and in particular, T is surjective.

Suppose now that u ∈ L1
loc(M), ‖Du‖φ,κ̃ < ∞, and [u ∗ κ] = 0 in LφH1(M). Since we

also have ‖Du‖φ,κ <∞, we can apply (3.10) and conclude that u ∗ κ− u ∈ Lφ(M). Then,

u ∈ Lφ(M) and [u] = 0 in Lφ
κ̃(M). This shows that T is an isomorphism. �

Remark. Note that the proof of the previous proposition also shows that in each coho-
mology class there is a smooth function: in fact, since κ is a smooth kernel the convolution
u ∗ κ is a smooth function and [u ∗ κ] = [u] in LφH1(M).

4. Radial limits and Orlicz-Besov spaces

In this section we prove Theorem 1.2. In the sequel, we assume that X is a uniformly
contractible, Gromov hyperbolic, quasi-starlike simplicial complex with bounded geometry.
We assume also that ∂X admits a visual metric ̺w of visual parameter e, where w ∈ X
is a base point, which is Ahlfors regular of dimension Q > 0. Recall that H denotes the
Q-dimensional Hausdorff measure of ̺w.

Remark. The contractibility assumption is not a restriction in the hyperbolic case. In-
deed, a well known theorem of E. Rips [BH99, Section 3.23], assures that there is always

a uniformly contractible Rips complex X̃ of X. The inclusion map of X into X̃ is a
quasi-isometry, and X̃0 = X0. In particular, by Theorem 3.1, the space ℓφH1(X̃) does not

depend on the particular choice of X̃ up to isomorphism of topological vector spaces.

Since X is contractible, the differential operator δ0 induces an isomorphism

ℓφH1(X) ≃
{

f : X0 → R : δ0f ∈ ℓφ(X1)
}

/(ℓφ(X0) + R),

where R denotes the constant functions on X0. Here, the space on the right is equipped
with the topology induced by ‖δ0f‖φ. In this section we will write d instead of δ0.

4.1. Spherical coordinates and radial shift. Let Rw be the compact space of geodesic
rays starting at w, and let πw : Rw → ∂X be the projection πw(θ) = limr→+∞ θ(r).
Consider θ : ∂X → Rw, ξ 7→ θξ, a measurable section of πw. For r ≥ 1, θξ[r] denotes the
edge of θξ at distance r − 1 from w.

We use |x| for the distance |x − w|. For r ∈ N, let Σr = {|x| = r}, and Ar be the set of
edges of X with one extremity in the sphere Σr−1 and the other one in Σr. If σ ∈ Ar, we
denote by σ+ (resp. σ−) the extremity of σ in Σr (resp. Σr−1).

Define the “volume element” by v := eQ, and let µv be the discrete measure on N assigning
the mass vr at r ∈ N. In the product space ∂X × N, we consider the product measure
H ⊗ µv. When a φ-norm is computed in this product space, it will be understood that
it is with respect to this measure. By the spherical coordinates on X, we mean the map
∂X × N → X1 given by (ξ, r) 7→ θξ[r].

Consider the radial shift map S : ∂X × N → ∂X × N given by S(ξ, r) = (ξ, r + 1). If
G : ∂X × N → R is any function, we write S∗G for the function G ◦ S.
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Lemma 4.1. Let φ be a doubling Young function with doubling constant K. The radial
shift defines a bounded operator S∗ : Lφ(∂X × N) → Lφ(∂X × N) with ‖S∗‖ ≤ v−1/K.

Proof. By Lemma 2.2, we have xKφ(y) ≤ φ(xy) for any x ∈ [0, 1]. Let G ∈ Lφ(∂X × N)
and take α > 0. Then

∫

∂X

∞
∑

r=1

φ

(

S∗G(ξ, r)

α

)

vrdH(ξ) =

∫

∂X

∞
∑

r=2

1

v
φ

(

G(ξ, r)

α

)

vrdH(ξ)

≤
∫

∂X

∞
∑

r=1

φ

(

G(ξ, r)

v1/Kα

)

vrdH(ξ).

Then, for α = v−1/K‖G‖φ, the last integral is equal to one. This proves the lemma. �

An immediate consequence of Lemma 4.1 is that the operator

T :=

∞
∑

k=0

(S∗)k (4.1)

is bounded. Its norm is bounded by a uniform constant depending only on K and v.

4.2. The radial limit. Let f : X0 → R be such that df ∈ ℓφ(X1). For ξ ∈ ∂X, we set

f∞(ξ) = lim
r→∞

f(θξ(r)), (4.2)

if the limit exists. To make the notation simpler, we write ∆ξ,r = df(θξ[r]), r ∈ N. Define
F : ∂X × N → R and DF : ∂X × N → R to be the functions given by

F (ξ, r) =
∑

k≥r

∆ξ,k and DF (ξ, r) = ∆ξ,r.

Our goal is to show that F is well defined. We first need some notation.

For x ∈ X and R > 0, define the shadow

0w(x,R) := {ξ ∈ ∂X : ∃ θ ∈ Rw, asymptotic to ξ, with θ ∩BX(x,R) 6= ∅} .
For R big enough, there is a constant CR ≥ 1, such that for any x ∈ X, there exists ξ ∈ ∂X
with

B
(

ξ,C−1
R e−|x|

)

⊂ 0w(x,R) ⊂ B
(

ξ,CRe
−|x|
)

.

See for example [Coo93]. We fix such a big enough R and we write 0(x) instead of 0w(x,R).

Notice that H (0(x)) ≍ v−|x|.

Lemma 4.2. Let f : X0 → R be any function. Then, ‖DF‖φ . ‖df‖φ. In particular, if

df ∈ ℓφ(X1), then DF ∈ Lφ(∂X × N).

Proof. We first prove that there exists a constant C ≥ 1, such that for any function
f : X0 → R and any α > 0, we have

∫

∂X

∞
∑

r=1

φ

(

∆ξ,r

α

)

vrdH(ξ) ≤ C

∑

σ∈X1

φ

(

df(σ)

α

)

. (4.3)

For a fixed edge σ ∈ Ar, the set of points ξ ∈ ∂X such that θξ[r] = σ, is contained in the
shadow 0(σ+). Then, there is a uniform constant C such that H (ξ : θξ[r] = σ) ≤ Cv−r.
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Applying Fubini’s theorem, this implies that
∫

∂X

∞
∑

r=1

φ

(

∆ξ,r

α

)

vrdH(ξ) =
∞
∑

r=1

∑

σ∈Ar

∫

{ξ:θξ[r]=σ}
φ

(

df(σ)

α

)

vrdH(ξ)

≤ C

∞
∑

r=1

∑

σ∈Ar

φ

(

df(σ)

α

)

≤ C

∑

σ∈X1

φ

(

df(σ)

α

)

.

When ‖df‖φ <∞, it suffices to take α > 0 so that the sum on the right hand side of (4.3)
is less than or equal to C

−1. �

Notice that

F (ξ, r) =
∞
∑

k=r

∆ξ,k =
∞
∑

k=0

∆ξ,r+k =

(

∞
∑

k=0

(S∗)kDF

)

(ξ, r),

that is, F = T (DF ). As an immediate consequence, an inequality “à la Strichartz” holds
(compare with [BP03, Lemma 3.3] and [Str83]): there exists a constant C := ‖T‖, depend-
ing only on φ and v, such that for any f : X0 → R with df ∈ ℓφ(X1), we have

‖F‖φ ≤ C‖DF‖φ. (4.4)

This will be a key point later in the proof of Theorem 1.2.

We summarize the consequences of inequality (4.4) in the next corollary. For each r ≥ 1,
define the function fr : ∂X → R by setting fr(ξ) = f(θξ(r − 1)). Note that the image of
fr is a finite set.

Corollary 4.3 (The radial limit). Let f : X0 → R be a function such that df ∈ ℓφ(X1).
Then the radial limit f∞(ξ) exists H-almost everywhere. Moreover:

(1) the function f∞ ∈ Lφ(∂X,H),
(2) fr → f∞ in Lφ(∂X) when r → ∞, and ‖f∞ − f(w)‖φ . ‖df‖φ.

Proof. First, note that F (·, r) = f∞ − fr. Then, for any α > 0, we have

∞
∑

r=1

[∫

∂X
φ

(

f∞(ξ)− fr(ξ)

α

)

dH(ξ)

]

vr =

∫

∂X

∞
∑

r=1

φ

(

F (ξ, r)

α

)

vrdH(ξ).

By letting α = ‖F‖φ and noticing that f1 ≡ f(w), we obtain

‖f∞ − f(w)‖φ ≤ ‖F‖φ . ‖df‖φ.
Furthermore, taking α = 1 in the above equality, we see that

∫

∂X
φ (f∞(ξ)− fr(ξ)) dH(ξ) → 0, when r → ∞.

Since φ is doubling, ‖f∞ − fr‖φ → 0 when r → ∞, and the limit is also in Lφ(∂X). �

Remark. The existence of the radial limit can be proved under the slightly weaker as-
sumption of φ being of polynomial decay. The cost is that the limit is in L1(∂X,H). On
the other hand, the radial limit does not necessarily exists when φ decays very fast (like the
function φ(t) = tp exp(−1/t), p ≥ 1). The constraints for a function to be φ-integrable in
that case are very weak near infinity. Nevertheless, this kind of functions could be useful in
situations were the boundary is not well defined, for instance, in absence of hyperbolicity,
or when the space has infinite growth (v = ∞).
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4.3. Proof of Theorem 1.2. Theorem 4.3 ensures the existence of a continuous map

T :
{

f : X0 → R : df ∈ ℓφ(X1)
}

/R → Lφ(∂X,H)/R, f 7→ f∞.

