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With the increasing availability of low-cost -yet precise -depth cameras, "texture+depth" content has become more and more popular in several computer vision and 3D rendering tasks. Indeed, depth images bring enriched geometrical information about the scene which would be hard and often impossible to estimate from conventional texture pictures. In this paper, we investigate how the geometric information provided by depth data can be employed to improve the stability of local visual features under a large spectrum of viewpoint changes. Specifically, we leverage depth information to derive local projective transformations and compute descriptor patches from the texture image. Since the proposed approach may be used with any blob detector, it can be seamlessly integrated into the processing chain of state-of-the-art visual features such as SIFT. Our experiments show that a geometry-aware feature extraction can bring advantages in terms of descriptor distinctiveness with respect to state-of-the-art scale and affine-invariant approaches.

INTRODUCTION

Local visual features aim at representing distinctive image details, and are a convenient way to match different instances of the same or very similar content. To this end, local features extraction mimics in a certain way the cognitive behavior of the human visual system (HVS), by first detecting stable and reproducible interest points in the pictures, and then describing the local patches around those keypoints. This approach has led to the development of several examples of local features, such as SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], SURF [START_REF] Bay | Speeded-up robust features (SURF)[END_REF], or binary visual features [START_REF] Leutenegger | BRISK: Binary robust invariant scalable keypoints[END_REF][4] [START_REF] Alahi | FREAK: Fast retina keypoint[END_REF], which offer various degrees of invariance to translations, scale changes, viewpoint position and illumination changes. Local features extracted from conventional images describe only the photometric content of the scene (given by its projection on the camera plane). However, this information is complemented in the HVS by a larger class of stimuli which provide geometrical information about the depth and the relative position of objects in the scene, such as binocular vision, relative size, perspective, motion parallax, etc. [START_REF] Cutting | Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth[END_REF].

Geometry is fully described through 3D models, such as point clouds and meshes. However, these representations are difficult to acquire and store. Recently, the increasing availability of low-cost depth cameras (such as Microsoft Kinect) has enabled on-the-fly acquisition of scene depth along with traditional texture. Differently from 3D models, "2.5D" (texture+depth) content is easier to represent and code [START_REF] Merkle | Multi-view video plus depth representation and coding[END_REF]. As the quality of the captured depth increases, this information becomes a valuable tool for image analysis and description. Nevertheless, very little work has been done so far to extend 2D descriptors when associated depth is available. This work is one step in the development of such descriptors. To showcase the benefits of using depth in the feature extraction process, we consider a well-known critical issue of 2D local features: the invariance to viewpoint change. Most state-of-the-art visual features, including SIFT, are designed to be invariant to in-plane rotations. Instead, out-of-plane rotations, i.e., around an axis that does not pass through the optical center, are much more difficult to deal with for two reasons: i) the visual information contained in the projected images is not necessarily entirely preserved because of eventual occlusions/disocclusions; and ii) significant geometrical deformations prevent reliable descriptor matching. In this paper we propose an extension to conventional 2D visual feature computation algorithms aimed at reliable matching across images taken from different viewpoints. We assume that the scene depth map is available, e.g., through a depth camera or through sufficiently accurate stereo matching. First, we estimate local approximating planes to objects' surfaces on the depth image, in correspondence to interest points found in the texture. Then, we use the approximated local normal vector computed from depth to find a normalizing transformation to obtain a slant-invariant texture patch. Since our normalization operates between keypoint detection and descriptor extraction, the proposed method can be seamlessly included in the processing chain of several 2D local features. In our experiments, we consider the widely used SIFT features as comparison, and we show that depth enables to improve the geometrical consistency of matches, i.e., the ratio of matched pairs of visual features covering the same area of the scene in different views increases significantly. More importantly, the proposed normalization renders feature descriptors more distinctive for a wide range of viewpoint changes.

The rest of the paper is organized as follows. Related work is presented in Section 2, the proposed method is described in Section 3, while experiments and test results are discussed in Section 4. Finally, Section 5 concludes the paper.

RELATED WORK

The role of geometry in local content description has been known for long time in the field of 3D shape search and retrieval. However, very little has been done when geometry is given under the form of depth. Lo and Siebert [START_REF] Lo | Local feature extraction and matching on range images: 2.5D SIFT[END_REF] apply a SIFT-based descriptor to range (depth) images, in the context of face recognition. There, one important challenge is the ability to recognize faces under varying illumination conditions and viewpoint changes. The authors estimate the 3D keypoint orientation using depth map Gaussian derivatives, and use it to select a local sampling frame for the descriptor computation in each point. The resulting descriptors are stable under viewpoint and illumination changes. However, these features are not exactly 2.5D, as no texture data is used. A similar pocedure of normal-based local frame normalization makes part of NARF (Normal Aligned Radial Feature) descriptor presented in [START_REF] Steder | Point feature extraction on 3d range scans taking into account object boundaries[END_REF]. Differently from [START_REF] Lo | Local feature extraction and matching on range images: 2.5D SIFT[END_REF] and [START_REF] Steder | Point feature extraction on 3d range scans taking into account object boundaries[END_REF], we employ detectors based on texture, and we use depth to normalize the corresponding description patches.

