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In this paper we present a performance model for depth estimation using Single Image Depth From Defocus
(SIDFD). Our model is based on an original expression of the Cramér Rao Bound (CRB) in this context. We
show that this model is consistent with the expected behavior of SIDFD. We then study the influence on the
performance of the optical parameters of a conventional camera such as the focal length, the aperture and
the position of the in-focus plane. We derive an approximate analytical expression of the CRB away from
the in-focus plane and we propose an interpretation of the SIDFD performance in this domain. Finally, we
illustrate the predictive capacity of our performance model on experimental data comparing several settings of
a consumer camera.
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1. Introduction

This paper deals with performance model of Depth From
Defocus (DFD), a passive depth estimation technique
using a single lens. DFD relies on the relation between
the defocus blur in the image and the object depth with
respect to the camera. In early works on DFD, depth
was extracted using estimation of the relative defocus
blur between two or more images acquired with differ-
ent optical settings [1, 2]. However, acquisition of sev-
eral images requires the scene to remain still during the
whole acquisition process, which is a strong hypothe-
sis in practice, unless sophisticated imaging systems are
used to separate the input beam [3, 4]. More recently,
Single Image DFD (SIDFD) alternatives have been pro-
posed [5–9]. Acquisition is then simpler, while the pro-
cessing becomes more complex, since only a single image
of an unknown scene is available to infer the depth map.
However, several algorithms have been proposed to deal
with this problem [5–9], and SIDFD can now be con-
sidered as a candidate approach for designing a RGB-D
camera, i.e., a camera, associated to a processing stage,
which provides both a color image and a depth map.

Applications of RGB-D cameras range from robot
guidance for civilian and military applications, to man-
machine interfaces for game consoles or smartphones,
and to 3D recording. Classical systems are passive
stereoscopic systems using two or more cameras, a re-
cent extension being plenoptic cameras [10], which can
be considered as a stereoscopic system with several view-
points but a limited baseline. Today, most commercial
systems are active systems using infrared (IR) light pro-

jection, in the form of laser pulses as in LIDAR scanners
and time-of-flight (TOF) cameras, or of projected light
patterns such as the Kinect, developed by PrimeSense.

RGB-D cameras based on SIDFD could be used as
passive systems using only one aperture compared to
stereoscopic systems, and without the microlens array
of plenoptic cameras. They could then provide low cost
passive RGB-D solutions, as long as their performance
in terms of depth estimation accuracy can be assessed.
Our work is a first step in this direction. We propose a
theoretical model of the performance of SIDFD, based
on an original derivation of the Cramér Rao Bound, able
to account for the optical parameter of a conventional
camera and also for the parameters which affect the pro-
cessing. Indeed, including the processing in the analysis
is essential, as SIDFD puts a high requirement on this
part — the counterpart for having a single lens. Note
that to improve depth estimation accuracy, unconven-
tional SIDFD camera have been designed [4–6, 8, 11, 12].
We focus here on the performance of conventional cam-
eras. Extending our approach to unconventional DFD
cameras is left for future studies.

1.A. Principle of DFD

Fig. 1 illustrates the case of a simplified camera with
focal length f with the in-focus plane (IFP) put at some
distance zIFP. Let us consider the image of a point
source referred to as the Point Spread Function (PSF).
If the point source is placed in the camera IFP i.e., at
z = zIFP, the corresponding PSF has a limited size im-
posed by diffraction. On the other hand, if the point
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Fig. 1. Geometrical illustration of DFD for a thin lens model.
zIFP denotes the distance between the IFP and the lens.

source is placed out of the IFP, i.e., if z > zIFP or
z < zIFP, the resulting PSF is enlarged because of defo-
cus. Using geometrical relations and thin lens approxi-
mations, the defocus PSF size is:

ǫ = 2Rs

(
1

f
− 1

z
− 1

s

)
, (1)

where R and f are the camera aperture radius and focal
length, respectively, and s is the distance between the
lens and the sensor. For the developments made in this
paper, it is also interesting to express ǫ as a function of
the f-number F/# = f/(2R) and the IFP position zIFP:

ǫ =
f2

F/#

1

zIFP − f

(
1− zIFP

z

)
. (2)

According to Eq. (1) and (2), for a camera having fixed
focal length, aperture and focus, estimation of the de-
focus blur ǫ gives an estimation of the depth z. To go
further, Fig. 2 shows the variations of |ǫ| with respect to
depth for a conventional camera.
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Fig. 2. Defocus blur variation with respect to depth. The
parameters of the camera are: focal length f = 25 mm, f-
number F/# = 3, pixel size 5 µm and s = 25.3mm. The IFP
distance is zIFP = 2m.

Several observations can be made from this figure.
First, DFD appears feasible as there is an important
variation of the blur size with respect to depth within
the considered range. One can also note that the blur
size |ǫ| vanishes at z = zIFP, i.e., at the IFP position. As

mentioned before, in this region, the PSF size is actually
related to diffraction. In this paper, we assume that the
diffracted PSF is smaller that one pixel, in other words,
that the camera resolution in the IFP is limited by the
sensor. There is a depth range where this assumption
is valid, referred to as the depth of field (DoF). No blur
variation can be measured in the DoF, which is then a
”blind region” for DFD. Finally, in a large part of the
depth range, two different depths correspond to a single
blur size. This ambiguity cannot be resolved with con-
ventional optics having a symmetric aperture. Hence,
in this paper, we assume that the object position with
respect to the IFP is known (in front or behind) and
study the local depth estimation accuracy.

1.B. Related works

Most of the works on DFD performance concern DFD
with multiple images. In [13], the performance of DFD is
compared with stereoscopic approach performance. The
authors show with geometrical arguments that in DFD,
the aperture plays the same role as the baseline in stereo.
However, as we will show in this paper, an analysis based
on geometrical considerations only is not sufficient to ex-
plain SIDFD accuracy. They also analyse the optimal
change of the focus settings in two images DFD, how-
ever their approach is based on a perturbation of the
frequency spectrum ratio of the two images used to es-
timate the depth so it cannot account for the specific
processing involved in SIDFD. The influence of the op-
tical parameters in DFD with a conventional camera is
studied in [14, 15]. A depth estimation accuracy formula
is derived taking into account geometrical defocus blur,
diffraction and pixel sampling for one in-focus and one
out-of-focus image, a case that is more related to Depth
from Focus (DFF) than DFD. Besides, this approach
does not account for the influence of the processing on
depth estimation. In [16], a Cramér Rao Bound (CRB)
is derived to optimize the blur ratio between the two im-
ages to maximize the DFD accuracy. The case of SIDFD
is only considered to assess the gain brought by multiple
image DFD.

The present work is also based on the computation of
a CRB. Indeed, the CRB is a generic tool of statistics
which allows to quantify the minimal estimation error on
a parameter [17]. It has been used for several 3D esti-
mation problems, for instance in microscopy to quantify
the error in particle position estimation [18, 19] or to es-
timate the SIDFD performance of a camera with a phase
mask [20, 21]. In contrast, this paper focuses on SIDFD
with a conventional camera.

