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Abstract

A novel numerical method for multi-objective differentiable optimization,

the Multiple-Gradient Descent Algorithmm (MGDA), has been proposed in

[8] [11] to identify Pareto fronts. In MGDA, a direction of search for which

the directional gradients of the objective functions are all negative, and often

equal by construction [12], is identified and used in a steepest-descent-type

iteration. The method converges to Pareto-optimal points. MGDA is here

briefly reviewed to outline its principal theoretical properties and applied first

to a classical mathematical test-case for illustration. The method is then ex-

tended encompass cases where the functional gradients are approximated via

meta-models, as it is often the case in complex situations, and demonstrated

on three optimum-shape design problems in compressible aerodynamics.The

first problem is purely related to aerodynamic performance. It is a wing

shape optimization exercise w.r.t. lift and drag in typical transonic cruise
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conditions. The second problem involves the aerodynamic performance and

an environmental criterion : a supersonic glider configuration is optimized

w.r.t. drag under lift constraint concurrently with a measure of the sonic-

boom intensity at ground level. The third problem is related to an essential

problematics in wing design : simultaneous drag and structural weight re-

duction. In all three cases, the meta-model-assisted MGDA succeeds in a

few updates of the meta-model database to provide a correct description of

the Pareto front, thus in a very economical way compared to a standard

evolutionary algorithm used for this purpose.

Keywords: Differentiable optimization, numerical methods, multi-objective

optimum-shape design, Pareto optimality, compressible aerodynamics, drag

reduction, sonic boom
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1. Introduction

In multi-objective optimization [31], the notion of dominance in efficiency

is classically introduced to define a partial hierarchy between solutions in the

design space. Considering the simultaneous minimization of the objective

functions {Ji) (i = 1, . . . , n), the design-point Y (1) is said to dominate in

efficiency the design-point Y (2), iff

Ji(Y
(1)) ≤ Ji(Y

(2)) (∀i) (1)

and at least one of these inequalities holds strictly. In a non trivial multi-

objective problem, no design-point exists that dominates all others, but

design-points that are dominated by no other one do exist, and constitute

the so-called Pareto front. The Pareto front is an extremely valuable infor-

mation for the design engineer and devising efficient methods to identify it

offers the numerical analyst an important methodological challenge.

In numerical optimization, two main families of approaches are com-

monly employed, both bearing advantages and disadvantages of their own :

gradient-based methods and evolutionary strategies (see e.g. [1]).

In the literature, gradient-based methods have appeared rather early.

They are very efficient tools for local optimization. When the initial guess

is sufficiently close to the optimum solution, and the gradient available,

they usually result in fast iterations to achieve an accurate convergence to

the desired optimum. However these methods are usually not very robust,

since they rely on the local convexity of the problem. Additionally in PDE-

constrained optimization, developing the exact or approximate expression for

the functional gradient is always a complex task. This difficulty is even more
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severe in multi-objective problems when the convexity or even the continuity

of the Pareto front is not guaranteed.

Evolutionary strategies (ES) are semi-stochastic iterations relying on func-

tion evaluations only. In their principle, operators that imitate evolution (e.g.

natural selection and mutation) are constructed to let a population of design-

points evolve according to successive generations. In general, these methods

are less accurate, very demanding in computational effort, but greatly su-

perior in robustness. An additional advantage of ES is to offer an easier

framework for their extension, or transposition to the multi-objective con-

text, because they solely rely on function values as does the above notion of

dominance in efficiency. In [3], the best-known ES algorithms are compared

on a few representative multi-objective test cases (PESA, SPEA2 [4], NSGA2

[5]).

The present article follows [8] [11] [12] in which a novel numerical method

for multi-objective differentiable optimization, the Multiple-Gradient De-

scent Algorithm (MGDA), has been proposed to identify Pareto fronts. In

MGDA, a direction of search for which the directional gradients of the ob-

jective functions are all negative, and often equal by construction [12], is

identified and used in a steepest-descent-type iteration. The method con-

verges to Pareto-optimal points [8]. These theoretical properties are briefly

reviewed and applied first to a classical mathematical test-case for illustra-

tion.

In PDE-constrained optimization, as in particular, in optimum-shape de-

sign in aerodynamics, calculating the functional gradient by chain’s rule or

an adjoint-equation approach, is a computational endeavour, and a shortcut
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exists consisting in the construction of a local meta-model for the objective

function yielding an approximate gradient. In this article, we investigate this

option in the context of application of MGDA to multi-objective optimization

problems.

