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THE SYMMETRIC INVARIANTS OF CENTRALIZERS AND SLODOWY GRADI NG

JEAN-YVES CHARBONNEL AND ANNE MOREAU

AsstrACT. Let g be a finite-dimensional simple Lie algebra of rafikver an algebraically closed field of
characteristic zero, and lebe a nilpotent element @f Denote bye the centralizer oéin g and by S¢¢)*° the
algebra of symmetric invariants gf. We say thaeis goodif the nullvariety of som& homogeneous elements
of S@)* in (¢°)* has codimensiod. If eis good then SE)*° is a polynomial algebra. The main result of
this paper stipulates that if for some homogeneous gensrafdg)?, the initial homogeneous components
of their restrictions te@ + gf are algebraically independent, wit@ k, f) ansl,-triple of g, thene is good. As
applications, we pursue the investigations BP[Y07 and we produce (new) examples of nilpotent elements
that verify the above polynomiality condition, in simpleelLalgebras of both classical and exceptional types.
We also give a counter-example in type.
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1. INTRODUCTION

1.1. Letg be a finite-dimensional simple Lie algebra of rafilover an algebraically closed field of
characteristic zero, let, .) be the Killing form ofg and letG be the adjoint group of. If a is a subalgebra
of g, we denote by S the symmetric algebra of Forx € g, we denote by* the centralizer ok in g and

by G* the stabilizer ofxin G. Then LieG*) = Lie(Gf) = ¢* whereGj is the identity component d&*.
Moreover, S§¥) is ag*-module and Sf)* = S(g*)%. An interesting question, first raised by A. Premet, is
the following:

Question 1. Is S(g*)¥" a polynomial algebra irf variables?

In order to answer this question, thanks to the Jordan deasitign, we can assume thais nilpotent.
Besides, if S{¥)*" is polynomial for somex € g, then it is so for any element in the adjoint orfitx of
x. If x = 0, it is well-known since Chevalley that §§* = S(@)? is polynomial in¢ variables. At the
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opposite extreme, ik is a regular nilpotent element af theng* is abelian of dimensio, [DV69], and
S = S(g¥) is polynomial in¢ variables too.

For the introduction, let us say most simply that g verifies the polynomiality conditioifi S(g¥)*" is a
polynomial algebra iff variables.

A positive answer to Questidhwas suggested ifP[P Y07 Conjecture 0.1] for any simpleand anyx € g.
0. Yakimova has since discovered a counter-example inEgpgy 07], disconfirming the conjecture. More
precisely, the elements of the minimal nilpotent orbiEgdo not verify the polynomiality condition. The
present paper contains another counter-example inyggef. Example7.8). In particular, we cannot expect
a positive answer taqPY07 Conjecture 0.1] for the simple Lie algebras of classicpktyQuestiori still
remains interesting and has a positive answer for a largéoaciof nilpotent elementse g as it is explained
below.

1.2. We briefly review in this paragraph what has been actiseefar about Questioh. Recall that the
indexof a finite-dimensional Lie algebrg denoted by ind, is the minimal dimension of the stabilizers of
linear forms om for the coadjoint representation, (cDi[/4]):

indq := min{dimq? ; & € q°} where ¢ := {x e q; &([x q]) = 0}.

By [R63, if g is algebraic, i.e.q is the Lie algebra of some algebraic linear graggthen the index of is
the transcendental degree of the field®fnvariant rational functions on*. The following result will be
important for our purpose.

Theorem 1.1([CMo10, Theorem 1.2]) The index ofy* is equal to¢ for any xe g.

Theorem1.1 was first conjectured by Elashvili in the 90’s motivated byeault of Bolsinov, Bol91,
Theorem 2.1]. It was proven by O. Yakimova wheris a simple Lie algebra of classical type (6],
and checked by a computer programme by W. de Graaf whisna simple Lie algebra of exceptional
type, [DeG0g. Before that, the result was established for some pasgtiotlhsses of nilpotent elements by
D. Panyushev,Ha03.

Theoreml.1l is deeply related to Questiah Indeed, thanks to Theorefinl, [PPY07 Theorem 0.3]
applies and byRPYO07 Theorems 4.2 and 4.4], i is simple of typeA or C, then all nilpotent elements
of g verify the polynomiality condition. The result for the typewas independently obtained by Brown
and Brundan,BB09]. In [PPY07, the authors also provide some examples of nilpotent aisreatisfying
the polynomiality condition in the simple Lie algebras opé&gB and D, and a few ones in the simple
exceptional Lie algebras.

More recently, the analogue question to Questlofor the positive characteristic was dealt with by
L. Topley for the simple Lie algebras of typésandC, [T12].

1.3. The main goal of this paper is to continue the investigatof [PPY07. Let us describe the main
results. The following definition is central in our work (€fefinition 3.2):

Definition 1.2. An elementx € g is called agood element of if for some graded sequencp(..., py) in
S@¥)¥, the nullvariety ofps, ..., p; in (¢¥)* has codimensiofiin (g*)*.

For example, byRPYO07 Theorem 5.4], all nilpotent elements of a simple Lie algedfrtypeA are good,
and by [r09, Corollary 8.2], theevert nilpotent elements of are good ifg is of typeB or C or if g is of
type D with odd rank. We rediscover these results in a more genetihg (cf. Theoren®.1and Corollary
5.8). The good elements verify the polynomiality condition. (Eheorem3.3):

Ii.e., this means that the Dynkin gradinggéssociated with the nilpotent element has no odd term.
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Theorem 1.3. Let x be a good element af ThenS(@EX)*" is a polynomial algebra an®(@g) is a free
extension oB(g*)".

Furthermorexis good if and only if so is its nilpotent component in the Jordlecomposition (cf. Propo-
sition 3.5). As a consequence, we can restrict the study to the casgpofarit elements.

Let e be a nilpotent element af. By the Jacobson-Morosov Theoremis embedded into al,-triple
(e h, f) of g. Denote bySe := e+ g' the Slodowy slice associated with édentify g* with g, and ¢®)*
with g, through the Killing formy.,.). For pin S(g) =~ k[g*] =~ k[q], denote by®p the initial homogeneous
component of its restriction t8e. According to PPY07 Proposition 0.1], ifp is in S@)¢, then ®p is in
S(®)%°. The main result of the paper is the following (cf. Theor&i®) whose proof is outlined in Subsection
1.4

Theorem 1.4. Suppose that for some homogeneous generators.qq, of S(g)%, the polynomial functions
... ., 4, are algebraically independent. Then e is a good element difi particular, S@€)*° is a poly-
nomial algebra andS(s®) is a free extension dB(ge)"". Moreover,(%;, - .., ;) is a regular sequence in
S(s®).

Theoreml.4 can be applied to a great number of nilpotent orbits in theplnclassical Lie algebras
(cf. Section5), and for some nilpotent orbits in the exceptional Lie algst{cf. Sectiorb).

To state our results for the simple Lie algebras of tyPeandD, let us introduce some more notations.
Assume thaty = so(V) c gl(V) for some vector spacg of dimension Z + 1 or 2. For an endomorphism
x of V and fori € {1,...,dimV}, denote byQi(x) the codficient of degree diffy — i of the characteristic
polynomial ofx. Then for anyx in g, Q;j(X) = 0 whenevei is odd. Define a generating famity, ..., qe
of the algebra S{° as follows. Foii = 1,...,¢ -1, setq; := Q. IfdimV = 2¢ + 1, setq, := Qy, and if
dimV = 2¢, let g, be a homogeneous element of degfed S(g)® such thaiQ,, = q?. Denote by, ...,d;
the degrees ofy,, . . ., G, respectively. By PPY07 Theorem 2.1], if

dimg®+ ¢ -2 1+---+6,) =0,

then the polynomialsy;, .. ., %, are algebraically independent. In that event, by Theotetne is good
and we will say thaeis very good(cf. Corollary5.8and Definition5.10. The very good nilpotent elements
of g can be characterized in term of their associated partitbsmV (cf. Lemma5.11). Theoreml.4also
allows to obtain examples of good, but not very good, nilpptdements ofy; for them, there are a few
more work to do (cf. Subsectidn3).

In this way, we obtain a large number of good nilpotent eleiiencluding all even nilpotent elements
in type B, or in type D with odd rank (cf. Corollary5.8). For the typeD with even rank, we obtain the
statement for some particular cases (cf. Theobedd. On the other hand, there are examples of elements
that verify the polynomiality condition but that are not gihgsee Examples.5and7.6. To deal with them,
we use diferent techniques, more similar to those usediaY07. These alternative methods are presented
in Section?.

As a result of all this, we observe for example that all nigmitelements ofo(k’) are good, and that all
nilpotent elements ofo(k"), with n < 13, verify the polynomiality condition (cf. Tablg). In particular, by
[PPYO07 §3.9], this provides examples of good nilpotent elementsmioich the codimension off)

(¢®)* is 1 (cf. Remark7.7). Here, (;e);ing stands for the set of nonregular linear forms (g)*, i.e.,

(9)sing = {x € (8°)" | dim (g°)* > ind ¢® = £}.

s
sing In

For such nilpotent elements, note thaP[Y07 Theorem 0.3] cannot be applied.
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Our results do not cover all nilpotent orbits in tyBeandD. As a matter of fact, we obtain a counter-
example in typd; to Premet’s conjecture (cf. Exampled).

Proposition 1.5. The nilpotent elements sf(k'?) associated with the partitio(8, 3, 2, 2, 2, 2) of 14 do not
satisfy the polynomiality condition.

1.4. We outline in this paragraph the proof of Theorer

Let q1,...,0, be homogeneous generators of))S(of degreesds, ..., d; respectively. The sequence
(91,---,9) is ordered so that;< --- <d,. Assume that the polynomial functiorfs,, ..., 9, are alge-
braically independent.

According to Theoreni.3, it suffices to show thag¢ is good, and more accurately that the nullvariety
of %y....,%, in ¢' has codimensior, since %;,..., %, are invariant homogeneous polynomials. To
this end, it stfices to prove that $f) is a free extension of thie-algebra generated by, ..., G, (see
Proposition2.5,(ii)). We are lead to find a subspadg of S such that the linear map

Vo k[Ty,..., 9] — S, vea —> va

is a linear isomorphism. We explain below the constructibthe subspac¥/.
Letxs,..., X be abasis of® such that foi = 1,...,r, [h, x] = njx for some nonnegative integar. For
i =(j1,-..,]Jr)inN", set:

il = jat---+]r, lile := jany + -+ jrnr + 2], XJ=X111“‘Xgr-

The algebra $f) has two gradations: the standard one andStmlowy gradation For allj in N', %
is homogeneous with respect to these two gradations. lttaadad degreg| and, by definition, it has
Slodowy degreégjle. Form nonnegative integer, denote bysSI™ the subspace of ) of Slodowy degree
m.

Let us simply denote b$ the algebra $f) and lett be an indeterminate. For any subspcef S, set:

VI =kl erV,  VILti=ktt eV, VI =k eV, V() = k() @V,

with k((t)) the fraction field ofk[[t]]. For V a subspace db[[t]], denote byV(0) the image ol by the
guotient morphism
S[t] — S, a(t) — a(0).

The Slodowy gradation @& induces a gradation of the algel8§t)) with t having degree 0. Latbe the

morphism of algebras
S — S[t], X tx, i=1,...,r.

The morphisnt is a morphism of graded algebras. Denote&shy . ., 6, the standard degrees &f;, ..., G,
respectively, and set for=1,...,¢:

Q = t0(k(g))  with  «(G)(X) :=g(e+X), VYxeg

Let A be the subalgebra @[t] generated byQ,...,Q,. ThenA(0) is the subalgebra & generated by
.-, Yoo FOr (j1, ..., jo) in N, k(al)- - «(q)’) and G}*- - - ) are Slodowy homogeneous of Slodowy
degree &1 j1 + - - - + 2d¢j, (cf. Propositiordt.1,(i)). Hence A andA(0) are graded subalgebras&jt] and S
respectively. Denote b&(0), the augmentation ideal @{(0), and let/y be a graded complement &A0),
inS.

We first obtain thaS[[t]] is a free extension oA (cf. Corollary4.17), and thatS[[t]] is a free extension
of the subalgebra of S[[t]] generated b¥[[t]] and A (cf. Theorem%.21,(i)). From these results, we deduce
that the linear map

Vo®r A(0) — S, vea — va
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is a linear isomorphism, as expected; see Theate&th(iii).

1.5. The remainder of the paper will be organized as follows.

Section2 is about general facts on commutative algebra, useful ®iStctions3 and4. In Section3,
the notions of good elements and good orbits are introduaed,some properties of good elements are
described. Theorer8.3 asserts that the good elements verify the polynomialitydd@m. The main result
(Theorem3.6) is also stated in this section. Sectidis devoted to the proof of Theore®6. In Section5,
we give applications of Theoref6to the simple classical Lie algebras. In Sectipmve give applications
to the exceptional Lie algebras of typEs, F4 andG,. This allows us to exhibit a great number of good
nilpotent orbits. Other examples, counter-examples, resrend a conjecture are discussed in Sectidn
this last section, other techniques are developed.

Acknowledgments. This work was partially supported by the ANR-project 10-BiA110.

2. (GENERAL FACTS ON COMMUTATIVE ALGEBRA

We state in this section preliminary results on commutagiggebra. Theorerd.20will be particularly
important in Section$ for the proof of Theoren3.3. As for Propositior2.5, it will be used in the proof of
Theorem3.6.

2.1. Asarule, forA a graded algebra oveY, we denote by, the ideal ofA generated by its homogeneous
elements of positive degree. Hgra gradedA-module, we seM, = A, M.

Let S be a finitely generated regular grade@lgebra ovelN. If E is a finite dimensional vector space
overk, we denote by H) the polynomial algebra generatedBylt is a finitely generated reguléralgebra,
graded oveN by the standard gradation. LAtbe a graded subalgebra $f different fromS and such that
A =k + A.. Let Xa and Xs be the #ine varieties Specmj and Specnf) respectively, and letp s be
the morphism froniXs to Xa whose comorphism is the canonical injection fréninto S. Let Ng be the
nullvariety of A, in Xs and set

N :=dimS —dimA.

Lemma 2.1. (i) The irreducible components of the fibersrgfs have dimension at least N.

(i) If No has dimension N, then the fibersmfs are equidimensional of dimension N.