In this section we determine the image and the kernel of T .

Proposition 4.4 (The kernel of T ). The kernel of T is precisely (ℓφ(X0) ⊕ R)/R. In
particular, the ℓφ-cohomology is reduced in degree one.

The proof follows from the next lemma which compares the φ-norms of f and F .

Lemma 4.5. Let φ be any Young function, and let f : X0 → R be such that df ∈ ℓφ(X1)
and f∞ = 0 H-almost everywhere. Then, f ∈ ℓφ(X0) if and only if F ∈ Lφ(∂X × N).

Proof of Proposition 4.4. It is clear that if f ∈ ℓφ(X0), then f∞ ≡ 0. Suppose that f∞ = 0
H-a.e. and that df ∈ ℓφ(X1). Then, F ∈ Lφ(∂X ×N) by Lemma 4.2 and inequality (4.4).
Therefore, f ∈ ℓφ(X0) by Lemma 4.5. �

We will need for the proof of Lemma 4.5, the fact that the shadows {0(x) : x ∈ Σr} form
a family of coverings of ∂X with the following nice properties:

(1) There is a small constant c > 0 such that for each r ∈ N, the shadow 0(x), with
x ∈ Σr, contains a ball B(x) of radius cv−r, and such that for each r ∈ N, the balls
{B(x) : x ∈ Σr} are pairwise disjoint.

(2) There is a constant D such that if ξ ∈ 0(x), with x ∈ Σr, then |θξ(r)− x| ≤ D.
(3) For any ξ ∈ ∂X and r ∈ N, the number

mξ,r = # {x ∈ Σr : ξ ∈ 0(x)} ≤ M, (4.5)

for some uniform constant M.

Proof of Lemma 4.5. Note that since f∞ = 0 almost everywhere, then F (ξ, r) = fr(ξ)
almost everywhere. Denote by V (ξ, r) the ball of radius D in X centered at θξ(r). By the
convexity of φ, for any α > 0, we have

φ

(

f(x)− fr(ξ)

Dα

)

≤
∑

σ⊂V (ξ,r)

φ

(

df(σ)

α

)

for all x ∈ Σr, ξ ∈ 0(x), r ∈ N. (4.6)

Define F̃ : ∂X ×N → R as the average F̃ (ξ, r) = 1
mξ,r

∑

x∈Σr
f(x)10(x)(ξ). The convexity

of φ again and (4.6) imply that

φ

(

F̃ (ξ, r)− F (ξ, r)

Dα

)

≤
∑

σ⊂V (ξ,r)

φ

(

df(σ)

α

)

, for any ξ ∈ ∂X, r ∈ N.

Note that if ξ ∈ 0(y) for y ∈ Σr, then V (ξ, r) ⊂ B(y, 2D). Integrating the last inequality
in 0(y) first, and then summing over y ∈ X0, we obtain

∞
∑

r=1

∫

∂X
φ

(

F̃ (ξ, r)− F (ξ, r)

Dα

)

vrdH(ξ) ≤
∞
∑

r=1

∑

y∈Σr

∫

0(y)
φ

(

F̃ (ξ, r)− F (ξ, r)

Dα

)

vrdH(ξ)

.

∞
∑

r=1

∑

y∈Σr

∑

σ∈B(y,2D)

φ

(

df(σ)

α

)

.
∑

σ∈X1

φ

(

df(σ)

α

)

,
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where the multiplicative constants depend only on the Ahlfors regularity of H, the degree
of X, and φ. Therefore, ‖F̃ − F‖φ . ‖df‖φ < +∞. That is, F ∈ Lφ(∂X ×N) if, and only

if, F̃ is.

We end the proof by comparing the norms of f and F̃ . Recall from the definition of the
constant M in (4.5), that we have mξ,r ≤ M. Then, if x ∈ Σr, we have

φ

(

f(x)

Mα

)

.

∫

B(x)
φ

(

F̃ (ξ, r)

α

)

vrdH(ξ)

≤
∫

0(x)
φ

(

F̃ (ξ, r)

α

)

vrdH(ξ) .
∑

y∈B(x,2D)

φ

(

f(y)

α

)

.

Summing over x ∈ Σr first, and then over r ∈ N, the same arguments as before show that
f ∈ ℓφ(X0) if, and only if, F̃ ∈ Lφ(∂X × N). This finishes the proof. �

We now describe the image of T . In the proof of the next proposition, we use the following
estimate for the density of the measure λ in the space of pairs ∂2X (see the Introduction):

1

ρ(ξ, ζ)2Q
≍
∑

σ∈G1

10(σ−)(ξ)10(σ+)(ζ)

H (0(σ−))H (0(σ+))
(4.7)

See [BP03, Lemma 3.5] for the proof.

Proposition 4.6 (The image of T ). The image of T is precisely the Orlicz-Besov space
Bφ(∂X, ̺w)/R, and T is continuous in the Orlicz-Besov norm.

Proof. Let u be a measurable function on ∂X with 〈u〉φ < ∞. Consider the function
f : X0 → R given by the averages of u over the shadows:

f(x) := −
∫

0(x)
u(ξ)dH(ξ).

By Lebesgue’s differentiation theorem, the radial limit f∞ exists H-almost everywhere and
is equal to u. We must show that df ∈ ℓφ(X1). Let α > 0, by Jensen’s inequality

φ

(

df(σ)

α

)

= φ

(

−
∫

0(σ−)×0(σ+)

u(ξ)− u(ζ)

α
dH(ξ)dH(ζ)

)

≤ −
∫

0(σ−)×0(σ+)
φ

(

u(ξ)− u(ζ)

α

)

dH(ξ)dH(ζ).

Summing over σ ∈ X1, and using the inequalities (4.7), we obtain

∑

σ∈X1

φ

(

df(σ)

α

)

.

∫

∂2X
φ

(

u(ξ)− u(ζ)

α

)

dλ(ξ, ζ).

This shows that df ∈ ℓφ(X1) and ‖df‖φ . 〈u〉φ.

Conversely, let f : X0 → R be such that df ∈ ℓφ(X1). Let α > 0 and σ ∈ X1. Then, by
the convexity of φ, we have

−
∫

0(σ−)×0(σ+)
φ

(

f∞(ξ)− f∞(ζ)

3α

)

dH(ξ)dH(ζ) ≤

−
∫

0(σ−)
φ

(

F (ξ, |σ−|)
α

)

dH(ξ) + −
∫

0(σ+)
φ

(

F (ζ, |σ+|)
α

)

dH(ζ) + φ

(

df(σ)

α

)

.
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In order to bound from above the right hand side of the last inequality, notice that if M
denotes the constant defined in (4.5), then for any r ∈ N, we have

∑

x∈Σr

10(x) ≤ M

(

1 +
∑

x∈Σr

1B(x)

)

.

Thus,

∞
∑

r=1

∑

x∈Σr

∫

0(x)
φ

(

F (ξ, r)

α

)

vrdH(ξ) ≤ M

(

1 +
∞
∑

r=1

∑

x∈Σr

∫

B(x)
φ

(

F (ξ, r)

α

)

vrdH(ξ)

)

≤ M

(

1 +

∞
∑

r=1

∫

∂X
φ

(

F (ξ, r)

α

)

vrdH(ξ)

)

.

By Lemma 4.2 and inequality (4.4), the know that ‖F‖φ . ‖df‖φ. Then 〈f∞〉φ . ‖df‖φ.
This finishes the proof. �

5. Localization

In this section we prove Theorem 1.3. We will always assume that X is a uniformly con-
tractible, quasi-starlike, Gromov hyperbolic simplicial complex, with bounded geometry,
and that φ is a doubling Young function.

5.1. Horospherical coordinates and hororadial shift. We first recall the definition
and properties of the parabolic visual metrics defined on the punctured boundary ∂ξX :=
∂X \ {ξ}. For a geodesic ray r : (−∞, 0] → X, denote the horofunction (or Busemann
function) at r by br : X → R, and recall thar the parabolic Gromov product from r is
given by

(x, y)r :=
1

2
(br(x) + br(y)− d(x, y)) .

Denote by ξ = r(−∞) ∈ ∂X. This product can be extended to ∂ξX in the same way as

the usual Gromov product, and the function ̺r(ζ, η) = e−(ζ,η)r is a quasi-metric on ∂ξX.
Without loss of generality, we assume that ̺r is a distance. We call it a parabolic visual
metric. It is comparable on compact subsets of ∂ξX to the usual global visual metric.

This metric is well adapted to the study Isom(X, ξ), the group of isometries of X which
fix the point ξ. More precisely, suppose that F ∈ Isom(X, ξ), and define the quantity

Λr(F ) = e−br(F (w)). Then,

̺r (F (ζ), F (η)) ≍ Λr(F )̺r(ζ, η), ∀ ζ, η ∈ ∂ξX. (5.1)

That is, F is a quasi-similarity in the metric ̺r.

We define the shadow from ξ of a ball in X as

0ξ(x,R) := {ζ ∈ ∂ξX : ∃ θ = (ξ, ζ), θ ∩B(x,R) 6= ∅} ,
where (ξ, ζ) denotes a geodesic from ξ to ζ. If the radius R is fixed large enough, there is
a uniform constant C ≥ 1 such that, for any x ∈ X, there is a point ζ ∈ ∂ξX with

B
(

ζ,C−1e−br(x)
)

⊂ 0ξ(x,R) ⊂ B
(

ζ,Ce−br(x)
)

. (5.2)

From now on, we fix such an R and we write 0ξ(x) instead of 0ξ(x,R).

