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David Blachon1,2, Doruk Coşkun1, and François Portet1

1 Laboratoire d’Informatique de Grenoble
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

CNRS, LIG, F-38000 Grenoble, France
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Abstract. Activity Recognition (AR) from smartphone sensors has be-
come a hot topic in the mobile computing domain since it can provide ser-
vices directly to the user (health monitoring, fitness, context-awareness)
as well as for third party applications and social network (performance
sharing, profiling). Most of the research effort has been focused on direct
recognition from accelerometer sensors and few studies have integrated
the audio channel in their model despite the fact that it is a sensor that
is always available on all kinds of smartphones. In this study, we show
that audio features bring an important performance improvement over
an accelerometer based approach. Moreover, the study demonstrates the
interest of considering the smartphone location for on-line context-aware
AR and the prediction power of audio features for this task. Finally, an-
other contribution of the study is the collected corpus that is made avail-
able to the community for AR recognition from audio and accelerometer
sensors.

Keywords: Data Science, Sensing and Reasoning Technology

1 Introduction

Automatic human Activity Recognition (AR) is recognised as an important pro-
cess for human behaviour monitoring (health, well-being, sport) [8] but it is also
extensively studied for the provision of context-aware services for smart objects
(smartphones, robots. . . ) and smart spaces (smart homes, smart rooms, public
spaces. . . ) [7]. Though AR is a hot topic in the community, according to the ap-
plication, the activities under study can be very different (e.g., walking, getting
money at an ATM, screw driving, etc.) and there is still not a clear definition of
the different levels of activities that can be modelled and processed. In this arti-
cle, we aim at detecting basic physical activities from smartphone i.e., activities
involving basic movements with low level of semantics such as walking, standing
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still or sitting. These are a subset of the Compendium of Physical Activities [1]
that are classified according to the semantics they share and effort magnitude.
For instance, the group Bicycling lists different activities of bicycling in several
environments (e.g., mountain) and at different speeds. Basic physical activities
have the advantages of being well defined, can be captured by means of sensors
and can be used to reconstruct higher-level activities. They are also directly re-
lated to the health and sporting activities of the user and can greatly inform the
context of smartphones.

The emergence of smartphones introduced new ways to perform human activ-
ity recognition. Indeed, they embed accelerometers for sensing, and resources for
storage and data transmission. Hence, data collection is comparable to previous
studies such as the one of Bao et al [3]. Beyond the availability of accelerometer,
smartphones usually embed many different sensors. For instance, it is common to
find other inertial sensors (e.g., gyroscope), ambient sensors (e.g., microphone,
barometer, magnetometer) which can be used for human activity recognition.
Also, thanks to their design, smartphones are easy to carry so they might be
used to collect new kinds of activities in realistic conditions. Studies report their
use for tasks about locomotion activities [12, 17] or daily activities [10].

Smartphones also embed large resources in terms of computation, storage,
battery, which could allow to perform online embedded activity recognition.
However, according to a survey from Incel et al [11], online activity recognition
is an under explored area. They report that most studies deal with offline clas-
sification and that classifiers still require much resource for embedding them on
smartphones. Yet, some recent work have started studying online AR classifica-
tion, using Decision Tree and K-Nearest Neighbors (KNN) [17, 12].

Beyond those temporary limitations of resources, other issues need to be
tackled with. First, the large variability of sensors does not seem to be stan-
dardized yet, which means that one should not make a system depend on the
availability of such a sensor on every smartphone. For instance, accelerometer is
quite common but proximity sensor or barometer are far less common. Hence,
a system of human activity recognition should deal with this variable sensor
availability. Also, unlike the previously mentioned study of Bao et al [3], sen-
sor location and orientation may change in time. Indeed, smartphone users can
carry them in different locations. A survey [6] performed among 55 volunteers
reported the preferred locations for users to carry their smartphones. The 4 most
frequent answers were hand, pants pocket, bag and jacket pocket. The change
of location may make it more difficult for a system to infer user activity, yet it
needs to be taken into account.