(iif) Suppose that S S(E) for some finite dimension&l-vector space E. INg has dimension N, then
for some x,..., Xy in E, the nullvariety of x ..., Xy in Ng is equal to{0}.

Proof. (i) Let F be a fiber ofra s and letU be an open subset #& whose intersection witk is not empty
and irreducible. The restriction afa s to U is a dominant morphism frord to Xa. So,N is the minimal
dimension of the fibers of the restriction of s to U, whence the assertion.

(i) Denote byxg the elemenfA, of Xa. SinceA is a graded algebra, there exists a regular action of the
one dimensional multiplicative groupfon Xa. Furthermore, for alk in Xa, X is in the closure of @.x.
Hence the dimension of the fiber of s at x is at most diniNp. As a result, when difg is the minimal
dimension of the fibers ofa s, all the fibers ofra s are equidimensional of dimensidhby (i).

(iii) For x = (X)ic) a family of elements oE, denote byA[X] the subalgebra of &) generated by and
X, and denote biNp(X) its nullvariety inNg. SinceNy is a cone No(X) is equal to{0} if it has dimension
0. So it sifices to findN elementsxy, ..., xy of E such thatNg(X1, . .., Xn) has dimension 0. Let us prove
by induction oni that fori = 1,..., N, there exist elementsxy,..., X of E such thatNo(x1, ..., X) has
dimensionN — i. By induction oni, with A[X, ..., X] instead ofA, it suffices to findx in E such thatNy(x)

has dimensiomN — 1.
5



LetZ,...,Znbe the irreducible componentsXsf and letl; be the ideal of definition of; in S(E). Since
No is equidimensional of dimensiod by hypothesis, foi = 1,...,m, Z has dimensioN. In particular,
l; does not contairk sinceA # S(E). So, there existx in E, not in the union ofl1,...,Im. Then, for
i =1,...,m, the nullvariety ofx in Z; is equidimensional of dimensidd — 1. As a result, the nullvariety of
the ideal of SE) generated byA, andx is equidimensional of dimensidd — 1, whence the assertion. o

Let A be the algebraic closure #fin S.

Lemma 2.2. Let M be a graded A-module and let V be a graded subspace of Mtkat M = V & M,.
Denote byr the canonical map & V — M. Thenr is surjective. Moreover; is bijective if and only if M
is a flat A-module.

Proof. Let M’ be the image of. SinceM =Ve M, =V + ALM c M’ + A, M, we get by induction oK,
Mc M +AXM.

SinceM is graded and sincA, is generated by elements of positive degides M’.

If T is bijective, then all basis 0¥ is a basis of theéd-module M. In particular, it is a flatA-module.
Conversely, let us suppose thdtis a flatA-module. Fow in M, denote by the element o¥ such thav —v
isin A M.

Claim 2.3 Let (v1,...,0n) be a graded sequence i such thatvy, ..., v, is linearly free overk. Then

v1,...,0piS linearly free oveA.

Proof of Claim2.3. Since the sequencey(...,vn) is graded, it sfiices to prove that for a graded sequence
(az,...,an) N A,
v+ -+an=0=—=a=---=a,=0.

Prove the statement by induction onFirst of all, by flatness, for some graded sequenge (.,yx) in M
and for some graded sequenbgj(i=1,...,n,j=1,...,K),

k n
Vi :Z;bi’jyj and IZJ;anLm:O
J: =

fori =1,...,nandm=1,...,k. Forn = 1, sincev; # 0, for somej, by j is ink* sinceA =k + A,. So
a; = 0. Suppose the statement true flor 1. Sincev, # 0, for somej, by j is ink*, whence

n— n—

Z—JJ Z i (v — ’Un)_

i—1 -1
Sinceuy, ..., vy are linearly free ovek, so is the sequence

(vi —(bij/bnjon, i=1...,n- 1).
By induction hypothesisy= --- =an_1 = 0, whence, = 0. O

According to Claim2.3, any graded basis of is linearly free ovelA. Hence any graded basis Véfis a
basis of theA-moduleM sinceM = AV. m]

Corollary 2.4. Suppose that S= S(E) for some finite dimensiona&-vector space E, and suppose that
dimNp = N. ThenA is the integral closure of A i6(E). In particular, A is finitely generated.
6



Proof. SinceA is finitely generated, so is its integral closure ifepby [Ma86, §33, Lemma 1]. According
to the hypothesis oy and Lemma2.1,(iii), for somexg, ..., XN in E, the nullvariety ofxq, ..., xy in Ng is
equal to{0}. In particular,x, ..., Xy are algebraically independent ov&sinceE has dimensiomN + dimA.
Let J be the ideal of I) generated byA, andx,...,XN. Then the radical of is the augmentation ideal
of S(E) so thatJ has finite codimension in §). ForV a graded complement tbin S(E), SE) is the
Al X, ..., Xn]-submodule generated by by Lemma2.2 Hence SE) is a finite extension o[ X, ..., Xn].

Let pbeinA. SinceA[xy, ..., xn] is finitely generatedA[ x4, . . ., xn][ p] is a finite extension oA[ X1, . . ., Xx].
Let

P"+am1p™ 4 +a0 =0
an integral dependence equationpobver A[ Xy, ..., Xn]. Fori = 0,...,m, g is a polynomial inxy, ..., Xy
with codficients inA sincexy,..., Xy are algebraically independent owr Denote bya;(0) its constant
codficient. Sincepisin A, x4, ..., Xy are algebraically independent ov&p], whence

p" + an-1(0)p™ " + -+ + a9(0) = 0.
As a resultA is the integral closure oAin S(E). m]

Proposition 2.5. Let us consider the following conditions on A:

1) Ais a polynomial algebra,
2) Alis aregular algebra,
3) Ais a polynomial algebra generated dim A homogeneous elements,
4) the A-module S is faithfully flat,
5) the A-module S is flat,
6) the A-module S is free.
(i) The conditiong1), (2), (3) are equivalent.
(ii) The conditiong4), (5), (6) are equivalent. Moreover, Conditiqd) implies Condition2) and, in that
eventNg is equidimensional of dimension N.
(i) If Ng is equidimensional of dimension N, then the conditid)s(2), (3), (4), (5), (6) are all equiva-
lent.

Proof. Let n be the dimension oA.

(i) The implications (3} (1), (1)= (2) are straightforward. Let us suppose thds a regular algebra.
SinceA is graded and finitely generated, there exists a graded segife, ..., Xy) in A, representing a
basis ofA+/A§. Let A’ be the subalgebra & generated by, ..., X,. Then

A, C A +AZ.

So by induction orm,
A, cA+AT

for all positive integem. ThenA = A’ sinceAis graded and\, is generated by elements of positive degree.
Moreover,x,, ..., X, are algebraically independent oesinceA has dimensiom. HenceA is a polynomial
algebra generated lsyhomogeneous elements.
(ii) The implications (4} (5), (6)= (5) are straightforward and (5} (6) is a consequence of Lemra&.
(5)= (4): Recall thatxp = A.. Let us suppose th& is a flatA-module. Themnra s is an open morphism
whose image containg. Moreover,n(Xs) is stable under the action of(s Sonas is surjective. Hence,

by [Ma86, Ch. 3, Theorem 7.2F is a faithfully flat extension oA.
7



(4)=(2): SinceS is regular and sinc8 is a faithfully flat extension of, all finitely generated\-module
has finite projective dimension. So bylf86, Ch. 7,§19, Lemma 2], the global dimension &fis finite.
Hence by Ma86, Ch. 7, Theorem 19.2]Ais regular.

If Condition (4) holds, by [1a86, Ch. 5, Theorem 15.1], the fibersof s are equidimensional of dimen-
sionN. SoNj is equidimensional of dimensidd.

(iii) Suppose thalNy is equidimensional of dimensidd. By (i) and (ii), it sufices to prove that (Zp (5).
By LemmaZ2.1,(ii), the fibers ofra s are equidimensional of dimensidh Hence by Ma86, Ch. 8, Theorem
23.1],S is a flat extension of sinceS andA are regular. m|

2.2. We present in this paragraph some results about algeixtensions, that are independent of Subsec-
tion 2.1. These results are used only in the proof of Proposi#&di. Our main reference i$fa86. For A
an algebra and a prime ideal ofA, A, denotes the localization & at p.

Lett be an indeterminate, and letbe a field containing. Let B, L1, By verifying the following condi-
tions:

() L, is an algebraic extension &ft) of finite degree,

(I Lis algebraically closed ik,

(i Bis a finitely generated subalgebralgfL is the fraction field oB andB is integrally closed irL,
(IV) By isthe integral closure dB[t] in Lj,

(V) tB;isaprime ideal oB;.

ForC a subalgebra df, containingB, we set:
R(C) := C®g By,

and we denote byic the canonical morphisfR(C) — CB;. SinceC and B; are integral algebras, the
morphismsc — ce1 andb — 1eb from C and B; to R(C) respectively are embeddings. $andB; are
identified to subalgebras &{C) by these embeddings. We now investigate some propertide algebras
R(C).

Lemma 2.6. Lety, be the canonical morphism(B) — LB;.
(i) The algebra L) is reduced andg is an isomorphism.
(i) The ideal tLB of LB, is maximal. Furthermore Bis a finite extension of .
(i) The algebra LB is the direct sum of L and tLB
(iv) The ring LB is integrally closed in L.

Proof. (i) Let a be in the kernel ofi. . Sincel is the fraction field ofB, for someb in B, ba = 1eu (ba) so
thatba = 0 anda = 0. As a resulty, is an isomorphism anB(L) is reduced sinc&B; is integral.

(i) Sincet is not algebraic ovek and sincelB; is integral over[t] by Condition (IV),tLBy is strictly
contained inLB;. Leta andb be inLB; such thatabis in tLB;. By Condition (lll), for somec in B\ {0},
caandcbare inB;. So, by Condition (V)caor cbis intB;. Henceaor bis intLB;. As a resulttLB; is
a prime ideal and the quotie of LB; by tLB; is an integral domain. Denote byhe quotient morphism.
Sincel is afield, the restriction afto L is an embedding df into Q. According to Conditions (1) and (1V)
and [Ma86, §33, Lemma 1] Bs is a finite extension oB[t]. ThenQ is a finite extension of andtLB; is a
maximal ideal ofLB;.

(i) Since L is algebraically closed ih1, Q andL are linearly disjoint ovet.. So,Q®, L is isomorphic

to the extension of; generated by. Denoting this extension bYL,, QB; is a subalgbera dL; and we
8



have the exact sequences

0——1tLB; LB, Q 0
0——1tQB; QB: QeaLQ——0
O—>tQB;|_—>-tQBl+ LB1 Q®l 0

As aresult,
Q c LB+ tQB]_.

By (ii), QBy is afiniteL[t]-module. So, by Nakayama’s Lemma, for soeie L[t], (1+ta)QB; is contained
in LB;. As a resultQ is contained irL1, whenceQ = L sincelL is algebraically closed ih;. The assertion
follows sinceQ is the quotient oL.B; by tLB;.

(iv) Let abe in the integral closure @fB; in L; and let

a"+an@™ 4+ +ay=0

an integral dependence equatioreafverLB;. For somédin L\ {0}, bg isin By fori =0,...,m-1. Then,
by Condition (IV),bais in By since it verifies an integral dependence equation 8¢eAs a resultLB; is
integrally closed ir_;. m|

Let L, be the Galois extension aft) generated by 1, and letl" be the Galois group of the extensibp
of L(t). Denote byB, the integral closure dB[t] in L,. ForC subalgebra ok, containingB, set

Rx(C) :=C®g By,

and denote byic, the canonical morphisR,(C) — CBy. The action ofl" in B, induces an action df in
R>(C) given byg.(ceb) = czg(b).

Lemma 2.7. Let x be a primitive element of Land letl'y be the stabilizer of x i

(i) The subfield L of L, is the set of fixed points under the actionl@fin L,, and B, is the set of fixed
points under the action dfy in B,.

(ii) For C subalgebra of L containing B, the canonical morphis(@R— Ry(C) is an embedding and its
image is the set of fixed points under the actioir,oin Ry(C).

(iif) For C subalgebra of L, containing B,[@ is embedded in ) and R(C). Moreover, (t] is the set
of fixed points under the action Bfin Ry(C).

Proof. (i) Let L} be the set of fixed points under the actiorTgfin Lo,
Li={yelz| Txy=y)

ThenL; is contained irL7, andL; is an extension of degrdEy| of L. Sincex s a primitive element ok ;,
the degree of this extension is equalltoq so thatl; is an extension of degréEy|. HenceL] = L.
SinceBs is the integral closure d[t] in Ly, By is invariant undef”. Moreover, the intersection &, and
L1 is equal toB; by Condition (IV). HenceB; is the set of fixed points under the actionlgfin B,.
(ii) For ain B, andb in Ry(C), set:

1 -1
# . .
a=— a), b=— .b.
T Zr o o 2.
ge€l x
9
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Thena — a" is a projection ofB, onto B;. Moreover, it is a morphism oB;-module. Denote by the
canonical morphisniR(C) — Ry(C), and by the morphism

Rx(C) — R(C), c®a+—> coa".

Forbin Ry(C),
¢(b) = ¢(b) and wp(b) =b
Theng is a surjective morphism and the image.@f is the set of fixed points under the actionIgfin

R>(C). Moreover: is injective, whence the assertion.
(iii) From the equalities

R(C) = (C ®g BIt]) ®sq B1 and C[t] = C ®g BIt]

we deduce thaR(C) = C[t] ®gjy B1. In the same wayR,(C) = C[t] ®gy B2. Then, sinceC[t] is an integral
algebra, the morphisma — c21 is an embedding doE[t] in R(C) andR,(C). Moreover,CJ[t] is invariant
under the action df in Ry(C).

Letabe inRy(C) invariant undef’. Thena has an expansion

k
a= Z Gieb
i=1

with ¢y, ...,c in C[t] andb;, ..., bk in By. Sinceais invariant undefr’,

1 1o
a= ﬁ;g.a: | ZZQ@g.bi.

gel i=1
Fori=1,...,k, set:
1
b == b
= 2,00
ge
The elementb’l, e, b’k are inBJ[t], and

K
a=() chf)eleCt,
i=1
whence the assertion. O

From now on, we fix a finitely generated subalge@raf L containingB. Denote byn the nilradical of
R(C).