We remark that the (∂X, ̺) is Q-regular if, and only if, (∂ξX, ̺r) is Q-regular for some
(and therefore for any) ξ ∈ ∂X, see [Wil08, Section 6]. We assume Q-regularity and
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denote by Hr the Q-dimensional Hausdorff measure of ̺r. It follows from (5.1), that if
F ∈ Isom(X, ξ), then F ∗Hr is absolutely continuous with respect to Hr, and

dF ∗Hr

dHr
(ζ) ≍ Λr(F)

Q.

This implies that the measure

dλr(ζ, η) =
dHr ⊗ dHr(ζ, η)

̺r(ζ, η)2Q
,

is almost preserved by Isom(X, ξ). In particular, the Orlicz-Besov norm of a measurable
function u : ∂ξX → R,

〈u〉φ,ξ := inf

{

α > 0 :

∫

∂2
ξ
X
φ

(

u(ζ)− u(η)

α

)

dλr(ζ, η) ≤ 1

}

, (5.3)

is almost preserved by such isometries. This fact will be important later in Section 6.

By a horosphere centred at ξ we mean a level set Hc = {br(x) = c} of the horofunction br.
Notice that H0 is the horosphere passing through r(0). Since

br(x) →
x→ξ

−∞, and br(x) →
x→ζ

+∞, ∀ζ ∈ ∂ξX,

Hc intersects any geodesic from ξ to ζ 6= ξ.

Denote by Gξ the set of geodesics θ : R → X with θ(−∞) = ξ, and πξ : Gξ → ∂ξX the
projection πξ(θ) = θ(+∞). As in Section 4, we denote by θ : ∂ξX → Gξ a measurable
section of πξ.

Let θ be a geodesic in Gξ. Since br is 1-Lipschitz, there is at least one vertex of X in the
intersection θ ∩ {c2 ≤ br ≤ c1} if c1 − c2 ≥ 1. We parametrize each geodesic θζ in such
a way that θζ(0) is a vertex of X in the set {−1/2 ≤ br ≤ 1/2}. Notice that there is a
uniform constant C ≥ 1 such that for any ζ ∈ ∂ξX,

|br (θζ(s))− s| ≤ C+
1

2
. (5.4)

For ζ ∈ ∂ξX and h ∈ Z, we denote by θζ [h] := σ the edge of θζ with extremities

σ− = θζ(h− 1) and σ+ = θζ(h).

As in Section 4, we will also write v = eQ, and we define µv to be the discrete measure in
Z assigning the mass vh at h ∈ Z. In the product space ∂ξX × Z, we will always consider
the product measure Hr ⊗ µv. By the horospherical coordinates on X we mean the map
∂ξX × Z → X given by (ζ, h) 7→ θξ[h].

The hororadial shift S : ∂ξX ×Z → ∂ξX ×Z, (ζ, h) 7→ (ζ, h+1), induces a contraction S∗

on Lφ(∂ξX × Z). The same proof as in Lemma 4.1 holds here. Therefore, the operator T
defined as in (4.1), is bounded.

5.2. Local ℓφ-cohomology. We first prove that ℓφlocH
1(Xk, ξ) is a Fréchet space, we refer

to Definition 1.2 for the definition. To this end, we start by showing that there are enough
quasi-isometric embeddings on X with uniform constants.

Lemma 5.1. There exist a constant C ≥ 1, which depends only on the geometric data of
X, and a sequence {Yn}n∈N of hyperbolic geometric complexes, such that

(1) each Yn is a subcomplex of X with ∂Yn ⊂ ∂ξX,
(2) the inclusion map of Yn into X is a (1,C)-quasi-isometric embedding.
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Moreover, the image of any quasi-isometric embedding ι ∈ Y(X, ξ) is contained in Yn for
n large enough.

Proof. Denote by δhyp and Cst the hyperbolicity and quasi-starlike constants of X. Fix a
geodesic ray r : (−∞, 0] → X with w = r(0) and ξ = r(−∞). For a compact set K ⊂ ∂ξX,
we define the cone with base K and height l ∈ Z ∪ {−∞} as

con(K, l) := {x ∈ X : br(x) ≥ l, and ∃ a geodesic (ξ, ζ) ∋ x, with ζ ∈ K} . (5.5)

By hyperbolicity of X, the infinite cone con(K,−∞) is C0-quasiconvex, where C0 is a
constant depending only on δhyp. Since all the geodesics defining the cone are asymptotic
to ξ, if l := lK is negative enough, the cone con(K, l) is C1-quasiconvex for a uniform
constant C1. Consider the subcomplex YK of X formed by all the simplices of X which
intersect the C2-neighborhood of con(K, l), where C2 = max{C1,Cst}.
We equip YK with the length metric obtained by restricting the length structure of X.
From the quasiconvexity of con(K, l), one checks that the inclusion ι : YK → X is a (1,C)-
quasi-isometric embedding, where C is a constant depending only on C2. In particular, YK
is Gromov hyperbolic, with hyperbolicity constant equal to 3C + δhyp. By construction,
ι∞(∂YK) = K.

Consider the parabolic visual metric ̺r, and take a point ζ ∈ ∂ξX. For each n ∈ N,
consider the subcomplex Yn := YKn associated to the closed ball Kn = Bρr [ζ, n] in the
above construction. They form an increasing sequence of subcomplexes whose union is the
whole X. One checks that they verify the desired properties (1) and (2). �

It is clear that ℓφloc(Xk, ξ) is a vector space. Moreover, by Lemma 5.1, it is a Fréchet

space. In fact, {‖ · ‖φ,Yn
: n ∈ N} is a defining family of seminorms for ℓφloc(Xk, ξ), and a

translation invariant metric can be defined as usual by

Dφ,ξ(τ1, τ2) =
∑

n∈N

1

2n
max

{

1, ‖τ1 − τ2‖φ,Yn,l

}

.

Let ι : Y → X be a quasi-isometric embedding in Y(X, ξ), and denote by δk and δk,Y the
coboundary operators of X and Y respectively. Since ι∗ ◦δk = δk,Y ◦ ι∗, and since the norm

of δk,Y : ℓφ(Yk) → ℓφ(Yk+1) is bounded from above by a constant depending only on the
geometric data of Y , we see that

δk : ℓφloc(Xk, ξ) → ℓφloc(Xk+1, ξ)

is a Lipschitz continuous operator in the Fréchet distance Dφ,ξ.

We now focus on the proof of Theorem 1.3. First, we observe that

ℓφlocH
1(X, ξ) ≃

{

f : X0 → R : df ∈ ℓφloc(X1, ξ)
}

/

(

ℓφloc(X0, ξ)⊕ R

)

.

The approach follows exactly the same arguments as in Section 4, but in this case, we work
with the horospherical coordinates on X.

If f : X0 → R is any function and ζ ∈ ∂ξX, we set ∆ζ,h = df(θζ [h]), h ∈ Z. Furthermore,
let F : ∂ξX × Z → R and DF : ∂ξX × Z → R be the functions defined by

F (ζ, h) =
∑

k≥h

∆ζ,k and DF (ζ, h) = ∆ζ,h.
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We denote by ln ∈ Z the height of the cone defining Yn in Lemma 5.1. We write Zn =
{k ∈ Z : k ≥ ln}. Then, as in the proof of (4.4), we have

‖F‖φ,Kn×Zn
. ‖DF‖φ,Kn×Zn

, for all n ∈ N.

Note that for a fixed edge σ ∈ X1 and h ∈ Z, the set of points ζ ∈ ∂ξX such that θζ [h] = σ
is contained in the shadow 0ξ(σ+). In particular, from (5.4) and (5.2), we have

Hr (ξ : θξ[h] = σ) . v−h.

It follows, exactly as for (4.2), that

‖DF‖φ,Kn×Zn
. ‖df‖φ,Yn

, for all n ∈ N.

Therefore, if f : X0 → R is such that df ∈ ℓφloc(X1, ξ), then the hororadial limit f∞ exists

almost everywhere, and f∞ ∈ Lφ
loc (∂ξX,Hr). Moreover, if we denote by fh : ∂ξX → R the

function F (·, h), then fh → f∞ in Lφ
loc(∂ξX,Hr) when h→ +∞.

Define the trace map from ξ by

Tξ :
{

f : X0 → R : df ∈ ℓφloc(X1, ξ)
}

/R → Lφ
loc (∂ξX,Hr) /R, f 7→ f∞.

We can determine the kernel and the image of Tξ as we did for T .

Proof of Theorem 1.3. We explain how to adapt the proofs of Propositions 4.4 and 4.6 given
in Section 4. First, notice that for each subcomplex Yn, the intersection Yn ∩ {br ≤ 0}
has finite diameter. In particular, in order to show that a function f : X0 → R is locally
φ-integrable, it is enough to bound from above the norm ‖f‖φ,Yn∩{br≥0} for all n ∈ N.
Since the sequence of coverings

{0ξ(x) : x ∈ X0 ∩ {h ≤ br ≤ h+ 1}} , h ∈ N,

of ∂ξX, enjoy the same properties (1), (2), and (3), enumerated before the proof of Lemma
4.5 for the coverings {0(x) : x ∈ Σr}r∈N, the same proof as in Lemma 4.5 shows that the

kernel of Tξ is precisely (ℓφloc(X0)⊕ R)/R.