Thus after demonstrating MGDA, we develop a strategy to couple MGDA

with adaptively updated Kriging meta-models to compute approximate gra-

dients. Kriging models are very commonly used in aerodynamic optimiza-

tion. The meta-model assisted MGDA is successfully tested on a classical

two-criterion, two-point aerodynamic optimum-shape design of lift and drag

optimization. We then focus on two particular optimum-shape design prob-

lems : (i) the shape optimization of a supersonic wing body configuration

to reduce the sonic boom intensity along with the aerodynamic drag; (ii)

the aero-structural optimization of a wing body configuration to reduce the

structural weight and the drag.
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2. Multiple-Gradient Descent Algorithm (MGDA)

2.1. MGDA principle

We consider the problem of simultaneous minimization of n objective

functions of N design variables, Ji(Y ) (i = 1, . . . , n; Y ∈ RN , design vector).

The dimensions n and N are arbitrary, although in many applications n ≤

N . Let Y 0 be a particular design-point about which the objective functions

are smooth (say C2 in practice) and locally convex. Denote u0i = ∇Ji(Y 0)

(i = 1, . . . , n) the gradients, and define the following convex hull:

U =

{
w ∈ RN , w =

n∑
i=1

αiui,
n∑

i=1

αi = 1

}
. (2)

U is a closed, bounded and convex set associated in the affine space RN with

a polyhedron of at most n vertices. Hence U admits a unique element of

minimum norm, say ω [8]. Two cases are possible:

1. ω = 0, and we say that Y 0 is a point of Pareto-stationarity a necessary

condition for Pareto-optimality;

2. or ω 6= 0, and the directional derivatives of the objective functions

satisfy the inequalities:

(
u0i , ω

)
≥ ||ω||2 . (3)

hence, −ω is a descent direction common to all the objective functions.

In the latter case, we define MGDA as the iteration that uses −ω as

the direction of search, and a step-size adjusted to maximize the smallest

absolute decrease of the criteria. Accumulation points of this method are
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Pareto-optimal designs [8] [11]. In this way, MGDA generalizes to the multi-

objective optimization the classical steepest-descent method [1].

In the particular case of two criteria, the minimum-norm vector is known

analytically. Figure 1 then shows vector ω in the three different possible

cases.

Figure 1: Various possible configurations of the two gradients-vectors u = u1 and v = u2

and the minimal-norm element ω.

As a first illustration of the method, several analytical multi-objective

optimization test-cases proposed in [3] have been solved by MGDA [9], and

some of these results are presented next in comparison with an evolutionary

strategy.

2.2. Analytical validation

The test-case corresponds to the two-objective unconstrained minimiza-

tion of the following functions :
f1(Y ) = 1− exp

(
−

3∑
i=1

(
yi −

1√
3

)2
)

f2(Y ) = 1− exp

(
−

3∑
i=1

(
yi +

1√
3

)2
) , Y = (y1, y2, y3). (4)

The design variable is Y = (y1, y2, y3) ∈ R3. This test-case is known to yield

a continuous but non convex Pareto set in function space. The Pareto front

was identified by Deb using the well-known genetic algorithm NSGA-II [3].
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Figure 2: Convergence of MGDA from an initial design point to the non dominated set.

From a given starting point, MGDA converges quickly (6 steps in this

example) and provides an accurately-defined design-point on the Pareto set.

After applying the method from a set of 60 initial design-points dis-

tributed over a sphere in the design space (see Figure 3), we have obtained

an accurate discretization of the known-analytically Pareto set.

2.3. Meta-model-assisted MGDA

In PDE-constrained optimization, and in particular in optimum-shape

design in aerodynamics, the calculation of function values and their gradi-

ents can be very computationally demanding, and usually requires substan-

tial methodological developments. To alleviate this task, in this article, we

investigate the possibility of calculating approximate gradients from a surro-

gate model, or meta-model, devised from a database of high-fidelity function

values. In the applications considered presently, the high-fidelity models are

associated with 3D compressible flows governed by the Euler or RANS equa-

tions.
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Figure 3: Convergence of MGDA from initial design points around Pareto front, for a

classical test case proposed by Fonseca, in design space (left), in function space (right).