Lemma 2.8. Lett be the kernel ofic» and letn, be the nilradical of R(C).
() The algebras EC) and R,(C) are finitely generated. Furthermore, they are finite extemsiof Gt].
(i) Foraint, ba= 0for some b in B {0}.
(i) The idealt is the minimal prime ideal of RC) such thatt N B = {0}. Moreovert n B[t] = {0}.
(iv) The idealn is the kernel ofic. Moreovern, = T andn is a prime ideal.
(v) The local algebra RC),, is isomorphic to k.

Proof. (i) According to Lemma2.7,(iii), R(C) is an extension o€[t] and R(C) = C[t] ®gy B1. Then, by
Lemmaz2.6,(ii), R(C) is a finite extension oE[t]. In particular,R(C) is a finitely generated algebra since so

is C. In the same wayR,(C) is a finite extension of[t] and it is finitely generated.
10



(i) Let abe inf. Thena has an expansion

k
a= Z Gi®b;
i=1

with cq,...,ccin C andby, ..., bk in By. SinceC andB have the same fraction field, for sorhén B\ {0},
bg is in B, whence

k
ba= 1®(Z bgby).
i=1

Soba = 0 sincet is the kernel ofic .

(i) By (i) there are finitely many minimal prime ideals &(C). Denote them by, ..., px. SinceCJt]
is an integral algebray, N C[t] = {0} so thatp; N C = {0} for somei. Leti be such thap; n B = {0} and
leta be inf. By (ii), for someb in B\ {0}, bais in p;. Hencet is contained inp;. SinceCB; is an integral
algebraf is a prime ideal. Thenp; = f sincep; is a minimal prime ideal, whence the assertion since for some
i, pj N C[t] = {0}

(iv) By (iii), there is only one minimal prime ideal ¢,(C) whose intersection witB is equal to{0}. So,
it is invariant undel”. Hencet is invariant undef’. As a result, fomin f,

0= l_[(a—g.a) =a"+an1@a™t+- +a
gel’
with m = [l anday, ..., am-1 in . Moreover, by Lemma.7,(iii), ag,...,an-1 are inC[t]. So, by (iii), they
are all equal to zero so thatis a nilpotent element. Hengéés contained im,. Thenny = T by (iii).

By Lemma2.7,(ii), R(C) identifies with a subalgebra d&,(C) so thatn = n, N R(C), anduc is the
restriction ofuc 2 to R(C). Hencen is the kernel ofuc andn is a prime ideal oR(C).

(v) By (iii), nn C = {0}. So, by (ii), nR(C), = {0}. As a result,R(C), is a field sincenR(C), is a
maximal ideal ofR(C),.. Moreover, by (iii), it is isomorphic to a subfield &f, containingB;. So,R(C), is
isomorphic toL;. m|

Forcin L[t], denote byc(0) the constant term afas a polynomial it with codficients inL.

Lemma 2.9. Assume that C is integrally closed in L. Denoted#, the integral closure of CBin L.
(i) Leti e {1,2}. For all positive integer j, the intersection of{f and t LB; equals tC[t].
(ii) The intersection of tLBandCB; equals €B;.
(iii) The algebraCB; is contained in G+ tCB;.
(iv) The algebra B is the direct sum of B and tB

Proof. First of all, CB; andCB; are finite extensions d¢E[t] by Lemma2.7,(i), and Ma86, §33, Lemma
1]. SoCB; is the integral closure oE[t] in L1 by Condition (IV). Denote bYCB; the integral closure of
Cl[t] in L. SinceC is integrally closed iri, C[t] is integally closed irL[t]. HenceC[t] is the set of fixed
points under the action @fin CB,. Letabe inCB,. Then

0=[]@-g(@) = a"+am1a™" +--- +a
gel
with ag, ...,am-1 in C[t].
(i) SincetiLB; is contained irt/LB, and containg!C[t], it suffices to prove the assertion foe 2. Let
us prove it by induction on. Letc be inCJ[t]. Thenc — c(0) is intLB,. By Lemma2.6,(ii), L N tLB, = {0}
sincelL is a field, whenc& N tLB, = {0} sinceC is contained irL. As a result, ifc is in tLBy, ¢(0) = 0 and

cis in tC[t], whence the assertion fgr= 1. Suppose the assertion true for 1. Letc be inC[t] N tiLB;.
11



By induction hypothesis; = ti=1¢’ with ¢’ in C[t]. Thenc is in C[t] N tLB,, whencec is in t/C[t] by the
assertion forj = 1.
(ii) Suppose thag is in tLB;. SincetLB; is invariant under’, fori = 0,...,m-1, g is int™iLB,. Set
fori=0,...,m-1, a
a.i’ = tm_—l
Then by (i),a, ..., &, are inC[t]. Moreover,
a ’ a — V2
(Y)m+%1(m_—1)m T+o4gy=0,
so thata/t is in CBy, whence the assertion.
(iii) Suppose thatiis in CB;. By Lemmaz2.6,(iii), L is the quotient oLB; by tLB;. So, denoting by
the image ofa by the quotient morphism,

A"+ am1(0)@™ L + - + a9(0) = 0.

Thenais in C sinceC is integrally closed. Hencais in C + tLB;. As a result, by (ii)CB; is contained in
C + tCB,.

(iv) By Condition (lll), B is integrally closed irL.. So the assertion results from (iii) and Condition (IV)
for C = B. m]

Corollary 2.10. The ideal RC)t of R(C) is prime and t is not a zero divisor in(R).

Proof. According to Lemm&.9,(iv), R(C) = C+R(C)t. Furthermore, this sum is direct sinCextCB; = {0}
by Lemma2.6,(ii) and since the restriction gfc to C is injective. TherR(C)t is a prime ideal oR(C) since
Cis an integral algebra.

SinceR(C)t is a prime idealn is contained irR(C)t. According to Lemma.8,(iv), n is the kernel ofuc.
Letabe inn. Thena = a't for somea’ in R(C). Since 0= uc(a't) = uc(a)t, @ is inn. As a result, by
induction onm, for all positive integem, a = ant™ for someay, in n.

Fork positive integer, denote by the subset of elementsof R(C) such thaat = 0. Then (1, J,...)
is an increasing sequence of idealsRE). Forain Ji, 0 = uc(atd) = uc(a)tt. Hencely is contained in
n. According to Lemma.8,(i), the k-algebraR(C) is finitely generated. So for some positive integgr
Jk = J, for all k bigger tharky. Letabe inJ;. Thena = a,t* for someay, in t. Sinceay t*! = 0, ay, is
in Jy, so thata = 0. Hencet is not a zero divisor ifR(C). m]

Proposition 2.11. Suppose that C is integrally closed and Cohen-Macaulayplbeta prime ideal of CB
containing t and lef be its inverse image hyc.

(i) The local algebrgCBy), is normal.

(i) The local algebra EC); is Cohen-Macaulay and reduced. In particular, the canohiwarphism
R(C); — (CBy), is an isomorphism.

(iii) The local algebrgCB;), is Cohen-Macaulay.

Proof. (i) Let CB;y be the integral closure @By in L;. SettingS := CB; \ p, (CBy), is the localization of
CB, with respect taS. Denote by CBy), the localization ofC B; with respect taS. Then CBy), is a finite
(CBy),-module sinceCB; is a finite extension of B;. According to Lemma.8,(iii),

CB; c CB; +tCB;.

Then sincd is in p,

(C_Bl)p/(c B1), = p(C_Bl)p/(C B1)s.
12



So, by Nakayama’s LemmaCg;), = (CBy),, whence the assertion.

(i) According to Corollary2.10 R(C)t is a prime ideal containing. Denote byp the intersection of
p andC. Sincep is the inverse image of by uc, C; is the quotient ofR(C); by R(C);t. SinceC is
Cohen-Macaulay, so &;. As a result,R(C); is Cohen-Macaulay sinceis not a zero divisor irR(C) by
Corollary2.10and sinceR(C);t is a prime ideal of height 1.

Denote byuc; the canonical extension gt to R(C);. Then CBy), is the image of«c 3. According to
Lemma?2.8(iv), the nilradicalnR(C); of R(C); is the minimal prime ideal oR(C); and it is the kernel of
ucs- By Lemma2.8,(v), the localization oR(C); at nR(C); is a field. In particular, it is regular. Then, by
[Bou9§ §1, Proposition 15]R(C); is a reduced algebra since it is Cohen-Macaulay. As a regitis an
isomorphism onto@B;),.

(i) results from (ii). m|

2.3. Return to the situation of Subsectidri, and keep its notations. From now on, and until the end of
the section, we assume that= S(E) for some finite dimensionadt-vector spacé&. As a rule, ifBis a
subalgebra of &), we denote byK(B) its fraction field, and we set for simplicity

K := K(S(E)).
Furthermore we assume until the end of the section that ttmviag conditions hold:
(@) dimNg = N,
(b) Ais a polynomial algebra,
(c) K(A) is algebraically closed iK.
We aim to prove Theorer.20 (see SubsectioB.4). Let (v1,...,vN) be a sequence of elementsibkuch
that its nullvariety inNg equals{0}. Such a sequence does exist by Lenfrixiii). Set

C:= K[Ul,...,UN].

By Proposition2.5,(ii), C is a polynomial algebra if and only if so & sinceC is a faithfully flat extension
of A. Therefore, in order to prove Theoreh®0, it suffices to prove that &) is a free extension @, again
by Proposition2.5,(ii). This is now our goal.

Condition (c) is actually not useful for the following lemma
Lemma 2.12. The algebra C is integrally closed ar®iE) is the integral closure of C in K.

Proof. SinceA has dimension dirE — N and since the nullvariety af, . ..,vn in Ng is {0}, v, ..., un are
algebraically independent ovérand A. By Serre’s normality criterionfou98 §1, r°10, Théoréme 4],
any polynomial algebra over a normal ring is normal. Sis integrally closed since so & by definition.
Moreover,C is a graded finitely generated subalgebra d)3{ince so isA by Corollary2.4. SinceC has
dimension dink, S() is algebraic oveC. Then, by Corollan?2.4, S(E) is the integral closure dof in K.
Indeed, SE) is integrally closed as a polynomial algebra d@gis the nullvariety ofC, in E*. m]

SetZy := Specmf) andZ = Zo xkN. ThenZ is equal to Specn®). Let Xy be a desingularization of
Zg and letrg be the morphism of desingularization. Such a desingul@izadoes exist byHlir64]. Set
X := Xo x kN and denote byt the morphism

X —Z, (X, v) — (mo(X), v).

Then (X, ) is a desingularization df.
Fix xg in 7r51(C+). Fori = 0,...,N, setX; ;= Xo x k' and letx; := (x0.0.i). DefineK;, C, Cj by the
induction relations:
13



(1) C := Co := AandK is the fraction field ofA,
(2)C = C/_yul,
(3) K is the algebraic closure ¢fi_1(v) in K andC; is the integral closure of;_1[vi] in K;.

Lemma2.13.Leti=1,...,N.
() The field Kis a finite extension of iK;(v;) and K_; is algebraically closed in K
(i) The algebra Gis finitely generated and integrally closed in K. Moreoverjgthe fraction field of €
(i) The algebra ¢is contained ifS(E) and Gy = S(E). Moreover, K = K.
(iv) The algebra Gis a finite extension of C
(v) The algebra Cis the intersection 08(E) and K. Moreovery;C; is a prime ideal of G

Proof. (i) By Condition (c), Kg is algebraically closed K. So Kg is algebraically closed ifK;. By
definition, fori > 1, Ki_1 is algebraically closed iiK. So it is inK;. Since the nullvariety of1,...,vy in
No equals{0}, v1, ..., vN are algebraically independent oues. HenceKi_1(uv;i, ..., vN) is a field of rational
fractions overK;_1. Moreover,K is an algebraic extension &_1(vi,...,vn) by Lemma2.12 Since SE)
is a finitely generatet-algebraK is a finite extension oK;_1(vi, . . ., vn). By definition, K| is the algebraic
closure ofK;_1(vj) in K. Hencek; is a finite extension oK;_1(v;).

(i) Prove the assertion by induction anBy definition, it is true foii = 0 andC; is the integral closure of
Ci_1[vi] in K; fori =1,..., N, whence the assertion by (i) and§86, §33, Lemma 1].

(i) Since SE) is integrally closed irK, C; is contained in ¥f) by induction on. By definition, the field
Ky is algebraically closed iK and it contain€C. SoKy = K by Lemma2.12 SinceCy is integrally closed
in Ky and it containgC, Cy = S(E) by Lemma2.12

(iv) Prove the assertion by induction onBy definition, it is true fori = 0. Suppose that it is true for
i — 1. ThenC;j is a finite extension of!_,[vi] = C/.

(v) Prove by induction o thatCy_; is the intersection of &) andKy_j fori = 0,...,N. By (iii), it
is true fori = 0. Suppose that it is true for— 1. By induction hypothesis, it $ices to prove thaCy_; is
the intersection o€y_j,1 andKy_i. Leta be in this intersection. Thea verifies an integral dependence
equation ovelCn_i[vn—i+1]:

a"+ana™m 4+ +a=0.
Denoting bya;(0) the constant term af; as a polynomial inn_i,1 with codficients inCy_j,
a"+am 1(0@™ "+ +29(0)= 0

sincea is in Ky_j andon_j+1 is algebraically independent ov&liy_ij. Hencea is in Cy_j sinceCy_j is
integrally closed irKy_j by (ii).

Leta andb be inC; such thatabis in y;C;. Sinceu; is in E, v;S(E) is a prime ideal of ). Soaorbis
in vy;S(E) sinceC; is contained in ). Hencea/v; or b/v; are in the intersection of &) andK;. Soaorb
is in viC;. O

Remark2.14 According to Lemma.13(i),(ii),(iv), for i = 1,..., N, Ki_1, vj, Ci_1, Kj, C; verify Conditions
D, (n, @, (v) verifed by L, t, B, Ly, B1 in Subsectior2.2. Moreover, Condition (IV) is verified by
construction (cf. Lemma.13(v)).