Application of the CRB methodology to assess SIDFD
performance is difficult because the problem has two un-
knowns: the scene and the depth map. In this respect,
SIDFD is strongly related to blind deconvolution [22].
SIDFD algorithms are thus usually based on some as-
sumption on the unknown scene: a scene with sharp
edges is assumed in [7], while learning from a database
is proposed in [8], and parametric statistical models of
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the scene gradients are used in [5, 6, 9]. To study the
performance, it is preferable to use a generic model of
the scene, in order to broaden the range of validity of the
model. Furthermore, it is also important to minimize the
number of parameters allocated to the description of the
scene, already knowing that SIDFD is a problem with a
large number of parameters for the optical system and
the processing. Here, following [9], a Gaussian model of
the scene gradients is used. Thanks to an original statis-
tical framework based on improper random vectors, we
are able to derive a simple expression of the CRB, while
minimizing the number of parameters of the problem.
The resulting CRB can be used as an estimate of the
expected accuracy of depth estimation. It depends on
the parameters of the camera (optics and sensor) and of
the numerical processing (signal to noise ratio (SNR),
size of the patch used for local depth computation). It
can be computed for all depths where the PSF is known,
which allows to quantify the variation of performance
over some range of use.
Finally, note that criteria related to SIDFD perfor-

mance have been proposed in [6, 8] for the comparison
and optimization of coded apertures. However, these cri-
teria return a global score for an aperture shape. They
do not permit to quantify the variation of performance
with depth and the authors do not study the influence
of other parameters than the shape of the aperture.

1.C. Outline of the paper and main contributions

In Section 2 we describe a SIDFD performance model
based on geometrical considerations. We discuss its lim-
itations, that have led us to develop a new statistical
performance model. Sections 3 to 7 are dedicated to
the derivation of the proposed model and to its applica-
tion on a conventional camera. They contain the main
contributions of the paper:

• Section 3 describes the statistical framework and
derive the CRB ;

• the CRB is computed for a particular camera in
Section 4, then a discussion on the SIDFD perfor-
mance for different optical configurations is done
in Section 5 ;

• an approximate analytical expression of the CRB
for large blurs is given in Section 6: it highlights
the influence of optical and processing parameters
on the SIDFD accuracy ;

• Section 7 illustrates the predictive capacity of the
performance model on experimental data.

We conclude and propose directions of future research in
Section 8. Technical developments, in particular about
improper random vectors and their use for inference, are
deferred to the Appendices.

2. Geometric SIDFD performance model

In order to model depth estimation accuracy, a natural
approach is to derive the sensibility of the defocus blur

size with respect to depth using geometric optical argu-
ments. Thus we differentiate Eq. (2) with respect to the
depth, which yields:

dǫ

dz
=

f2zIFP
F/#z2(zIFP − f)

≃ f2

F/#z2
. (3)

Note that here we assume zIFP ≫ f , i.e., the camera is
used for macroscopic and not microscopic observations.
Thus the depth estimation accuracy is:

dz ≃ F/#z
2

f2
dǫ. (4)

Note that this results is similar to the depth shift for-
mula obtained in [15] using a Taylor expansion of the
depth of field expression close to the IFP. Eq. (4) shows
that dz depends on dǫ, which can be interpreted as the
smallest blur variation that can be distinguished by pro-
cessing. One can write dǫ as a fraction of the pixel size
px, i.e., dǫ = βpx. To get a first order evaluation of
SIDFD accuracy, let us consider that β = 1. Fig. 3
shows the variation of the accuracy dz given by Eq. (4)
for an example of camera with optical parameters given
in Table 1.
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Fig. 3. Geometric accuracy of depth estimation for the imag-
ing system with parameter values given in Table 1.

Focal length 35 mm

F/# 2.8

β 1

px 12 µm

Table 1. Optical parameters of a Nikon D200 with a 35mm
focal lens, used to plot the geometric performance model of
SIDFD in Fig. 3.

According to Fig. 3 and Eq. (4), depth estimation ac-
curacy varies in z2, which is usual in passive ranging
systems. Moreover, replacing the ratio f/F/# by the
aperture diameter 2R, one gets

dz ≃ z2

2Rf
dǫ. (5)

Such an expression is similar to that of the depth accu-
racy in stereoscopy, where 2R and dǫ would play the role
of the baseline and of the minimum measurable dispar-
ity, respectively. This is consistent with the performance
comparison of stereoscopy and DFD conducted in [13].
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Several limitations of the model given by Eq. (4) can
be raised. First, accuracy monotonically improves for
small depths. However, as shown in Eq. (1) and Fig. 2,
when z vanishes, the blur size becomes infinite. This
leads to homogeneous images where blur estimation is
unlikely to be the most accurate at these depths. Be-
sides, in the DoF, no blur variation can be observed, so
it will reduce the depth estimation accuracy, which does
not appear in this model. In addition, among the opti-
cal and sensor parameters, the focal length, the aperture
and the pixel size influence the accuracy but not the po-
sition of the in-focus plane. However, a focus change first
alters the in-focus plane position, and hence the position
of the DoF, but it also modifies the defocus blur size for
a given depth. Thus it should influence the accuracy of
depth estimation. Finally, expression (5) only takes the
optical parameters into account, and not the processing
parameters related to blur estimation such as the noise
level, or the number of datapoints available for the depth
estimation. For all these reasons, a more precise DFD
performance model is required.

3. DFD statistical performance model

The proposed performance model for SIDFD is based on
a Bayesian framework to model the scene and the data.
The scene model is a simple and generic Gaussian prior
on the scene gradients. In this framework, we derive a
data likelihood where the unknown scene is marginalized
out. The latter marginal data likelihood is then used to
calculate the CRB.

3.A. Data model

A blurred image y from a scene x is usually modelled
using the relation:

y = hz ∗ x+ n, (6)

where n is the acquisition noise and hz the PSF at depth
z. As depth varies in the scene, this relation is assumed
to be valid only locally. Using the vector representation
on image and scene patches, we have:

y = Hzx+ n, (7)

with y (respectively x) collects the N (resp. the M)
pixels of the image (resp. scene) patch in the lexico-
graphical order. n stands for the noise process and Hz

is a convolution matrix. The acquisition noise is mod-
eled with a zero mean white Gaussian noise (WGN) of
covariance σ2

nIN , where IN is the N×N identity matrix
and σ2

n the noise variance. The issue in SIDFD is that
Eq. (7) has two unknowns: the depth and the scene.
Thus, some assumptions on the scene have to be made
to estimate the depth.