We proceed as follows (see flowchart in Figure 4). An initial set of de-

sign points is generated using of a latin hypercube sampling in RN . The

sampling serves two purposes. Firstly, the function values corresponding to

the sampling form a database supporting Kriging meta-models, surrogate of

the actual objective functions. Secondly, some of these sampling points are

used to initiate independent MGDA iterations applied to the multi-objective

minimization of the meta-models, and converging to Pareto-stationary points

(associated with the meta-models). These Pareto-stationary points are then

evaluated according to the high-fidelity models to enrich the database and

proceed with the next update. A filtering method is used additionally to

remove points found too close to an existing design-point, in order to avoid

redundancy.
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Figure 4: MGDA with surrogate model scheme. A surrogate model based on an initial

database is trained. Then, MGDA [8] is applied from each database point. Thus a non

dominated set on the surrogate model is obtained.

2.4. Application to optimum-shape design for lift and drag optimization

To illustrate the meta-model-assisted MGDA, we consider a two-objective

and two-point shape optimization of a generic aircraft wing. The flow field

is governed by the 3D compressible Euler equations solved by finite volumes

over an unstructured mesh. The optimization problem consists in maximizing

the lift coefficient in subsonic conditions (M∞ = 0.2, AoA = 8o) together

with minimizing the drag coefficient in transonic conditions (M∞ = 0.8,

AoA = 2o) subject to bound constraints on the geometrical variables.

The three-dimensional geometry is generated from an airfoil, the wing

cross sections being made two by two homothetic assuming a linear variation

in the span-wise direction. Thus only the shape in a given section is subject to

the optimization. The reference shape is a NACA0012 airfoil approximated
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via 5 B-spline functions for the upper surface, and 5 other ones for the lower

surface, see (figure 5). The same 10 locations are associated with 10 degrees

of freedom, permitting constrained vertical displacements. The leading and

trailing edges are maintained fixed.

Figure 5: B-Spline shape parametrization through a few control points.

In this numerical experiment, a database of 40 design-points in R10 has

been used to initiate the process. Kriging meta-models are constructed for

lift in the subsonic conditions and drag in the transonic conditions. Figure 6

shows the step-by-step meta-model assisted MGDA convergence with exact

performance re-evaluation. The non dominated set is indicated for the initial

and final databases for comparison, indicating a progressive trend towards the

Pareto front. In this experiment, a total 223 geometries have been evaluated

via 446 flow-field computations. Among the final non-dominated solutions,
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the achieved least drag coefficient was equal to 2.13×10−3, and the maximum

lift to 0.836.

c)
b)

a)

1st step
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Initial db
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Figure 6: MGDA on surrogate model evolution on a classical drag coefficient minimiza-

tion and a lift coefficient maximization. Comparison between the initial and final non

dominated sets.

Figures 7 and 8 provide the pressure distribution in the transonic and

subsonic conditions respectively. Three different span-wise positions , 5%,

50% and 95% are illustrated and compared with the pressure distribution

corresponding to the initial geometry.

Unsurprisingly, the minimum-drag configuration is associated with the

weakest shock-wave, and the maximum-lift configuration with the thickest

airfoils.
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Figure 7: Pressure coefficient distributions evaluated in the transonic conditions (M∞ =

0.83, AoA = 2o) and corresponding to the minimum-drag configuration (left), maximum-

lift configuration (right) and an intermediate configuration (middle). Top/middle/bottom

: 5%/50 %/95% spanwise.

In conclusion, this preliminary experiment has demonstrated the efficacy

of the meta-model-assisted MGDA to approximate the Pareto front from an

initial dataset of design points in a few database enrichment cycles.
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Figure 8: Pressure coefficient distributions evaluated in the subsonic conditions (M∞ =

0.30, AoA = 8o) and corresponding to the minimum-drag configuration (left), maximum-

lift configuration (right) and an intermediate configuration (middle). Top/middle/bottom

: 5%/50 %/95% spanwise.
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3. Application to industrial problems

MGDA has been introduced and validated on analytic functions and on

a simple shape design test case. Due to its efficiency in terms of limited

number of function evaluations required for obtaining a description of the

Pareto front, it is well suited for real life industrial problems based on high

fidelity methods. In the following sections two different applications to multi-

objective shape optimization problems are presented.

3.1. Aeroacoustic shape optimization

The development of civil supersonic transportation implies today several

technological challenges, but one of the most limiting factor is the environ-

mental impact in terms of sonic boom [13] [14].