Proposition 2.15. Leti=1,...,N.
(i) The semi-local algebréy; x Ci is normal and Cohen-Macaulay.
(if) The canonical morphisrix, x ®c/ Ci — Ox, xCj is an isomorphism.
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Proof. (i) The local ringOx x is an extension o€’ andC; is a finite extension o€/ by Lemma2.13(iv).
So00x; xCi is a semi-local ring as a finite extension of the local rthg .. Prove the assertion by induction
oni. Fori = 0, Ox,xCo = Ox,x andOx, x, is a regular local algebra. Suppose that it is trueiferl
and setli_1 := Ox _, x_,Ci—1. Then;_; is a subalgebra df;_; sinceOx, , x_, is contained in the fraction
field of C/_;. Letm be a maximal ideal 0®x, x Ci. The local ringOx; , is the localization ofx,_, x_,[vi] at
mnN Ox_, x ,[vi]. Hencey; is in m, andm N A;_1C; is a prime ideal ofl;_1C; such that the localization of
A;_1C; at this prime ideal is the localization 6fx,  C; atm. By the induction hypothesig;_; is normal and
Cohen-Macaulay. According to Remazki4and Propositior2.11,(i) and (iii), the localization ofl;_,C; at
m N Ai_1C; is normal and Cohen-Macaulay, whence the assertion.

(if) Prove the assertion by induction onFori = 0, Cq is contained irDy, x,. Suppose that it is true for
i — 1. Forj € {i - 1,i}, denote by the canonical morphism

OXJ‘,XJ‘ ®c] Ci— OXj,ijj-
Recall thatll;_; := Ox_, x_,Ci-1. By induction hypothesis, the morphismeidc,,
(O%_1.%-1 &, Ci-1) ®ciy G — Wiz &c, Ci
is an isomorphism. Sindg/_, is contained irdx,_, x_,,
Ox_1.x1 Qdcr , Ci/—l[vi] = Ox_y.x.4[0i]-
Furthermore,
(Ox.1x1 ®c, Cic1) ®ci 4 Ci = Ox_yx 5 ®cr, Ci = (Ox x4 ®cr | C_4[vi]) ®c; 1 Ci
whence an isomorphism
OXi_l,Xi_l[Ui] ®Ci’,1[”i] Ci B QIi—l ®Ci_1 Ci-
Letm be asin (i). Set
p:=mnU_1GC;, m = vi_l(m),
and denote by the inverse image af by the canonical morphism
Ai_1 ®c, ; Ci — Ai_1C;.
According to Propositior2.11,(ii), the canonical morphism
(oxi,l,xi,lci—l ®Ci,1 CI)5 — (oXi,l,xHCi)p

is an isomorphism sincOx, , x_,Ci—1 is a finitely generated subalgebrakif 1, containingCi_1, which is
Cohen-Macaulay and integrally closed. étbe the inverse image @fby the isomorphism

Ox_1xalui] ;) G — Ox 1%+ Ci-1®c 4 Ci-
Then the canonical morphism
(OXi_l,Xi_l[Ui] ®Ci/ Ci)p# — (Oxi_l,x;_lci)v
is an isomorphism. From the equalities
(Ox_1xaluil ®c Ci)yr = (Oxx ®c Cidin,  (Ox1.%1Ci)p = (Ox,xCidm

we deduce that the support of the kernetigh SpecQx; x ®c; Ci) does not contairii. As a result, denoting
by 8; this supportS; does not contain the inverse imageshpf the maximal ideals ox. x C;.

According to Lemma.8,(iv), the kernel of the canonical morphism

Ai_1®c_;, Ci — Ox_y.%.Ci
15



is the nilradical ofl;_1 ®c, ; Ci. Hence, the kernel of the canonical morphism
Ox;_1x1[vi] ®cr Ci = Ox;_y.x4[0ilCi
is the nilradical of0x,_, x ,[vi] ®c; Ci since the canonical map
Ox;_1x1[ui] ®c/_ 1) G — U1 ®¢; 4, Ci

is an isomorphism by induction hypothesis. As a result, lelinent of§; is the inverse image of a prime
ideal inOx; x Ci. Hences; is empty, and;; is an isomorphism. O

The following Corollary results from Propositicgh15and Lemma2.13(iii) since 7~1(C,) = 7r61(C+) X
{0}.

Corollary 2.16. Let x be int%(C,).
(i) The semi-local algebr@x xS(E) is normal and Cohen-Macaulay.
(i) The canonical morphisfix x ®c S(E) — Ox xS(E) is an isomorphism.

Let d be the degree of the extensiénof K(C). Let x be inz~1(C,), and denote bW, the quotient of
OxxS(E) by myS(E), with my the maximal ideal 00y y.

Lemma 2.17. Let V be a graded complement3@E)C, in S(E).

(i) Thek-space V has finite dimensioB(E) = CV and K= K(C)V.

(i) Thek-space Q has dimension d. Furthermore, for all subspaceofdimension d of V such that,Q
is the image of ¥by the quotient map, the canonical map

Oxx® V' — OxxS(E)
is bijective.
Proof. (i) According to Lemm&.12 S(E) is a finite extension o€. Hence, thé&-spaceV is finite dimen-
sional. On the other hand, we have&EpE V + S(E)C.,.. Hence, by induction om, SE) = CV+ S(E)CT' for
anym, whence ) = CV sinceC, is generated by elements of positive degree. As a rdsul, K(C)V

since thek-spaceV is finite dimensional.
(ii) Let d’ be the dimension ofy. By (i), sinceC, is contained inmny,

As a result, for some subspavé of dimensiond’ of V, Qy is the image oV’ by the quotient map. Then,
OX,XSGE) = OX,XV/ + mxS(E),

and by Nakayama’'s Lemm@x xS(E) = OxxV’. Let (v1, .. .,vq) be a basis o¥/’. Suppose that the sequence
(v1,...,vg) is not linearly free oveOy x. A contradiction is expected. Lébe the smallest integer such that

all)1+---+ad/l)d/=0

for some sequencey, . ..,ay) in ml, not contained inn%. According to Corollary2.16,(i) and [Ma86,
Ch. 8, Theorem 23.1[)x xS(E) is a flat extension 0Ox x sinceOx xS(E) is a finite extension 0Ox . So,
for somews, ..., wn in S(E) and for some sequencds {,...,bim, i =1,...,d") in Oxx,

m d’
vj =Zbi’jwj and Zajbj,k=0
i=1 i=1
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foralli=1,...,d and fork = 1,...,m. SinceOxxS(E) = OxxV’,

d/
wj = Z Cj kUk
k=1

for some sequenceij, j = 1,....mi=1,...,d)in Oxx. Setting

m
Uik = Z bij Cik
=1

vi = Z Uikox and Z ajujj =0

kel jel
foralli=1,...,d. Sincevy,...,vy is linearly free modulon,S(E),

fori,k=1,...,d, we have

Uik — Jijk € My

for all (i, k), with 6; x the Kronecker symbol. As a resud, is in m'x+1 for all i, whence a contradiction. Then
the canonical map
Oxx® V' — OxxS(E)

is bijective. SinceK = K(C)S(E) and sinceK(C) is the fraction field of0x x, v1, ..., vy is a basis oK over
K(C). Henced = d and the assertion follows. m|

Recall thatKy is the fraction field ofA. Leton.1,...,un+ be elements oE such thaws, . .., on.r iS @
basis ofE. Denoting byty, ..., t, some indeterminates, Iétbe the morphism of-algebras

C[ts,...,t] — S(E), ti — UN4,
and letd be the morphism oKo[v1, . . ., vn]-algebras
Ko[v1, ..., 0N, 11, ..., tr] — Ko ®z S(E), [ NI
Fori = (i1,...,in) in NN and forj = (j1,..., j;) in N', set:
o=y, =t
Forain A, denote bya the polynomial irk[vy, . ..,on, t1, . . ., t;] such that¥(d@) = a.

Lemma 2.18. Let | be the ideal of @1y, ...,t,] generated by the elements-a@ with a inA.

(i) For all graded generating familgay, . . ., am) of A, | is the ideal generated by the sequef@e-a;, i =
1,....,m).

(ii) The ideal | is the kernel af.

Proof. (i) Let I’ be the ideal oC[ty, ..., t;] generated by the sequen@ { &,i = 1,..., m). Since the map
a - ais linear, it sdfices to prove thaa — @ is in I’ for all homogeneous elemeatof A,. Prove it by
induction on the degree af For some graded sequents, (.., bm) in A,

a=ba +---+ bpam
so that

a—é:izmllbi(a; —5)+§;5(bi - by).

If ahas minimal degredy,, ..., by are ink andb; = b fori = 1,...,m. Otherwise, foi = 1,...,m, if b is
not ink, b; has degree smaller thanwhence the assertion by induction hypothesis.
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(ii) By definition, | is contained in the kernel @f. Letabe inC[ty,...,t]. Thena has an expansion

a=  »  at

(i,j)ENNXNT

with thea s in A, whence

a= Z (a”-—;j)vitj+ Z aijitj.

(i,j)eNNXN' (i.,j)eENNXNT
If 9(a) =0, then
Z aijitj =0
(i,j)eNNxNT
since the restriction af to k[v1,...,oN, 11, ..., t] iS injective, whence the assertion. O

For xin 771(C,), denote by¥, the morphism
Oxxlt1,....t] — K, at — avl‘\}+1---v|‘\j+r.

Proposition 2.19. Let x be int(C,).

(i) The kernel ofdy is the ideal ofOxx[t1,...,t] generated by I. Furthermore, the image®fis the
subalgebraOx xS(E) of K.
(i) The intersection ofiiS(E) and S(E) is equal to GS(E).

Proof. (i) From the short exact sequence
0— 1 —>C[ty,...,.t;] — S(E) — 0
we deduce the exact sequence
Oxx®c | — Oxx®c C[ty,...,.tt] — Oxx®c S(E) — O.

Moreover, we have a commutative diagram

d d
OX,X Q| — OX,X Qc C[tl, . ,tr] _ OX,X ®c S(E) ——0

lﬁ l6 a

OX,xl oX,x[tl, e ,tr] OX,XSGE) —0
0 0 0

with exact columns by Corollar.16(ii). Forain Oxx[t1,...,t] such that & = 0,
a=06b, b=dc with be Oxx®cC[ts,....t;], ceOxx®cl,

so thata = deéc. HenceOx x| is the kernel offy.
(i) Let ay, ..., am be a graded generating family &f. Fori = 1,...,m,

q = Z ai,j,kvjtk,
(. K)ENNxNT
18



with theg;jk’s in k. Set:

a = Z aoktc.
keNN
Fori=1,...,m,

deq—a+Cilty,....t]
sinceg; is in A, so thatd(a) is in C, S(E).
SinceC, is contained inny, C,S(E) is contained innyS(E) N S(E). Leta be inmy[ty,...,t] such that
9x(@) is in SE). According to (i),
ac C[tl, ... ,tr] + Ox’xl .
So, by Lemma&.17,(i),
a=b+bi(ar —a)+ -+ bm(am - am),
with bin C[ty,...,t;] andb,...,bmin Oxx. Then,

b=Dbg+b,, with bgek[ty,....t;] and b, € C.[ts,...,1t]
bi=bio+b, with boek and b, emy
fori=1,...,m. Sinceaisinmyty,...,t;]andas,...,anare inC,,

bo — byoas — - - — bmoam € my[t1, ..., t]
Moreover, fori =1,...,m,
& —a € Cyfty,... 4]
Hence
bo - bl’oaa_ — e = bmoa;.n =0 since mx[tl, . ,tr] N k[tl, . ,tr] =0.
As aresultgx(a) is in C,S(E) sincedx(a) = I«(bo) + Ix(bs). m]

2.4. We are now in a position to prove the main result of the¢imec Recall the main notation< is a
finite dimensional vector space oJderA is a graded subalgebra ofE5( different from SE) and such that
A =k + A,, No is the nullvariety ofA, in E*, K is the fraction field of SE) andK(A) that one ofA, the
algebraic closure oA in S(E).

Theorem 2.20. Suppose that the following conditions are verified:

() No has dimension N,
(b) Ais a polynomial algebra,
(c) K(A) is algebraically closed in K.
ThenA is a polynomial algebra. Moreove®(E) is a free extension dA.

Proof. Use the notations of Subsecti@rB. In particular, set
C=A[v1,...,0n]

with (v1, ..., vN) @ sequence of elementsituch that its nullvariety itNg is equal t0} (cf. Lemma2.1,(iii)),
and letK(C) be the fraction field o€. As already explained, according to Propositibdh,(ii), it suffices to
prove that SE) is a free extension dE. LetV be as in Lemm&.18 a graded complement to SC, in
S(E). Recall thaiX is a desingularization & = SpecmC) and thatr is the morphism of desingularization.
Let x be in7~1(C,). According to Propositior2.19,(ii), for some subspace’ of V, V’ is a complement to
myS(E) in OxxS(E). Then, by Lemm&.17,(ii), V' has dimension the degree of the extengionf K(C)
and the canonical map

Oxx ® V' — OxxS(E)
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is bijective. Moreover,

V' @SE)C, =SE) and V' =V.
Indeed, fora € S(E), write a = b + cwith b € V' andc € myS(E). SinceV’ is contained in ), cis in
S(E), whencec in S(E)C, by Proposition2.19(ii). In addition, SE) = CV as it has been observed in the
proof of Lemma2.17,(i). As a result, the canonical map

CeV — SE)

is bijective. This concludes the proof of the theorem. |

3. GoOD ELEMENTS AND GOOD ORBITS

Recall thatk is an algebraically closed field of characteristic zero. ighie introductiong is a simple
Lie algebra ovek of rank?, (., .) denotes the Killing form of, andG denotes the adjoint group of

3.1. The notions of good element and good orbij are introduced in this paragraph.

For xin g, denote byy* its centralizer ing, by G its stabilizer inG, by Gj the identity component of
G* and byKy the fraction field of the symmetric algebrag®( Then S§¥)*" and K;‘ix denote the sets of
Gg-invariant elements of §{) andKy respectively.

Lemma 3.1. Let x be ing. Then I{éx is the fraction field oB(g¥)* and Ki‘(x is algebraically closed in K

Proof. Let a be in Ky, algebraic overK;‘}x. For all g in G%, g.a verifies the same equation of algebraic
dependence ovel(ﬁx asa. Since a polynomial in one indeterminate has a finite numbeoats, theGj-
orbit of ais finite. But this orbit is then reduced ta}, Gj being connected. Hengeis in K;‘Ex. This shows
thatK;‘ix is algebraically closed iKy.

