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Abstrat. We establish in this artile a formula whih will allow to lassify isometries

as well as partial isometries between spaes of funtions. Our result applies in a non

ompat framework and for abstrat lass of funtions spaes inluded in the spae of

ontinuous and bounded funtions on omplete metri spae. The result of this artile

is in partiular a generalization of the Banah-Stone theorem. We use the tehniques of

di�erentiability as in the original proof of Banah for onvex funtions generalizing the

norm of uniform onvergene. We use also a duality result in a non onvex framework.

Keyword, phrase: The Banah-Stone theorem, isometries and isomorphisms, dif-

ferentiability, duality.

1 Itrodution.

The lassial Banah-Stone theorem say that if K and L are ompat spaes and T is

an isomorphism from (C(K), ‖.‖∞) onto (C(L), ‖.‖∞) (where C(K) and C(L) denotes
the spaes of all real valued ontinuous funtions on K and L respetively) then, the

map T is an isometry if and only if there exists an homeomorphism π : L → K and a

ontinuous map ǫ : L→ {±1} suh that

Tϕ(y) = ǫ(y)ϕ ◦ π(y); ∀y ∈ L,∀ϕ ∈ C(K). (1)

The Banah-Stone theorem was invested by several authors in diverse diretions making

way to several advanes and publiations for example by D. Amir [1℄, J. Araujo [2℄, [3℄,

J. Araujo and J. Font [4℄, E. Behrends [10℄, [11℄, M. Cambern [12℄, B. Cengiz, [13℄, M.

Garrido and J. Jaramillo [18℄, [19℄, K. Jarosz [23℄, K. Jarosz and V. Pathak, [24℄, D.

Vieiera [26℄, N. Weaver [27℄. The list remaining still long, we send bak to the artile

of M. Garrido and J. Jaramillo [17℄ for a history of ontributions and a more omplete

list.
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We establish in this artile a general formula whih will allow to give a lassi�ation

of isomorphisms between funtions spaes resulting �totally or partially� from homeo-

morphisms. We establish our result in the non ompat framework for abstrat lass

of funtions spaes inluded lassial spaes. To be more lear, we give the following

example. Suppose that X and Y are two Banah spaes and suppose that there exists

an homeomorphism π : Y → X preserving norms i.e ‖π(y)‖X = ‖y‖Y for all y ∈ Y .
Let us denote by H‖.‖X ,‖.‖Y (Y,X) the lass of all homeomorphism from Y onto X pre-

serving norms and by Cb(X) the spae of all ontinuous bounded funtions on X. Let

T : (Cb(X), ‖.‖∞) → (Cb(Y ), ‖.‖∞) be an isomorphism.

Question 1. Under what ondition the isomorphism T omes anonially as in the

formula (1) from the lass of the homeomorphisms π ∈ H‖.‖X ,‖.‖Y (X,Y )?

The answer to this question is that T omes anonially form π ∈ H‖.‖X ,‖.‖Y (X,Y )
if and only if, it satis�es the following ondition

sup
y∈Y

{|Tϕ(y)| − ‖y‖Y } = sup
x∈X

{|ϕ(x)| − ‖x‖X} , ∀ϕ ∈ Cb(X). (2)

Thus the lass of all isomorphisms T satisfying (2) is in bijetion with the set

{ǫ : Y → {±1} ontinuous} × H‖.‖X ,‖.‖Y (Y,X).

For example, when X = Y = R (whih are in partiular onneted spaes), we have

that the isomorphisms T : Cb(R) → Cb(R) that satisfy supy∈R {|Tϕ(y)| − |y|} =
supx∈R {|ϕ(x)| − |x|} , ∀ϕ ∈ Cb(R) are exatly four isometries orresponding to the

homeomorphisms satisfying |π(x)| = |x| for all x ∈ R whih are π(x) = x or π(x) = −x
for all x ∈ R:

(1) T1ϕ(y) = ϕ(y) for all ϕ ∈ Cb(R) and all y ∈ R. The identity map.

(2) T2ϕ(y) = −ϕ(y) for all ϕ ∈ Cb(R) and all y ∈ R .

(3) T3ϕ(y) = ϕ(−y) for all ϕ ∈ Cb(R) and all y ∈ R.

(4) T4ϕ(y) = −ϕ(−y) for all ϕ ∈ Cb(R) and all y ∈ R.

Our main result Theorem 1 gives a general lassi�ation in the spirit mentioned in

the example above. More generally, a lass of homeomorphism π given by a funtional

onstraint f ◦ π = g for �xed lower semiontinuous and bounded from below funtions

f and g, haraterize the lass of isomorphism satisfying supy∈Y {|Tϕ(y)| − g(y)} =
supx∈X {|ϕ(x)| − f(x)} for all ϕ ∈ Cb(X). In the partiular ase where f = 0 on X
and g = 0 on Y we reover the lass of all isometries for ‖.‖∞. Before giving our main

result Theorem 1 below, we are going to introdue explanatory ommutative diagrams

orresponding to our lassi�ation.

1.1 The ommutative diagrams for the lassial Banah-Stone theo-

rem.