In this paper, we present an approach for online basic physical AR from
microphone and accelerometer data streams collected on smartphones. Indeed,
these two kinds of sensors are found on most smartphones (if not all). If ac-
celerometers are very popular, microphones are far less used in the domain de-
spite their strong informative potential. Another contribution of the study is the
explicit modelling of the smartphone location context and its use as input in-
formation for AR. This AR framework is described in detail in Section 3 after a
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short description of the state of the art in Section 2. Since no dataset composed
of microphone and accelerometer data is available, we collected our own dataset
on different smartphone brands to evaluate the method. This data collection,
that we made publicly available, is described in Section 4. Three different state
of the art classification models were learned from this dataset in different con-
ditions to assess the impact of the audio channel and the smartphone context
on classification performance. These results are detailed in Section 5 and dis-
cussed in Section 6. The paper finishes with a short conclusion and an outlook
on further works in Section 7.

2 Related work

A first study dealing with basic physical activities is the one of Kose et al [12].
Authors report a high F-Measure value of 92% for a clustered KNN classifier on
a set of basic physical activities (running, walking, standing, sitting). Another
study is from Yang et al [21] focusing on a similar set of basic physical activites
and using different classifiers such as Decision Tree, Naive Bayes, KNN and
Support Vector Machine (SVM). This study reports 90% of accuracy using the
Decision Tree. Moreover, the survey of Incel et al [11] shows that most reported
studies rely on the use of accelerometer. GPS and radio communications such
as WiFi are sometimes used while audio is hardly present in studies. Also, the
survey shows that for most studies reported, the number of subjects was less or
equal than 20.

Accelerometer appears to be the most popular sensor for the domain. How-
ever, we previously noticed in the introduction that smartphone location and
orientation might change due to the habits of users that can carry it in different
locations. This can have an impact on accelerometer readings as Alanezi et al [2]
report. They collected accelerometer data from two different positions: hand
holding and pants pocket. Magnitudes of acceleration hardly reached the value
of 15 m/s2 when in hand while they often exceeded 15 m/s2 and even reached
20 m/s2 in pants pocket. The difference was also noticeable on standard de-
viations of readings. Hence, as the authors concluded, accelerometer data are
affected by smartphone position. However, studies reported different solutions
to address this issue. First one is to train classifiers for each different location
considered. Reddy et al [17] trained Decision Tree cascaded with Hidden Markov
Models (HMM) for each different location and compared results to the same type
of classifier trained with data from all concerned locations. They report similar
performances for transportation mode recognition. Another reported technique
includes a gravity-based feature for estimating orientation. Park et al [15] used
this technique for recognizing different smartphone locations. Using a SVM clas-
sifier, they reported accuracy values of 99.6% when including the gravity-based
feature and only 82% when excluding it. Despite those solutions, Incel et al con-
sider in their review [11] that smartphone location and orientation still remain
open points.
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Leveraging the many sensors of smartphone can also help for activity recog-
nition. Among them, one rarely used is the microphone that could be a source of
information very relevant regarding such conditions. Indeed, a microphone can
be found on every smarpthone. Although audio readings might suffer from fric-
tions between microphone and direct context (e.g., fabric of pants) as reported
Alanezi et al [2], some studies have promising results with microphone. For in-
stance, Miluzzo et al [14] proposed a system to distinguish various smartphone
locations thanks to environment sounds but it was successfully tested only on two
locations: inside a pocket and outside a pocket. Diaconita et al [9] presented a
technique to recognize smartphone position and user’s environment based on the
emission of a sound pulse and then the classification of the reverberation (classi-
fiers were trained on such reverberations in order to recognize user’s environment
and smartphone position). They report 97% of accuracy using Mel Frequency
Cepstral Coefficients (MFCC) as features classified with KNN. However, to the
best of our knowledge, the use of audio for smartphone location recognition and
human activity recognition is not optimal and can still be improved.