Let Ko be the fraction field of $¢)¥". According to EMo10, Theorem 1.2] (see also Theoreni), the
index ofg* is equal tof. So, by R63, the transcendence degreeKj‘(fx overk is equal tof. For x nilpotent,
S(@*)?" containst algebraically independent elements I5°[Y07 Proposition 0.1 and Corollary 2.3]. So
for all xin g, S@*)¥" contains¢ algebraically independent elements. Tlm,ﬁé is an algebraic extension of
Ko. Let A be the integral closure of 809" in KI' . We haveKoA = K . Indeed, forain K¢, by multiplying
the codficients of an algebraic dependance equatioa afer Ko by a power of some, judiciously chosen,
b € S@)*, we observe thaba is integral over S{*)¢". Henceba € A. As, in addition,KoA is clearly
contained inK;‘ix, we get the announced equality. As a resﬁﬁx, is the fraction field ofA. Furthermore,
since S¢¥) is integrally closedA is contained in S{). HenceA = S@*)®* because $) N K{ = S@EN)*
andKq = KY'. o

Definition 3.2. An elementx € g is called agood element af if for some homogeneous elememis. . ., p,
of S, the nullvariety ofps, ..., p; in (6%)* has codimensiod in (¢¥)*. A G-orbit in g is calledgoodif
it is the orbit of a good element.

Since the nullvariety of S in g is the nilpotent cone of, 0 is a good element af For (g, X) in G x g
and forain S, ¢(a) is in S(gg(x))g"(x). So, an orbit is good if and only if all its elements are good.

Theorem 3.3. Let x be a good element of ThenS(@EX)*" is a polynomial algebra an®(@g) is a free
extension oB(g*)?".

Proof. Let py, ..., p; be homogeneous elements ofy3{ such that the nullvariety ofs, ..., p; in (¥)*
has codimensiod. Denote byA the subalgebra of $0)% generated byps, ..., p,. ThenAis a graded

subalgebra of ${) and the nullvariety ofA, in (¢¥)* has codimensiod. So, by Lemma2.1,(ii), A has
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dimension¢. Hence,ps, . . ., p; are algebraically independent aAds a polynomial algebra. Denote By
the algebraic closure @fin S@@¥). By Lemma3.1, Ais contained in ${*)¢" and the fraction field of $)*"
is algebraically closed iKy. As a matter of factA = S@¥)?" since the fraction fields ok and S§¥)* have
the same transcendence degree. Hence, by ThebinS@*)* is a polynomial algebra and & is free
extension of S{*)¢". O

Remark3.4. The algebra ${)* may be polynomial even thoughis not good. Indeed, let us consider
a nilpotent elemene of g = so(k°) in the nilpotent orbit associated with the partition 2, 2). Then
the algebra $€)*° is polynomial, generated by elements of degregs 2 2,5. But the nullcone has an
irreducible component of codimension at most 4. &ig,not good. We refer the reader to Examplé for
more details.

For x € g, denote byxs andx, the semisimple and the nilpotent components oéspectively.

Proposition 3.5. Let x be ing. Then x is good if and only if:Xs a good element of the derived algebra of

g%,

Proof. Let 3 be the center of*s and leta be the derived algebra @fs. Then
g*=3@a%,  SEY)T = SE) @ SE).

By the first equality, €*)* identifies with the orthogonal complementiti (¢*)*. Setd := dim3. Suppose
thatx, is a good element af and letps, . .., p,_q be homogeneous elements of’S[*" whose nullvariety
in (a*)* has codimensiofi— d. Denoting byv4, . ..,vq a basis of, the nullvariety ofvy, ..., vq, P1, ..., Pr_d
in (¢*)* is the nullvariety ofpy, ..., p,_q in (a*)*. Hence x is a good element af.

Conversely, let us suppose theis a good element af. By TheorenB.3, S@*)¢" is a polynomial algebra
generated by homogeneous polynomials . ., p,. Since; is contained in S¢)%", ps, . .., pr can be chosen
sothatpy, ..., pq are in3 andpg.1, . .., p; are in SE)*". Then the nullvariety 0pg.1, ..., pe in ()* has
codimensior? — d. Hence X, is a good element af. O

3.2. In view of TheorenB.3, we wish to find a sfficient condition for that an elememt € g is good.
According to Propositior3.5, it is enough to consider the case wheis nilpotent.

Let e be a nilpotent element af, embedded into aslx-triple (g h, f) of g. Identify the dual ofg with
g, and the dual ofi® with g' through the Killing form(.,.) of g. For p in S(s) =~ k[g], denote byk(p)
the restriction tog" of the polynomial functionx — p(e + x) and denote byp its initial homogeneous
component. According tdPY07 Proposition 0.1], fop in S@)?, ®pis in SE&)%°.

The proof of the following theorem will be achieved in Suligmet4.4.

Theorem 3.6. Suppose that for some homogeneous generators.qq, of S(g)%, the polynomial functions
%y, ..., 4, are algebraically independent. Then e is a good element difi particular, S@®)*° is a poly-
nomial algebra andS(s®) is a free extension db(3®)*°. Moreover,(%;, ..., %,) is a regular sequence in

S@°).
The overall idea of the proof is the following.

According to Theoren3.3, it suffices to prove thag is good, and more accurately that the nullvariety of
. - ... G, in g’ has codimensiofisincedy,, . . ., %, are invariant homogeneous polynomials. As explained
in the introduction, we will use the Slodowy grading o[ t]] and S®)((t)), induced from that on $f),

to deal with this problem. This is the main purpose of Section
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4. S.0DOWY GRADING AND PROOF OF THEOREM 1.4

This section is devoted to the proof of Theor&rb (or Theoreml.4). The proof is achieved in Subsec-
tion 4.5. As in the previous section,is a simple Lie algebra ovérand €, h, f) is ansl,-triple of g. Let us
simply denote bys the algebra Sf).

Let q1,...,0, be homogeneous generators of))S(of degreesds, . ..,d; respectively. The sequence
(1, ---,0¢) is ordered so that; < --- <d,. We assume in the whole section that the polynomial funstion
%4, - - -, 4, are algebraically independent. The aim is to show ¢hatgood (cf. Definition3.2).

4.1. Letxy,...,% be abasis of such that foi = 1,...,r, [h, x] = njx for some nonnegative integasy.
Forj = (j1,...,Jr) in N', set:

il=Jat-+]r, lile := jana + -+ jenr + 2fjl, Xj:Xil“‘err-

The algebraS has two gradations: the standard one andShelowy gradation For allj in N', ¥ is
homogeneous with respect to these two gradations. It hadasthdegreg| and Slodowy degref@le. In this
section, we only consider the Slodowy gradation. So, byajrad we will always mean Slodowy gradation.
For m nonnegative integer, denote By the subspace & of degreem.

Lett be an indeterminate. For all subspactef S, set:

VI =kl V, VLt =kttt eV, VI =k eV, V() = k() @V,

with k((t)) the fraction field ofk[[t]]. For V a subspace dB[[t]], denote byV(0) the image ol by the
guotient morphism
S[t] — S, a(t) — a(0).
The gradation ofS induces a gradation of the algeb®4(t)) with t having degree 0. Fov a graded
subspace 06((t)) and form a nonnegative integer, I8t™ be its component of degrea In particular, for
V a graded subspace 8f V((t)) is a graded subspace ${(t)) and

V(D™ = vIM((v)).
Let r be the morphism of algebras,
7.S—S[t], x+—>tx for i=1...,r.

The morphisnt is a morphism of graded algebras. Denote&shy . ., 6, the standard degrees &f;, ..., G,
respectively, and set for=1,...,¢

Q = t7(k(q)).
Let A be the subalgebra @&[t] generated byQs,...,Q,. Then observe thad(0) is the subalgebra &
generated by, ..., &,. Forj = (j1,..., j¢) in N¢, set

d=qieay, KA =k@) k), =y, Q=Qe Q.

Proposition 4.1. (i) For j in N, x(g)) and & are homogeneous of degreé; ji + - - - + 2d; j,.
(i) The map Q- Q(0) is an isomorphism of graded algebras from A on{@)A

Proof. (i) Denote byt — h(t) the one-parameter subgroup®@fyenerated by du Then fori = 1,...,r, for
yin g’ andtink*,

O, Ph(t (e +y)) = t(h(t)(x) . e +y) = 7" (x e+ p),
whence

KR, 2ht (e +y)) = tie(xd e+ y)
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for all j in N'. Forj in N’, g is homogeneous of standard degde¢, + - - - + d¢j, andd is invariant under
the one parameter subgrotp> h(t). So, for all ¢, ) in k* x g,

k(@) (Ph(t ) (y)) = i +2hic(g)(y).

Hencex(q) is homogeneous of degredi3: +- - - + 2d; j, so thatk(g) is a linear combination of monomials
X< of degree B1jq + - - - + 2d,j,. As a result, % is homogeneous of degreéi3, + - - - + 2d; j, either.

(i) The set Q,j € NY) is a basis of th&-spaceA and the image of) by the mapQ — Q(0) is equal
to %. Moreover, by (i),Q and & are homogeneous of degreeh® + --- + 2d;j, so thatQ — Q(0)
is a morphism of graded algebras. By definition, its imag&(8). Since,..., 1, are algebraically
independent, it is injective. m]

By Proposition4.1,(ii), A and A(0) are isomorphic graded subalgberasSf] and S respectively. In
particular,Ais a polynomial algebra sing&0) is polynomial by our hypothesis.

Denote byA, and A(0), the ideals ofA and A(O) generated by the homogeneous elements of positive
degree respectively, and denote/the subalgebra dB[[t]] generated b¥[[t]] and A, i.e.,

A:=k[[t]]A.

Lemma 4.2. (i) The algebraA is isomorphic t&[t]] ®; A. In particular, it is regular.
(i) The element t ok is prime.
(iii) All prime element of A is a prime element/of

Proof. (i) Let an, me N, be inA such that
Z tMay, = 0.
meN

If am # 0 for somem, thenay(0) = 0 if p is the smallest one such thag # 0. By Proposition4.1,(ii), it is
not possible. Hence, the canonical map
K[[t]] & A— A

is an isomorphism. As observed just aboés a polynomial algebra. Thehis a regular algebra by/{a86,
Ch. 7, Theorem 19.5].

(i) By (i), Ais the quotient ofA by tA so thatt is a prime element oA.

(iii) By (i), for ain A, the quotientd/Aa s isomorphic tck[[t]] ®. A/Aa Henceais a prime element of
Aifitis a prime element of. O

As it has been explained in Subsecti®r?, in order to prove Theorer.6, we aim to prove tha$ is
a free extension tha&(0). As a first step, we describe in Subsectidiid 4.3 and4.4 some properties of
the algebraA. We show in Subsectiof.3that S((t)) is a free extension oA (cf. Propositiond.9,(iii)), and
we show in Subsection.4 that S[[t]] is a free extension oA (cf. Corollary4.17). In Subsectiont.5, we
consider the algebrA and prove thaS[[t]] is a free extension oA (cf. Theorem4.21,(i)). The expected
result will follow from this (cf. Theoremt.21,(iii)).

4.2. Letf be the map
Gx(e+g) —a  (9.X+ 9%,
and letJe be the ideal of Sf) generated by the elemeni),), . . ., x(Qy).

Lemma 4.3. (i) The mape is a smooth morphism onto a dense open subsgtarntaining Ge.
(ii) The nullvariety ofle in ' is equidimensional of dimension-r¢.
(iii) The idealde of S(g®) is radical.
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Proof. (i) Sinceg = af + [e g], e is a submersion at (1e). Then,6e is a submersion at all points of
G x (e+ g") since it isG-equivariant for the left multiplication i and since

lim t2h(t)(X) = e

for all xin e+g". So, by H77, Ch. lll, Proposition 10.4]9e is a smooth morphism onto a dense open subset
of g, containingG.e.

(i) Let 8¢ be the Slodowy slice + gf associated witte. By (i), 6e is equidimensional of dimension
dimS8e. Denote byVe the nullvariety offe in af. ThenG x (e+Ve) is the inverse image b of the nilpotent
cone ofg. HenceG x (e + Vg) is equidimensional of dimension

dimg — ¢ + dim8e = dimg® — ¢ + dimg

since the nilpotent cone is irreducible of codimensfcand contaings.e. From this, we deduce thak is
equidimensional of dimensian- ¢.

(iii) Let X¢ be the subscheme ef+ of defined by the idede of S. In particular,e + Ve is the underlying
variety of Xe. By (ii), Xe is a complete intersection. In particular, it is Cohen-Mdag Let X be an
irreducible component oP.. Denoting byU an open subset aff such thatU n Ve is not empty and
contained inX, G.(e+ U) is an open subset gfby (i). Moreover, its intersection with the nilpotent corfeso
is not empty and contained (B.(e+ X). As a result, for som&in X, e+ xis a regular nilpotent element of
Forqgin S(g), denote by d and d(q) the diferentials ofg and«(q) respectively. So, by{{o63, Theorem 9],
dg,(e+X),...,dg,(e+x) are linearly independent. Foe 1,.. ., ¢, dk(q;)(e+X) is the restriction of d;(e+ X)
to g' sinceq; is G-invariant. So, the orthogonal complement afad)(e + X), . .., dk(q)(e + X) in g is the
intersection ofi* and fe+x, g]. In particular, it has dimension digi —¢ so that d(g.)(e+X), . . ., dk(q) (e+X)
are linearly independent. As a resudts x is a smooth point of(e. Then, by Bou98 §1, Proposition 15],
Xe is reduced ande is radical. O

Denote byV the nullvariety ofA, in g' x k, and byVy the nullvariety ofA(0).. in g*. Then denote by,
the union of the irreducible componentsfvhich are not contained i’ x {0}. Note thatVy x {0} is the
nullvariety oft in V, and that

V =V.UVqx{0}.

Corollary 4.4. (i) The varietyV, is equidimensional of dimension+rl — £. Moreover, for X an irreducible
component o¥, and for z ink, the nullvariety of t z in X has dimension ¥ ¢.

(i) The algebra $t,t71] is a free extension of A.

(i) The ideal $t,t"1]A, of S[t,t71] is radical.

Proof. (i) Let V’, be the intersection df, andg’ xk* and letX be an irreducible component ¥f. ThenV”,
is the nullvariety ofQs, ..., Q¢ in g' xk* sinceA, is the ideal ofA generated bys, . .., Q.. In particular,X
has dimension at least 1—¢. Forzin k*, denote byX, the subvariety 0§’ such tha¥X,x {z} = Xngaf x{z}.
By definition, fori = 1,...,¢, Q = t %irok(q;). HenceV, is the nullvariety ofrox(qy), . . ., Tok(q) in ¢f x k*
andX, is the image o, by the homothety —» z1v. By Lemmad4.3(ii), X; has dimensiom — ¢. HenceX,
has dimensiom — £ and X has dimension at most+ 1 — £. As a resultX has dimensiom + 1 — £ andX; is
strictly contained inX, whence the assertion sin¥ds not contained in’ x {0} by definition.