A family of techniques addressing significant out-of-plane rotations is based on affine region normalizations. Local affine transformations allow to compensate the geometrical deformations produced by significant viewpoint position changes, and have been largely employed in the context of wide baseline stereo matching [START_REF] Baumberg | Reliable feature matching across widely separated views[END_REF][START_REF] Tuytelaars | Wide baseline stereo matching based on local, affinely invariant regions[END_REF][START_REF] Matas | Robust widebaseline stereo from maximally stable extremal regions[END_REF]. Up to the evaluations [START_REF] Mikolajczyk | Comparison of affineinvariant local detectors and descriptors[END_REF][START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF] of such detectors, the best performing techniques are the Maximally Stable Extremal Regions (MSER) [START_REF] Matas | Robust widebaseline stereo from maximally stable extremal regions[END_REF], Harris-Affine [START_REF] Mikolajczyk | An affine invariant interest point detector[END_REF] and Hessian-Affine [START_REF] Mikolajczyk | Comparison of affineinvariant local detectors and descriptors[END_REF] detectors. The MSER detector analyzes sequences of nested connected components having contrast border (i.e., a border entirely brighter or darker than any pixel of the component), and selects the ones that minimize a functional defined on such sequences. Harris-Affine and Hessian-Affine detectors are based on an iterative procedure that estimates elliptical affine regions for an initial keypoint set, using second-order moment matrix [START_REF] Lindeberg | Shape-adapted smoothing in estimation of 3-d shape cues from affine deformations of local 2-d brightness structure[END_REF]. The affine-covariant detectors may be less repeatable under moderate viewpoint angle changes (up to 40°) [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. On the other hand, SIFT gives acceptable performance in these cases [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF]. Thus, if the viewpoint variation spectrum is not known a priori, affine-invariant features will not necessarily perform better than the conventional visual features.

As an alternative approach to viewpoint invariance, Morel and Yu propose a fully affine invariant technique that simulates affine parameters instead of normalizing them. Their affine-SIFT (ASIFT) technique [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF] applies the original SIFT detector-descriptor pair on a set of images rendered from the original one by applying affine transformations. The main drawback of this approach is that it does not allow the extraction of a compact feature set separately from the image, as the raw feature set containing all the descriptors from all the transformed images is very large and carries many a priori irrelevant features. This hinders the applicability of this method in image classification and retrieval schemes that work on large datasets of features, such as the bag-of-visual-words [START_REF] Sivic | Video google: A text retrieval approach to object matching in videos[END_REF] or VLAD [START_REF] Jégou | Aggregating local descriptors into a compact image representation[END_REF] paradigms. Similarly to ASIFT, an affine-invariant generalization of SURF has been proposed in [START_REF] Pang | Fully affine invariant SURF for image matching[END_REF].

SLANT NORMALIZATION BASED ON DEPTH

The proposed slant normalization approach integrates the conventional feature detector/descriptor pair architecture, which is composed of the following steps (the items in bold are those affected by slant normalization, which employs depth information):

1. Keypoint detection in the texture image; 2. Local planar keypoint regions approximation and filtering of unstable keypoints;

3. Slant normalization of texture image patches;

4. Descriptor computation.

Notice that slant normalization is performed independently of any specific detector/descriptor pair used for steps 1 and 4. Thus, in the following we only discuss steps 2 and 3 in detail.

Estimation of local approximating planes and keypoint filtering

In order to perform slant normalization, the normal to the texture surface at each keypoint detected in the texture has to be estimated robustly. Clearly, this cannot be done on texture only and requires 3D information provided by depth. In [START_REF] Lo | Local feature extraction and matching on range images: 2.5D SIFT[END_REF], depth first-order derivatives are used to estimate surface normal vectors. However, this approach can be imprecise due to the fact that quantized depth maps are often piecewise constant. Moreover, differential characteristics are known to be more prone to noise. Instead, we apply a parametric approach based on locally approximating the surface around the keypoint with a plane. More formally, let d(i, j) be the depth value in the pixel (i, j), (i0, j0) the keypoint coordinates, S the keypoint area determined as a function of its scale. We approximate the depth map region corresponding to a keypoint area with the bilinear function fA,B,C (x, y) = A(x -i0) + B(y -j0) + C. The normal vector of the plane, n = [A, B, C] is obtained by minimizing the average fitting error

F (A, B, C) = (i,j)∈S |fA,B,C (i, j) -d(i, j)| 2 , (1) 
which can be efficiently solved by least squares.