An analogous formula to (4.7) holds for the hororadial shadows. More precisely, the density
of the measure λr verifies

1

̺r(ζ, η)2Q
≍
∑

σ∈X1

10r(σ−)(ζ)10r(σ+)(η)

Hr (0r(σ−))Hr (0r(σ+))
, for ζ, η ∈ ∂ξX. (5.6)

The proof is a minor adaptation of (4.7). Therefore, the same arguments as in Proposition

4.6 show that the image of Tξ is the local Orlicz-Besov space Bφ
loc(∂ξX, ̺r)/R. �

Remark. Consider the continuous local ℓφ-cohomology

Aφ
ξ = Aφ

loc (∂ξX, ̺r) :=
{

u ∈ Bφ
loc (∂ξX, ̺) : u is continuous

}

.

The space Aφ
loc (∂ξX, ̺r) is a unital commutative Fréchet algebra when equipped with the

countable family of multiplicative seminorms

pn(u) := ‖u‖∞,Kn + 〈u〉φ,Kn
, n ∈ N.

Its spectrum Sp
(

Aφ
ξ

)

is a Hausdorff hemicompact topological space invariant by Fréchet

algebra isomorphisms. We refer to [Gol90] for background on Fréchet algebras. It is
homeomorphic to the quotient ∂ξX/ ∼φ, where the local ℓφ-cohomology classes are defined

by setting ζ ∼φ ζ
′ ∈ ∂ξ if, and only if, u(ζ) = u(ζ ′) for any function u ∈ Aφ

ξ . These classes
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must be preserved, in particular, by the boundary homeomorphism of a self quasi-isometry
of X which fixes ξ.

The next lemma is relevant to Corollary 1.7.

Lemma 5.2. Let φ be a the doubling Young function such that

+∞
∑

j=0

φ(2−j)2jQ <∞.

Suppose that (∂X, ̺) is Q-regular and let ξ ∈ ∂X. Then Aφ
loc(∂ξX, ̺r) contains all Lipschitz

functions.

This is the case for φp,κ, the doubling Young defined in (1.5), whenever (p, κ) > (Q, 1).

Proof. Let u : ∂ξX → R be a L-Lipschitz function and let K ⊂ ∂ξX be a compact set.
Denote by δ = diamK, and for ζ ∈ K and j ∈ N, consider the sets Aj(ζ) defined as

B(ζ, 2−jδ) \B(ζ, 2−(j+1)δ). Then

+∞
∑

j=0

∫

Aj(ζ)

φ (u(η)− u(ζ))

̺r(η, ζ)2Q
dHr(η) ≤

+∞
∑

j=0

∫

Aj(ζ)

φ (L̺r(η, ζ))

̺r(η, ζ)2Q
dHr(η)

.

+∞
∑

j=0

φ(2−j)2jQ <∞.

Integrating over K we obtain the result. �

6. Quasi-isometries of Heintze groups

In this section we give the proofs of Theorems 1.1, 1.4, 1.5, and Corollaries 1.8 and 1.10.

6.1. Preliminaries and notation. Let Xα = N ⋊αR be a purely real Heintze group and
xα = T(e,0)Xα be its Lie algebra. The left translations are then given by

d(e,0)L(x,t) = (deLx ◦ Exp(−tα), 1) , (x, t) ∈ Xα.

We will identify the subgroup N ×{0} with N . Let B = {∂1, . . . , ∂n} be a basis of TeN on
which α assumes its Jordan canonical form, and denote by ∂t the tangent vector at s = 0
to the curve s 7→ (e, s).

Let us fix and describe a negatively curved metric on Xα. Given λ > 0, denote by αλ the
derivation λα. Notice that Xαλ

is always isomorphic to Xα. By [Hei74, Theorem 2], if gN
is a left invariant metric on N for which the symmetric part of α is positive definite and λ
is large enough, then

g(x,t) = τλ(t)
∗gN,x ⊕ dt2 (6.1)

defines a metric on Xαλ
of negative sectional curvature bounded from above by −1. By

[Hei74, Theorem 3], if b1, . . . , bn are well chosen positive numbers, then the symmetric part
of α for the left invariant metric on N which makes {b1∂1, . . . , bn∂n} an orthonormal basis,
is positive definite. Here the bi depend only on the dimension n and the eigenvalues of α.
Therefore, Xαλ

is a CAT(−1) space when equipped with (6.1).

The vertical lines γx : t 7→ (x, t) are unit-speed geodesics in Xαλ
, and define the boundary

point denoted ∞. The boundary at infinity of Xαλ
is a topological n-sphere, which we

identify with the one-point compactification N ∪ {∞}. The orbits of N , the sets N × {t},
correspond to the horospheres centered at ∞. We denote the Riemannian norm and
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distance induced in N ×{t} by ‖ · ‖t and dt respectively. The metric on Xαλ
is then given

by

‖(v, s)‖2(x,t) = ‖Exp(tαλ) ◦ dxLx−1(v)‖20 + s2, (v, s) ∈ T(x,t)Xαλ
. (6.2)

The volume element is dV (x, t) = eλµtdVN (x)dt, where dVN is the volume element of the
corresponding left-invariant metric on N , and µ := tr(α) is the trace of α.

In N = ∂∞Xαλ
, the parabolic visual metric is comparable to the function defined as

̺∞(x, y) ≍ e−t, where t = sup {s ∈ R : ds (γx(s), γy(s)) ≤ 1} , x, y ∈ N. (6.3)

The assertion follows form the fact that both functions are invariant by left translations
in N , and admit the one-parameter group of contractions {τλ(t) : t ∈ R}, which contract
by the factor e−t. We refer to [HP97, Ham89] for more details. This also implies that the
parabolic boundary (N, ̺∞, dVN ) is Ahlfors regular of dimension λµ.

Recall that µ1 ≤ · · · ≤ µd are the distinct eigenvalues of α, and that α in the generalized
eigenspace Vi is a sum of ki Jordan blocks of sizes mij , for j = 1, . . . , ki. Write the vectors

of B as {∂ijk , (i, j, k) ∈ I}, where I is the set of triples

I := {(i, j, k) : i ∈ {1, . . . , d}, j ∈ {1, . . . , ki}, k ∈ {1, . . . ,mij}}
equipped with the lexicographic order.

6.2. The singular value decomposition of Exp(tJ). In this section we prove a lemma
about the asymptotic behaviour when t→ +∞ of the singular value decomposition of the
matrix M = Exp(tJ), where J is the standard nilpotent matrix of size m:

J = J(0,m) =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0















.

Since any two inner products on R
m are equivalent, for our purposes it suffices to consider

the standard one 〈·, ·〉, which makes the standard basis {ei}ni=1 orthonormal. The next
lemma provide us with the key estimates needed to compute the Lp,κ-cohomology of Xα.

Lemma 6.1. Let M = Exp(tJ) be as above. Let {v1, . . . , vm} be an orthonormal basis of
eigenvectors for M∗M . Denote λi the eigenvalue associated with vi, and suppose they are
ordered λ1 < λ2 < . . . < λm. Then the following properties are satisfied:

(1) For each i = 1, . . . ,m, λiλm−i+1 = 1. In particular, λm+1

2

= 1 if m is odd.

(2) For each i = 1, . . . ,m,

√

λi ∼
(m− i)!

(i− 1)!
t2i−m−1, when t→ +∞. (6.4)

(3) For each i = 1, . . . ,m, the λi-eigenspace Rvi of M∗M tends to Rei when t→ +∞.

Proof. To prove (1) note that M−1 is similar to M . More precisely, denote by R the
reflexion given by R(ei) = (−1)iei, then RMR = M−1. Therefore M−1 and M have the
same eigenvalues. This proves (1).
We now prove (2). Let S be the reflexion given by S(ei) = em−i+1. Then SMS =M∗, and
therefore, M∗M = (SM)2. This implies that M∗M and SM have the same eigenvectors,
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and that βi = ±
√
λi, i = 1, . . . ,m, are the eigenvalues of SM . Also note that SM is

symmetric.
Denote by Tk the trace of (SM)k, and let

p(x) = det(xI − SM) = xm + c1x
m−1 + ·+ cm−1x+ cm,

be the characteristic polynomial of SM . Using the Newton identities

c1 = −T1 and Tk + c1Tk−1 + · · ·+ ck−1T1 + kck = 0, k = 2, . . . ,m,

one shows by induction that

|ck| ∼
(k − 1)!(k − 2)! · · · 1

(m− k)!(m− k + 1)! · · · (m− 1)!
tk(m−k) when t→ +∞. (6.5)

On the other hand, by Vieta’s identities we have

ck = (−1)k
∑

1≤i1<···<ik≤m

βi1 · · ·βik ∼ (−1)kβm−k+1 · · ·βm−1βm,

which together with (6.5) gives (2).
Let us prove (3). Since SM is symmetric, we have that for each j = 1, . . . ,m, the eigen-
vector vj is orthogonal to the image of SM − βjI. Denote by

wi = SM(ei) =
m
∑

k=m−i+1

tk−m+i−1

(k −m+ i− 1)!
ek, for i = 1, . . . ,m.