3.B. Scene model

We choose to model the scene distribution with a Gaus-
sian prior on the scene gradients:

p(x|σ2
x) ∝ exp

(
−xtDtDx

2σ2
x

)
, (8)

where D is the vertical concatenation of the convolution
matrices relative to horizontal and vertical first order
derivative kernels [−1 1] and [−1 1]t and parameter σx

is a standard deviation. This simple and generic model,
which can be physically interpreted as a 1/f2 decrease
of the scene spectrum, has previously yielded good re-
sults in single image blur identification [9, 12, 22]. In
Section 7, we show that it is also valid to predict the
DFD performance on real scenes. Note that here the
precision matrix DtD/σ2

x, which corresponds to the in-
verse of the covariance matrix, is singular, since 1 is an
eigenvector associated to the eigenvalue 0. As a conse-
quence, the covariance matrix of such a random vector
is not well defined. According to the definition given
in Appendix A.1, x is an improper Gaussian random
vector (IGRV). Improper models are not uncommon in
statistics, the most famous example being the Brown-
ian motion. A usual trick to ensure the existence of the
covariance matrix is to use a slightly modified prior:

p(x|σ2
x) ∝ exp

(
−xtDtDx

2σ2
x

+ ǫ||x||2
)
, (9)

see [23] for instance. However, such a modification adds
a parameter to the problem, which has to be tuned to get
relevant results. Indeed, it is unnecessary here, since the
next section shows that we can directly use an improper
prior provided some care is taken to manipulate well
defined quantities.

3.C. Marginal likelihood derivation

Derivation of a marginal likelihood from Gaussian quan-
tities is straightforward when covariance matrices ex-
ist [24, Section 4.3.2]. Here, the scene x is modelled as
an IGRV and y, being a filtered and noisy version of x,
is also an IGRV, see Theorem 1 of Appendix A.3. Using
Eq. (7), it can be shown that the precision matrix of y
is:

Qθ =
1

σ2
n

Pψ, (10)

Pψ = I −Hz

(
Ht

zHz + αDtD
)
−1

Ht
z, (11)

where α = σ2
n/σ

2
x can be interpreted as the inverse of

a signal to noise ratio (referred to as inverse SNR),
θ = {σn, ψ}, and ψ = {α, z}. Note that matrix
Ht

zHz + αDtD in (11) is full rank since Hz and DtD
respectively correspond to a band pass and a high pass
operator, so that their null spaces have an empty inter-
section. In appendix A.2, we prove that a likelihood can
be derived in the case of an IGRV, according to Propo-
sition 1 below.

Proposition 1 Let y be an IGRV with a precision ma-
trix Qθ, and let us assume that the kernel of Qθ does not
depend on θ. Then, inference about θ can be conducted
using the likelihood function:

p(y|θ) =
∣∣∣∣
Qθ

2π

∣∣∣∣
1
2

+

exp

(
−1

2
ytQθy

)
, (12)
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where |A|+ refers to the product of the non zero eigen-
values of a symmetric matrix A, with the eigenvalues
raised to the power of their multiplicity.

To apply this result, we have to study the kernel of Qθ

given by Eqs. (10) and (11). According to Corollary 1
in appendix A.3, one has:

KerQθ = HzKerDtD = HzKerD = Hz1, (13)

and Hz1 ∝ 1 because Hz is a convolution matrix. Thus,
KerQθ is indeed independent of θ and the likelihood
p(y|θ) is given by (12).

3.D. Cramér Rao Bound for depth estimation

As shown in Appendix A.4, the Fisher information rel-
ative to the estimation of parameter θ from a sample of
an IGRV having a precision matrix Qθ is

FI(θ) =
1

2
tr

(
Qθ

+ dQθ

dθ
Qθ

+ dQθ

dθ

)
, (14)

where + denotes the pseudo inverse. Here we assume
that the only variable parameter is depth z so that
θ = {z}. Thus we use the scalar information:

FI(z) =
1

2
tr

(
Pz

+ dPz

dz
Pz

+ dPz

dz

)
. (15)

The CRB, defined as the inverse of the FI,

σ2
CRB(z) = FI−1 = 2

(
tr

(
Pz

+ dPz

dz
Pz

+ dPz

dz

))
−1

,

(16)
is the lower bound of the variances of all possible unbi-
ased estimates of depth [17]. σCRB(z) is homogeneous to
a depth and can be considered as the accuracy of depth
estimation by SIDFD at depth z.

3.E. Computation of the performance model

Not surprisingly, according to Eq. (11) and (16) the
SIDFD performance based on CRB depends on the
knowledge of the PSF hz at any depths z. A camera
PSF depends on all relevant characteristics of the sys-
tem such as diffraction, defocus, optical aberrations and
sensor integration. Given all these deformations, several
papers assume that the shape of the PSF is Gaussian
[1, 2, 16]. In [14], it is modeled as the convolution of
a Bessel, a pill-box and a square function to model re-
spectively the diffraction, defocus and pixel integration.
A finer PSF model including optical aberrations can be
computed using Fourier optics principles [25], or, if the
lens settings are known, be derived from an optical de-
sign software such as Zemax. Finally, to get the PSF
as close as possible to the actual camera PSF one can
calibrate the PSF using high frequency patterns [6, 26].
Given the PSF hz, the convolution matrix Hz is built

for a given patch size and matrix Pz is then computed
using Eq. (11) for some value of the inverse SNR α. The

derivative dPz

dz in Eq. (16) can be approximated with
several numerical approaches, here we use the centred
finite difference:

dPz

dz
≃ Pz+δ − Pz−δ

2δ
, (17)

where δ is a small depth variation with respect to z.
Computing σCRB(z) hence requires the four matrices
{Pz, Pz−δ, Pz+δ}, and thus the knowledge of the PSF
at z − δ, z and z + δ.

4. Single image DFD performance: an example

The proposed performance model is used for a conven-
tional camera with optical parameter values given in Ta-
ble 1. Such values correspond to a Nikon D200 camera
with a 35 mm focal lens, used in the experiments in Sec-
tion 7. As in several previous references [1, 2, 16], the
PSF hz is simply modelled as a 2D Gaussian function:

hz(u, v) =
1

2πτ2(z)
exp

(
−u2 + v2

2τ2(z)

)
, (18)

where the standard deviation τ(z) is given by
τ(z) = ρǫ(z)/px, with ρ = 0.3, a parameter tuned so
that the widths of the simulated PSFs match those ob-
tained using Fourier Optics formula [25] and ǫ given by
Eq. (1) or (2) . Fig. 4(b) shows the variation of σCRB

with respect to depth for an IFP at zIFP = 1.8m, with
a patch size of 21 × 21 pixels, δ = 1 mm and using two
values of the inverse SNR α = 0.01 and 0.001. Fig. 4(a)
shows the PSF size variation with respect to depth. The
geometric model of Eq. (5) is also plotted in Fig. 4(b)
for comparison and a zoom close to the IFP is plotted in
Fig. 4(c). The proposed performance model overcomes
all the limitations of the geometric model, which have
been listed in Section 2. First, it presents a divergence
around the IFP, in the DoF where no PSF variation is
measurable. Second, it predicts the performance degra-
dation for small depths due to the increasing of the PSF
size. Third, it accounts for the noise level, which, as
expected, has a major influence on the performance of
SIDFD. Fig. 4(c) shows that increasing the SNR slightly
improves the best performance and broadens the region
of high accuracy, but its main effect is to change the
increasing rate of σCRB when going away from the IFP.