Let T : C(K) → C(L) be an isomorphism, and let H0,0(L,K) be the set of all homeo-

morphism from L onto K if suh homeomorphism exists. The left diagram ommutes
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if and only that of right also.
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T
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‖.‖∞ ◦ T = ‖.‖∞ ⇔ ∃π ∈ H0,0(L,K) suh that T omes anonially from π

1.2 The ommutative diagrams for the lassi�ation result.

Let (X, d) and (Y, d′) be a omplete metri spaes. Let A ⊂ Cb(X) and B ⊂ Cb(Y ) be
a Banah spaes satisfying ertain general axioms (This axioms are veri�ed for lassial

and known funtion spaes. See Axioms 1 and the examples in Proposition 2). Let

f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} be two lower semiontinuous and bounded

from below funtions with non empty domains i.e dom(f) := {x ∈ X : f(x) < +∞} 6= ∅
and dom(g) 6= ∅. We denote by dom(f) and dom(g) the losure of dom(f) and dom(g)
in X and Y respetively. We denote by Hf,g(Y,X) the lass of all homeomorphism from

dom(g) onto dom(f) if suh homeomorphism exists. We give below the diagrams of our

lassi�ation result. The left diagram ommutes if and only that of right also.

Let T : A→ B be an isomorphism,

A
T
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F
��
❅

❅

❅

❅

❅

❅

❅

❅

B

G
��

R

⇔ ∃π : dom(g)
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f

��
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G◦T = F ⇔ ∃π ∈ Hf,g(Y,X) suh that f ◦π = g on dom(g) and T omes anonially

from π on dom(g). Where

F(ϕ) := sup
x∈X

{|ϕ(x)| − f(x)} ,∀ϕ ∈ A

G(ψ) := sup
y∈Y

{|ψ(y)| − g(y)} ,∀ψ ∈ B.

We reover the lassial real valued Banah-Stone theorem in the ase of omplete

metri spaes X and Y with A = Cb(X), B = Cb(Y ), f = 0 on X and g = 0 on Y .
The situation in Question 1. orrespond to f = ‖.‖X and g = ‖.‖Y . Our main result is

then the following theorem.

1.3 The main result.

Theorem 1 Let X and Y be two omplete metri spaes and A ⊂ Cb(X) and B ⊂
Cb(Y ) be two Banah spaes satisfying the axioms A1-A4 (with the same property P β

.

See Axioms 1 and the examples in Proposition 2). Let T : A → B be an isomorphism

and let f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} be lower semiontinuous and

bounded from below with non empty domains. Then (1) ⇔ (2).
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(1) For all ϕ ∈ A, we have supy∈Y {|Tϕ(y)| − g(y)} = supx∈X {|ϕ(x)| − f(x)}.

(2) There exist an homeomorphism π : dom(g) → dom(f) and a ontinuous funtion

ε : dom(g) → {+1,−1} suh that, for all y ∈ dom(g) and all ϕ ∈ A we have

Tϕ(y) = ε(y)ϕ ◦ π(y)

and

g(y) = f ◦ π(y).

Remark 1 Note that from (2) we obtain sup
y∈dom(g) |Tϕ(y)| = sup

x∈dom(f) |ϕ(x)|,

∀ϕ ∈ A. It follows that, if dom(f) = X and dom(g) = Y then the ondition (1) implies

in partiular that T is isometri for the norm ‖.‖∞. So using lower semiontinuous

funtions suh that dom(f) = X and dom(g) = Y will permit to lassify isometries for

the norm ‖.‖∞. In the general ase Theorem 1 permit to lassify isomorphisms not ne-

essary isometries satisfying supy∈E |Tϕ(y)| = supx∈F |ϕ(x)|, ∀ϕ ∈ A for some E ⊂ X
and F ⊂ Y .

As an immediate onsequene of the above theorem is the following general Banah-

Stone result.

Corollary 1 Let X and Y be two omplete metri spaes. Let A ⊂ Cb(X) and B ⊂
Cb(Y ) be two Banah spaes satisfying the axioms A1-A4 (with the same property P β

).

Let E be a losed subset of X and F be a losed subset of Y . Let T : A → B be an

isomorphism. Then

sup
y∈F

|Tϕ(y)| = sup
x∈E

|ϕ(x)|

for all ϕ ∈ A if and only if there exists an homeomorphism π : F → E and a ontinuous

map ε : F → {−1,+1} suh that for all y ∈ F and all ϕ ∈ A we have Tϕ(y) =
ε(y)ϕ ◦ π(y).

Proof. It su�es to apply Theorem 1 with the indiator funtions f = iE and g = iF
where iE (respetively, iF ) is equal to 0 on E (respetively, on F ) and +∞ otherwise.

Remark 2 We reover the lassial version of the Banah-Stone theorem from the above

orollary by taking E = X and F = Y .

Note that there are situation where an isomorphism is not an isometry but �partially�

isometri. Indeed, Let K and L be two metri and ompat non homeomorphi spaes

suh that C(K) and C(L) are isomorphi and let T1 : C(K) → C(L) be an isomorphis-

m. This situation exists for example for C[0, 1] and C([0, 1]× [0, 1]). A. A. Milutin [25℄

proved that if K and L are both unountable ompat metri spaes, then C(K) and
C(L) are always linearly isomorphi. Let R and S two homeomorphi omplete metri

spaes suh that R ∩ K = ∅ and S ∩ L = ∅ and let π : S → R an homeomorphism.