(i) The algebraS[t,t™1] is graded andA is a graded polynomial subalgebra $jft,t™1]. According to
(i), the fiber atA, of the extensiorS[t,t™] of A is equidimensional of dimension+ 1 — £. Hence, by

Proposition2.5, S[t,t™1] is a free extension oA.
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(iii) Let Je be the ideal oBJ[t, t1] generated by-x(qy), . . ., 7ok(qr). Sincet’ Q; = rok(q) fori=1,...,¢,
we getJe = S[t,t"1]A,. Denote byr the endomorphism of the algeb®t, t~] defined by

M) =t, T(X) =tXq,...,7T(X) = tX.

Thent is an automorphism arfld = 7(S[t, t™%]Je). So, it suffices to prove that the ides[t, t~1]J. is radical.
Let g% be the radical o8[t,t™1]Je. Forain S[t,t™1], a has a unique expansion

a= Ztmam
meZ

with (am, m € Z) a sequence of finite support &1 Denote byv(a) the cardinality of this finite support.
Moreover,ais in S[t, t™1]d if and only if an, is in Je for all m. Suppose thas[t, t=1]Je is strictly contained
in J.. A contradiction is expected. Letbe inJj \ S[t,t™1]de such that/(a) is minimal. Denote bym, the
smallest integer such that,, # 0. For some positive integea’ and ¢"™a)* are inS[t, t1]Je and we have
(t™a)* = af, + > o,
m>0

with theby's in Je. Th(—:‘naf"nO is in Je and by Lemmat. 3 (iii), am, is in Je. As aresulle’ := a—t™ap, is an
element ofJ such that(a’) < v(a). By the minimality ofv(a), & is in S[t,t"%]Je and so isa, whence the
contradiction. m]

LetJ. be the ideal of definition ¥, in S[t]. ThenJ, is an ideal ofS[t] containing the radical oB[t]A. .
It will be shown thatV, = V and thatS[t] A, is radical (cf. Theoremd.21). Thus,J, will be at the end equal
to S[t]A,.

Letps,..., pmbe the minimal prime ideals containii®jt]A, and letqs, . .., gm be the primary decompo-
sition of S[t]A, such thaty; is the radical ok fori =1,...,m.

Lemma 4.5. (i) For ain S[t], ais inJ, if and only if f"ais in §t]A, for some positive integer m. Moreover,
for some nonnegative integer 1t is contained in $t]A.,.

(ii) The ideall. is the intersection of the prime idealswhich do not contain t. Furthermore, for such i,
pi = qi, I.e. gj is radical.

Proof. (i) Let a be inS[t]. If t'ais in S[t]A, for some positive integdt thena is equal to 0 oV, so that
aisinJ,. Conversely, ifais inJ,, thentais in the radical ofS[t]A, sinceV is contained in the union of
V., andg’ x {0}. According to Corollary4.4,(iii), for some positive integem, t™(ta) is in S[t]A,. SinceJ,
is finitely generated as an ideal 8ft], we deduce that for some nonnegative integéld, is contained in
S[t]A., whence the assertion.

(i) Let i € {1,...,m}. Thenp; does not contain if and only if the nullvariety ofp; in g" x k is an
irreducible component d?.., whence the first part of the statement.

By (i), for some nonnegative integért'd, is contained inS[t]A,. Let| be the minimal nonnegative
integer verifying this condition. If = 0, J, = S[t]A,, whence the assertion. Suppdgmsitive. Denote by
7’ the ideal ofS[t] generated by andS][t]A.,. It suffices to prove thaB[t] A, is the intersection of, and7’.
As a matter of fact, if so, the primary decompositionSjf] A, is the union of the primary decompositions
of J, andJ’, since the minimal prime ideals containifigdo not contairt.

Leta be in the intersection ¢f, andJ,. Then

¢
a=tb+ ZaQi
i1
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with b,as,...,a in S[t]. SinceS[t]A. is contained ir0,, t'bis in 7, andb is in J, by (). Hencet'b
anda are inS[t]A;. As a result,S[t]A, is the intersection of, andJ, sinceS[t]A, is contained in this
intersection. m]

4.3. LetVg be a graded complement&A0), in S. We will show that the linear map
Vo®x A(0) — S, vea —> va

is a linear isomorphism (cf. Theoren?21).

Lemma 4.6. We have #t]] = Vo[[t]] + S[[t]]A, and (1)) = Vo((t)) + S((1)A,.

Proof. The equalityS((t)) = Vo((t)) + S((t))A. will follow from the equality S[[t]] = Vo[[t]] + SI[t]]A:.
SinceS[[t]], Vo[[t]] and S[[t]] A, are graded, it stices to show that fod a positive integer,
SN < VoIl + (SIIN AN,

the inclusionVg[[t]] + S[[t]]A. c S[[t]] being obvious.

Let d be a positive integer and let be in S[[t]][%. Let (¢1,...,¢m) be a basis th&[[t]]-module
(S[[t] A, Such a basis does exist sirkt]] is a principal ring ands[[t]]!¥ is a finite freek[[t]]-module.
Thengs(0),.. ., ¢m(0) generate§ A0).). SincesS!¥ = V¥ & (S K0),)1,

m
a-a- ) aoj¢j = Wo,
-1

with ag in VI¥, ag1,...,a0m in k andyo € S[[t]]!4. Suppose that there are sequenaes.(.,a,) and
(@i1.....am), fori = 0,....n, in V¥ andk respectively such that

n n m
a- Y at - > ta o) ="y,
i—0 i—0 =1
for somey,, in S[[t]][%. Then for some,,1 in V([)d] andan;11,...,8n1mink,

m
Yn— any1 — an+1,jPj € tS[[t]]
=1

so that
n+1 n+l m
a- >y at - > > ajpit e t™2S[[]].
=0 i—0 j=1
As a result,
ae Vo[t + (S[[tN A
sinceS[[t]]!¥ is a finitek[[t]]-module. O

Recall thatp,...,pm are the minimal prime ideals &[t] containing S[t]A,. SinceA, is a graded
subspace 08[t], S[t]A, is a graded ideal 0B[t], and so are, ..., pm. According to Lemmat.5(ii), J.
is the intersection of the;'s which do not contairt. Hence J. is graded. Thereby,. N Vy[t] has a graded
complement invg[t]. Set

W := 7. N Vol[t].
ThenW(0) is a graded subspace \éf. Denote by, a graded complement ¥/(0) in Vo. Then set
Vg = W(0)

so thatVp = V& V(.
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Lemma4.7. Let(v;, i € J) be a graded basis ofV
() The sequencg, i € J) is linearly free oveik[t].
(i) The sum of W and ofj}£] is direct.

Proof. We prove (i) and (ii) all together.
Let (,i € J) be a sequence it], with finite supportJ, such that
Z Cvi =w
ied
for somew in W. Suppose thal. is not empty. A contradiction is expected. Singgis a complement to
V{, ci(0) = Oforalliin J. Then, foriin Jc, ¢ = t™¢ with my > 0 andc{(0) # 0. Denote bymthe smallest
of the integersn, fori € J.. Thenw = t™w’ for somew’ in Vq[t], and
Z t™ el = w'.
iede
According to Lemmat.5,(i), w” is in J.. S0,¢/(0) = O fori such thatmy = m, whence the contradiction. o
As a rule, forM ak[t]-submodule ofS[t], we denote byM thek[[t]]-module generated biy, i.e.,
M = k[[t]] M.
Lemma 4.8. Let M be ak[t]-submodule of 8].

(i) Let a be in the intersection of[§ and M. For some g irk[t] such that ¢O0) # O, ga is in M.
(i) For N ak[t]-submodule of 8], the intersection oM andN is thek[[t]]-module generated by MN.

Proof. (i) Denote bya the image ofain S[t]/M by the quotient map and byits annihilator ink[t]. Then
we have a commutative diagram with exact lines and columns:

d d

0 M SIt] S[t]/M —— 0
| |

0 J—2 w1 d K[t]a 0
T T
0 0

Sincek][[t]] is a flat extension ok[t], tensoring this diagram ki¥{[t]] gives the following diagram with exact
lines and columns:

0 M —~ S[It]] K[[1]] @uqq S[t]/M — 0

| 4

k[[t] K[tla ———0

| !

0 0

Forbin k[[t]], (6-d)b = (de6)b = O sincea s in M, whence 8 = 0. As a resultk[[t]] J = k[[t]]. Soqgais in
M for someq in k[t] such thatg(0) # O.
(i) Sincek][[t]] is a flat extension ok[t], the canonical morphism

K[[t]] ®g M — M.
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is an isomorphism and from the short exact sequence
0O—MNN—M&N-—>M+N—O
we deduce the short exact sequence
0 — K[[t]] ®qq M N N — K[[t]] @ (M & N) — K[[1]] ®qq (M +N) — 0,
whence the short exact sequence
0—-MNN— M&N— M+N — 0,
and whence the assertion. o

Proposition 4.9. (i) The space M[t]] is the direct sum of §[t]] andW.
(i) The space §t]] is the direct sum of §[t]] and of W+ S[[t]]A..
(iii) The linear map

Vo) & A— S((1)),  vsar— vea
is a graded isomorphism onto(§)).
(iv) For all nonnegative integer d,

d
dimSt =" dimvg'* xdimAll.
i=0
Proof. (i) According to Lemmat.g (i), the intersection o¥[[t]] and W is thek[[t]]-submodule generated
by the intersection o¥{[t] andW. So, by Lemmat.7,(iii), the sum ofV[[1]] and W is direct.

Let (v, i € J) be a graded basis o). Letd be a positive integer and lebe inV([)d]. Denote byJy the set
of indicesi such that; has degreel. SinceVy is the direct sum o¥/; andV{/, for somew in Wi and for

SOMeG;, i € Jg, ink,
v— Z civi = w(0).
ied
Sincew — w(0) is intVo[t]!,
v— Z Cvi—we tVo[t][d].
ieq
As aresult,
VI < Ve e + W+ eV ).
Then by induction om,
VI < Ve e + W+ v ).
So, sincev([)d] [[t]] is a finitely generated][[t]]-module,
Vi) = v + wid,

whence the assertion.
(ii) According to Lemma4.5,(i), for some nonnegative integért'J, is contained inS[t]JA.. Hence
W + S[[t]] A, is equal toW + S[[t]]A.. So, by (i) and Lemm4d.6,

S[[t]] = Volltl] + W + S[[t]]A,.

According to Lemmat.7,(ii), the intersection oW([t] and S[t]A, is equal to{0} sinceS[t]A, is contained
in J.. As aresult, by Lemma.8 (i), the intersection ok/([[t]] and S[[t]] A, is equal to{0}. If ais in the
intersection ofV[[t]] and W + S[[t]]A,, t'ais in the intersection o¥/g[[t]] and S[[t]]A.. So the sum of

V/[[t]] and W + S[[t]] A, is direct.
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(iif) According to Lemmad.5,(i), W is contained irS((t))A.. So, by (ii),
S((1) = Vo((1) & S(M)A..

Sincek[[t]] is a flat extension ok[t], and since
S((t)) = kl[t]] ®xqq SItt™,

we deduce thaB((t)) is a flat extension oA by Corollary 4.4,(ii). So, by Lemma2.2, all basis ofV{[[t]]
overk is linearly free oveA. The assertion follows.
(iv) First of all, the canonical map
k((1)) & A — k((t)A

is an isomorphism by Lemm@2,(i). As a result, we have the canonical isomorphism

Vo((1) ®xk(ty) k((D)A — V(1) ®x((ty) k(1) ®x A),
and for all nonnegative integer
dim Al = dim ) () A
From the above isomorphism, it results that the canonicaphism

Vo(() @y k(A — V(1) @ A
is an isomorphism of graded spaces siNggt)) ) k(1)) = V4((1)). As a result, by (iii), the canonical
morphism
Vo((1) ®x(ty k(())A — S((1))
is a graded isomorphism. So, for all nonnegative intefyer

d
dim (o SIOD = > dim (o V(1) xdimy ) (=) A,
i=0

whence the assertion since dB# = dims) S(()) and dimv[1 = dimye, V5 (@)1 for all i, O

4.4. Let kK € K) be a graded sequenceWisuch that {x(0), k € K) is a basis oV = W(0). Forkin
K, denote bymy the smallest integer such thkwy is in S[t]A,. According to Lemmat.5,(i), my is finite
for all k. Moreover,my is positive sincaV(0) N S A0), = {0}. Set

0 :={ki)|keK,ie{0,...,m—1}},

and set for allk, i) in ©,
Wk = tiwk.
Let Eg be thek-subspace o¥[t] generated by the elementg;, (k,i) € ®.
Set
7, = K[[{]]7..
Itis an ideal ofS[[t]].

Lemma 4.10. (i) For some q irk[t] such that ¢O) # 0, ¢J. is contained in W+ S[t]A..

(ii) The space W is contained inpE S[t]A,. MoreoverJ, is the sum of § and q[tA,.

(iii) The sequenceu;, (k,i) € ®) is a graded basis of &

(iv) For all nonnegative integer i, ﬁ has finite dimension.

(v) For i a nonnegative integer, there exists a nonnegativegartd, such that ‘tEg] is contained in
Voll A
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Proof. (i) Let abe inJ.. According to Lemmal.6and Lemmat.8,(i), for someq in k[t] such thatg(0) # O,
ga € J, andga = a1 + ap with a1 in Vg[t] anda, in S[t]JA,.. Thena; is in J, since so ar@, andga. So
a; € J. N Vg[t] = W. The assertion follows becauseis finitely generated.

(ii) Let us prove the first assertion. Itfices to prove

W c Eg + S[t]A, +tMS[t]

for all m. Indeed,W, Eg, S[t]A, are contained id,. So, ifw = e+ a+ t™b, withw € W, e € Eg and
b € S[t], thenbis in J, and so, fom big enough, it is iS[t]A, by Lemmad4.5,(i).

Prove now the inclusion by induction an The inclusion is tautological fan = 0, and it is truem = 1
becauség(0) = V(. Suppose that it is true fon > 0. Letw be inW. By induction hypothesis,

w=a+b+t"c, with aeEg, be S[t]A,, ce S[t].