Finally, whereas for the geometric model the best per-
formance is obtained for the smallest depths, the pro-
posed model predicts that the best accuracy on the es-
timated depth is obtained just after the DoF, i.e., for
depths 1.7m and 2.0m in the case illustrated in Fig. 4(b).
In other words, the best accuracy is obtained in the re-
gions where the imaging system is slightly out of focus.
Such a result is consistent with a study of [18] on lo-
calization of particles, where the authors concluded that
the best accuracy was obtained from slightly out-of-focus
acquisitions.

5. Performance study

In the following we study the impact of tuning two basic
camera parameters : the position of the IFP and the
aperture size.
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Fig. 4. (a) Geometrical blur size with respect to depth for
the imaging system whose parameters are given in Table 1,
with the in-focus plane at 1.8m. (b) Corresponding variation
of geometrical performance model dz and of σCRB for two
values of the inverse SNR α, with respect to depth. c) Zoom
of the figure (b) close to the IFP.

5.A. Variation of the in-focus plane

We consider again a camera with parameters given by
Table 1 and modify the position of the IFP by chang-
ing the sensor position s with respect to the lens, all
other optical parameters remaining fixed. Two config-
urations are compared in Fig. 5(a) to (c), the first one
with an IFP at zIFP = 1.5m, the second at zIFP = 1.8m.
Fig. 5(a) and (b) respectively show the variation of the
geometric blur size and the SIDFD performance for both
configurations. Fig. 5(c) is a zoom of Fig. 5 (b) close to
the IFP.

As expected, both configurations lead to a divergence
around the IFP. Note that the blind region (i.e., the
region where SIDFD diverges) is larger for zIFP = 1.8m,
because the DoF increases with the distance of the IFP
from the camera. Fig. 5(b) shows that, in contrast with
the conclusions derived from the geometrical model, the
SIDFD performance for a given depth highly depends on
the IFP position. Let us browse the curves of Fig. 5(b)
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Fig. 5. Influence of the position of the IFP on the SIDFD
performance. Geometrical blur size (a) and σCRB variation
(b) with respect to depth for a camera with parameters given
in Table 1, for zIFP = 1.5m and zIFP = 1.8m. (c) Zoom
of figure (b) around the IFP. The inverse SNR is fixed at
α = 0.001.

according to increasing depths: for z < 1.4m the best
performance is obtained with the IFP at 1.5m; between
1.45 and 1.6m the IFP at 1.5m leads to a divergence of
σCRB and the best choice is zIFP = 1.8m; both choices
lead to similar performance around z = 1.65m; IFP at
1.8m diverges between 1.7m and 1.9m; and finally, for
z > 1.9m, zIFP = 1.8m yields the best performance.

Two points must be highlighted, as we will see in the
following that they are general properties of SIDFD.
First, far from the IFP, i.e., for the regions z < 1.4m
and z > 1.8m, the best performance is obtained with
the IFP closest to the considered depth. By comparing
Fig. 5 (b) and (a) it can be noted that, in theses regions,
the best performance is then obtained with the setting
having the sharpest PSF. Second, looking more closely
at the region between the two IFP, we note that depth
z = 1.64m where the two settings give the same perfor-
mance is exactly the depth where they lead to the same
size of blur (2 pixels).
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These facts indicate that SIDFD performance is not
only related to depth, as implied by the geometrical
model, but also to the blur size.

5.B. Changing the aperture

We now consider the influence of the aperture in Fig. 6,
all other parameters being fixed. In particular the in-
verse SNR α is fixed which implies that the integration
time is adapted to aperture size in order to keep a con-
stant input flux. Note that aperture is quite naturally
related to SIDFD performance. Indeed, following the
geometrical model, one could intuitively expect that di-
minishing the aperture would lead to a lower SIDFD per-
formance, as it lowers the rate of PSF’s variation with
depth and also enlarges the DoF, see Fig. 6(a). However,
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Fig. 6. (a) and (b): geometrical blur size and σCRB varia-
tion with respect to depth, respectively, for a camera with
parameters given in Table 1, with various aperture radii. ǫ

is calculated using Eq. (1) and inverse SNR α = 0.001.

Fig. 6 (b) shows that this reasoning is only true in the
vicinity of the DoF, i.e., in the region 1.5m < z < 2m
in the proposed example. Outside this region, the or-
der of the curves is reversed: the smaller the aperture,
the better the performance. Once again, we can remark
that, far from the DoF, the tuning which leads to the
best performance is the one which is associated to the
smallest PSF. The next section analyses more deeply
this relation between performance and blur size.

6. Asymptotic approximation of the performance for
large blurs

In this Section we show that the observations made in
the previous section about the relationship between per-
formance and blur size are actually general properties

of SIDFD far from the DoF, in the asymptotic domain
where the blur size is large |τ(z)| > 1 and α < 1. Indeed,
in this domain, an analytical formula for SIDFD accu-
racy can be obtained under the assumption of a Gaussian
PSF and by approximating the convolution operators H
and D by circular matrices. The calculations, detailed
in Appendix B, lead to a product of two terms:

σBCR(z) ≃ η(z)β(N, τ(z), α). (19)

The first term, η(z) =
z2F/#

f2 , is the inverse of the defocus

blur variation with respect to depth dǫ/dz of Eq. (4). It
describes the impact of the geometrical configuration of
the system on the performance. As already discussed,
this term is independent of the position of the IFP and
favours a high rate of variation of the defocus blur with
respect to depth. The second term writes:

β(N, τ(z), α) = κpx
τ2(z)

√
Nρ

(
ln τ2(z)

α − ln ln τ2(z)
α

)3/2

(20)

with κ =
√
6π and τ(z) = ρǫ/px. This term accounts

for the processing part of the SIDFD system, i.e., the
accuracy that can be expected when identifying the blur
level by processing a patch of the image. Not surpris-
ingly then, it is an increasing function of the inverse SNR
α and varies in 1/

√
(N), where N is the number of pix-

els in the patch. The dependency of β with respect to
the blur size τ(z) is less easy to infer. It can be shown
that the function

γ(x) =
x

(lnx− ln lnx)3/2

is positive and monotonically increasing when x > 1. As
a consequence, in the domain considered here (|τ(z)| > 1
and α < 1), β is a monotonically increasing function of
|τ(z)|: some examples are plotted in Figure 7. This term
then favors small blur sizes to improve performance. In-
deed, in practice large blur sizes lead to homogeneous
images for which identification of the PSF, or estimation
of depth, is inaccurate. Thus the performance of a con-
ventional SIDFD camera results from two factors having
contradictory behaviour with respect to the size of blur:
η favours configurations having large PSFs, while β leads
to select small PSF.
In Section 5, we have numerically observed the impact

on σCRB of tuning two basic camera parameters:position
of the IFP and aperture size. It is now interesting
to study again the effect of these two parameters to
interpret the observations made in Section 5 with the
proposed analytical formula.