Let us onsider the map T : Cb(K ∪R) → Cb(L ∪ S) de�ned by T (ϕ)(y) = T1(ϕ|K)(y)
if y ∈ L and T (ϕ)(y) = ϕ ◦ π(y) if y ∈ S for all ϕ ∈ Cb(K ∪ R). Where ϕ|K de-

notes the restrition of ϕ to K. The map T is an isomorphism not isometri satisfying

supy∈S |Tϕ(y)| = supx∈R |ϕ(x)| for all ϕ ∈ Cb(K ∪R).

The proof of the above theorem will be given in Setion 4. It is based on di�erentiability
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argument as in the original proof given by Banah [9℄, with duality result, Theorem 3

and Theorem 4 (See Setion 2.4) whih were established in [7℄ together with Lemma 1

(See Setion 2.3) whih is a onsequene of the well known Deville-Godefroy-Ziler vari-

ational priniple [14℄. We us the general version of this priniple whih also works for

omplete metri spaes and is du to R. Deville and J. Rivalski [16℄. Also let us note that

a similar result of our main result Theorem 1 an be established in a vetorial frame

for abstrat subspaes of the spae of all ontinuous and bounded Z-valued funtions

Cb(X,Z). Some onditions on the Banah spae Z are neessary like the smoothness

of the norm of Z. The proof being more tehnial and requiring others intermediate

results, we omit it in this artile but we send bak to the thesis [5℄ (see also [6℄) for

a vetorial Banah-Stone theorem. Let us mention here that the �rst result about the

vetorial Banah-Stone theorem is due to E. Behrends [10℄, [11℄. Others results about

the vetor valued Banah-Stone theorem was established by J. Araujo in [2℄, [3℄ and by

K. Jaros in [23℄.

Remark 3 In Theorem 1 above, we an have more information about the homeomor-

phism π. More the spaes A and B are regular more the homeomorphism π is it also.

For exemple if A = Cu
b (X) and B = Cu

b (Y ) (the spaes of uniformly ontinuous and

bounded) we obtain that π is uniformly ontinuous as well as π−1
. If A = Lipb(X)

and B = Lipb(Y ) (the spaes of all Lipshitz bounded map) and X and Y are quasi-

onvexe then π is bi-Lipshitz. This follow from the fat that if ϕ ◦ π is Lipshitz for

all ϕ ∈ Lipb(X) then π is Lipshitz. See Theorem 44 in the paper of M. Garrido and

J. Jaramillo [17℄. It is also known from the paper of J. Gutiérrez and J. Llavona [21℄

(See also [22℄) that if p ◦ π is Ck
smooth funtion ( in this ase X is assumed to be

a Banah spae) for all p ∈ X∗
(the topologial dual of X) then π is of lass Ck−1

.

So in the ase where A = Ck
b (X) and B = Ck

b (Y ) (the spae ok k-times ontinuously

Fréhet di�erentiable funtion f suh that f , f ′ ..., f (k) are uniformly bounded) we an

dedue, using the omposition α ◦ p where p ∈ X∗
and α : R → R be a desirable �very

smooth� funtion, that π is Ck−1
di�eomorphism. Note that if moreover X has the

Shur property then from the paper of M. Bahir and G. Lanien [8℄ we an dedue that

π is of lass Ck
. We draw the attention here on the fat that the Shur property and

the axiom A3 (See Axioms 1) are not still ompatible in in�nite dimension, for example

the spae X = l1(N) whih has the Shur property does not admit a Lipshitz and C1

smooth bump funtion (See [15℄).

This paper is organised as follow. In setion 2. we introdue the axioms whih we

shall use in this artile and we give examples satisfying them. We also give tools and

preliminaries result whih will permit us to give the proof of our main theorem. In

setion 3. We give the proof of our main result Theorem 1.

2 Tools and preliminaries results.

To prove our main result we need to establish ertain lemmas and to reall other results

already established.
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2.1 The Dira masses.

Let (X, d) be a omplete metri spaes and (A, ‖.‖) a Banah spae inluded in Cb(X).
By δ we denote the Dira map and by δx the Dira mass assoiated to the point x ∈ X.

By A∗
we denote the topologial dual of A. We have

δ : X → A∗

x → δx

and for all x ∈ X,

δx : A → R

ϕ → ϕ(x).

De�nition 1 (The property P β
) Let (X, d) be a omplete metri spae and (A, ‖.‖)

a Banah spae inluded in Cb(X). We say that A has the property P
F
(respetively,

P
G
) if, for eah sequene (xn)n ⊂ X we have:

(xn)n onverges in (X, d) if and only if the assoiated sequene of the Dira masses

(δxn)n onverges in (A∗, ‖.‖∗) (respetively, in (A∗, w∗)). Where ‖.‖∗ denotes the dual

norm and w∗
the weak-star topology.

We denote by τβ the weak-star topology if β = G and the norm topology if β = F .