Since March 1973 supersonic flight overland by civil aircraft has been prohib-

ited in the United States (FAR 91.817). Enough progress on reducing impact

of sonic boom before reach the ground have been achieved during the years,

but the problem still persists. The problem of sonic boom minimization has

been investigated since the fifties and still, nowadays, there is no common

practice to analyze and optimize the shape in order to reduce this deleterious

phenomenon.

Considering an aircraft travelling at a speed superior to the local speed of

sound and a reference system in motion with the aircraft, the body produces

a pressure perturbation in a conical region, called Mach cone that starts

at the nose of the aircraft and intersects the ground forming the primary

carpet. This is the region on ground that have the strongest level of per-

ceived loudness and it has an extension from 10 to 100 km, as a function of
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the aircraft configurations, flight and atmospherical conditions. Looking at

the signal just below and near the aircraft each geometry discontinuity such

as wing, engine nacelle and control surfaces is responsible of multiple com-

plex shocks and expansion waves patterns. During the propagation of these

CFD domain

Far field

Near field

Mid field

Mach cone

Primary carpet

Figure 9: Mach cone and CFD domain.

pressure disturbances to the ground through a non uniform atmosphere, dif-

ferent dominating physical phenomena act to modify the acoustic signature.

Three different regions can be identified: the near-field, the mid-field and

the far-field (see figure 9). The near-field is the region close to the aircraft

whitin some body lengths where the non linear inviscid three dimensional

aerodynamic perturbation theory applies far from the boundary layer re-

gion, generally described using Navier-Stokes equations. The mid-field is the

region where the non linear behaviour of the compressions and expansions

are not negligible. This domain where the flow can be considered inviscid

17



extends from few to hundreds body lenghts. The signal propagates through

this region and reach the ground in the far-field. The typical signature un-

dertrack follows an N-wave pattern, which consists in a shock followed by

a linear expansion and a subsequent pressure rise which restores ambient

pressure. Atmospheric non uniformity, turbulence and aircraft maneuvers

produce drastic variations of the waveform [15]. In the present work only

steady level flight in standard stratified atmosphere conditions without wind

is considered.

One of the most challenging aspect in the modelisation of this phe-

nomenon is related to the different scales between aerodynamics and acoustic

disturbances coupled with a problem domain of more than 10 km. Despite

the extension of the domain and the difficulties highlited some experiences

have been performed. Cheung et al. [16] already in the nineties proposed the

use of parabolized Navier-Stokes equations to predict the mid flow-field point-

ing out the expensive computational cost. CFD computations using Euler

and full-potential equations to the far field evaluation and mesh adaptation

have been evaluated on simple configurations by Kandil et al. [17]. Despite

the continuous increase in computational power, a brute force complete CFD

evaluation for real aircraft geometry is still challenging and appears useless

if no counter-measures based on mesh adaptation are taken into account.

The most accurate and efficient method available today is based on three

layer decomposition methods [18]. It is based on the coupling of an aero-

dynamic and acoustic model. The 3D CFD computation is performed in

the near-field. The sonic boom signal is propagated down to the ground

after a near to far-field matching method that makes the pressure near-field
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compliant with the acoustic model adopted for the propagation. The far-

field propagation is performed using non linear acoustic and in particular the

ray-tracing technique [19]. In the following analysis the near-field domain

is evaluated solving Euler equations with elsA [20], the ONERA in house

CFD solver. The pressure near field is then interpolated on a cylinder that

surrounds the aircraft and used as input for the acoustic code TRAPS [19].

This code performs the propagation through the stratified atmosphere.

In optimization problems this technique is computationally expensive in

particular in preliminary design phases, because of the high number of func-

tion evaluations required. For this reason an efficient optimization algorithm

is required.

3.1.1. Supersonic glider “low boom - low drag” shape design

The application case consists in a wing body configuration with the fol-

lowing flight conditions: Mach number equal to M∞=1.6, flight altitude of

18,000 m and an AoA equal to 2 degrees. The reference geometry considered

shows an overall length is 30m with a wingspan of 18m. The fuselage is

axi-symmetric with cylindrical cabin of length and radius respectively equal

to 11m and 2.03m. The fuselage geometry is obtained using a control line

that is revolved along the longitudinal axis. The control line is defined using

three tension splines curves in order to describe the nose, the middle of the

cabin and the rear part of the fuselage. The wing is a double swept wing

that shows a diedral angle of the outer wing of 3 degree. The wing has a

double convex profile with α0 equal to zero. Along the wingspan no twist

is applied, while the thickness-to-chord ratio t/c evolves linearly from 0.6

to 0.3. Figure 10 shows the set of design variables adopted to describe the
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Figure 10: Supersonic glider parameterisation

complete geometry. The first six design variables (DVs) define the fuselage

and consists in the nose deflection angle αn, a control point on the nose, one

in the middle that has a fixed x-coordinate and another control point that

describes the rear of the fuselage. The wing planform geometry is defined

using the leading edge sweep angle of the inboard and the outboard wing

respectively φ1
BA and φ2

BA, the longitudinal position of the wing xw and the

dihedral angle Λ of the external wing. The set of design variables is written

as :