We now study again the consequences of tuning only
the IFP, all other parameters being fixed. As already
mentioned, the geometrical term does not depend on
the IFP. The variation of performance when tuning zIFP
is then completely described by the behavior of β. Ac-
tually, the term β depends on the IFP only through
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Fig. 7. Variation of β given in Eq. (20) with respect to τz, for
three values of inverse SNR α, for a camera with parameters
given in Table 1.

τ(z), the relation between both parameters being given
by Eq. (2). This leads to two consequences which have
been already observed in Section 5.A. First, two con-
figurations with identical blur size have identical perfor-
mance. Second, far from the DoF, the best performance
is obtained with the configuration having the smallest
PSF. This lead to put the IFP as close as possible to the
range of depth of interest.
Let us now tune the f-number F/#, leaving all other

parameters unchanged. Increasing F/# increases η, but
reduces the size of the PSF, hence lowers β. In this
situation, the contradiction between both terms can be
resolved by rewriting Eq. (19) using (2) as follows:

σBCR ≃ κ
z(z − zIFP)

zIFP − f

τ(z)√
N(ln τ2(z)

α − ln ln τ2(z)
α )3/2

.

(21)
The f-number F/# only affects the fraction on the right
part, through τ(z). As this term is increasing in τ(z),
the best accuracy is obtained for the smallest blur
size, and hence for the smallest aperture. This result
is consistent with the conclusion of Section 5.B for a
depth range far from the IFP.

To summarize, our study in the asymptotic domain
|τ(z)| > 1 shows that far from the IFP, the accuracy
of SIDFD is governed by the performance of the pro-
cessing, which depends mainly on the blur size. This
explains why, in this domain, the best performance is
always obtained with the parameters giving the small-
est blur.

7. Experimental validation of the model

So far, our results are theoretical, based on various ex-
pressions of the accuracy σCRB(z) derived from models
of the scene and the camera. Our aim in this Section
is to present an experimental validation of our theoreti-
cal performance model, through empirical evaluation of
SIDFD on real textured scenes acquired with a real cam-
era. However, trying to reach experimentally the theo-
retical performance levels is a very difficult task which
requires a carefully controlled experiment. Our objective

here is only to evaluate experimentally the relative per-
formance between different configurations and demon-
strate that the experiment matches the theoretical pre-
diction, in the sense that the best configuration in the
theoretical study leads to the best empirical results.
We first present the SIDFD algorithm used to esti-

mate the depth, which is an extension of the blur iden-
tification method proposed in [9]. Then we describe our
experimentations. As in Sections 5 and 6, they essen-
tially consist in changing the IFP and the aperture and
compare the SIDFD performance, this time empirically.

7.A. SIDFD estimation

7.A.1. Principle

PSF identification following Ref. [9] is conducted over
patches of the image where depth is assumed constant.
The estimated depth z is selected among a finite set of
potential depth values {z1, ..., zk, ..zK}, each one being
related to a unique PSF thanks to a calibration process.
The selection criterion is derived within a maximum like-
lihood framework, as described in the following Section.

7.A.2. Criterion for depth estimation

Using Proposition 1 and the notations of Sec. 3.C the
log-likelihood of the data can be written as:

ln p(y|ψ, σ2
n) =

1

2

(
ln |Pψ|+ − (N − 1) ln(2πσ2

n)−
yTPψy

σ2
n

)
,

(22)
where the notation ψ = {z, α} is used for conve-
nience. This expression can be simply maximized
over σ2

n, the maximum being reached for the value
σ̂2
n = ytPψy/(N − 1). Introducing this value in (22)

leads to a generalized likelihood that depends only on
z and α:

ln p(y|ψ, σ̂2
n) =

1

2

(
ln |Pψ|+ − (N − 1) ln(ytPψy) + b

)
,

(23)
where b is a constant. Maximizing this likelihood is
equivalent to minimizing the function:

GL(ψ) = GL(z, α) = |Pψ|1/(N−1)
+ ytPψy. (24)

Finally, for each patch, the DFD problem reduces to the
optimization of a cost function over two parameters:

k̂, α̂ = argmin
k,α

GL(zk, α). (25)

Parameter α > 0 fixes the inverse SNR for the considered
patch. k is the index of depth within the finite set of
potential depth values {z1, ..., zk, ..zK}. Details on the
implementation of the algorithm are given in [9].

7.B. Experimental evaluation of SIDFD

Experimentations are conducted with D200 Nikon cam-
era with a standard 35 mm lens whose main parameters
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are given in Table 1. This camera is used with differ-
ent IFP positions and different apertures. For each set-
ting, the PSFs are calibrated using the PSF estimation
method of [26], using a calibration pattern located in
several potential depths behind the IFP, with a step of
5 cm between each position. Depth estimation perfor-

Fig. 8. Texture scene acquired at different depths for exper-
imental DFD accuracy evaluation.

mance by SIDFD is evaluated on a real planar and tex-
tured scene shown in Fig. 8. This scene has the spectral
content corresponding to the scene model of Eq. (8). It
is positioned in a fronto-parallel configuration at vari-
ous depths in the range defined by the calibration step.
For each acquisition, a region of size 200 × 200 pixels
around the image center is extracted and cut into 80
non overlapping 21× 21 patches. For each patch, depth
is estimated by solving Eq. (25) on the pixels corre-
sponding to the green raw channel. Standard deviation
(Std) and bias are evaluated with respect to a ground
truth given by a telemeter.

7.B.1. Variation of the IFP

The focus of the camera is manually set at zIFP = 1.5m
then at zIFP = 1.8m. In both cases, the f-number is 2.8
and a fixed integration time is used. Empirical perfor-
mance of SIDFD is represented in Fig. 9.
Fig. 9 shows the bias and the standard deviation. The

former is limited with respect to the latter, so we focus
on the standard deviation. The standard deviation ob-
tained with the IFP at zIFP = 1.8m is significantly lower
than with the IFP at zIFP = 1.5 over the whole range of
depths (2.1m to 2.5m) which has been evaluated. This
result is consistent with our theoretical study, in par-
ticular with the conclusions of Section 5.A. Indeed, as
predicted by the proposed performance model, depth es-
timation accuracy varies with the position of the IFP
and favors the IFP located closest to the range where
depth is estimated.

7.B.2. Aperture size variation

Two f-numbers of 4 and 2.8 (corresponding respectively
to aperture radius of 4.4 mm and 6.25 mm) are selected
manually on the camera. The depth range is 1.7 to 2.1 m
with the IFP put at zIFP = 1.5 m. Here the integration
time is adapted so that the input flux is the same for
the two apertures, in order to modify only the size of
the PSF and not the value of the inverse SNR α.