The ruial property P β
is related to the geometry of the Banah spae A and is

onneted to the di�erentiability to the supremum norm ‖.‖∞ for more detail see the

artile [7℄. The following proposition follow easily from the above de�nition.

Proposition 1 Let (X, d) be a omplet metri spae and (A, ‖.‖) be a Banah spae

inluded in Cb(X) whih separate the points of X.

(1) Suppose that A has the property PF
then δ(X) := {δx : x ∈ X} is losed for the

norm topology in A∗
and the map

δ : (X, d) → (δ(X), ‖.‖∗)

x 7→ δx

is an homeomorphism.

(2) Suppose that A has the property PG
then δ(X) := {δx : x ∈ X} is sequentially losed

for the weak-star topology in A∗
and the map

δ : (X, d) → (δ(X), w∗)

x 7→ δx

is an sequential homeomorphism.

The map

δ : X → A∗

x → δx

is a non linear analogous to the anonial linear isometry i : Z → Z∗∗
where Z is Banah

spae and Z∗∗
its bidual. The map δ permit to linearize the metri spae X in A∗

(

See the paper of Godefroy-Kalton [20℄ when A is the set of all Lipshitz map on X that

vanih at some point).
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2.2 Axioms and examples.

We give now the general axioms that the spae A has to satisfy in our results.

Axiome 1 In all the artile (X, d) is a omplet metri spae and A is a lass of fun-

tions spaes inluded in Cb(X) suh that :

(A1) the spae (A, ‖.‖) is a Banah spae and ‖.‖ ≥ ‖.‖∞.

(A2) the spae A separate the points of X and ontain the onstants.

(A3) for eah n ∈ N
∗
, there exists a positive onstant Mn suh that for eah x ∈ X

there exists a funtion hn : X → [0, 1] suh that hn ∈ A, ‖hn‖ ≤ Mn, hn(x) = 1 and

diam(supp(hn)) <
1
n
.

(A4) the spae A has the property P β
(β = F or β = G).

Remark 4 : These axioms are satis�ed by various and lassial spaes of funtions.

We give below some examples. Let us mention here, that the axiom (A3) is related to

the variational priniple of Deville-Godefroy-Zizler [14℄ and Deville-Rivalski [16℄ and

the axiom (A4) was introdued and studied in [7℄.

By the spae Cu
b (X) we denote the Banah spae of all bounded uniformly ontinuous

funtion on X, by Lipαb (X) the Banah spae of all α-Holder and bounded funtions

on X (0 < α ≤ 1), by Ck
b (X) the Banah spae of all k-times ontinuously Fréhet

di�erentiable funtions f suh that f , f ′, ..., f (k) are uniformly bounded, by C1,α
b (X)

(0 < α ≤ 1) the Banah spae of all Fréhet di�erentiable funtions f on X suh that f
and f ′ are uniformly bounded on X and f ′ is α-Holder. Finally by C1,u

b (X) we denote
the Banah spae of all Fréhet di�erentiable funtions f on X suh that f and f ′ are
uniformly bounded on X and f ′ is uniformly ontinuous. All these spaes are provided

with their natural norm ‖.‖ of Banah spae that satisfy ‖.‖ ≥ ‖.‖∞ (See [7℄).

Proposition 2 We have,

(1) For every omplete metri spae X, the spaes Cb(X), Cu
b (X) and Lipαb (X) (0 <

α ≤ 1) satisfy the axioms (A1)-(A4)

(2) If X is a Banah spae having a bump funtion (that is a funtion with a non

empty and bounded support) in A = Ck
b (X) (k ∈ N

∗
) (respetively, in A = C1,α

b (X)

(0 < α ≤ 1) or A = C1,u
b (X)), then A satisfy the axioms (A1)-(A4).

Proof. The proof is an onsequene of Proposition 3, Proposition 4 and Proposition 5

below.

Proposition 3 All of the spaes A mentioned in the examples above, satisfy the axioms

(A1) and (A2).

Proof. The axiom (A1) follow from the de�nitions of the spaes and there norms (See

[7℄). These spaes ontain the onstants. To se that these spaes separate the points of

X, let x 6= y in X. In the ase of the spaes Cb(X), Cu
b (X) and Lipαb (X) where (X, d)

is a metri spae, Let us set φ(.) := min(d(x, .), 1) ∈ Lipαb (X) ⊂ Cu
b (X) ⊂ Cb(X). We

have φ(x) = 0 and ϕ(y) = min(d(x, y), 1) > 0. So ϕ(x) 6= ϕ(y) and thus these spaes

separate the points of X. In the ase where X is a Banah spae and A = Ck
b (X)

7



(k ∈ N
∗
) or C1,α

b (X) (0 < α ≤ 1) or C1,u
b (X), sine x 6= y, then by the Hanh-Banah

theorem, there exists p ∈ X∗
suh that p(x) 6= p(y). We onstrut then a map γ : R → R

suh that γ ◦ p ∈ A and γ(p(x)) = p(x) and γ(p(y)) = p(y). Thus A separate the point

of X.

The following proposition is in [7℄.

Proposition 4 [Proposition 2.5 and 2.6, [7℄℄ Let (X, d) be a omplete metri spae.

We have :

(1) If A = Cb(X) or Cu
b (X) then A satisfy P

G
(but not P

F
).