SinceEg andS[t]A, are contained id,, cis in J, by Lemmad4.5,(i). According to (i), for somey in k[t]
such thag(0) # 0,qc= & + b’ with & in W andb’ in S[t]A,. Since the inclusion is true fan = 1,

t"@ +b') € t"Eg + S[t]A, + t™1S[[1]],
and by definitiont™Eg is contained irEg + S[t]A,. Moreover,g(0)cis in gc + tS[t]. Then
t"c € Eg + S[t]JA, + t™1S[t] and w € Eg + S[t]A, + t™S[t],

whence the statement.

Turn to the second assertion. By (ﬁ, is the sum ofw and S[[t]]A;. An element ofW is the sum of
termst™wp,, with m € N andwy, € W. Form big enought™wn, € S[t]A, by Lemma4.5,(i). So7, is the sum
of W andSJ[[t]]A,, whence the assertion by the previous inclusion.

(iii) By definition, the sequenceuw;, (k,i) € ®) is graded. So it tices to prove that it is free ovér Let
(cki, (ki) € ®) be a sequence in with finite support, such that

mg—1
Z Z Ckiwki = 0.

keK i=0
Let us prove thaty; = O for all (k,i). Supposey; # 0 for some K, i). A contradiction is expected. L&t
be the set ok such that,; # O for somei. Denote byig the smallest integer such that, # O for somek
in K’ and set:

K = {ke K" | cj, # O}.

Then

Z Criowk(0) = O,

keKj
whence the contradiction since the elememig@), k € K) are linearly independent.

(iv) Let K; be the set ok such thatwy is in S[t]l1. For suchk, wi(0) is in SI'. Hencek; is finite sinceS!']
has finite dimension and since the elememg@), k € K) are linearly independent. Faiin K, k[tJux N Eg
has dimensiomn by (iii). HenceEE)] has finite dimension.

(v) Letk be inK;. Set

ell := @ n (K; x N).
By Proposition4.9,(iii), t"*™uw is in VIt A, sincet™uwy is in S[t]A, by definition, whence the assertion
sinceEL is generated by the finite sequenag {, (k, j) € ©l1). O
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Definition 4.11. We say that a subsé&t of © is completef
kiDeT=(k )eT, ¥je{o,...,i}.

For T subset 0@, denote byKt the image ofT by the projectionkK, i) — k, and byEr the subspace of
Ee generated by the elemenig;, (k,i) € T. In particular,Ke = K.

Lemma 4.12. For some complete subset T ®@fsuch that Kk = K, the subspace Eis a complement to
S[t]A, in Eg + S[t]A,. In particular, the sum of £ and Jt]A, is direct.

Proof. SinceV)' NS A0). = {0}, the sum ok (o andS[t]A, is direct. LetT be the set of complete subsets
T of ® verifying the following conditions:

(1) forallkin K, (k,0)isinT,

(2) the sum ot andS[t]A, is direct.
Since the sum oEkjo, and S[t]A, is direct, T is not empty. If T, j € J) is an increasing sequence of
elements ofJ, with respect to the inclusion, its union is Then, by Zorn's Lemm&] has a maximal
element. Denote it bY.. It remains to prove thaty; is in Et, + S[t]A, for all (k,i) in ©.

Letk be inK. Denote byi the biggest integer such thadt {) is in T.. Prove by induction o that for

my > i’ > i, wgjr isin E7, + S[t]A;. By maximality of T, andi, wy;+1 is in Et, + S[t]A.. Suppose thaby
isin Er, + S[t]JA.. Then, for some in S[t]A, andcyj,(m, j) € T, ink,

Wi = Z CmjWmj + &,

(m)eT.
whence
Wiir+1 = Z ijtj+1wm + ta.
(M j)eT.
By maximality of T,, ti*1w, is in Er, + S[t]A, for all (m, j) such thatt)wp, is in T.. Hencewy 41 IS in
Er, + S[t]A.. The lemma follows. m]

Fix a complete subsét, of ® such that
Kr, =K and  Eg + S[t]A; = Et, @ S[t]A,,
and set
E :=Eg,.
Such a seT, does exist by Lemma.12

Corollary 4.13. (i) The space Bt]] is the direct sum of §{[t]], E and J[t]]A,.
(ii) The space §t]] is the sum of EA and }{[t]] A.

Proof. (i) According to Propositiord.9,(ii), S[[t]] is the direct sum ofV([[t]] and W + S[[t]]A,. By
Lemma4.1Q(ii) (and its proof),W + S[[t]] A, is equal toEg + S[[t]]A.. SinceEg + S[t]A, is the di-
rect sum ofE andS[t]A,, we deduce thatV + S[[t]] A, is the direct sum oE andS[[t]]A.. Hence S[[t]]
is the direct sum o¥/g[[t]], E andS[[t]]A,.

(i) By (i) and by induction orm,

S[[t]] c VIt A+ EA+ S[[t]]AT.

HenceS|[[t]] is the sum ofV[[t]] AandE AsinceS[[t]] is graded and?. is generated by elements of positive
degree. m]
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Definition 4.14. Fork in K, denote byy the degree ofvx. ForT andT’ subsets oB, we say thafl is
smaller than T, and we denot& < T’, if the following conditions are satisfied:

(1) T is contained inr’
(2) if for kin Ky andk’ in K1/, we havey < v, thenk’ is in Kr.

Let u be the linear map
Ee Ao Vy[[t]] @ A — S[[t]], wea + veb — wa + vb.
ForT a subset of., denote byt the restriction ofx to the subspace
Er @ A Vy[[t]] & A.

Lemma 4.15. Let T, be the set of subsets T of Juch thafur is injective.
(i) The set, is not empty.
(i) The setl, has a maximal element with respect to the order
(i) The set TisinT,.

Proof. (i) Forkin K, setTk := {(k, 0)}. Suppose thafy is not inT,. A contradiction is expected. Then for
someain A\ {0}, wxais in V{[[t]]A,, whence

wga = Z U bi
ied
with (bi,i € J) in k[[t]]A, with finite support. By Lemmat.10,(v), for some positive integet!wy is in
V{IIt]A:. Then
t wg = Z viCi

ied
with (c;,i € J) in k[[t]] A, with finite support. Hence
Z Uitlbi = Z vicia.
ied ied
According to Propositiort.9,(iii), t'bj = ciafor all i. Sincea # 0, a(0) # 0 by Propositiont.1,(ii). Then, by
Lemmad4.2(ii), ¢ = t'ci’ for somec] in A =Kk[[t]]A. As aresult,

Wk = Z UiCi’,
ied
whence the contradiction by Corollafyl13(i).

(i) Let (T;,1 € L) be a net inT, with respect to<. Let T be the union of the seff, | € L. SinceEy is
the space generated by the subspdged € L, the magur is injective. Letlp be inL andk in Ky such that
vk < v for somek’ in KT,O. SinceKr is the union of the setsy,, | € L, we deduce thét is in Ky, for some
l'in L. By properties of the nets, for sontein L, Ty < Ty and T, < Ty so thatk is in K,,. Hencek is in
KTlo, whenceT|, < T. As a result< is an inductive order ifT,, and by Zorn's Theorem, it has a maximal
element.

(iii) Let T be a maximal element @F, with respect to<. Suppose€r strictly contained inT... A contra-
diction is expected. Lét be inK such thatkK, i) is notinT and k,i) is in T, for somei. We can suppose
thatyy is minimal under this condition. Lét be the smallest integer such thiti() is notinT and ,i.) is
inT.. ThenT < T U{(k i.)}. So, by the maximality oT, for somea in A\ {0},

wj,a€ ETA+ Vy[[t]]A
32



SinceEr, V([[t]], A, wj, are graded, we can suppose thas homogeneous. Themhas positive degree.
Otherwisewy;, € ErA + V{[[t]]A c Er + V{[[t]] + S[[t]]A;, and we deduce from Corollar.13(i), that
wyi, € Et sincewy;, € Er,. This is impossible by the choice d,{.). Thus, by Corollaryt.13(ii),

wki.a€ ETA, + Vgt A,

wki,a = Z wn,jan,j+ZUibi

(n,j)eT ied
with (anj,(n, j) e T) in A, and @;,i € J) in A, with finite support.

By Corollary 4.13(ii),
tMwy = Z wy, s, sk + Z vibi
(1,9€T. ied
with (a.sk. (1,9 € T.) in A, and bix.i € J) in A, with finite support. Moreover these two sequences are
graded, so thaty sk = O if vj > vx. By minimality of v, (I,S) isin T if a sk # 0. For @, j) in T such that
Mg — i+ | > My,

Hence

Mg = Z wisdsnj + Z vibin,j
(,9€T. icd
with (a snj, (I, 9) € T.) in AL and @i j,i € J) in A. with finite support. Moreover these two sequences are
graded, so thady s = 0 if vj > vy. So, by minimality ofvy, (I,9) isin T if & snj # 0 andvy < v. As a

result,
Z W) s ska + Z vibika = Z wn,jt"“‘i*an,j + Z Uitm‘_i*bi
(I.9eT ied (nj)eT ied
= Z Wnme—i,+jan,j + Z W s sn,jan,j
(n.jeT (n.)eT
My —is+j<mn My —is+j>mn
+ Z Uitm‘_i*bi + Z Z vibinjan,j
ieJ (neT  ied
My —ix+j>mn
whence
Z W), s sk@ + Z vibika = Z Wnme—i.+j8n,j + Z Z w,s3,sn,j8n, |
(I,9)eT ieJ (n.peT (npeT — (I,9€eT
My —ix+j<mn My —isx+j>mn
+Zvi(tm‘_'*bi + Z Binjan,;)-
ieJ (n.j)eT
My —ls+]>Mn
Sinceur is injective, for alli in J,
(1) My + Z binjanj—bixa=0,
(n.j)eT
My —is+j>mn
andforall{,9)inT,
(2) A sti,—m T Z anjaysnj— aska=0.
(n.j)eT
My —ix+j>mn

withas=0if s< 0.

Claim4.16 Forall (,9)in T, adividesa sin A.
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Proof of Claim4.16 Prove the claim by induction on. Letl be inKy such that
v>v and (,9)eT=a ¢=0.

Then by Equality 2), & s:i,-m, = & ska& Whence the satement forSuppose that dividesa; ¢ in Afor all
(I’,8) in T such thaty > v;. By Equality €) and the induction hypothesia,divides g s.i,—m, in A since
asnj = 0 for vy < v, whence the claim. O

By Claim 4.16 and Equality {), for all i in J, a divides t™ b in k[[t]]A. Sincea has positive de-
gree, all prime divisor o& in A has positive degree and does not dividgncet has degree 0. Then, by
Lemmad4.2,(iii), a dividesb; in k[[t]] A. As a result,

wxi. € ETA+ VG[tA
whence
wki, € Volltl] + Er + S[[t]]A,.
Sincewy, isin E, wy;, is in Et by Corollary4.13(i). We get a contradiction becaudei() isnotinT. O
Corollary 4.17. The canonical map
E®r Ao Vgl[t]] & A — SI[t]]
is an isomorphism. In particular, [t]] is a free extension of A.

Proof. By Lemma4.15 T. is the biggest element @f.. Henceu is injective. Then, by Corollarg.13(ii),
u is bijective. As a matter of fact; is an isomorphism af-modules, whence the corollary. m|

4.5. Recall thaf is the subalgebra @[[t]] generated by[[t]] and A. Our next aim is to show th&][[t]]
is a free extension ok (cf. Theorem4.21). Theorem3.6 will then follows.
Forl an ideal ofA, denote by, andy, the canonical morphisms

SI[t]] ®a | —— S[[t]] @A A S[itl] @4 | — St -

Consider orS[[t]]®al andS[[t]]®zl the linear topologies such th@df(S[[t]]®al)}nex and{t"(S[[t]] ® ! )}nen
are systems of neighborhood of 0 in th&jgt]]-modules. Denote by, the canonical morphism

S[[t]] ®a | —— S[[1]] ®;
and byX its kernel. Theny, is continuous with respect to the above topologies.

Lemma 4.18. Let | be an ideal ofA.

(i) The morphismar, is injective.

(i) The moduleX, is the J[t]]-submodule of §t]] ®a | generated by the elementsar— 1sra with r in
k[[t]] and ain I.

Proof. (i) According to Corollary4.17, S[[t]] is a flat extension ofA. The assertion follows sinckis
contained inA.

(ii) Let K| the S[[t]]-submodule ofS[[t]] ®a | generated by the elementsa — 1era with r in k[[t]] and
ainl. ThenX{ is contained irK,. Let us prove the other inclusion.

Let (x,y) be inS[[t]] x | and letabe inA. According to (i),a has an expansion

a= Z g
i=1
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withry,...,rmink[[t]]anday,...,amin A. Then, inS[[t]] ®a |,

m m
Xeay — axey = Z Xerigjy — rixeay = Z X(leriajy — riegy) € XK.
i=1 i=1

As aresultX, = X sinceX, is the S[[t]]-submodule o8[[t]] ®a | generated by thgasy — xeay’s. O

Corollary 4.19. Let | be an ideal oA. The modulé is the closure of the [pt]]-submodule of §t]] ®a |
generated by the sétiza — 1sta}y .

Proof. Let £, the S[[t]]-submodule generated by the d&ta — 1sta},. Prove by induction om that
t"ea — let"ais in £, for all ain I. The statement is straightforward for= 0,1. Supposen > 2 and the
statement true fon — 1. Forain I,

t"a - let"a = t"(tea — 1sta) + t" lsta — lot" 'ta

By induction hypothesig™1sta — 1et"tais in £,, whencet"ea — 1st"ais in £,. As a result, for in k[t],
rea— leraisin L. So, forr in k[[t]], rea— lerais in the closure oL, in S[[t]] ®al. Sincey, is continuous,
XK, is a closed submodule &[t]] ®a |, whence the corollary by Lemma18(iii). m]

Proposition 4.20. Let | be an ideal ofA.
(i) The canonical morphism
ViA®x 1 — S[[t]] ®; |
is an embedding.
(i) For the structure of ft]]-module on {t]] ®3 I, tis not a divisor of0 in S[[t]] ®x .

Proof. (i) We have the commutative diagram

;R d
ViA®x | —— S[[t]] ®; |

| |
A 4 g

with canonical arrows d anél According to Propositiod.9,(iii), the left down arrows is an isomorphism.
Letabe inV(’)A ®4 | such that d = 0. Then dsa = 0, whenceja = 0 since the bottom horizontal arrow d
is an embedding so that= 0.