Fig. 10 shows that both configurations have a limited
bias below the calibration step, while they have signifi-
cantly different standard deviations: the lowest aperture
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Fig. 9. Experimental performance of SIDFD for two different
IFP positions as a function of depth. Left: bias in cm, right:
standard deviation in cm.
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Fig. 10. Depth estimation experimental mean error (a) and
standard deviation (b) obtained for two different aperture
radii, with the same IFP position.

radius leads to the best accuracy. This experimental ob-
servation is consistent with our theoretical performance
study, in particular Fig. 6 which predicts that, far from
the IFP, the best configuration is the one with the small-
est aperture radius i.e., the highest f-number.

8. Conclusion

We have presented a new performance model for estima-
tion of depth from defocus using a single image (SIDFD).
It is essentially a CRB derived within a Bayesian statis-
tical framework using a generic model of the scene and
can be computed for every depth in the range where the
PSF of the camera is known.
Several results about SIDFD can be drawn from this

model. For SIDFD with a conventional camera, one can
distinguish three behaviors in the performance curve de-
pending on the considered range. The depth of field,
i.e., the region close to the IFP where the PSF size is
below the pixel size, is a blind region where depth is not
measurable. Far from the IFP, the depth estimation ac-
curacy is limited by the performance of the processing
and governed mainly by the size of the PSF: the smaller
the PSF, the better the performance. Finally, the best
performance is obtained near the DoF where the camera
is slightly out of focus. In these regions, one has the best
resolution in depth, but this high accuracy is restricted
to a very narrow range of depths.
As it accounts for both camera settings (focal length,

f-number, focus) and processing parameters (SNR, patch
size) the proposed model can be used for the joint de-
sign of a SIDFD system i.e., the tuning of optical and
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processing parameters to optimize the performance in a
given range. In the case of a conventional camera used
in a range of depths located beyond the DoF, we have
studied the influence of two parameters: the focus and
the aperture. Our model predicts that the best perfor-
mance will be reached by moving the IFP closer to the
range of interest (in the limit of letting this range out
of focus) and by reducing the f-number. These predic-
tions have been confirmed by an empirical evaluation
conducted on real images using a consumer camera. It
should be emphasized that these conclusions stem from
the study of the dependence of the SIDFD performance
with respect to the size of the PSF, which is an original
feature of our work.

An interesting perspective is to apply this model to
the design of SIDFD systems with unconventional cam-
eras, for instance cameras having coded apertures, or a
chromatic lens [6, 11, 12].

Appendix A: Fisher Information using improper Gaus-
sian prior

Inference using finite dimensional IGRVs is not much
documented in the statistical literature, a notable excep-
tion is Besag and Kooperberg’s work [27]. However, the
latter addresses the problem of improper precision ma-
trix estimation from second order increment statistics,
and not the issue of generalizing the likelihood function.
Definition of a likelihood with improper priori are given
in [28, 29] but their justifications applies only to their
application that is the estimation of the regularization
parameter. We propose in the following a generalization
to more general parameters estimation, in particular to
parameters related to the PSF.

A.1. Definition and properties of IGRVs

One difficulty of dealing with IGRVs is that classical
results about covariance propagation with linear trans-
forms cannot be used because IGRVs have no covari-
ance, indeed they do not have a probability density func-
tion, because they do not live in a probability space, but
rather in an unbounded measure space [30]. This leads
to the following definition of an IGRV.

Definition 1 The random vector X is an improper
Gaussian random vector (IGRV) with precision matrix
Q if its measure has a density of the form pX(x) ∝
exp(− 1

2x
tQx), with Q a non negative definite (NND)

singular matrix.

Inference on an IGRV requires the use of several lemmas
and propositions that are introduced hereafter. The fol-
lowing lemma deals with the propagation of precision
matrices with respect to linear transforms.

Lemma 1 Let X be an IGRV with a M ×M precision
matrix Q, and A be a regular matrix. Then Y = AX is
an IGRV with precision matrix A−tQA−1.

Proof Let B be any measurable set on R
M , by a

change of variable y = Ax under the integral we have:
∫

B

exp
(
−1

2
xtQx

)
dx

=

∫

A(B)

exp
(
−1

2
ytA−tQA−1y

) dy

|A| = ∞. (26)

This means that Y is also an IGRV, with A−tQA−1 as
precision matrix.

The following lemma relies on Lemma 1. It shows that
an IGRV can be split into two parts, a purely proper one
and purely improper one. In other words, the space of
IGRVs can be considered as the set of Gaussian random
vectors (RVs) with regular covariance plus the limit of
the latter when covariance becomes infinite. Conversely,
deterministic behaviour (i.e., singular covariances) are
not allowed in IGRV spaces.

Lemma 2 Let Y be an IGRV of size N with precision
matrix Q and n be the rank of Q, let Ap (resp. Ai) be any
n×N (resp. (N − n)×N) matrix whose rows span the
range (resp. the kernel) of Q. Then Yi = AiY and Yp =
ApY are independent RVs such that Yi is a Lebesgue
measure and Yp is a Gaussian RV with regular precision
matrix (A+

p )
tQA+

p (+ denotes the pseudo inverse).

Proof Let A = (At
pA

t
i )

t. SinceQ is NND, At
pAi = 0,

so A−1 = (A+
p A

+
i ). Using Lemma 1 for (Y t

pY
t
i )

t = AY :

pYp,Yi
(yp,yi) ∝ 1

|A| exp
(
−1

2
yt
p(A

+
p )

tQA+
p yp

)
.

Such a joint density is separable with respect to each
variable (since it is a constant function of yp), so Yp

and Yi are independent. Finally (A+
p )

tQA+
p is regular

because Ap spans the range of Q.

A.2. Likelihood of an improper Gaussian distribution

We are now ready to derive a likelihood for an IGRV
with structured precision matrix parametrized by a pa-
rameter θ, written Qθ. Clearly, Lemma 2 offers a simple
solution: project the data on the range of Qθ to yield a
proper RV. This solution is valid only if the projection
does not depend on θ. The latter remark leads to the
critical requirement in Proposition 1 that the range of
Qθ (or equivalently the kernel of Qθ) be independent on
θ:

Proposition 1 Let Y be an IGRV with structured pre-
cision matrix Qθ, and assume that the kernel of Qθ does
not depend on θ. Then, inference about θ can be con-
ducted with the likelihood:

L(θ|y) =
∣∣∣∣
Qθ

2π

∣∣∣∣
1
2

+

exp
(
−1

2
xtQθx

)
, (27)

where | · |+ is the product of the positive eigenvalues of a
matrix, with the eigenvalues raised to the power of their
multiplicity.
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Proof The proof has two parts. The first one pro-
vides a first likelihood expression (28), which is further
shown to admit the simpler form (27) in the second part.
First part. Since Qθ is NND, the range of Qθ is or-

thogonal to its kernel. Thus, since the kernel of Qθ does
not depend on θ, its range is also independent on θ. Let
Ap (resp. Ai) be any matrix whose rows span the range
(resp. the kernel) of Qθ, so that Ap (resp. Ai) is inde-
pendent on θ. Using Lemma 2, we define a one-to-one
linear mapping between Y and [Y t

pY
t
i ]

t, with Yp and
Yi two independent RVs, Yi is a Lebesgue measure, in-
dependent on θ, and Yp is a Gaussian RV with regular
precision matrix (A+

p )
tQθA

+
p . Therefore, all information

about θ lies in Yp: according to the statistical terminol-
ogy, Yp plays the role of a sufficient statistics. So the
likelihood of θ given the sample y is defined as the like-
lihood for a Gaussian RV given the sample yp = Apy:

L(θ|y) = pYp
(Apy)

=

∣∣∣∣
(A+

p )
tQθA

+
p

2π

∣∣∣∣

1
2

exp
(
−1

2
ytAt

p(A
+
p )

tQθA
+
p Apy

)
.