DV = (αn, x1, z1, x2, x3, z3,Λ, xw, φ
1
BA, φ

2
BA) (5)

The reduced number of variables is an implicit requirements to the con-

struction of a surrogate model with a limited number of individuals in the

starting database. The initial database consists of 50 individuals and it has

been created using a classical LHS method. The DV set represents different
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geometrical entities: angles, relative distances and length. Instead of their

direct use in the optimization problem, to provide a better conditioning of

the problem, a non-dimesional optimization variables set x is adopted . The

optimization variables x are related to the geometry DVs using the following

equation:

DVi = D̄V i(1 + xiδi) ∀i > 1 (6)

where D̄V i represents the geometrical variable of the reference configuration,

δi is the maximum percentage modification allowed to each variable. An

exception is made for the nose deflection variable because D̄V1 is equal to 0,

the following relation is adopted: DV1 = 0.5x1. The design variables set x

can assume values between -1 and 1. Table 1 shows the geometrical variables

and their respective modification allowed.

Variable Specification D̄Vi δi

DV1 nose deflection [deg] 0 -

DV2 x-coordinate nose section [m] 4 2%

DV3 radius nose section [m] 0.8 10%

DV4 radius cabin section [m] 1.015 10%

DV5 x-coordinate rear section [m] 28 2%

DV6 radius rear section [m] 0.535 10%

DV7 dihedral angle [deg] 3 100%

DV8 relative wing position [adim] 0.367 10%

DV9 inner wing sweep angle [deg] 65 10%

DV10 outer wing sweep angle [deg] 56 10%

Table 1: Design variables set definition.
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A common and accepted metrics that is able to describe the outdoor im-

pact of sonic boom is not established today. Pressure based and loudness

metrics such as A-SEL or PLdB are the most common [22]. The sum of the

pressure shocks amplitude is the metric adopted due to its direct relationship

with the ground signature shape, the simplicity and the ability of the param-

eterization to describe the entire geometry and as a consequence shape the

complete undertrack ground signature. A similar metric based on the max-

imum shock amplitude of the ground signature has been proposed for the

European project HISAC [23]. The typical front shock pressure objective is

a subset of this general case and the corresponsing solutions belongs to the

final set at the convergence of the optimization algorithm to the Pareto set.

The objective function for aerodynamics and acoustics are respectively the

drag coefficient and the sum of the shock overpressures of the undertrack

ground signature. A lift constraint is also considered. The problem can be

stated as follows:

Minimize

 J1(x) = cD subject to : g : cL − cL0 ≥ 0 with cL0 = 0.1

J2(x) =
∑

∆p subject to : no constraints

(7)

The same strategy described in the first part is applied to solve the aeroa-

coustic optimization. At each step the algorithm tends to converge toward

the optimal front of the two objectives optimization problem based on the

surrogate models. This set of solutions are then evaluated using the high

fidelity CFD-based three-layer approach. These new points in addition with

the database at the ith iteration are then used to create a new surrogate

model at the iteration i+ 1. In this application all the training points of the
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low fidelity model are used as MGDA starting point. This aims to increase

the size of the non dominant points which are identified, thus reducing the

number of MGDA steps required. The algorithm does not take into account

bound contraints on the variable ranges. A filter on the feasible solutions

that respect the variables range at the end of each step on the surrogate

model is required. Furthermore, an adequate initial step choice of the de-

scent iteration prevent the convergence outside the feasible domain. Figure

11 shows the convergence of MGDA toward the Pareto front . After the first

step of MGDA, each new set brings improvement in the Pareto optimal thus

increasing the number of non-dominated points. The first step is applied on

a surrogate model made only by 50 points, this could explain the sparsity

of this step. Six step of the metamodel assisted MGA are sufficient for the
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Figure 11: Convergence history at fixed maximum high fidelity function evaluation calls.

clear definition of the Pareto front.
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The NSGA-II algorithm applied on the high fidelity model is used as com-

parison in order to analyze and compare the solution evaluated using MGDA.