(2) If A = Lipαb (X) with 0 < α ≤ 1 then A satisfy P
F
.

b) Suppose that X is Banah spae and A = Ck
b (X) (k ∈ N

∗
) or C1,α

b (X) (0 < α ≤ 1)

or C1,u
b (X) then A satisfy P

F
.

We have proved that the above examples of spaes satisfy the axioms (A1), (A2) and
(A4). These examples satisfy also the axiom (A3) whenever the spae X has a bump

funtion in A (that is a funtion with a non empty and bounded support). The existene

of a bump funtion in Cb(X), Cu
b (X) or in Lip

α
b (X) with 0 < α ≤ 1 is always true by

using the metri d on X. This is note always the ase when X is a Banah spae for the

spaes of smooth funtions A = Ck
b (X) (k ∈ N

∗
) or C1,α

b (X) (0 < α ≤ 1) or C1,u
b (X).

In the last examples the existene of a bump funtion is onneted to the geometry

of the Banah spae X. For more information on the existene of a bump funtion in

Ck
b (X) (k ∈ N

∗
) or C1,α

b (X) (0 < α ≤ 1) or C1,u
b (X) we refer to the book of R. Deville,

G. Godefroy and V. Zizler [15℄.

Proposition 5 we have:

(1) For every ompelete metri spae X, the spaes Cb(X), Cu
b (X) and Lipαb (X) satisfy

the axiom (A3)

(2) If X is a Banah spae having a bum funtion in A = Ck
b (X) (k ∈ N

∗
) (respetively

in C1,α
b (X) (0 < α ≤ 1) or C1,u

b (X)), then A satisfy the axiom (A3).

Proof. The proof is easy and an be found in Remark 2.5 (See also Proposition 1.4) in

[16℄.

2.3 A useful Lemmas.

We need the following Lemma 1 that is a onsequene of the Variational priniple of

Deville-Godfroy-Zizler [14℄ generalized by Deville-Rivalski [16℄.

De�nition 2 We say that a funtion f has a strong minimum at x if infX f = f(x)
and d(xn, x) → 0 whenever f(xn) → f(x).

Theorem 2 ( [Deville-Godefroy-Zizler [14℄℄ ; [Deville-Rivalski [16℄℄):

Let (X, d) be a omplete metri spae and A ⊂ Cb(X) be a spae satisfying the axioms

(A1) and (A3). Let f be a lower semiontinuous and bounded from below funtion with

non empty domain. Then,

{ϕ ∈ A/ f − ϕ does not attain a strong minimum on X}

is σ-porous in partiular it is of the �rst Baire ategory.
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Lemma 1 Under the hypothesis of Theorem 2, we have that for every lower semion-

tinuous and bounded from below with non empty domain f : X → R ∪ +∞ (f 6≡ +∞)

the set

D(f) := {x ∈ X/ ∃ϕx ∈ A : f − ϕx has a strong minimum at x}

is dense in dom(f).

Proof. Let x ∈ dom(f) an n ∈ N
∗
. Let hn ∈ A as in Theorem 2 with hn(x) = 1. let

us set λnx := f(x)− infX(f)+ 3
n
and applying Theorem 2 to the funtion f+λnxhn, there

exists xn ∈ X and ϕ ∈ A suh that ‖ϕ‖ < 1
n
and f + λnxhn − ϕ has a strong minimum

at xn. Suppose that d(x, xn) ≥
1
n
. sine diam(supp(hn)) <

1
n
and x ∈ supp(hn), then

h(xn) = 0. Thus, we have

inf
X
(f)− ϕ(xn) ≤ f(xn)− ϕ(xn)

= f(xn)− λnxhn(xn)− ϕ(xn)

< f(x)− λnxhn(x)− ϕ(x)

= f(x)− λnx − ϕ(x)

We dedut that λnx < f(x) − infX(f) + 2
n
whih is a ontradition with the hoie of

λnx. So d(x, xn) <
1
n
and xn ∈ D(f). It follows that D(f) is dense in dom(f).

We need also the following two Lemmas.

Lemma 2 Let Z be a Banah spae and h, k : Z → R two ontinuous and onvex fun-

tions. Suppose that the funtion z → l(z) := max(h(z), k(z)) is Fréhet (respetively,

Gâteaux) di�erentiable at z0. Then h is Fréhet (respetively, Gâteaux) di�erentiable

at z0 or k is Fréhet (respetively, Gâteaux) di�erentiable at z0 and l′(z0) = h′(z0) or

l′(z0) = k′(z0).