3 Method

This section describes the method designed for online activity recognition. The
activities of interest as well as the smartphone context are first defined, then
the global architecture, the extracted features and the different classification
schemes are introduced.

3.1 Activities and Smartphone Context

In this article we focus on basic physical activities such as walking, running, etc.
leaving apart high level activities (e.g., making coffee, cleaning the house) and
fine grained gestures (e.g., screw driving, raising the phone over the head).

The activity set is presented Table 1. It is composed of i) 8 frequent daily
activities which are a subset of the Compendium of Physical Activities [1] and
ii) an Unstable activity which groups every data not belonging to any of the 8
previously defined activities (e.g., making coffee, cleaning). In any of these daily
activities, the user is likely to wear his/her smartphone. This cannot be assumed
in some other activities of the compendium (e.g., snorkeling).

Table 1. The 8 activities considered in the study and the Unstable class.

Stationary Sitting Standing Still

Lying Running Walking

Jumping Stairs Unstable

Though the above activities are well defined, the observations recorded by a
smartphone can be highly dependent on the location of this device with respect
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to the user. For instance, as exemplified by Figure 1(a), if someone is running,
the observations collected will be very different if the smartphone is in the hand
(in that case most of the dynamic will be those of the arm), in the bag (in
that case the smartphone captures the bag jerks) or in the pocket (in that case
most of the dynamic will be those of the legs). To take the different interaction
dimensions between the user and the smartphone into account, we defined the
smartphone context space represented Figure 1(b).

(a) Smartphone locations considered

Phone 

Usage 

Phone 

Location 

Phone Context 

Slight 

Stationary 

Phone 

Motion 

A lot 

(b) Phone conext modelling

Fig. 1. Smartphone locations considered and smartphone context modelling

The first axis concerns phone motion. It is indeed very informative to assess
which amount of movement the smartphone is subject to. This can help infer
activity as well as whether the smartphone is with the user or not (e.g., put on
a table far away from the user). The second axis, phone usage, has two values
respectively used and not used. By phone usage we focus on the interaction with
the phone. For example, typing an SMS is a direct interaction and listening to
music is an indirect one, but both are considered as ’used’ in our definition. On
the opposite, carrying the phone in a bag without interacting with it is con-
sidered as not used. This information is a useful context component to build
applications that can prompt user when she/he is paying attention to her/his
smartphone. The third axis, smartphone location, represents the different loca-
tions in which a smartphone can be with respect to the user’s body. For the
kind of activities addressed in the study this is the most important information,
therefore throughout the rest of the paper we will concentrate on the dependence
between AR and smartphone location.

3.2 Architecture

The AR system architecture is depicted Figure 2. Data streams are continuously
acquired. Every w windows, a buffer is sent for feature extraction. Features are
computed over a 2-second long buffer with 50 % overlapping. From the feature
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vector obtained, the most likely location of the smartphone is extracted. Then,
the location and the feature vector feed the AR module which decides which
activity (if any) is observed from the data.

Feature 

Processing 

Location 

Extraction 

 

 

Activity 

Clas-

sification 

 

 

Input Vector 

Loc. 

Window 

Class Label 

or Unknown 

Audio Stream 

Acceleration X 

Acceleration Y 

Acceleration Z 

Fig. 2. Architecture of the online activity recognition system on smartphone

3.3 Features

Our set includes features from acceleration and audio data. They are listed below:

– Average of accelerometer magnitude
– Variance of accelerometer magnitude
– Energy of accelerometer magnitude
– Variance of acceleration along each axis (x, y, z)
– Subband energy at 3 Hz and 4 Hz

Average, variance and energy are very popular features for activity recognition
task [11]. Since acceleration is directly related to motion, they estimate quantity
and variability of motion within the window. Also, frequency parameters can
help focus on human motion and avoid some noise added by data collection.