The number of evaluations on the high fidelity model used for MGDA con-

vergence is used as stop criterium for NSGA-II. This means that the compar-

ison is made at identical computational cost. Figure 11 clearly shows that

the Pareto front evaluated using MGDA completely dominates the solution

of NSGA-II, thus identifying the efficiency of MGDA. The metamodel as-

sisted MGDA requires less function evaluations during the convergence to

the real Pareto front and is suited to computationally expensive problems.

Furthermore, the diversity of the solutions is comparable between the two

algorithms.

The convergence of MGDA on the low-fidelity model is shown in figure

12. Four points are used as starting points to show the limited amount of

function evaluations required by this gradient based algorithm to converge

to the Pareto front. In addition, the mixed-fidelity approach based on the

continuous update of the surrogate model assures an accurate description of

the real model, despite the well known difficulties encountered with a noisy,

non smooth, with multiple local minima cost function such as the sonic boom

one. Figure 13 shows the comparison between the points evaluated using the

surrogate model at the last step of the algorithm and the corresponding set

obtained after the high-fidelity model evaluations.

Three different configurations (see table 2) that belong to the Pareto front

are compared in figure 14 and 15. The low drag configuration (A) and the

trade-off configuration (B) show minor modifications on the fuselage geome-

try. The modification impacts mainly the wing planform. Configuration (B)
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Figure 12: MGDA convergence to the Pareto front of the low-fidelity model starting from

4 initial point of the database.

Configuration J1 J2

A 71.72 dc 57.7 Pa

B 73.98 dc 52.94 Pa

C 83.14 dc 49.51 Pa

Table 2: Selected configurations that belong to the Pareto front.

shows a reduction of the dihedral angle, with respect to the configuration (A)

that is benefical for the rear shock of the ground signature (see figure 15(b))

with a limited deterioration on the aerodynamic performance. Indeed, the

dihedral angle acts modifying the acoustic footprint at ground, in particu-
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Figure 13: Comparison between the Pareto front of the MGDA 6th step and the values

after high-fidelity evaluations

lar the duration of the signature. The low boom configuration (C) shows a

strong downward displacement of the nose angle, which has as a consequence

a modification of the flow condition that reaches the wing leading edge. The

front shock is almost not modified by any of the selected geometries. The

algorithm has identified the wing and the rear shock reductions as the most

promising regions to improve the functions of interest with respect to the

chosen parameterisation As the sonic boom is reduced from (A) to (C), the

expansion after the first shock is reduced. Looking at the pressure signal

just below the aircraft in figure 15(a) it is possible to note that the design
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Figure 14: Geometry configuration, bottom skin pressure (p/p0) and symmetry plane

pressure (p/p0) in near field for configuration A, B and C on the Pareto front (In red the

initial geometry).

variables are able to act and shape all the shock and expansion waves.

In particular all the configurations show a split of the rear shock due to the

combined wing planform and rear fuselage modifications. The initial peak in

the near field p/p0 is reduced by the 20 % with respect to the initial config-

uration, but this does not correspond to an analogue reduction of the front

shock overpressure (figure 15(b)). In contrast, wing and bow fuselage mod-
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(a) Near field p/p0 (z=h-10m) (b) Ground signature

Figure 15: Near-field and ground pressure signal for different configurations on the Pareto

front

ification produces changes in the middle and ending part of the near-field

signature, that correspond to strong modifications on the ground signature

pattern. A better description of the nose shape with more design variables,

can improve the ability of the algorithm to reduce the front shock amplitude.

The MGDA algorithm assisted with surrogate models to solve multiob-

jective problems where the objective functions of interest are expensive to

evaluate and a limited number of calls to the high fidelity model has been

applied to a complex supersonic non-viscous test case succesfully.

In the following section the aerodynamic model is improved considering

Navier-Stokes equations in order to solve an aeroelastic viscous case for a

civil transport wing-body configuration.
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3.2. Aerostructural shape optimization

An optimal wing will be extremely rigid to resists aeroelastic effects and

considerably light for economical reasons. Unfortunately these two properties

evolve monotonously in the same direction: the wings are flexible because of

their high dimension (high aspect ratio), making them stiffer will come at

the expense of structural weight. The task of the designer is then to find a

balance in the design space, a wing light enough to meet the environmental

and economical needs and rigid enough to meet the FAR25 safety standards.