The robust estimation of the normal vectors may be subject to estimation errors. Thus, we aim to detect those keypoints whose normal is likely to have been poorly estimated, and filter them out from the set of interest points in the texture image. First, we filter keypoints based on the maximum plane fitting error ρ = maxS |fA,B,C (i, j)d(i, j)|. We keep the keypoints that satisfy the condition:

ρ < T min S d(i, j). (2) 
It is convenient to avoid an absolute threshold in (2), since the dynamic range of the depth map may be arbitrary (depending on the unit value and the content). Instead the ratio between ρ and minimum depth value in the keypoint area S does not depend on the dynamic range of the depth map. If this ratio is lower than T , the keypoint is accepted. Moreover, we consider the minimum depth value to take into account the effects of parallax changes according to the distance from the camera -even important viewpoint changes can be approximated by simple shift for background details, whereas near objects undergo more complex perspective transformations. We found out experimentally that the value of T = 0.01 achieves better performance in most cases. As a second filtering strategy, we reject surfaces with large slant angle, i.e., the angle between the normal and the optical axis of the camera. More precisely, we compute the slant angle as:

θ = arctan A 2 + B 2 (3) 
and reject keypoints with θ > 80°. The rationale is that these surfaces, when viewed at large angles, might produce sampling artifacts during the slant normalization phase.

Local surface sampling and slant normalization

For each geometrically-filtered texture image keypoint, we build a square regular sampling grid window on the approximating plane Ax + Byz + C = 0. More specifically:

• The center point of the window corresponds to the pixel (i0, j0) projected on the approximating plane.

• The window size is computed as a function of the initial keypoint scale σ, slant angle θ and the descriptor patch size, in such a way that the quadrilateral area obtained by the window boundary projection on the camera plane covers the keypoint area in the texture image. The projected grid size is such that it covers the texture keypoint area S.

• The orientation of the sampling window in the plane can be arbitrarily chosen, since the orientation of the texture keypoint has to be estimated after slant normalization.

As for the sampling window size, if R(σ) represents the descriptor patch size projected on the approximating plane, we choose a square of side M = 2R(σ) spatial units. In turn, if r(σ) is the descriptor patch size on the screen and f is camera focal length (both in pixels), it is straightforward to figure out using triangular similarity that R cos θ : r(σ) = d(i0, j0) : f. (4)

Having W 2f = tan φ W 2
, where W is image width in pixels, φW is horizontal angle of view of the camera, we get expression of R(σ):

R(σ) = 2 r(σ)d(i0, j0) W cos θ tan φW 2 . (5) 
Finally, we compute a rectangular grid in the sampling window which is then projected from the local approximating plane to the camera plane. The grid points are distributed regularly in the window, i.e. with an equal step in spatial units. Then we apply the perspective projection model in order to compute grid points positions in pixels. This yields a warped, slant-invariant sampling grid used to sample a patch in the texture image, over which we can compute a local descriptor (such as the histogram of gradients used by SIFT). Figure 1 illustrates how the window sampling is built in the approximating plane, and how the correct window size is found.

EXPERIMENTS

We tested our approach with the SIFT detector-descriptor, implemented in the VLFeat library1 . The comparison is performed with classical SIFT features [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] and iterative affine normalization2 , originally proposed for Harris-Affine detector [START_REF] Mikolajczyk | An affine invariant interest point detector[END_REF]. We initialize the it-Fig. 2. Examples of images from test sequences (Arnold, 25 images, Bricks, 20 images, Fish, 25 images, Graffiti, 25 images). Graffiti sequence is synthesized from the frontal view of the original Graffiti sequence [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF]. The resolution of the images is 960×540.

erative procedure using SIFT detector, i.e., we use for all the test methods the same difference-of-gaussian detector.

For our test we synthesized several image sequences of texture images with associated depth images (few examples are presented in Figure 2). Each sequence is obtained by rendering the same 3D scene from different viewpoints. In each scene the camera was focused at a fixed 3D point, moving along a circular arc. Camera positions and orientation matrices, as well as camera optic system parameters (angle of view used in eq. 5) are provided.

We kept the default parameters proposed in the VLFeat implementation for all the methods. Thus, the descriptor is computed in a square patch of size 12σ × 12σ pixels3 , i.e., we set r(σ) = 6 √ 2σ, which is the bounding circle radius. In a consistent way, for affine elliptical regions we specified the same patch extent. 2 The keypoint scale on the transformed patch is based on the initial keypoint scale and computed in a similar way to that presented in Figure 1. However, it is possible to apply an automatic scale selection (e.g., [START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF]).