Proof. We give the proof for the fréhet di�erentiability, the Gâteaux di�erentiability

is similar. Suppose without loose of generality that l(z0) = h(z0) and let us prove that

h is Fréhet di�erentiable at z0 and that l′(z0) = h′(z0). For eah z 6= 0 we have:

0 ≤
h(z0 + z) + h(z0 − z)− 2h(z0)

‖z‖
≤
l(z0 + z) + l(z0 − z)− 2l(z0)

‖z‖

The right member tends to 0 when z tends to 0 sine l is onvex and Fréhet di�erentiable
at z0. This implies that h is Fréhet di�erentiable at z0 by onvexity. Now, sine

l(z) ≥ h(z) for all ∈ Z and l(z0) = h(z0), then for all t > 0 we have

h′(z0)(z) − l′(z0)(z) ≤
h′(z0)(tz)− l′(z0)(tz) + l(z0 + tz)− h(z0 + tz)− l(z0) + h(z0)

t

=
l(z0 + tz)− l(z0)− l′(z0)(tz)

t
+
h(z0 + tz)− h(z0)− h′(z0)(tz)

t

So, sending t to 0+, we have h′(z0)(z)− l
′(z0)(z) ≤ 0, for all z ∈ Z. Thus h′(z0) = l′(z0).
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Lemma 3 Let (X, d) be a omplete metri spae and A ⊂ Cb(X) satisfying the axioms

A1, A2 and A4. Let (λ)n ⊂ R suh that |λn| = 1 for all n ∈ N and let (xn)n ⊂ X.

Suppose that λnδxn onverges for the topology τβ (the norm topology or the weak-star

topology) to some point Q ∈ A∗
. Then (λn)n onverges in R to some real number λ

suh that |λ| = 1 and (xn)n onverges to some point x in (X, d) and we have Q = λδx.

Proof. Sine λnδxn onverges for the topology τβ to some point Q ∈ A∗
, then

λnδxn(ϕ) → Q(ϕ) for all ϕ ∈ A. Sine A ontain the onstants, we have λn → Q(1) := λ
with |λ| = 1. Now, sine (λn)n onverges to λ and λnδxn onverges for the topology τβ
to Q. By dividing by λn we have that δxn onverges for the topology τβ to

Q
λ

∈ A∗
.

The property P β
implies that (xn)n onverges to some point x ∈ X and in onsequane

that δxn onverges for the topology τβ to δx. By the uniqueness of the limit we have

that Q = λδx.

2.4 Duality results.

We reall from [7℄ the following results whih are the key of the results of this artile.

Let (X, d) be a omplete metri spae and A be a lass of funtions spae satisfying

the axioms A1-A4. For the proof of Theorem 1, we need the following results about the

onjugay f× of lower semiontinuous bounded from below funtion f de�ned by

f× : A → R

ϕ → sup
x∈X

{ϕ(x)− f(x)}

We de�ne the seond onjugay of f by f×× : X → R ∪ {+∞};

f××(x) := sup
ϕ∈A

{

ϕ(x) − f×(ϕ)
}

;∀x ∈ X

Proposition 6 ([ Proposition 2.1, [7℄℄): The map f× is onvex and 1-Lipshitz on
A.

The seond onjugate f××
is not onvex in general, but we have:

Theorem 3 ([ Theorem 2.2, [7℄℄): Le f be a bounded from below funtion on X and

suppose that A satisfy the axiom A4. Then, f is lower semiontinuous if and only if

f×× = f .

Finally, we need the following duality theorem between di�erentiability and the well

posed problems.

Theorem 4 ([Theorem 2.8, [7℄℄): Let A ⊂ Cb(X) be a lass of Banah spae satis-

fying the axioms A1, A2 and the property P
F
(respetively P

G
). Let ϕ ∈ A and f be a

lower semiontinuous funtion. Then (1) ⇔ (2).

(1) the funtion f − ϕ has a strong minimum at some point in X.

(2) the funtion f× is Fréhet di�erentiable (respetively, Gâteaux di�erentiable) at ϕ
on A.

Moreover, in this ase the Fréhet derivative (respetively, the Gâteaux derivative) of f×

at ϕ is (f×)′(ϕ) = δx where x ∈ X is the point where f − ϕ has its strong minimum.
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We also need the following elementary lemma.

Lemma 4 We have

sup
x∈X

{|ϕ(x)| − f(x)} = max(f×(ϕ), f×(−ϕ))

for all ϕ ∈ A.

Proof. Sine |t| = max(t,−t) on R, by inverting the supremum and the maximum we

have

sup
x∈X

{|ϕ(x)| − f(x)} = max(sup
x∈X

{ϕ(x)− f(x)} , sup
x∈X

{−ϕ(x)− f(x)})

= max(f×(ϕ), f×(−ϕ)).

3 The proof of Theorem 1.

The proof is given after some steps. The part (2) ⇒ (1) is easy. We prove the part

(1) ⇒ (2).

Let X and Y be two omplete metri spaes and A ⊂ Cb(X) and B ⊂ Cb(Y ) be

two Banah spaes satisfying the axioms A1-A4 with the same property P β
. (See Ax-

ioms 1 and the examples in Proposition 2 ). Let T : A → B be an isomorphism and

let f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} be lower semiontinuous and bounded

from below funtions with non empty domains. Suppose that

sup
y∈Y

{|Tϕ(y)| − g(y)} = sup
x∈X

{|ϕ(x)| − f(x)}

For all ϕ ∈ A and denote by T ∗ : B∗ → A∗
the adjoint of T .

3.1 The map T has the anonial form.

Lemma 5 : There exists a map π : dom(g) → dom(f) and a map ε : dom(g) → {−1, 1}
suh that for all y ∈ dom(g) we have : T ∗δy = ε(y)δπ(y).