Regarding audio features, we used frequency based one but no temporal-
based ones. Indeed, microphone is an ambient sensor that records data coming
from different sources, including many external ones (e.g. radio, speech). Sep-
arating information due to motion from the one due to external source is a
challenging task, if not impossible, using temporal domain features. However,
frequency domain features can leverage energy distribution along frequencies al-
lowing then to isolate spectrum subbands more sensitive to motion variation.
For instance, as we reported in Section 2, a smartphone located in a pocket may
involve frictions on the microphone which can in turn generate sounds. Finding
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subbands of spectrum of these frictions could be very helpful. Our set of audio
features contains spectrum power estimation of 40 subbands spread along the
Mel scale frequencies. Mel-scales are inspired from human ability of hearing and
they are basically perceptual scales of pitches judged by listeners to be equal in
distance from one another. In theory, the computation of Mel filter banks is im-
plemented in 3 steps 1) the signal is windowed (e.g., with a hamming window),
2) Fast Fourier transform is applied, 3) spectrum power estimation obtained is
mapped onto the mel scale. For the experiments presented in this paper, spec-
trum power estimation is performed on 200 ms long frames and only spectrum
magnitude coefficients are saved (phase is removed). From this audio feature set,
speech content cannot be retrieved with today techniques.

3.4 Classification Models

Three different models were implemented to perform AR. Decision trees are the
standard method used in the literature and was used as baseline system. Random
Forest is the scheme that has gained interest recently since it showed the most
promising performance in AR from smartphone and worn sensors [8]. The third
model is Conditional Random Field (CRF) which is a sequence model which has
demonstrated impressive performance in related field of AR [20]. These three
models and their learning strategy are briefly introduced below.

Decision Trees The induction of a decision tree is based on the “divide and
conquer” principle to partition a training set TS, composed of individuals de-
scribed by several attributes, into homogeneous subgroups. Let the classes of the
individuals be {C1, C2, . . . , Ck}, there are four possibilities:

1. TS contains individuals belonging to only one class Cj . In this case, this is
a leaf named Cj .

2. TS is empty. In this case this is a leaf for which the class is defined by
information other than TS (e.g. the most frequent class of the parent).

3. TS contains individuals belonging to several classes. Thus, a test T is chosen,
based on a single attribute that has the exclusive outcomes {O1, O2, . . . , On}
which are used to partition TS into the subsets {TS1, TS2, . . . , TSn} where
TSi contains all the individuals in TS that have outcomes Oi.The decision
tree for TS consists of one branch for each outcome. This mechanism is then
reapplied recursively on each subset TSi .

4. TS contains individuals belonging to several classes but for which no test
can be found. In this case this is a leaf for which the class is defined by
information from TS (e.g. the most frequent class in TS) or other than TS.

In this paper, we use the well known C4.5 method [16] which uses the gain ratio
to choose the test T. The gain ratio can be described as the gain of information
(based on the entropy) for T normalized by the potential information of dividing
TS into n outcomes. Therefore, the decision tree chooses the most discriminant
tests (best separation of the information).
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Random Forest Random forests is an ensemble classifier composed of several
‘weak’ decision trees whose each individual output are combined (by voting strat-
egy) to generate the final decision. The method to induce Random Forest models
[5] combines bagging and random attribute selection. Briefly, if the dataset con-
tains N individuals described by M attributes, the learning consists in drawing
a subset of individuals randomly with replacement to constitute a training set
(keeping the rest as test set) which is used to induce a decision tree with m at-
tributes (m << M) randomly selected. Each tree is grown to the largest possible
extent without pruning. The most important parameters for the learning are the
maximum number of trees and m the number of attributes. Random forest is
very efficient on large datasets and has a very good accuracy on many datasets
without over-fitting (even if some study downplayed this advantages with some
noisy datasets [18]). In fact, RF has shown impressive performances for AR on
worn sensors [8].