Note that since RMR = M−1, it is enough to prove the assertion for j > (m+ 1)/2. Fix
such a j, so that |βj | → +∞ when t → +∞. In this case 1 < 2j −m ≤ m. The highest
degree of the coefficients of wi is i− 1, given by the coefficient in em. In particular,

ui =
wi − βjei
‖wi − βjei‖

→ ±ei when t→ +∞,

for i < 2j −m. Therefore, any limit point of vj is orthogonal to span(e1, . . . , e2j−m−1). In
particular, the limit points of vm are ±em.
We consider now the case when j ≤ m− 1 and i ∈ {2j−m, . . . , j − 1}. Let r = m− j− 1,
and define recursively

z
(0)
i = wi

z
(s)
i =

dis
t
z
(s−1)
i+1 − z

(s−1)
i , s = 1, . . . , r,

where dis is chosen so that zi(s) has zero coefficient in em−(s−1) (e.g. di1 = i). Then the
the coefficient of zi(r) in ek is zero for k = m−(r−1), . . . ,m. Moreover, the highest degree
of the coefficients of zi(r) is i− (r + 1), given by the coefficient in em−r.

The recursion defined above but starting at wi − βiei instead of wi produces a vector zi in
the image of SM − βiI, which in the case i− r < 2j −m verifies

zi
‖zi‖

→ ±ei, when t→ +∞.

This shows that the limit points of vj are orthogonal to ei for i ≤ 2j−m+ r = j− 1. This
finishes the proof of (3). �
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Let us apply the previous lemma in our setting. Consider the two inner products on TeN ,
〈·, ·〉 and 〈·, ·〉0, who make {∂k} and {bk∂k} orthonormal basis respectively. Note that
Exp(tαλ) has the diagonal block form

d
⊕

i=1

ki
⊕

j=1

etµiExp(λtJ(0,mij)).

If v is any vector in Vij = Span
(

∂ijk , k = 1, . . . ,mij

)

, then

‖Exp(tαλ)(v)‖0 ≍ eλtµi ‖Exp(λtJ(0,mij)(v)‖ .
Let {vij1 (t), . . . , v

ij
mij (t)} be an orthonormal basis (for 〈·, ·〉) of Vij formed by singular eigen-

vectors of Exp(λtJ(0,mij)), and denote by λij1 (t) < · · · < λijmij (t) its singular values. By
item (2) of Lemma 6.1, we have

√

λijk (t) ∼ c
ij
k t

2k−mij−1, when t→ +∞,

where c
ij
k = λ2k−mij−1(mij − k)!/(k − 1)!. In particular,

∥

∥

∥Exp(tαλ)
(

vijk (t)
)∥

∥

∥

0
≍ t2k−mij−1eλtµi , when t→ +∞. (6.6)

Moreover, by item (3) of Lemma 6.1, we can chose vijk (t) so that
∥

∥

∥v
ij
k (t)− ∂ijk

∥

∥

∥

0
→ 0, when t→ +∞.

In other words, the singular eigenvectors converge to the standard basis vectors of Vij .

6.3. The degree one Lp,κ-cohomology of Xα: main computations. Consider u a
real smooth function on Xαλ

. For each t ∈ R, denote by ut : N → R the function
ut(x) = u(x, t), and let

u∞(x) := lim
t→+∞

ut(x),

whenever this limit exists.

Let E ⊂ N be a measurable set and t0 ∈ R. As we proved in Section 5.1, the hororadial
shift

w ∈ Lp,κ (E × [t0,+∞)) 7→ Sk(w)(x, t) =

∫ k+1

k
w(x, t+ s)ds,

is a contraction in the φp,κ-norm, and its norm is bounded from above by e−kλµ/K, where
K is the doubling constant of φp,κ. The proof in this case follows from Jensen’s inequality.
Therefore, the operator

T (w)(x, t) =
∞
∑

k=0

Sk(w)(x, s) =

∫ +∞

0
w(x, t+ s)ds,

is bounded in the φp,κ-norm.

Suppose that du ∈ Lp,κ (E × [t0,+∞)). Under mild assumptions on E, for instance if E is
λµ-Ahlfors regular, the functions ut converge a.e. and in Lp,κ

loc (E, dVN ) to u∞. In particular,
u∞ ∈ L1

loc(E, dVN ) and du∞ is well defined in the sense of distributions. Moreover, the
operator T evaluated at the function ∂tu gives

T (∂tu)(x, t) = u∞(x)− ut(x).

Thus, we can write u∞ = v + u, where v ∈ Lp,κ (E × [t0,+∞)).
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For (i, j, k) ∈ I, we denote by Xij
k the left invariant vector field of N generated by the

basis vector ∂ijk , and by Y ij
k (t) the left invariant vector field of N generated by vijk (t).

Recall from the previous section that vijk (t) ∈ Vij is a singular eigenvector of Exp(tαλ),

and vijk (t) → ∂ijk when t→ +∞. When the pair (i, j) is clear from the context, we simply
write Xk, ∂k, Yk(t), vk(t), and m respectively. Recall that for i ∈ {1, . . . , d}, the i-critical
exponent is given by pi = µ/µi.

Lemma 6.2. Let (p, κ) ∈ I, and let E denotes either N or N \ {ξ} for some point ξ.
Consider u : Xαλ

→ R a smooth function such that du ∈ Lp,κ(K × [t,+∞)) for any

compact K ⊂ E and t ∈ R. Then, Xij
k (u∞) = 0 whenever

(p, κ) ≤
(

pi, 1 + pi(mij + 1− 2k)
)

. (6.7)

Proof. Let u : Xαλ
→ R be as in the statement. For each t ≥ 0, consider the function

Yk(t)(ut) : E → R. We first show that Yk(t)(ut) → Xk(u∞) in the sense of distributions.

Let ζ : E → R be a smooth function with compact support K. We first observe that

〈(Yk(t)−Xk) (ut), ζ〉 = −
∫

E
ut(x)de (ζ ◦ Lx) (vk(t)− ∂k)dVN (x).

Moreover, since e ∈ supp (ζ ◦ Lx) = L−1
x (K) if, and only if, x ∈ K, we have

|〈(Yk(t)−Xk) (ut), ζ〉| ≤ ‖ut‖1,K max
x∈K

|de (ζ ◦ Lx)|0 ‖vk(t)− ∂k‖0

which tends to zero when t→ +∞ by item (3) of Lemma 6.1.

Finally, we obtain

|〈Yk(t)(ut), ζ〉 − 〈Xk(u∞), ζ〉| ≤ |〈Yk(t)(ut)−Xk(ut), ζ〉|+ |〈Xk(ut)−Xk(u∞), ζ〉| ,
which tends to zero since Xk(ut) → Xk(u∞).

We now show that Xk(u∞) = 0. By the definition of vk(t) and (6.6), we have

τk(t) := ‖Yk(t)(x)‖t = ‖Exp(tα)(vk(t))‖0 ≍ t2k−mij−1eλtµi .

Also

|Yk(t)(ut)(x)| ≤ τk(t)
∣

∣d(x,t)u
∣

∣ .

Let c > 0 be a constant to be determined later. Consider the set

Et =
{

x ∈ E : |Yk(t)(ut)(x)| ≥ e−ct
}

.

Then, for x ∈ Et we have

τk(t)
−p |Yk(t)(ut)(x)|p

logκ (e+ τk(t)ect)
≤ φp,κ

( |Yk(t)(ut)(x)|
τk(t)

)

≤ φp,κ
(∣

∣d(x,t)u
∣

∣

)

.

Moreover, there exists a constant C > 0, and t0 > 0, such that

1

C

e−pλµit |Yk(t)(ut)(x)|p
tκ+p(2k−mij−1)

≤ τk(t)
−p |Yk(t)(ut)(x)|p

logκ (e+ τk(t)ect)
, for t ≥ t0.

Let q = κ+ p(2k −mij − 1), then for any compact K ⊂ E, we have

A :=

∫ +∞

t0

∫

Et∩K

|Yk(t)(ut)(x)|p eλ(µ−pµi)t

tq
dVN (x)dt ≤ C

∫

K×[t0,+∞)
φp,κ (|du|) dV <∞.



32 MATIAS CARRASCO PIAGGIO

This implies
∫ +∞

t0

∫

K

|Yk(t)(ut)(x)|p eλ(µ−pµi)t

tq
dVN (x)dt ≤ A+ VN (K)

∫ +∞

t0

e(−pc+λ(µ−pµi))t

tq
dt.

Let c > −λp−1(µ− pµi). Therefore, whenever (p, κ) satisfies (6.7), there is a subsequence
tl → +∞ such that

‖Yk(tl)(utl)‖p,K → 0, when l → +∞.

This shows that Xk(u∞) = 0. �

We denote by {θijk } the basis of V ∗
ij , dual to the standard left invariant basis {Xij

k }. For
each t ∈ R, we have

∣

∣

∣θ
ij
k

∣

∣

∣

t
=
∥

∥

∥Exp (−tα∗
λ) (∂

ij
k )
∥

∥

∥

0
≍
[mij
∑

r=k

t2(r−k)

(r − k)!2

]1/2

e−λµit ≍ tmij−ke−λµit. (6.8)

In the following lemma, we will use the functions i and m that assign to a subset I0 of I
the integers

i = i (I0) := min {r : (r, s, l) /∈ I0} ,
m = m (I0) := max {mis − l : (i, s, l) /∈ I0} .

Given a smooth function u∞ : N → R, by its hororadial extension we mean the function
independent of t, u : Xαλ

→ R, defined by u(x, t) = u∞(x).

Lemma 6.3. Let p ≥ 1 and κ ≥ 0. Fix I0 a subset of I and denote by i = i (I0) and
m = m (I0). Consider u∞ : N → R a smooth function such that

Xrs
l (u∞) = 0 for all (r, s, l) ∈ I0.

Let u : Xαλ
→ R be its hororadial extension. Then du ∈ Lp,κ (K × [t0,+∞)) for any

compact K ⊂ N and t0 ∈ R, whenever

(p, κ) >
(

pi, 1 + pim
)

.