The evaluation consists in comparing descriptor sets extracted from a pair of images of a given sequence. To filter out incorrect matches, we compute the overlap error proposed in [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF] between corresponding circular/elliptical regions that fit the descriptor patch. As the transformation between a pair in our case is not an homography (as in Graffiti and Wall sequences in [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF]), in order to compute the overlap we sample each keypoint area and reproject the samples from one image of the pair being tested to another one. The camera positions, orientation matrices and depth images are used to compute corresponding 3D positions of samples which are then reprojected to another camera plane. Finally the intersection of the areas is estimated by counting the number of samples fallen into the target elliptical area. We set the overlap error threshold value ǫ0 equal to 50%.

We compute the matching score, defined as the number of correct matches divided by the minimum total number of features for the two images [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF]. The results are presented for two contents in Table 1. This characteristic evaluates jointly both detector and descriptor and depends strongly on the content. Results for standard SIFT features (without normalization), our approach and affine normalized features are referred to as Raw, 3D and Aff., respectively. As the matching score may depend more on the keypoint repeatability than on the descriptor performances, for the same detector we obtain comparable values between all the methods in all the sequences. For sequences with complex geometry of the content, i.e., containing some smooth convex surfaces (Arnold, Fish, Bricks) our method gives the best matching score for the whole rotation angle spectrum.

In case of simpler geometry and detailed texture (Graffiti sequence, containing a single plane), the best matching score is achieved by the affine normalization. Our method gives worse results on this sequence mainly due to cross-matching of texture details that are small and/or have low contrast to the surround. In this case the transformations we apply to sample the descriptor patch may make the underlying visual content indistinguishable. The absolute number of correct matches (as well as the overall number of features) obtained with our approach is always lower than the one given by SIFT, as we perform the keypoint filtering before the descriptor computation.

In order to evaluate the advantages of using depth for improving the descriptor distinctiveness, we trace receiving operating characteristic (ROC) curves in Figure 3. We estimated ROC jointly on all the sequences (95 images) for three rotation angle ranges: small (up to 30°), medium (30°-60°) and large ones (greater than 60°). We selected randomly at least 15k correct and 15k incorrect matches for each angle range. For standard SIFT features and our approach the ROC is computed as a function of the closest-to-next-closest descriptor distances ratio [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], whereas affine normalization performs better when the classification decision is based on the absolute distance to the closest match.

In terms of ROC our method achieves better performance in all the cases except the smallest angles where the original SIFT features performance is generally recognized to be acceptable. The original SIFT is outperformed as it has no normalization to viewpoint angle changes, and the geometrical distortions has a direct effect on the descriptor.

CONCLUSION AND FUTURE WORK

In this work we investigate the use of depth information to complement 2D visual features extraction. As an illustration of this concept we proposed a method of local descriptor patch normalization based on scene depth map analysis, targeted to improving visual features stability under a large spectrum of viewpoint angle changes. Our approach presents an alternative to a family of approaches based on the affine normalization in cases when the associated depth image is available. It is designed to be used within any conventional keypoint detector and feature descriptor. As we do not make use of the depth image in the keypoint detection stage, the detector becomes the weakest point of the entire system. For this reason the achieved performance in terms of the matching score may be limited, especially in case of detailed texture and a relatively simple scene geometry. Thus the primary goal for the future work is to understand how to use the geometry information provided by depth to improve the keypoint detectors and the determination of their scale on a normalized patch.
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 1 Fig.1. Estimation of the sampling window size R(σ) in the local approximating plane, obtained from descriptor patch size r(σ). The corresponding keypoint area S ′ on the fitted plane is covered by a regular sampling grid which is then projected on the camera plane. The projected grid size is such that it covers the texture keypoint area S.

Fig. 3 .

 3 Fig. 3. ROC curves for different rotation ranges: (a) up to 30°, (b) 30°-60°, (c) greater than 60°.

Table 1 .

 1 Matching score and number of correct matches C. We present also maximal (Cmax) and minimal (Cmin) numbers of correct matches (for 5°and 120°rotations). Typically C decreases almost monotonically as the angle increases.

	Rotation		Fish			Graffiti	
	angle, °Raw	3D	Aff. Raw	3D	Aff.
	5	77.9 78.8 75.0 81.8 79.9 80.5
	10	65.5 70.9 64.2 74.3 70.1 73.8
	20	50.0 56.2 52.0 60.3 49.6 60.2
	30	37.8 52.1 44.2 47.8 39.1 53.0
	45	32.4 46.4 37.7 37.4 34.2 47.6
	60	31.1 44.0 39.1 31.0 27.7 43.2
	90	28.8 36.8 28.5 33.1 31.6 41.6
	120	9.8	16.3 12.6 32.8 31.4 37.2
	Cmax	433	360	606	643	635	859
	Cmin	52	62	94	243	220	397

http://www.vlfeat.org/, we used ver. 0.9.17.

See VLFeat vl covdet function documentation for details.

See VLFeat vl sift function documentation for details.