Conditional Random Fields Conditional random fields (CRF) are graph
based models to perform discriminative probabilistic inference over a set of vari-
ables in classification tasks [13]. Similarly to HMM, CRF can classify a label y
for a given sample x taking into account its relations with neighbour samples
when they are organized in a sequence X = x1, . . . , xT . CRF model the condi-
tional distribution p(Y |X), but without requiring to model the distribution of
the variable X. In the case of activity recognition, we can consider the X a set
of temporal windows, and Y as the activity to infer.

Formally, a CRF model is a undirected graph G = (V,E) such that Y =
(Yv)v∈V , so that Y is indexed by the vertices of G. Then (X,Y ) is a conditional
random field if the following Markov property with respect to the graph is re-
spected p(Yv|X,Yw, w 6= v) = p(Yv|X,Yw, w ∼ v), where w ∼ v means that w
and v are neighbours in G. The simplest of the CRF model is a simple chain.
This is the model that we adopt in this paper. In that case, X represents a se-
quence of observations and Y represents a hidden state variable (activity) that
must be inferred given X.

CRF are generally implemented as log linear models by means of feature func-
tions fk, in the case of chain-like conditional random fields p(Y |X) is estimated
by equation 1.

p(y|x) =
1

Z(x)
exp

{
K∑

k=1

λkfk(yt, yt−1, xt)

}
(1)

where the features functions fk impose a bias in the model, they take the value
of 1 if its variables take a certain configuration and 0 otherwise, yt is the class
(activity) to be estimated at current time, xt is the observation sequence at
current time, yt−1 is the (previous) neighbour, Z is a normalization factor, λk
is a parameter to assign a weight to the feature function fk. These weights are
estimated during the learning phase using an iterative gradient method. Finally,
for chain-like model, inference is performed through an adapted version of the
Viterbi algorithm [19].
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4 Experiment

To validate the approach, datasets containing audio and accelerometer data la-
belled with physical activities were required. However, although a fair number
of datasets with accelerometer data are available, we did not find a dataset in-
cluding audio data. Therefore we ran our own experiment to collect data from
19 people by using 4 smartphones which were located in 3 different locations.
This section describes the method employed to collect this dataset, the specific
scenarios that were designed and finishes with a summary of the collected data.

4.1 Protocol

Each recording involved one experimenter and one participant as well as five
smartphones. At the beginning of the experiment, the participant was fit with
2 smartphones in a bag, 1 in the pocket and 1 in the hand. Each participant
performed the 9 activities introduced in Table 1 (walking, running, jumping,
stairs, lying, standing still, stationary, sitting and the remaining one we call un-
stable) and 5 different secondary activities (calling, listening to music, sending
sms, using an application on the phone, none) with predefined order which was
determined by a data collection scenario. During that time, the experimenter
was always with the participant to trigger changes of activities with his own
smartphone. The own smartphone of the participant was never used. All smart-
phones were equipped with the RecordMe application3 that acquires all sensors
and smartphone activity data on the fly. Accelerometer data were sampled at
a rate of 50 Hz and audio sampled at a rate of 44.1 kHz. More details of the
RecordMe application can be found [4].

If the participant did not have a bag (e.g., own handbag) a backpack already
filled with some stuff was used (e.g., pens, thermos bottle, sheets of paper). All
the experiments happened within the lab in different places (office, corridors,
stairs, close outside, cafeteria) at calm and rush hours. Before experiment, the
participant was explained the aim of the study, the risk of undertaking this
experiment so that she/he could give a signed informed consent to undertake
the experiment and to let the data be used for research purpose. It was also
explained that the raw audio data were not kept but only coefficients from which
raw signal cannot be reconstructed.

4.2 Scenarios

To make sure all activities and smartphones will be uniformly mixed, our data
collection consisted of 3 main scenarios. The organisation of each scenario was
implemented by using the modelling of the smartphone context and human
activities. All possible smartphone contexts and human activities that can be
performed within relevant protocol were indicated. Table 2 summarises these 3
scenarios.