Moreover, in both cases, if u∞ is not identically zero and the compact K ⊂ N has positive
measure, then u /∈ Lp,κ (K × [0,+∞)).

Proof. Let K ⊂ N be a compact set. Since u does not depend on t, it is clear that
u /∈ Lp,κ (K × [0,+∞)) when K has positive measure, unless u∞ is identically zero.

If I0 = I, there is nothing to prove since u is constant. So suppose that I0 is a proper
subset of I. Let C be an upper bound in K for |Xrs

l (u∞)|, for any (r, s, l) ∈ I. Then, by
(6.8), there is t1 > 0 such that

∣

∣d(x,t)u
∣

∣ ≤ C

∑

(r,s,l)/∈I0

|θrsl |t .
∑

(r,s,l)/∈I0

tmrs−le−λµrt . tme−λµit,

for x ∈ K, and t ≥ t1. Therefore,
∫ +∞

t1

∫

K
φp,κ

(

|d(x,t)u|
)

eλµtdVN (x)dt . VN (K)

∫ +∞

t1

eλ(µ−pµi)t

tκ−pm
dt.

The conclusion follows from this inequality. �
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We will apply the previous lemma later to the following subsets of indices. Let K0 = ∅,
and for each i ∈ {1, . . . , d}, let

Ki = {(r, j, k) : r ≤ i}, Hi = Ki−1 ∪ {(i, j, 1) : mij = mi}. (6.9)

Then, for 0 ≤ i < d we have

i(Ki) = i+ 1, and m(Ki) = mi+1 − 1.

Also, for any i, we have

i(Hi) = i, and m(Hi) = mi − 2,

if mi ≥ 2. Notice that if mi = 1, then Ki = Hi.

For ξ ∈ N , r > 0 and t ∈ R, we denote by Y (r, t) the complement in Xαλ
of the set

B(ξ, r)× (t,+∞), where B(ξ, r) is the open ball of radius r centered at ξ in N .

The proof of the next lemma is inspired by [Pan07, Lemma 20].

Lemma 6.4. Let ξ ∈ N , (p, κ) ∈ I, and let u : Xαλ
→ R be a smooth function such

that du ∈ Lp,κ (Y (r, t)), for all r > 0 and t ∈ R. Suppose that there is a left-invariant
vector field X of N , generated by an eigenvector Xe of α, such that X(u∞) = 0. If Z is a
left-invariant vector field of N such that [X,Z] = 0, then Z(u∞) = 0.

Proof. We denote by X̃ and Z̃ the left-invariant vector fields of Xαλ
generated by (Xe, 0)

and (Ze, 0) respectively. Notice that they coincide with (X, 0) and (Z, 0) in N . Let ũ∞
be the hororadial extension of u∞. Since Xe is an eigenvector of α, we have X̃(ũ∞) = 0.

Moreover, X̃ and Z̃ also commute.

First, notice that since the exponential map of N is a diffeomorphism, the one-parameter
subgroup {exp(s(Xe, 0)) : s ∈ R} is closed in Xαλ

. This implies that the flow of X̃,

ϕs(x, t) = (x, t) · exp(s(Xe, 0)),

satisfies the following property: for any compact subset K ⊂ Xαλ
, there exists lK ≥ 0 such

that if |s− s′| ≥ lk, then ϕs(K) ∩ ϕs′(K) = ∅.
Moreover, since N is nilpotent and the coefficient of [X̃, ∂t] in ∂t is zero, we see that
tr
(

adX̃
)

= 0. In particular,

ϕ∗
s(dV ) = e−tr(adX̃)dV = dV,

i.e. the flow ϕs preserves the measure dV .

Suppose that w : Xαλ
→ R is a function in Lp,κ (Y (r, t)) for all r and t. We claim that for

each compact set K ⊂ Xαλ
, we have

‖w ◦ ϕs‖1,K → 0, when s→ +∞.

Indeed, fix such a compact set K, and choose r and t so that ϕs(K) ⊂ Y (r, t) for all
s ∈ R+. Given any sequence sl → +∞, we can extract a subsequence sl′ → +∞ such that
the images {ϕsl′ (K) : l′ ∈ N} are pairwise disjoint. Therefore,

∑

l′∈N

∫

K
φp,κ

(

w ◦ ϕsl′

)

dV =
∑

l′∈N

∫

ϕs
l′
(K)

φp,κ (w) dV ≤
∫

Y (r,t)
φp,κ(w)dV <∞.

This implies that
∥

∥w ◦ ϕsl′

∥

∥

p,κ,K
→ 0 when l′ → +∞. Since Lp,κ(K) ⊂ L1(K) and the

inclusion is norm continuous, the claim follows.
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Write ũ∞ = w+u, where w ∈ Lp,κ(Y (r, t)), for all r and t. From the claim above, we have
that w◦φs → 0, when s→ +∞, in the sense of distributions. Also, since du ∈ Lp,κ(Y (r, t))

for all r and t, and Z̃ has constant norm, the same is true for the function Z̃(u)

Again by the claim above, we have Z̃(u) ◦ ϕs → 0, when s → +∞, in the sense of

distributions. But since Z̃ commutes with X̃, we have

Z̃(u) ◦ ϕs = Z̃ (u ◦ ϕs) , for all s ∈ R.

Therefore,
Z̃ (ũ∞) = Z̃ (ũ∞ ◦ ϕs) = Z̃ (w ◦ φs) + Z̃ (u ◦ ϕs) → 0,

in the sense of distributions when s→ +∞. That is, Z̃ (ũ∞) = 0.

Let ζ : N \ {x0} → R and η : R → R be smooth functions with compact support. Let

ζ × η(x, t) = ζ(x)η(t). Notice that Z̃(x, t) = (Zt(x), 0) where Zt is a left-invariant vector
field in N . Since η does not depend on x ∈ N , we have Zt(η) = 0. Then

0 = 〈Z̃ (ũ∞) , ζ × η〉 = −
∫

R

〈u∞, Zt(ζ)〉η(t)eλµtdt.

Since ζ and η where arbitrary, this shows that Z(u∞) = 0. �

Corollary 6.5. Let ξ ∈ N , (p, κ) ∈ I, and let u : Xαλ
→ R be a smooth function satisfying

the hypotheses of Lemma 6.4. Then u∞ : N \ {ξ} → R is constant a.e..

Proof. Let Z 6= 0 be a left-invariant vector field in the center of n, which exists because
N is nilpotent. By Lemma 6.4, Z(u∞) = 0, that is u∞ ◦ ϕs = u∞ a.e., where ϕs(x) =
Rexp(sZ)(x) = Lexp(sZ)(x). Using again the fact that the action s 7→ ϕs is proper, we
conclude that the Orlicz-Besov norm of u∞ is zero on any compact set of N \ {ξ}. This
proves the lemma. �

6.4. Proofs of main results. We now apply the results obtained in the previous section
to compute the local and global cohomology of Xα.

Recall that for each i ∈ {1, . . . , d}, we have defined mi = max{mij : 1 ≤ j ≤ ki}, and the
subspaces W0 = {0}, Wi = V1 ⊕ · · · ⊕ Vi, and

ki = LieSpan (Wi) , V
0
i = Span

(

∂ij1 : mij = mi

)

, hi = LieSpan
(

Wi−1 ⊕ V 0
i

)

.

We denote also by Ki and Hi the closed Lie subgroups of N whose Lie algebra are ki and
hi respectively. Note that the set of left cosets N/Ki are N/Hi are a smooth manifold,
and the canonical projections are smooth maps.

Proof of Theorem 1.4. First, suppose that p ∈ (pi+1, pi) and κ ≥ 0. Let u : Xα → R be a
smooth function with du ∈ Lp,κ (K × [t0,+∞)), for any compact set K ⊂ N and t0 ∈ R.
If i = d, there is nothing to prove, so suppose i < d. Consider the subset Ki defined in

(6.9). By Lemma 6.2, Xrj
k (u∞) = 0 for all (r, j, k) ∈ Ki, and thus X(u∞) = 0 for any

left-invariant field X ∈ ki. If we suppose u∞ continuous, this implies that u∞ is constant
on any left coset of Ki, and can therefore be regarded as a continuous function on N/Ki.

Note that i(Ki) = i + 1 and p > pi+1. By Lemma 6.3, any smooth function u∞ on
N/Hi can be identified with the hororadial limit of a smooth function u : Xα → R with
du ∈ Lp,κ (K × [t0,+∞)), for any compact K ⊂ N and t0 ∈ R. This shows (1).

Let us prove (2). Suppose that p = pi and mi = 1. Let κ ≥ 0. By point (1), if u : Xα → R

is a smooth function with du ∈ Lp,κ (K × [t0,+∞)), for any compact set K ⊂ N and
t0 ∈ R, then X(u∞) = 0 for any X ∈ ki−1.
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If κ ≤ 1, because mi = 1, Lemma 6.2 implies that X(u∞) = 0 for any X ∈ ki. If i = d,
there is nothing more to prove. If not, since p > pi+1, the same argument as in (1)
concludes the proof of the first part of (2).

If κ > 1, because i(Ki−1) = i and m(Ki−1) = mi − 1 = 0, Lemma 6.3 implies that any
smooth function u∞ on N/Ki−1 can be identified with the hororadial limit of a smooth
function u : Xα → R with du ∈ Lp,κ (K × [t0,+∞)), for any compact K ⊂ N and t0 ∈ R.
This completes the proof of (2).