Remark 5 The formula above is equivalent to Tϕ(y) = ε(y)ϕ◦π(y) for all y ∈ dom(g)
and all ϕ ∈ A.

Proof. By lemma 1, the set D(g) is dense in dom(g). Let y ∈ D(g) and ψ̃y ∈ B suh

that g− ψ̃y has a strong minimum at y. Let c ∈ R suh that c > 1
2

(

g×(−ψ̃y)− g×(ψ̃y)
)

and put ψy = c + ψ̃y. The funtion g − ψy has also a strong minimum at y and

satis�es by the hoie of c the inequality g×(ψy) > g×(−ψy). Sine g× and so al-

so g× ◦ (−IY ) (where IY denotes the identity map on B) are ontinuous (Lipshitz)

by Proposition 6, there exists an open neighborhood O(ψy) ⊂ B of ψy suh that

g×(ψ) > g×(−ψ) for all ψ ∈ O(ψy). Thus, we have max(g×(ψ), g×(−ψ)) = g×(ψ)
on the open set O(ψy). Sine g − ψy has a strong minimum at y, Theorem 4 guar-

antees the β-di�erentiability of g× at ψy with (g×)′(ψy) = δy. Sine the funtions
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ψ → max(g×(ψ), g×(−ψ)) and ψ → g×(ψ) oinide on the open set O(ψy) we on-

lude that ψ → max(g×(ψ), g×(−ψ)) is β-di�erentiable at ψy with derivative equal to

(g×)′(ψy) = δy. On the other hand, there exists ϕy ∈ A suh that ψy = Tϕy by the

surjetivity of T . The omposition of β-di�erentiable funtion with linear an ontinu-

ous map is again β-di�erentiable. Thus, we have the β-di�erentiability of the omposite

map ϕ → max(g×(Tϕ), g×(−Tϕ)) at ϕy on A and the hain rule formula give δy ◦ T
as derivative of the funtion ϕ → max(g×(Tϕ), g×(−Tϕ)) at ϕy. But by hypothesis

and by Lemma 4, max(g×(Tϕ), g×(−Tϕ)) = max(f×(ϕ), f×(−ϕ)) for all ϕ ∈ A. We

dedue that the funtion ϕ → max(f×(ϕ), f×(−ϕ)) is also β-di�erentiable at ϕy on A
with the same derivative δy ◦ T . Lemma 2 implies that either the funtion ϕ → f×(ϕ)
or the funtion ϕ → f×(−ϕ) is β-di�erentiable at ϕy with the derivative given by the

derivative of ϕ → max(f×(ϕ), f×(−ϕ)) at ϕy that is here δy ◦ T . If it is the funtion

ϕ→ f×(ϕ), Theorem 4 assert that there exists π(y) ∈ D(f) suh that (f×)′(ϕy) = δπ(y).
If it is the funtion ϕ → f×(−ϕ), Theorem 4 assert the existene of point π(y) ∈ X
suh that (f× ◦ (−IX))′(ϕy) = (f×)′(−ϕy) ◦ (−IX) = δπ(y) ◦ (−IX) = −δπ(y) where IX
denotes the identity map on A. By identifying the derivatives of the two equal fun-

tions ϕ→ max(g×(Tϕ), g×(−Tϕ)) = max(f×(ϕ), f×(−ϕ)) we have : δy ◦ T = δπ(y) or
δy ◦ T = −δπ(y). Let us put ε(y) = ±1. Then we have

∀ y ∈ D(g) ∃ π(y) ∈ D(f)/ T ∗δy := δy ◦ T = ε(y)δπ(y) . (3)

Now, let y be any point of dom(g), there exists by Lemma 1 a sequenes (yn)n ⊂ D(g)

suh that yn → y. The property P β
(axiom A4) implies that δyn

τβ
→ δy. Sine T

∗
is τβ to

τβ ontinue (here τβ is the norm or the weak-star topology) then T ∗δyn
τβ
→ T ∗δy. Sine

(yn)n ⊂ D(g), then from (3) there exists π(yn) ∈ D(f) suh that T ∗δyn = ε(yn)δπ(yn).

So we have ε(yn)δπ(yn)
τβ
→ T ∗δy. Lemma 3 implies the existene of a real number ε(y) =

±1 and some point π(y) ∈ X suh that ε(yn) → ε(y) in R and π(yn) → π(y) in X. Thus

π(y) ∈ D(f) = dom(f). The Lemma 3 implies also that T ∗δy = ε(y)δπ(y). Thus we have

proved that there exists a map π : dom(g) → dom(f) and a map ε : dom(g) → {−1, 1}
suh that for all y ∈ dom(g), we have T ∗δy = ε(y)δπ(y).

3.2 The map π is bijetive.

Lemma 5 applied to T−1
implies the existene of a map π′ : dom(f) → dom(g) and a

map ε′ : dom(f) → {−1, 1} suh that for all x ∈ dom(f) we have (T−1)
∗
δx = ε′(x)δπ′(x).