Wing structural and aerodynamic behavior are not only linked through per-

formance. To keep the wing from excessive twist more structural material

for strength and stiffness is requisit. The aerodynamic loads influence the

structural wing deformations, and the wing planform influences both magni-

tude and distribution of aerodynamic loads. The direct conclusion is: when

optimizing aircraft performance in terms of drag, the structure cannot be

treated as an isolated system, it must interacts with aerodynamics. Because

both weight and drag are unfavorable to flight performance, this work aims,

through multidisciplinary optimization problem, to minimize both the near

field drag and the structural weight under aerodynamic and structures con-

straints.

Drag versus structural weight minimization can be formalized as follows

Minimize CD(α) at Cl = ClDesign

α ∈ Rn

Minimize W (α) subject to α ∈ Rn

σi(α) 6 σyield
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Where σ are the internal structural stresses and α the design variables that

impact both objectives.

3.2.1. Aerodynamic and structural design of the Airbus XRF1 configuration

The selected 3D wing-body configuration is the so called XRF1 Airbus

configuration. A structured mesh of 143 blocks is used (Fig 16(a)). A nat-

ural design space for aerostructural performance search is the conbination

of planform parameters αgeom (span, twist, sweep angle, etc...) and internal

structure parameters αstruct (Skin thickness, front spar wel thickness, etc...)

but a realistic design problem is also a highly constrained optimization prob-

lem, thus to restrict to the paper subject and provide a of MGDA efficiency,

the wing of the XRF1 configuration is parameterised by wing span, sweep

angle, and thickness to chord ratio at y= 8.399 and y= 28.8. The choice of

this parametrisation, detailed in 3.2.2, is to impact significantly both objec-

tives. In Euler computations the far field drag components are the induced

drag CDi and the wave drag CDw. The increase of the wing span comes

with a decrease of CDi and an increase of the structural weight, regardless

of wing area modification that is kept constant in this work.

An increase of the sweep angle reduces CDw by reducing the local mach

number, the structural weight is increased by both the increase of structural

span and the increase of the wing tip loading. A higher local thickness-to-

chord reduces the structural weight. In fact, to support the same bending

loads the thicknesses of the elements sized in bending are decrased by the

factor by which the wing thickness is increased. The local camber induced

by a higher thickness to chord ratio increases the velocities and generates

more CDw. In conclusion all this parameters drive the objective functions
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in opposite directions and thus constitut an adapted case to test MGDA.

3.2.2. Aerodynamic and structural analysis

The aerodynamic analysis is perfomed by the structured code elsA [20]

at Mach 0.83 targeting a lift coefficient of 0.5. The target lift was selected to

remove the angle of attack from the design space and free from the aerody-

namic constraint.

The structural analysis is performed by a structural module. For a given

planform geometry, the module InAirSsi generates the internal structural ge-

ometry (primary structure).

For each set αgeom, the initial structured mesh is deformed and a CFD anal-

ysis is perfomed to evaluate CD as well as the maneuver sizing loads. The

module InAirSsi generates the structural model from the CFD surface mesh

using a random set of primary structure thicknesses αstructrandom
.

αstruct can be considered as a design parameters and treated at the same

level as αgeom. In this case the optimization problem will be a highly con-

strained problem. In this work we choose to treate αstruct in a sub-level.

The first reason is to unconstrain the optimization problem. The second

reason is deducted by the fact that if 4 planform parameters are enough to

impact significantly the aerodynamic objective function, 50 parameters at

least are needed to perform a significant sizing of the wing box elements.

MGDA is assisted by a metamodel (section II.C) and it is well known that

the construction of responces surfaces are limited by the dimension of the

design space. Thus, for each αgeom a gradient based algorythm is used to

find an optimal set of αstruct that provides internal structure with minimum

structural weight that preserves the structural integrety of the wing under
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sizing loads (2.5g). At each step of the gradient-based optimization process,

the structural characteristics, the structural wing weight as well as the ma-

terial stresses aggregated into the Kreisselmeier-Steinhauser REF function

and their gradients are computed by the module InAirSsi. The points of the

aerostructural database are all computed at the same lift coefficient and a

structure that withstand the sizing loads (KS−→0).

3.2.3. Results

MGDA realizes a cooperative optimization of the 2 objectives based on a

surrogate models (section II.C), the obtained Pareto set at the iteration i is

then evaluated using high fidelity codes and is added to the initial database

to generates the surrogate model of the iteration i+ 1.