Suppose now that p = pi and 1 + pi(mi − 2) < κ ≤ 1 + pi(mi − 1), with mi ≥ 2.
Consider the subset Hi defined in (6.9). Let u : Xα → R be a smooth function with
du ∈ Lp,κ (K × [t0,+∞)), for any compact set K ⊂ N and t0 ∈ R. By Lemma 6.2,

Xrj
k (u∞) = 0 for all (r, j, k) ∈ Hi. Thus X(u∞) = 0 for any left-invariant field X ∈ hi. If

we suppose u∞ continuous, this implies that u∞ is constant on any left coset of Hi, and
can be regarded as a function on N/Hi.

Since i(Hi) = i, m(Hi) = mi − 2, and κ > 1 + pi(mi − 2), by Lemma 6.3, any smooth
function u∞ on N/Hi can be identified with the hororadial limit of a smooth function
u : Xα → R with du ∈ Lp,κ (K × [t0,+∞)), for any compact K ⊂ N and t0 ∈ R. This
shows (3). �

Proof of Theorem 1.5. Let [u] ∈ Lp,κH1(Xα, ξ) be a local cohomology class represented by
a smooth function u : Xα → R. By Lemma 6.2, if

(p, κ) ≤ (p1, 1 + p1(m1 − 1)) ,

then X1j
1 (u∞) = 0, for any j with m1j = m1. Since X1j

1 is a left-invariant vector field of
N generated by an eigenvector of α, we can apply Corollary 6.5 to conclude that u∞ is
constant a.e.. Then [u] = 0.

Suppose that (p, κ) > (p1, 1 + p1(m1 − 1)). Consider u∞ any smooth function with com-
pact support in N . Take η : R → R a smooth function such that η(t) = 0 for t < 0 and
η(t) = 1 for t ≥ 1. Set u : Xα → R as u(x, t) = η(t)u∞(x). Then the hororadial limit
of u is u∞, and the same computations as in Lemma 6.3 show that du ∈ Lp,κ(Xα). Since
[u] 6= 0, this finishes the proof. �

Proof of Theorem 1.1. Suppose Xα is not of Carnot type. Then, either m1 = 1, so h1 and
k1 coincide precisely with the proper subalgebra of n spanned by the µ1-eigenvectors of α;
or m1 ≥ 2 and h1 is a proper Lie subalgebra of n.

In the first case, we necessarily have d ≥ 2, and i(α) = min{i : Ki = N} ≥ 2. In both
cases, by Theorems 1.4 and 1.5, we have

p 6=0(Xα,∞, I) ≤
(

pi(α), 1 + pi(α)(mi(α) − 1)+
)

< (p1,m1 − 1) = p 6=0(Xα, ξ, I),

for any ξ ∈ N . This shows that ∞ is fixed by the boundary homeomorphism of any
quasi-isometry of Xα, and that it preserves the left cosets of H1. �

6.5. Proof of Corollary 1.8. Let N be of nilpotency class ℓ, and let F ∈ QIsom(Xα).
We must prove that the boundary extension of F is a bi-Lipschitz homeomorphism.

The derivation α induces a Carnot structure on the subgroup H1, and therefore, the re-

striction of the snow-flaked parabolic visual metric ̺
1/µ1
∞ is bi-Lipschitz equivalent to the

Carnto-Carathéodory distance of H1, which is, in particular, a geodesic distance. Since F
preserves the left cosets of H1, by [LX14, Theorem 1.1], it is enough to prove:
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(1) Any left coset is accumulated by parallel lefts cosets: for any x ∈ N , there exists a
sequence xj → x, xjH1 6= xH2, such that

dist (xjH1, xH1) = dist(x′j , xH1) = dist(xjH1, x
′),

for all x′j ∈ xjH and x′ ∈ xH.

(2) Left cosets diverge sub-linearly: for any x, y ∈ N , there exists a sequence xj ∈ xH1

such
dist (xj , yH1)

̺∞(xj , x)
→ 0, when j → +∞.

To prove (1), let zj be a sequence in the normalizer of H1, not in H1, and such that zj → e.
Then xj = xzj satisfies (1) because ̺∞ is left-invariant.

Let us prove (2). Let x, y ∈ N and write x−1yx = exp(Y ), with Y ∈ n. For t ≥ 0, let
xt = x exp(tX) with X ∈ h1 a µ1-eigenvector of α. Then ̺∞(xt, yxt) = ̺∞(e, x−1

t yxt). By
the Baker-Campbell-Hausdorff formula,

x−1
t yxt = exp

(

Y ′ + p(Y, tX)
)

,

where Y ′ does not depend on t and p is a polynomial of degree ℓ − 1. Without loss of
generality, we can suppose that ̺∞(e, x−1

t yxt) → +∞ when t→ +∞.

By definition, ̺∞(e, z) = es if, and only if, d0(e, τ(s)(z)) = 1, where we recall that d0 is
the left-invariant Riemannian distance on N . Notice that d0(e, exp(Z)) ≤ ‖Z‖0 for any
Z ∈ n. Moreover, there is a constant δ > 0 such that

δ ≤ d0(e, exp(Z)) ≤ 1 whenever ‖Z‖0 = 1.

First, observe that

Exp(−sα)
([

∂ijk , ∂
rs
l

])

= e−(µi+µr)s
k,l
∑

h=1,h′=1

(−s)mij+mrs−k−l

(mij − k)!(mrs − l)!

[

∂ijk , ∂
rs
l

]

.

This implies, by letting Zs := Exp(−sα) (p(Y, tX)), that

‖Zs‖0 ≤
ℓ−1
∑

h=1

the−(h+1)µ1sqh(s) .

ℓ−1
∑

h=1

the−(h+1/2)µ1s,

where qh(s) are polynomials in s, and the last inequality holds for s large enough. Choosing
s = st so that d0(e, exp(tZs)) = 1, we obtain from the last inequality

st ≤
ℓ

(ℓ+ 1/2)µ1
log t+O(1).

Let Xs = Exp(−sα)(X). A similar, but simpler, computation shows that for

s∗ = s∗t :=
1

µ1
log t+O(1),

we have δ ≤ d0(e, exp(tXs∗)) ≤ 1. Putting everything together, we obtain

d(xt, yxt)

d(xt, x)
. est−s∗t → 0,

when t→ +∞. This concludes the proof of (2).
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6.6. The abelian case: proof of Corollary 1.10. Suppose that N ≃ R
n is abelian,

and let Xα and Xβ be two quasi-isometric purely real Heintze groups. Notice that being
of Carnot type in this case is equivalent to the derivation being a scalar multiple of the
identity. Therefore, we can assume that neither Xα nor Xβ is of Carnot type. We will
use the same notations as before, but we add a superscript α or β to indicate to which
derivation it corresponds.

Write α and β in their Jordan form

α =
dα
⊕

i=1

kαi
⊕

j=1

J(µαi ,m
α
ij), β =

dβ
⊕

i=1

kβi
⊕

j=1

J(µβi ,m
β
ij).

Consider the functions sα and sβ defined on the index set {(p, κ) : p ≥ 1, κ ≥ 0} which
give the topological dimension of the spectrum of the local cohomology with respect to ∞.

Since N is abelian, we have kαi =Wα
i and k

β
i =W β

i . By Theorem 1.4, we know that

sα(p, κ) = n−
i
∑

r=1

dimV α
r and sβ(p, κ) = n−

i
∑

r=1

dimV β
r ,

for p ∈ (pαi+1, p
α
i ) and p ∈ (pβi+1, p

β
i ) respectively. Note that at each critical exponent sα

and sβ jump and change their values. Since sα = sβ , we conclude that dα = dβ = d, and

dimV α
i = dimV β

i for all i = 1, . . . , d. In particular,

µαi

µβi
=

tr(α)

tr(β)
= λ > 0, i = 1, . . . , d.

On the other hand,

dimV α
i =

kαi
∑

j=1

mα
ij , and dimV β

i =

kβi
∑

j=1

mβ
ij .

Moreover, by Theorem 1.4, we already know that for each i ∈ {1, . . . , d},
mα

i = max{mα
ij : j = 1, . . . , kαi } = mβ

i = max{mβ
ij : j = 1, . . . , kβi } = mi.

In particular, if mi = 1 for all i (that is, α and β are diagonalizable), then kαi = kβi also,
and the proof is completed in this case. We will proceed by induction on d and the size of
the biggest Jordan block of the first eigenvalue.

Suppose that for i = 2, . . . , d we have kαi = kβi = ki and mα
ij = mβ

ij for j = 1, . . . , ki. If
d = 1 the assumption is empty. We will show that the same is true for i = 1. This is of
course the case if m1 = 1. So assume that m1 ≥ 2.

Let F : Xα → Xβ be a quasi-isometry and denote also by F its boundary extension. By

Theorem 1.4, F induces a homeomorphism F1 : Rn/Hα
1 → R

n/Hβ
1 . Let πα and πβ be the

canonical projections onto R
n/Hα

1 and R
n/Hβ

1 respectively. The linear actions verify

πα ◦ Exp(tα) = Exp(tα1) ◦ πα and πα ◦ Exp(tβ) = Exp(tβ1) ◦ πβ ,
where now the biggest Jordan block of the first eigenvalue is m1 − 1 (notice that kα1

1 = kα1
and kβ1

1 = kβ1 ). Let ̺α and ̺β be the parabolic visual metrics defined before. The key

point to apply the induction argument is to notice that the left cosets of Hα
1 and Hβ

1 are
equidistant for ̺α and ̺β respectively. Let ˜̺α and ˜̺β be the quotient distances. On checks,
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see [Tys01, Lemma 15.9], that F1 is a quasi-symmetry in these metrics. Since they are left
invariant and the linear actions of α1 and β1 are dilations with dilation expansion et, they
are bi-Lipschitz equivalent to the respective parabolic visual metrics ̺α1

and ̺β1
. This

shows that (Rn/Hα
1 , ̺α1

) is quasi-symmetric to (Rn/Hβ
1 , ̺β1

), and induction applies.