3 http://lig-membres.imag.fr/blachon/download/recordme.apk
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Table 2. Abstracted view of the scenarios used for data collection

scenario Phone Usage Phone Motion Smartphone Location Activities
ID SP1 SP2 SP3 SP4
1 Yes/No Yes/No bag hand pocket bag All activities + secondary act.
2 No No pocket bag hand bag Stationary
3 No Yes/No hand pocket bag bag All activities

In scenario 1, the participant is interacting with the phone (also carrying
it). She/he has a phone in the hand (another one in the pocket and two in the
bag) and performs all activities one after the other. To add naturalness to the
collected data, the scenario included ‘secondary activities’. These are performed
with the smartphone in hand and contain activities such as calling or sending a
SMS. These were added for representing the changeable hand movement of the
participants. In daily life, people can carry their phones in their hand with dif-
ferent gestures. These gestures were modelled by the secondary activities. Then,
in scenario 2 the participant is not carrying the phone in the hand. Instead, s/he
puts it on a table and stays around quietly. While in scenario 3 the participant
is carrying the phone (but not interacting with it) and perform again physical
activities, most of them outdoors.

These 3 scenarios were performed sequentially without any interruption. Un-
like many data collections in which activities are collected separately from each
other, we wanted to reproduce the real life in which activities are part of a
whole day. Indeed, systems to be deployed in the wild must deal with transitions
between activities and not predefined activities.

A ‘phone switch’ sequence was inserted between the execution of each sce-
nario so that smartphones were not always at the same place. Initial position of
smartphone was uniformly distributed over the participants to secure the same
amount of data per location × activity. That is to say, smartphones SP1-3 were
not recording an activity always in the same location.

4.3 Acquired Data

At the end of the experiment, 20 hours of data were collected from 19 participants
(14 males, 5 females) between 19-29 years old. Four smartphones were used:
Motorola Defy Mini, MTT, Samsung Galaxy S2 and Nexus 4. Each experiment
took 15 to 20 minutes to be performed. Figure 3 displays time distribution over
the activities. Repartition of recorded time per smartphone is of 50 % for bag
location, and 25 % for pocket and hand locations. All the data were annotated
according to two dimesnions: Phone Location, and physical Human Activity.
This dataset is available at anonymous

After data collection, the annotation performed during the experiment was
manually checked in the time and label domains. Some data are still not cleaned
and checked.
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Fig. 3. Activity duration distribution over all 9 activities

5 Results

Model training and tests were performed offline. However, the classification task
simulated online conditions since only the present data vector was known by the
classifier. The tasks of activity recognition and smartphone location recognition
were run on 3 different feature sets: 1) Accelerometer features; 2) Audio features;
and 3) Accelerometer plus audio features. We used 50 trees for Random Forest.
All models were acquired and tested using a 10 times x 10 fold cross validation
and precision, recall and F-Measure were computed for each run. For each re-
sult, statistical significance test were computed against either the Decision tree
(reference model) or accelerometer results (reference feature set).

5.1 Basic Human Activity Recognition

The first experiment was to test how well the models perform on the three
different feature sets without using smartphone location information. Table 3
summarises the F-measure obtained for each combination. It turned out that
Random Forest performed better than the two other algorithms in every feature
sets. This increase of performance was for each set significantly better than
Decision Tree. On the contrary, CRF performed worse than Decision Tree. Also,
one can notice that Random Forest performed better with audio feature set
than with accelerometer set. A significance test was performed to test whether
audio features play a role in the performance increase. Each Model performance
for the Accel+Audio feature set was compared to the Accel feature set. Apart
for CRF model, improvements were significant (p < 0.01). Thus, it seems that
audio features may play an important role for physical activity classification
from smartphone.