We obtain then ,

δx = T ∗(ε′(x)δπ′(x))

= ε′(x)T ∗(δπ′(x))

= ε′(x)ε(π(x))δπ(π′(x))

By applying the above identity to the ostant funtion 1 we obtain ε′(x)ε(π(x)) = 1.
On the other hand, sine the spae A separate the points of X (axiom (A2)), we obtain
π(π′(x)) = x. This reasoning applies for all x ∈ dom(f). By inverting the roles of T et

T−1
, we have also π′(π(y)) = y for all y ∈ dom(g). Thus π is bijetive.
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3.3 The maps ε, π and π−1
are ontinuous.

Let yn ∈ dom(g) suh that yn → y ∈ dom(g). Let us prove that π(yn) → π(y) in

dom(f). Indeed, by the property P β
( axiom A4) we have that δyn

τβ
→ δy. Sine

T is τβ to τβ ontinuous then T ∗δyn
τβ
→ T ∗δy for the τβ topology in A∗

. In other

words ε(yn)δπ(yn)
τβ
→ ε(y)δπ(y) whih implies by Lemma 3 that ε(yn) → ε(y) in R and

δπ(yn)
τβ
→ δπ(y) in A∗

. Again by the property P β
, we have π(yn) → π(y) in dom(g).

Thus, ε and π are ontinuous. The same argument applied to T−1
shows that π−1

is

also ontinuous.

3.4 The formula g = f ◦ π on dom(g).

This formula follow from the previous a�rmations together with Theoreme 4. Indeed,

by hypothesis we have

sup
y∈Y

{|Tϕ(y)| − g(y)} = sup
x∈X

{|ϕ(x)| − f(x)}

for all ϕ ∈ A. Sine g (resp f ) is equal to+∞ on Y \dom(g) (respetively, onX\dom(f))
we have

sup
y∈dom(g)

{|Tϕ(y)| − g(y)} = sup
x∈dom(f)

{|ϕ(x)| − f(x)}

for all ϕ ∈ A. Sine dom(g) and dom(f) are homeomorphi, then by replaing Tϕ(y)
in the above formula with its expression ε(y)ϕ(π(y)) for y ∈ dom(g), we obtain

sup
y∈dom(g)

{|ϕ(π(y))| − g(y)} = sup
x∈dom(f)

{|ϕ(x)| − f(x)} ,

for all ϕ ∈ A. Sine π is bijetive, we obtain by the hange of variable x = π−1(y)

sup
x∈dom(f)

{

|ϕ(x)| − g(π−1(x))
}

= sup
x∈dom(f)

{|ϕ(x)| − f(x)} ,

for all ϕ ∈ A. The above formula is also true for the funtions ϕ− infX(ϕ) ≥ 0 for all

ϕ ∈ A sine A ontain the onstants. Replaing ϕ by ϕ− infX(ϕ) ≥ 0 we obtain

sup
x∈dom(f)

{

ϕ(x) − g(π−1(x))
}

− inf
X
(ϕ) = sup

x∈dom(f)

{ϕ(x) − f(x)} − inf
X
(ϕ),

for all ϕ ∈ A(X). So

sup
x∈dom(f)

{

ϕ(x)− g(π−1(x))
}

= sup
x∈dom(f)

{ϕ(x)− f(x)} ,

for all ϕ ∈ A. Let us denote by i
dom(f) the lower semiontinuous indiator funtion

whih is equal to 0 on dom(f) and equal to +∞ otherwise. The above formula an be

written as follow

sup
x∈X

{

ϕ(x) −
(

g(π−1(x)) + i
dom(f)

)}

= sup
x∈X

{

ϕ(x)−
(

f(x) + i
dom(f)

)}

,
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for all ϕ ∈ A. In other words, by using the notation of the onjugay (see setion 1.4)

(

g ◦ π−1 + i
dom(f)

)×
(ϕ) = (f + i

dom(f)
)×(ϕ)

for all ϕ ∈ A. By passing to the seond onjugay we obtain

(g ◦ π−1 + i
dom(f)

)××(x) =
(

f + i
dom(f)

)××
(x)

for all x ∈ X. Sine the funtions f + i
dom(f)

and g ◦ π−1 + i
dom(f)

are bounded from

below and lower semiontinuous on X, then by Theoreme 4, eah of these funtions

oinide with his seond onjugay. Thus we have

g ◦ π−1 + i
dom(f) = f + i

dom(f)

whih is equivalent to g ◦ π−1 = f on dom(f) as well as g = f ◦ π on dom(g).

Remark 6 By imitating the above prof, we obtain the following version.

Theorem 5 Let X and Y be two omplete metri spaes and A ⊂ Cb(X) and B ⊂
Cb(Y ) be two Banah spaes satisfying the axioms A1-A4 (with the same property P β

.

See Axioms 1 and the examples in Proposition 2). Let T : A → B be an isomorphism

and let f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} be lower semiontinuous and

bounded from below with non empty domains. Then (1) ⇔ (2).

(1) g× ◦ T = f× (i.e for all ϕ ∈ A, supy∈Y {Tϕ(y)− g(y)} = supx∈X {ϕ(x)− f(x)}).

(2) There exist an homeomorphism π : dom(g) → dom(f) suh that, for all y ∈ dom(g)
and all ϕ ∈ A we have

Tϕ(y) = ϕ ◦ π(y)

and

g(y) = f ◦ π(y).
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