Note that we have shown, in particular, the case when d = 1. So suppose that d ≥ 2

and that the theorem is proved for d − 1. Considering the quotients by Kα
1 and Kβ

1 and
applying similar arguments as above, we show by induction that for i = 2, . . . , d we have

kαi = kβi = ki and mα
ij = mβ

ij for j = 1, . . . , ki. Then we can apply the previous assertion

and conclude that kα1 = kβ1 = k1 and mα
1j = mβ

1j for all j = 1, . . . , k1. This ends the proof.

References

[BH99] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, 1999.

[BK12] M. Bourdon and B. Kleiner. Some applications of ℓp-cohomology to boundaries of Gromov hyper-
bolic spaces. ArXiv e-prints, March 2012.

[BK13] Marc Bourdon and Bruce Kleiner. Combinatorial modulus, the combinatorial Loewner property,
and Coxeter groups. Groups Geom. Dyn., 7(1):39–107, 2013.

[Bou07] Marc Bourdon. Une caractérisation algébrique des homéomorphismes quasi-Möbius. Ann. Acad.
Sci. Fenn. Math., 32(1):235–250, 2007.

[BP03] Marc Bourdon and Hervé Pajot. Cohomologie lp et espaces de Besov. J. Reine Angew. Math.,
558:85–108, 2003.

[Coo93] Michel Coornaert. Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de
Gromov. Pacific J. Math., 159(2):241–270, 1993.

[Cor12] Y. Cornulier. On the quasi-isometric classification of focal hyperbolic groups. ArXiv e-prints,
December 2012.

[CT11] Yves Cornulier and Romain Tessera. Contracting automorphisms and Lp-cohomology in degree
one. Ark. Mat., 49(2):295–324, 2011.

[DP11] Tullia Dymarz and Irine Peng. Bilipschitz maps of boundaries of certain negatively curved homo-
geneous spaces. Geom. Dedicata, 152:129–145, 2011.

[Dym10] Tullia Dymarz. Large scale geometry of certain solvable groups. Geom. Funct. Anal., 19(6):1650–
1687, 2010.

[FM00] Benson Farb and Lee Mosher. On the asymptotic geometry of abelian-by-cyclic groups. Acta
Math., 184(2):145–202, 2000.

[GdlH90] É. Ghys and P. de la Harpe, editors. Sur les groupes hyperboliques d’après Mikhael Gromov,
volume 83 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1990. Papers from
the Swiss Seminar on Hyperbolic Groups held in Bern, 1988.

[Gol90] Helmut Goldmann. Uniform Fréchet algebras, volume 162 of North-Holland Mathematics Studies.
North-Holland Publishing Co., Amsterdam, 1990.

[Gro93] M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sussex,
1991), volume 182 of London Math. Soc. Lecture Note Ser., pages 1–295. Cambridge Univ. Press,
Cambridge, 1993.

[Ham87] Ursula Hamenstädt. Zur Theorie von Carnot-Carathéodory Metriken und ihren Anwendungen.
Bonner Mathematische Schriften [Bonn Mathematical Publications], 180. Universität Bonn, Math-
ematisches Institut, Bonn, 1987. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn,
Bonn, 1986.

[Ham89] Ursula Hamenstädt. A new description of the Bowen-Margulis measure. Ergodic Theory Dynam.
Systems, 9(3):455–464, 1989.

[Hei74] Ernst Heintze. On homogeneous manifolds of negative curvature. Math. Ann., 211:23–34, 1974.
[Hei01] Juha Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York,

2001.
[HP97] Sa’ar Hersonsky and Frédéric Paulin. On the rigidity of discrete isometry groups of negatively

curved spaces. Comment. Math. Helv., 72(3):349–388, 1997.



ORLICZ SPACES AND HEINTZE GROUPS 39

[HP11] P. Haïssinsky and K. M. Pilgrim. Minimal Ahlfors regular conformal dimension of coarse conformal
dynamics on the sphere. ArXiv e-prints, March 2011.

[Kan85] Masahiko Kanai. Rough isometries, and combinatorial approximations of geometries of noncom-
pact Riemannian manifolds. J. Math. Soc. Japan, 37(3):391–413, 1985.

[Kop13] Y. Kopylov. Amenability of Closed Subgroups and Orlicz Spaces. ArXiv e-prints, May 2013.
[KP13] Y. Kopylov and R. Panenko. Φ-Harmonic Functions on Discrete Groups and First ℓΦ-Cohomology.

ArXiv e-prints, November 2013.
[LX14] E. LeDonne and X. Xie. Rigidity of fiber-preserving quasisymmetric maps. Preprint, 2014.
[MT10] John M. Mackay and Jeremy T. Tyson. Conformal dimension, volume 54 of University Lecture

Series. American Mathematical Society, Providence, RI, 2010. Theory and application.
[Pan89a] Pierre Pansu. Cohomologie Lp des variétés à courbure négative, cas du degré 1. Rend. Sem. Mat.

Univ. Politec. Torino, (Special Issue):95–120 (1990), 1989. Conference on Partial Differential
Equations and Geometry (Torino, 1988).

[Pan89b] Pierre Pansu. Dimension conforme et sphère à l’infini des variétés à courbure négative. Ann.
Acad. Sci. Fenn. Ser. A I Math., 14(2):177–212, 1989.

[Pan89c] Pierre Pansu. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de
rang un. Ann. of Math. (2), 129(1):1–60, 1989.

[Pan02] Pierre Pansu. Lp-cohomology and pinching. In Rigidity in dynamics and geometry (Cambridge,
2000), pages 379–389. Springer, Berlin, 2002.

[Pan07] Pierre Pansu. Cohomologie Lp en degré 1 des espaces homogènes. Potential Anal., 27(2):151–165,
2007.

[Pan08] Pierre Pansu. Cohomologie Lp et pincement. Comment. Math. Helv., 83(2):327–357, 2008.
[Pen11] Irine Peng. Large scale geometry of nilpotent-by-cyclic groups. Geom. Funct. Anal., 21(4):951–

1000, 2011.
[RR91] M. M. Rao and Z. D. Ren. Theory of Orlicz spaces, volume 146 of Monographs and Textbooks in

Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1991.
[Shc14] V. Shchur. On the quantitative quasi-isometry problem: transport of Poincaré inequalities and

different types of quasi-isometric distortion growth. ArXiv e-prints, January 2014.
[Str83] Robert S. Strichartz. Analysis of the Laplacian on the complete Riemannian manifold. J. Funct.

Anal., 52(1):48–79, 1983.
[SX12] Nageswari Shanmugalingam and Xiangdong Xie. A rigidity property of some negatively curved

solvable Lie groups. Comment. Math. Helv., 87(4):805–823, 2012.
[Tri83] Hans Triebel. Theory of function spaces, volume 78 of Monographs in Mathematics. Birkhäuser

Verlag, Basel, 1983.
[Tys01] Jeremy T. Tyson. Metric and geometric quasiconformality in Ahlfors regular Loewner spaces.

Conform. Geom. Dyn., 5:21–73 (electronic), 2001.
[Wil08] K. Wildrick. Quasisymmetric parametrizations of two-dimensional metric planes. Proc. Lond.

Math. Soc. (3), 97(3):783–812, 2008.
[Xie12] Xiangdong Xie. Quasisymmetric maps on the boundary of a negatively curved solvable Lie group.

Math. Ann., 353(3):727–746, 2012.
[Xie13] X. Xie. Quasiisometries of negatively curved homogeneous manifolds associated with Heisenberg

groups. ArXiv e-prints, August 2013.
[Xie14a] Xiangdong Xie. Large scale geometry of negatively curved R

n
⋊R. Geom. Topol., 18(2):831–872,

2014.
[Xie14b] Xiangdong Xie. Rigidity of quasiisometries of hmn associated with non-diagonalizable derivation

of the heisenberg algebra. Preprint, 2014.

E-mail address: matias@math.u-psud.fr

Laboratoire de Mathématiques d’Orsay


	1. Introduction
	1.1. On the Orlicz cohomology of a hyperbolic complex and its localization
	1.2. On quasi-isometries of Heintze groups
	1.3. Notations and conventions
	Acknowledgments

	2. Preliminaries on the theory of Orlicz spaces
	2.1. Generalities
	2.2. Decay conditions

	3. Orlicz cohomology and quasi-isometry invariance
	3.1. The simplicial Orlicz chomology
	3.2. The degree one coarse Orlicz cohomology.
	3.3. Comparision between the De Rham and the simplicial Orlicz cohomologies

	4. Radial limits and Orlicz-Besov spaces
	4.1. Spherical coordinates and radial shift
	4.2. The radial limit
	4.3. Proof of Theorem 1.2

	5. Localization
	5.1. Horospherical coordinates and hororadial shift
	5.2. Local -cohomology

	6. Quasi-isometries of Heintze groups
	6.1. Preliminaries and notation
	6.2. The singular value decomposition of Exp(tJ)
	6.3. The degree one Lp,-cohomology of X: main computations
	6.4. Proofs of main results
	6.5. Proof of Corollary 1.8
	6.6. The abelian case: proof of Corollary 1.10

	References