(28)

The term inside the exponential simplifies to

ytAt
p(A

+
p )

tQθA
+
p Apy = ytQθy, (29)

because A+
p Ap is an orthogonal projection onto the

range of Qθ. But even so, Eq. (28) is still unpracti-
cal due to the determinant: it depends on a particular
choice of a basis of the range of Qθ.

Second part. One can select Ap such that its rows
define an orthonormal basis of the range of Qθ, and we
show hereafter that

∣∣A+t
p QθA

+
p

∣∣ = |Qθ|+ . (30)

First, because of orthonormality, A+
p = At

p, so that

we have to show that
∣∣ApQθA

t
p

∣∣ = |Qθ|+. Let Qθ =

Bt
θΛθBθ denotes an eigenvalue/eigenvector decomposi-

tion including only non zero eigenvalues. Then,

ApQθA
t
p = (ApB

t
θ)Λθ(ApB

t
θ)

t. (31)

Using the following lemma 3, ApB
t
θ is an orthonor-

mal matrix, therefore |ApB
t
θ|2 = 1. It follows that

|ApQθA
t
p| = |Λθ| = |Qθ|+. Putting together (28), (29)

and (30) yields (27).

Lemma 3 Let A and B be two n × N matrices such
that AAt = I and BBt = I and KerA = KerB. Then
ABtBAt = I.

Proof The rows of A define an orthonormal set.
One can complete this set with N − n orthonormal
vectors to form an orthonormal basis. Let C be the
(N − n)×N matrix of these vectors. Then Ã � [AtCt]t

is a N × N unitary matrix. B̃ � [BtCt]t is also a

N × N unitary matrix because BBt = I and BCt = 0
(Ker(A)=Ker(B)). Let us expand ÃB̃t:

ÃB̃t =

[
ABt ACt

CBt CCt

]
=

[
ABt 0

0 I

]
(32)

As the product of unitary matrices ÃB̃t is unitary:

ÃB̃tB̃Ãt =

[
ABtBAt 0

0 I

]
=

[
I 0

0 I

]
(33)

So ABtBAt = I and thus ABt is an orthonormal matrix.

A.3. Precision matrix of a filtered and noisy IGRV

In the present paper, the data are a filtered and noisy
version of an IGRV. The following theorem shows that
in this case the data also follows an IGRV model.

Theorem 1 Let X be an IGRV with M ×M precision
matrix QX . Let H be a N × M matrix and N be a
IGRV independent of X, with N × N precision matrix
QN . Assume that HtQNH + QX is a regular matrix,
then Y = HX + N defines an IGRV with precision
matrix:

QY = QN −QNH(HtQNH +QX)−1HtQN . (34)

Proof Let us start by [X,N ], whose density reads:

pX,N (x,n) ∝ exp− 1

2
(xtQXx+ ntQNn). (35)

Then, performing the linear transform [X,N ] → [X,Y ]
with Y = HX +N

pX,Y (x,y) ∝ exp− 1

2
xtQXx+ (y−Hx)tQN (y−Hx).

(36)

Then performing the linear transform [X,Y ] → [X̃,Y ]

with X̃ = X −Q−1

X̃
HtQNY , QX̃ = HtQNH +QX and

QY = QN −QNH(HtQNH +QX)−1HtQN :

p
X̃,Y (x̃,y) ∝ exp− 1

2
x̃tQX̃ x̃.exp− 1

2
ytQY y. (37)

Therefore, X̃ and Y are independent, and QY is the
precision matrix of Y . While X̃ is proper with covari-
ance Q−1

X̃
, Y is improper. The kernel of QY has a simple

connection with that of QX :

Corollary 1 Under the conditions of Theorem 1, and
the condition that QN is regular,

KerQY = HKerQX . (38)

Proof It follows from (36) and (37) that

xtQXx+ (y −Hx)tQN (y −Hx) = x̃tQX̃ x̃+ ytQY y,
(39)
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where X̃ = x − Q−1

X̃
HtQNy. Let us first show that

KerQY ⊂ HKerQX . Let y ∈ KerQY , and define x =
Q−1

X̃
HtQNy. For such x and y, the r.h.s of (39) is null,

so that both terms of the l.h.s of (39) are null. So x ∈
KerQX and y = Hx, i.e., y ∈ HKerQX . The converse
inclusion HKerQX ⊂ KerQY follows the same route,
but in the opposite way. Let y ∈ HKerQX , there is at
least one x, such that y = Hx and QXx = 0. For such
x and y, the l.h.s of (39) is null, so that both terms
of the r.h.s of (39) are null. In particular ytQY y = 0
means that y ∈ KerQY .

A.4. Fisher information of an improper Gaussian dis-
tribution

For a zero-mean Gaussian statistical model
parametrized by regular precision matrices Qθ, it
can be shown using standard Gaussian identities that
the Fisher information is:

FI(θ) =
1

2
tr

(
Q−1

θ

dQθ

dθ
Q−1

θ

dQθ

dθ

)
(40)

The proof of Eq. (40) can be found in [31], the main dif-
ference is that we parametrize the data density using the
precision matrix instead of the covariance matrix. Using
the results of proposition 1, the latter identity general-
izes to improper Gaussian distributions. It amounts to
replacing the inverse of Qθ by its pseudo-inverse:

FI(θ) =
1

2
tr

(
Q+

θ

dQθ

dθ
Q+

θ

dQθ

dθ

)
(41)

Proof Let A be any n×N matrix whose rows span
the range of Qθ, then Y = AX is a Gaussian vector
with regular precision matrix A+tQθA

+. Using Eq. (40)
with this precision matrix, FI(θ) = 1

2 tr(K
2) with:

K = (A+tQθA
+)−1A+t dQθ

dθ
A+. (42)

Note that we have used the fact that A does not depend
on θ to remove the derivative operator around A. Using
tr(BC) = tr(CB) it follows that:

tr(K2) =

tr

(
A+(A+tQθA

+)−1A+t dQθ

dθ
A+(A+tQθA

+)−1A+t dQθ

dθ

)
.

(43)

It can be shown that the Fisher information does not
depend on a particular choice of matrix A. Moreover, if
we choose A with orthonormal rows we have A+ = At

and:

A+((A+)tQθA
+)−1(A+)t = At(AQθA

t)−1A = Q+
θ .
(44)

Thus, Eq. (41) holds.