Fig 17(a) compares the design points when the structural weight is com-

puted using a random wing box thicknesses αstructrandom
and when the element

thicknesses are sized, this sizing corresponds to a translation of the pareto

front. MGDA is applied to an initial database of 20 points Fig 17(a) in a de-

sign space of dimension ∈ R4. The bounds of the design variables are fixed to

[−10%,+10%] for the thickess-to-chord ratio, [−3◦,+3◦] for the sweep angle

and [−5m,+5m] for span modifications.

After 5 steps of MGDA with exact perfomance evaluation, the progression

of the first-nondominated set is plotted in Fig 18. The first non-dominated

set crosses the Pareto front and this is due to a poor design region for which

Cdp ∈ [140(DC), 150(DC)]. Was the choice of the initial database dimension

enough? Are the bounds of the design space not adapted to this problem?

To limit the discussions to the main purpose of the paper, the authors will

focuses on the analysis of the two design regions well distinguishable region
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A Fig20(a) and region B Fig20(b).

Two Pareto-optimal configurations that belongs to the region A and re-

gion B are analysed. Table 2 lists the design variables for both configurations

DesignA and DesignB. The total near-field drag of DesignA is 20.5 DC lower

than the total near-field of DesignB. A drag decomposition is performed using

FFD72 ref, Table 3 lists near-field and far-field drag components. DesignA

has a span 2.08 m longer that DesignB which contributes in reducing the

induced drag by 21.96 (DC). The combination of both higher sweep angle for

DesignB and a higher thickness-to-chord ratio at section 1 of DesignA results

in a DesignB that has 1.76 DC less of wave drag than DesignA.

The Cp and aerodynamic load distributions of both configurations are plotted

in Fig 21. The configuration from region A is 5.555, 9 tonnes heavier than

DesignB to resists the higher aerodynamic loads acting on the structure.
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(a) Aerodynamic mesh and the internal

structural model of the XRF1 configuration

(b) Span and sweep angle modifications

Figure 16: Airbus 3D configuration XRF1

Span Sweep Thickness

1

Thickness

2

DesignA 30.04 2.95◦ 1.05 -8.98

DesignB 27.96 5.58◦ -0.012 -2.64

Table 3: αgeom for DesignA and DesignB
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(a) Visualisation of a set of design points for

optimal and random αstruct

(b) Distribution of initial design points

Figure 17: Aerostructural design space

CDp CDw CDi W

DesignA 132.60 13.74 76.32 2,3274.7

DesignB 153.13 11.97 98.28 1,7718.8

Table 4: Drag breakdown for DesignA and DesignB
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Figure 18: Convergence history at fixed maximum high fidelity function evaluation calls.
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Figure 19: Convergence history of MGDA based on high fidelity for objectives evaluation
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(a) Zoom in region A of the convergence history of MGDA

(b) Zoom in region B of the convergence history of MGDA

Figure 20:
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Figure 21: Pressure distribution of selection Pareto-optimal design point
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4. Conclusions

In this article, we have first reviewed the basic properties of an itera-

tive method for multi-objective optimization, the Multiple-Gradient Descent

Algorithm (MGDA) in which from the knowledge of the local gradients, a di-

rection of search is identified to provide directional derivatives of the objective

functions of given sign. This method generalizes the steepest-descent method

to the multi-objective context and converges to Pareto-optimal design-points.

A meta-model-assisted variant of the basic method has been proposed for

situations in which the gradients are not known exactly or computationally

costly to evaluate. The new algorithm is a mixed-fidelity-model approach.

It proceeds with the following operations at each cycle (or step):

- calculation of a database of function values by the high-fidelity models,

and elaboration of corresponding meta-models;

- convergence by MGDA of the surrogate multi-objective optimization prob-

lem associated with the meta-models, initiated from a subset of the

meta-models training points;

- database enrichment with the above converged design-points.

We have applied the present method to three multi-objective optimum-

shape design problems subject to 3D compressible aerodynamics: (i) lift-

drag optimization, (ii) drag and sonic-boom reduction, and (iii) drag and

structural weight reduction. The surrogate models are improved at each

cycle of the above process. As a result, in all three cases, the capability of

the meta-model-assisted method to converge to the Pareto-front associated
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with the high-fidelity models was observed. Typically, less than 10 cycles of

the database enrichment are sufficient for a satisfactory description of the

front, and this usually results in a significant reduction in computational

effort as compared to the requirements of standard evolutionary strategies

for multi-objective optimization.
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