5.2 Context-aware Human Activity Recognition

To assess the impact of smartphone location on activity classification, the learn-
ing has been run again but adding the ground truth location in the feature
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Table 3. Overall F-measure of activity classification for each Model and feature set
without smartphone location

Feature set Decision Tree Random Forest CRF

Accelerometer 0.59 0.65*** 0.37
Audio 0.55 0.67*** 0.31
Accelerometer + Audio 0.64 0.73*** 0.42

*** means statistically significant difference at p < 0.01

vector. Table 4 provides the global F-measure obtained by adding the location.
Apart for CRF, it can be noticed that performances have increased for all feature
configurations. Thus the context-aware AR performs better than classical AR
without location information. Statistical test between these two experiments for
the Accel+Audio feature set revealed a significant difference (p < 0.01). Once
again, Random Forest has the highest score and it is significantly better than
Decision Tree in all conditions while CRF is worse than decision tree. Statistical
tests still show a significant impact of audio features on the classification and
once again, Random Forest performs better with audio feature set than with
accelerometer one.

Table 4. Overall F-measure of activity classification for each Model and feature set
with ground truth smartphone location

Feature Set Decision Tree Random Forest CRF

Accelerometer + location 0.64 0.69*** 0.38
Audio + location 0.60 0.71*** 0.31
Accelerometer +Audio+ location 0.68 0.76*** 0.42

*** means statistically significant difference at p < 0.01.

5.3 Inferring Smart-phone Context

Since the smartphone location has a positive impact on AR, it was tested whether
smartphone location can be inferred from the data. In this experiment, smart-
phone location was used as class to assess the feasibility of building a location
predictor. Results are presented Table 5. Once again, Random Forest performed
significantly better than Decision Tree. Unlike previously reported experiments,
CRF performance is very close to these of the two other classifiers. It can be seen
that very good performance can be reached with Accel+Audio data (F-measure
of 91% for Random Forest). Similarly to previous experiments, performances
with audio feature set exceed these with accelerometer feature set, for Decision
Tree and Random Forest. Moreover, apart for CRF, all classification results for
Accel+Audio feature set were significantly superior to results with Accel feature
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set only. This means that audio features might have a high predictive power for
smartphone location.

Table 5. Overall F-measure of smartphone location classification for Decision Tree,
Random Forest and CRF Models and feature set.

Feature Set Decision Tree Random Forest CRF

Accelerometer 0.79 0.84*** 0.83
Audio 0.80 0.89*** 0.69
Accel+Audio 0.86 0.93*** 0.86
*** means statistically significant difference at p < 0.01.

5.4 Inferred Context-aware Human Activity Recognition

We complete our experiments by launching again the human activity recogni-
tion task with feature sets including smartphone location inferred from a first
classifier. Here, we cascaded a smartphone location classifier with a human ac-
tivity classifier. In order to avoid over-fitting, a portion of the dataset (20 %)
was used for training the smartphone location classifier which was then used
to predict location on the remaining dataset. The resulting dataset (enhanced
with inferred location) was then used for activity recognition classifier in a 10-
fold cross-validation way. Table 6 summarizes results (because CRF performed
worse than DT for this AR task, it was not used for this experiment). Results
are inferior to those in Table 4 (which is not surprising since here location is
inferred while it was groud truth on previous experiment) and slightly improved
when compared to Table 3. Results should be analysed with caution since both
classifiers were trained on reduced datasets for reasons explained before.

Table 6. Overall F-measure of activity classification for Decision Tree and Random
Forest and feature set with inferred smartphone location.

Feature Set Decision Tree Random Forest

Accelerometer + inferred location 0.60 0.65***
Audio + inferred location 0.56 0.67***
Accel+Audio + inferred location 0.65 0.74***