Appendix B: Analytical formula of the performance
model for Gaussian PSF

In this section we show that an analytical formula for
σCRB can be derived, assuming that the matrices H and
D are circulant, that the PSF can be modeled with a
Gaussian model and that the defocus blur is large.
Let first recall that according to Eq. (11) and (14) the

σCRB is calculated using:

FI(θ) =
1

2
tr

(
Qθ

+ dQθ

dθ
Qθ

+ dQθ

dθ

)
, (45)

with Qθ = 1
σ2
n
Pψ and

Pψ = I −Hz

(
Ht

zHz + αDtD
)
−1

Ht
z. (46)

Assuming that the matrices H and D are
√
N ×

√
N

circulant, they can be diagonalized [24, Section 4.3.2]:

Hz = W ∗H̃zW (47)

D =

[
W ∗L̃1W

W ∗L̃2W

]
, (48)

where W is the unitary matrix associated to Fourier de-
composition, H̃z, L̃1 L̃2 are diagonal matrices, whose
diagonal coefficients are the 2D DFT of respectively the
PSF matrix h, [−1 1] and [−1 1]t. Using this decompo-

sition, one can write: Pψ = W ∗P̃ψW with

P̃ψ(m) =
α|D̃|2(m)

|H̃z|2(m) + α|D̃|2(m)
, (49)

where |D̃|2 = |L̃1|2 + |L̃2|2 and the shortened notation
M(m) syands forM(m,m) for any matrixM . Replacing
Eq. (49) into Eq. (45) leads to:

FI(ψ) =
1

2

N∑

m=2

(
1

|H̃z|2(m) + α|D̃|2(m)

d(|H̃z|2)
dz

(m)

)2

,

(50)

where by convention |D̃|2(1) = 0. Let |h̃|2 be the

squared modulus of 2D TFD of h and |d̃|2 the sum of
the squared modulus of the TFD of [−1 1] and [−1 1]t.

The lexicographical representations of |h̃|2 and |d̃|2 cor-

respond to the diagonal values of respectively |H̃z|2 and

|D̃|2. We propose to use the following approximations:

|h̃|2(µ, ν, z) ≃ e−4π2τ(z)2(µ2+ν2), (51)

|d̃|2(µ, ν) ≃ 4
(
sin2(πµ) + sin2(πν)

)
. (52)

where µ and ν are reduced frequencies and
τ(z) = ρǫ(z)/px. Derivation of |h̃|2 with respect
to z leads to σCRB(z) = FI(z)−1/2 = A(z)/B(z) with:

A(z) =

√
2z2px

16π2Rs
≃

√
2z2pxF/#

8π2f2
(53)

B(z) = ρτ(z)

√√√√∑

µ,ν

(
(µ2 + ν2)

|h̃|2(µ, ν, z)
|h̃|2(µ, ν, z) + α|d̃|2(µ, ν)

)2

.

(54)
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Calculation of B amounts to analytically calculate:

S =
∑

µ,ν

(µ2 + ν2)2|h̃|4(µ, ν, z)
(
|h̃|2(µ, ν, z) + α|d̃|2(µ, ν)

)2 . (55)

We approximate the sum S with :

Int =

∫∫

µν

(µ2 + ν2)2|h̃|4(µ, ν, z)
(
|h̃|2(µ, ν, z) + α|d̃|2(µ, ν)

)2Ndµdν (56)

=

∫∫

µν

(µ2 + ν2)2g(µ, ν)Ndµdν, (57)

with g(µ, ν) =
|h̃|4(µ, ν, z)

(
|h̃|2(µ, ν, z) + α|d̃|2(µ, ν)

)2 . (58)
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Fig. 11. (a) Slices of g at ν = 0 for three values of the inverse
SNR α.(b) Example of g for α = 0.01 and τ = 2

As illustrated in Fig. 11, g is close to the indicator
function of a disk, whose size depends on the defocus
level and the SNR. It is close to 1 for small frequencies,
corresponding to α|d̃|2 ≪ |h̃|2, and close to 0 for large

frequencies when α|d̃|2 ≫ |h̃|2. Thus we assume that
g = 1 for µ2 + ν2 < t2 and 0 elsewhere. Using polar
coordinates with r2 = µ2 + ν2, Eq. (57) becomes:

Int ≃ 2πN

t∫

0

r5dr =
2π

6
Nt6. (59)

We arbitrary fix the parameter t so that it corresponds to
the intersection of the curves |h̃|2(µ, ν) and α|d̃|2(µ, ν),
besides we use the following approximation:

4
(
sin2(πµ) + sin2(πν)

)
≃ 4π2(µ2 + ν2), (60)

which is valid for small frequencies. This means that t
is the solution of the equation:

4απ2t2 = e−4πτ2(z)t2 . (61)

Eq. (61) can be written as:

XeX =
τ2(z)

α
, (62)

with X = 4πτ2(z)t2. The solution of Eq. (62) corre-

sponds to the Lambert W function value at τ2(z)
α . Thus

one can write:

t =
1

2πτ(z)

√
W

(
τ2(z)

α

)
. (63)

For large x, W (x) ∼ lnx − ln lnx. To use this equiva-
lence we need to assume that τ(z)2 is large with respect
to the inverse SNR α. This assumption amounts to con-
sider that the defocus blur is high, while α is relatively
low. Hence we assume that |τ | > 1 and α < 1. The
combination of Eq.(59) and Eq.(63) gives:

Int ∼

(
ln τ2(z)

α − ln ln τ2(z)
α

)3

N

6(2π)5τ6(z)
. (64)

To conclude B is approximated with:

B(z) ∼
√
Nρ(ln τ2(z)

α − ln ln τ2(z)
α )3/2

τ2(z)(2π)5/2
√
6

. (65)

Combining Eq. (53) and (65),

σBCR(z) ≃ κ
z2F/#px

f2

τ2(z)√
Nρ(ln τ2(z)

α − ln ln τ2(z)
α )3/2

,

(66)

with κ =
√
6π.

Fig. 12(a) and (b) show the variations of σCRB ob-
tained with Eq. (16) with a Gaussian PSF and with
Eq. (66), and the absolute error in percentage, respec-
tively, for a camera with parameters given in Table 1
with the in-focus plane at 1.5 m and the inverse SNR
α = 0.001. The patch size is 31× 31 pixels.
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Fig. 12. (a) σCRB calculated with Eq. (16) and Eq. (66)
for the same camera. (b) Absolute error in percentage of the
analytical formula value with respect to the direct calculation
of (16).

The absolute error away from the in-focus plane is
below 10%, which is acceptable for an asymptotic for-
mula. As σCRB calculated with Eq. (66) is derived from
the approximation of circulant matrices, one can ob-
serve that the error decreases when the patch size in-
creases. In contrast, increasing the patch size induces a
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burdensome calculation of Eq. (16) due to inversion of
Pz and of HtH + αDtD for large matrices. Therefore,
the asymptotic analytical formula should be favored for
large patches.
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