*** means statistically significant difference at p < 0.01.

6 Discussion

One of the main findings of the study is the interest of audio features both for
AR and smartphone location recognition. Regarding smartphone location, au-
dio features alone make it possible to overcome the model with accelerometer
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features alone (F-measures of 89% for audio vs 84% for accelerometer). But, as
shown in Table 5, the most interesting outcome is that audio and accelerom-
eter features are very complementary. Indeed, the dataset with full features
shows an increase of Recall for ‘hand’ (93%) and ‘pocket’ (91%) well above
the one obtained in audio alone (hand: 89%, pocket: 84%) and accelerometer
alone (hand: 86%, pocket: 83%). For activity classification, audio features are
competitive since results are very similar to the ones with accelerometer feature
sets, and even exceed them with Random Forest. However, it must be empha-
sized that accelerometer features bring far better results with the running and
jumping activities than audio features do, which is not surprising. Despite this
advantage, the fusion of both feature sets shows again the complementariness
of the audio and accelerometer features since performances always significantly
increase in that case for AR. However, some subsequent analyses are needed to
understand which exact part of the location and activity acoustic signal cap-
tures. In particular, a finer feature selection might optimize the current feature
set.

Another important finding of the study is the role of the context for improved
AR. In this work, the location was simply used as an input feature. If this has
brought improvement in all cases, further research must be investigated to know
whether location information can be used later in the process. For instance, it
might be interesting to train classifiers for every considered location and to use a
voting strategy to improve the classification accuracy [17]. In any case, location
inference is an important element of the context that can be useful in many
applications others than activity recognition.

Three models were tested for AR including a sequence model. Overall, the
best model was by far the Random Forest which always showed significant best
performance for AR and location classification. RF has showed superiority over
decision tree in numerous tasks and is known to handle particularly well imbal-
anced data sets. Therefore, these results confirms recent studies of the commu-
nity in similar tasks [8]. The less performing model was Conditional Random
Fields that exhibited poor performance for the AR task. It was however com-
petitive for the SP location task. CRF is known to require a high amount of
data for training and in the location task only 3 classes with balanced number of
instances are provided (about 8400 instances per classes) while in the AR task
9 classes with unbalanced number of instances are provided (from 8400 to 300
instances per class). This suggests that with an increased number of data, CRF
could exhibit much better performances.

The data collection also revealed some limits of the smartphone sensor data
acquisition. Indeed, we noticed that some smartphones block the acquisition
when screen is off. For the data collection, we had to use a screen locker to keep
it on and to allow the recording to continue. Thus, real on-line AR system must
find solution to react to this unexpected behaviour if they plan to be largely
deployed.

The study reported good performance using accelerometer and audio data.
These two channels were selected because they are always present on modern
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smartphones. However, there are opportunities to improve the classification ac-
curacies even more. For instance, it would be interesting to investigate the data
that come from other sensors or phone logs when available. Although data from
every possible sensor and phone logs were collected, only accelerometer and mi-
crophone were used. For instance, hand location could be inferred from a com-
bination of different clues: a phone call event, no headset or bluetooth device
is plugged and motion detected through accelerometer data. Using this kind of
information could increase activity recognition accuracy and also diminish the
battery usage.

7 Conclusion

The first contribution of this paper is the corpus that was used for the task
of activity recognition. Collected from 4 smartphones worn by 19 participants,
the data contains both accelerometer and audio samples labeled with 8 different
basic physical activities and 3 smartphone locations on volunteers. Moreover,
the data was acquired in a sequential way scheduled by scenarios. To the best
of our knowledge, this is the first dataset made available with such features.

Beyond the corpus, the main contribution is the importance of audio fea-
tures for the AR task. The audio feature set proved to be competitive with the
accelerometer feature set for the AR task and even outperformed it with some
of the 3 state of the art classifiers used. Moreover, the best performance was
achieved when combining both feature sets together.

Finally, our study highlights the importance of smartphone location. Our
approach includes it as an attribute of the feature set. This resulted in an increase
of AR performances which confirmed our assumption. Yet, smartphone location
information can be integrated in other ways in such a system of recognition (e.g.,
classifiers are trained for different locations and a voting strategy selects one).

These results will be useful for the ambient intelligence community by shed-
ding light on the role of audio features for AR as well as on the importance of
modelling the smartphone context for the applications. Nevertheless, we plan to
undertake more studies to assess the interest of sequence models and to collect
data “in the wild” to validate the approach in real ecological situations.
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