(ii) Let abe inS[[t]] ®a | such thaty,(a) = 0. According to Corollaryt.19, for | in N such that > 2,

m
ta- ) bitea — 1sta) € S[[t] @A
i=1
for someby, ..., by in S[[t]] and for someay,...,aninl. Fori=1,...,m,

b =Dbio+ tbi’
with bj o in S andby in S[[t]], whence

t(a— Z b (tea; — 1ota;)) — Z bio(tea, — 1 — stay) € t'S[[t]] ®a .
i=1 i=1

Set: . .
a=a- Z bi(tea — 1eta;)) and &’ = Z bi o(teq — leta).

i=1 i=1
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Theng(a) = ¢(a’) and by Lemmat.18(i), o (a”) is in tS[[t]] ®x k[[t]]. Moreover, fori = 1,...,m, & has
a unique expansion
a = t"a,

neN
with g n,n € N, in A. Then

(@)

m
Z bi,O(Z tai,n®tn - ai,n®tn+l)
i=1

neN

m m
tz aj b 021 + Z Z bio(tain — ain-1)et".
i-1

neN* i=1

Since the right hand side is divisible byn S[[t]] ®x k[[t]], for all positive integem,

m
Z bioain-1=0
i-1

sinceb; o anda; ,-1 are inS for all i. Henceo|(&”) = 0 anda’” = 0 by Lemma4.18(ii). Thus,
a e tIS[[t]] ®al.

As aresulty (a) is in t'S[[t]] ®x | for all positive integell. Since theS[[t]]-module S[[t]] ®z | is finitely
generated, by a Krull's theorenp86, Ch. 3, Theoreom 8.9], for sontein S[[t]], (1 + th)¢,(a) = O,
whencey, (a) = 0 sincety,(a) = 0. m]

Remind thatVy is the nullvariety ofA(0), in gf, and thatA = k[[t]] A.

Theorem 4.21. (i) The algebra §t]] is a free extension d&.
(ii) The varietiesy and'V, are equal. MoreovefYy is equidimensional of dimension-r¢.
(i) The AO)-module S is free ando\= V. In particular, the canonical morphism

Voor A(0)— S, wveat+— va
is an isomorphism.

Proof. (i) First of all, prove thaS[[t]] is a flat extension ofA. Then the freeness of the extension will result
from the equalitVp = Vg, Lemma4.6 and Propositiort. 9 (iii).
By the criterion of flatness\]a86, Ch. 3, Theorem 7.7], it is equivalent to say that for all ideaf A, the
canonical morphism,,
S[[t]] ®z I — S[t]!

is injective. Leta be in the kernel of,. Consider the commutative diagram

,~ d
ViA®z I —— S[[t]] ®; |

Fo,

VA 4 S

of the proof of Propositior.20,(i). According to Lemmat.10,(v), for | sufficiently big,t'a = db for someb
in Vc’,A ®z |. Thenéb = 0 sincey, (t'a) = 0. By Propositior.9,(iii), 6 is an isomorphism. Hende= 0 and
tta=0. Then, by Propositiod.20,(ii), a = 0, whence the the flatness.
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(i) Denote byk[t]o the localization ofk[t] at tk[t]. Thenk[[t]] is a faithfully flat extension ofk[t]o.
Hence,S[[t]] is a faithfully flat extension of
S[t]o = k[t]o ®xy S.

Set

Ao = K[t]o ® A
Then

A = K[[t] ®xg, Ao
so thatA is faithfully flat extension of\y. For M a Ay-module, we have

K[[t]] g, (S[tlo ®z, M) = ([[t]] @y, Sltlo) @z, M = S[[t]] @ (A®z, M).

Hence,S[t]o is a flat extension of since so is the extensid{[]] of A.

The varietyV is the union of?, andVg x {0}. MoreoverVy x {0} is the nullvariety iny" x k of the ideal of
k[t]A generated by andA,. Then, by Ma86, Ch. 5, Theorem 15.1)V; is equidimensional of dimension
r — ¢ sinceS[t]o is a flat extension of\g by (i) and since’ has dimensiorf + 1. SinceV is the nullvariety of
¢ functions, all irreducible component @fhas dimension at least 1— ¢ by [Ma86, Ch. 5, Theorem 13.5].
Hence any irreducible componentd§ x {0} is not an irreducible component ¥ As a result,Vy x {0} is
contained iV, and soV = V..

(i) Since A(0) is a polynomial algebr& is a free extension d&(0) by (ii) and Propositior2.5. Moreover,
by Lemma2.2, the linear map

Vo ® A(0) — S, vea — va
is a graded isomorphism with respect to the gradatiovyab, A(O) induced by those dfy andA(0). As a
result, for all nonnegative integer
i
dimsl! = Zdimvg‘” <dimAQ)!,
=0

whence dinvl! = dimV4[! for all i by Propositior4.9,(iv) since dimAll = dim A(0)!!l for all i by Proposi-
tion 4.1,(ii). ThenVq = V. m|

As explained in SubsectioB2, by TheorenB.3and Propositior2.5,(ii), Theorem3.6 results from The-
orem4.21,(ii).

Remarld.22 According to the part (ii) of Theorem.21, J, is the radical o5[t]A,. HenceS[t]A, is radical
by Lemma4.5,(ii), and therl, = S[t]A..

5. CONSEQUENCES OF THEOREM 1.4 FOR THE SIMPLE CLASSICAL LIE ALGEBRAS
This section concerns some applications of Theotefito the simple classical Lie algebras.
5.1. The first consequence of Theor8rhis the following.
Theorem 5.1. Assume thag is simple of typé\ or C. Then all the elements gfare good.

Proof. This follows from [PPY07 Theorems 4.2 and 4.4], Theoredr and Propositior.5. m]
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5.2. In this subsection and the next ogds assumed to be simple of tyfgeor D. More precisely, we
assume thag is the simple Lie algebrao(V) for some vector spac€ of dimension 2 + 1 or 2. Theng
is embedded int@ := gl(V) = End(V). For x an endomorphism of and fori € {1,...,dimV}, denote
by Qi(x) the codficient of degree dirfy — i of the characteristic polynomial of. Then, for anyx in g,
Qi(X) = 0 whenevei is odd. Define a generating familgy ..., q,) of the algebra ${° as follows. For
i=1...,0-1,setqg := Qy. IfdimV = 20+ 1, setqy = Qz and if dimV = 2¢, let g, be a homogeneous
element of degreé of S(g)¢ such thatQ,, = q?.

Let (e h, f) be ansl,-triple of g. Following the notations of Subsecti@?, fori € {1,..., ¢}, denote by
& the initial homogeneous component of the restriction/tof the polynomial functiorx - gj(e+ x), and
by 6; the degree oft;. According to PPYO07 Theorem 2.1]%;,. .., 5, are algebraically independent if
and only if

dimg® + € - 2(61+---+6¢) = 0.
Our first aim in this subsection is to describe the sumgfim ¢ — 2(51+ - - - + &) in term of the partition of
dimV associated witle.

Remark5.2. The sequence of the degreés, (.., d,) is described byRPYO07 Remark 4.2].
Fora = (14, ...,4) a sequence of positive integers, witle - - - > Ay, set:
] =k, r(1) ;= 14+ + A

Assume that the partition of r(1) is associated with a nilpotent orbit ef(k')). Then the even integers
of 1 have an even multiplicity, JMc93, §5.1]. Thusk andr(1) have the same parity. Moreover, there is an

involutioni — i’ of {1,...,k} such thai =i’ if 4;isodd, and’ € {i — 1,i + 1} if 4; is even. Set:
sWi= > i- D
i=i’,i odd i=i’,i even

and denote by, the number of even integers in the sequence
From now on, assume thats the partition of din¥/ associated with the nilpotent orlgi e.

Lemma5.3. (i) If dimV is odd, i.e., k is odd, then

dima® + £ — 2614 - +6¢) = ””’Tk_l + (1)
(ii) If dimV is even, i.e., k is even, then
dimg® + £ — 2051+ +67) = K L s(a).
Proof. (i) If dim V is odd, then by PPYO07 §4.4, (14)],
261+ +67) = dimge + IV, k_znﬁ ~s(),
whence
diMg® + £ — 2(61+- -+ +5) = '“‘Tk_l +S()

since dimV = 2¢ + 1.
(i) If dim V is even, thed, = k/2 by [PPY07 Remark 4.2] and byHPY07 §4.4, (14)],
dimV . k-n,

261+ +07) + k=dimg® + 3

- 3S()

whence
n, +k

dimg®+ ¢ — 2(61+---+6¢) =
38

+ S()



since dinV = 2¢. O

The sequence = (44, ..., A) verifies one of the following five conditions:

1) Ak andAx_1 are odd,

2) Ax andAy_1 are even,

3) k> 3, Ak andA; are odd and; is even for any € {2,...,k -1},

4) k > 4, A is odd and there i& € {2,...,k — 2} such thatiy is odd andJ; is even for anyi €

K+1,...,k=1},

5) k =1 or Ag is odd and}; is even for any < k.
For example, (44, 3,1) verifies Condition (1); (8, 5, 4, 4) verifies Condition (2); (5, 6,4, 4, 4, 4, 3) ver-
ifies Condition (3); (88,7,5,4,4,2,2,3) verifies Condition (4) wittk’ = 4; (9) and (66, 4, 4, 3) verify
Condition (5). Ifk = 2, then one of the conditions (1) or (2) is satisfied.

Definition 5.4. Define a sequencé& of positive integers, wittl*| < |1|, as follows:
- if k= 2 or if Condition (3) or (5) is verified, then sgt ;= 1,
- if Condition (1) or (2) is verified, then set:
A= (A, ..., A2),
- if k> 3 and if the Condition (4) is verified, then set
A= (/11, .. ,/lk’—l)-

In any case, the partition af1*) corresponding tol* is associated with a nilpotent orbit ef(k'(")).
Recall thatn, is the number of even integers in the sequehce

Definition 5.5. Denote byd, the integer defined by:

- if k=2, thend, := n,,
if k > 2 and if Condition (1) or (4) is verified, thed, := d;-,
if k > 2 and if Condition (2) is verified, thed, := d;- + 2,
if k > 2 and if Condition (3) is verified, thed, := 0,
if Condition (5) is verified, them, := O.

Lemma 5.6. (i) Assume that k is odd. If Conditidf), (2) or (5) is verified, then

m—k-1 A
— S(1) = > + S(1%).
Otherwise, ‘ .
%‘ +S(1) = ne - -1 +S() + k=[] - 2.
(i) If k is even, then
n, + Kk Ny + |4

+S(1) = — + S(A") +dy — dp-.

Proof. (i) If Condition (3) or (5) is verified, there is nothing to pe. If Condition (1) is verified,
n=ng,  S() =S+ 1
Then
TR CE P L R
whence the assertion. If Condition (2) is verified,

n, =Ny + 2, S(1) = S(2%).
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Then,
9:;l5+a@=
whence the assertion. If Condition (4) is verified,

Mo=ne +k=2% -2 S() =S@) + k-1 - 1.

Ny — 4% =1

> + S(1%)

Then,
n-k-1 _
— +S() =

Ny — 4" =1

> -1+SUA)+k-|2"-1

whence the assertion.

(i) If k=2 orif k> 2 and Condition (3) or (5) is verified, there is nothing to moicet us suppose that
k > 3. If Condition (1) is verified,
Ny = Ny, S(1) = S(A*) - L.
Then
m;k+su)=““zuﬂ+1+suw—1
whence the assertion sindg = d;-. If Condition (2) is verified,

Ny =Ny + 2, S(/l) = S(/l*)

Then,
k o 4 |2F
L Sy L7 L B SO B
whence the assertion sindg— d,« = 2. If Condition (4) is verified,

Ny =nNg + k=2 =2, S(A) =S + |7 +1-k

Then,
n, +k Ny + |A*
”; rs) = S s+ I — K+ 1
whence the assertion sindg = d;-. O

Lemma5.7. (i) If A1 is odd and if3; is even for i> 2, thendimg® + £ — 2(61 + - - - + §¢) = 0.
(i) If kis odd, therdimg® + £ — 2(61+ - - -+ 6¢) = Ny, — d,.
(iii) If k is even, themimg® + £ — 2(61+--- +5¢) = d,.

Proof. (i) By the hypothesisn, = k-1 andS(1) = 1, whence the assertion by Lemma, (i).

(ii) Let us prove the assertion by induction &nFork = 3, if 1; andA, are evenn, = 2,d, = 0 and
S(2) = 3, whence the equality by Lemnia3,(i). Assume thak > 3 and suppose that the equality holds for
the integers smaller thda If Condition (1) or (2) is verified, then by Lemnta3 (i), Lemmab.6,(i) and by
induction hypothesis,

dimg® + € = 2(51+ - - +0¢) = Ny — dype.
But if Condition (1) or (2) is verified, then, — d, = n;- — dy-. If Condition (5) is verified, then
n,1=k—1, S(/l)=k, d,1=0,

whence the equality by Lemni&a3,(i). Let us suppose that Condition (4) is verified. By Lem&3(i),
Lemmab.6,(i) and by induction hypothesis,

dimge+€—2(51+"'+5g)=n,1*—d,1*+k—|/l*|—2=n,1—d,1

whence the assertion since Condition (3) is never verifieenihs odd.
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(iif) The statement is clear fdt = 2 by Lemmab.3,(ii). Indeed, if Condition (1) is verified, thed, =
n, = 0 andS(1) = —1 and if Condition (2) is verified, thed; = n, = 2 andS(1) = 0. If Condition (3)
is verified,n, = k— 2 andS(1) = 1 - k, whence the statement by Lemra,(ii)). When Condition (4)
is verified, by induction om|, the statement results from Lemra,(ii) and Lemmabs.6,(ii), whence the
assertion since Condition (5) is never verified wiea even. m|

Corollary 5.8. (i) If 21 is odd and if3; is even for all i> 2, then e is good.

(i) If kis odd and if n = d,, then e is good. In particular, i§ is of typeB, then the even nilpotent
elements of are good.

(i) If kis even and if g = 0, then e is good. In particular, if is of typeD and of odd rank, then the even
nilpotent elements agfare good.

Proof. As it has been already noticed, byHYO07 Theorem 2.1], the polynomial%y,, ..., %, are alge-
braically independent if and only if

dimg® + € - 2(61+---+6¢) = 0.

So, by Theoren3.6and Lemma.7, if either A1 is odd andy; is even for alli > 2, orif kis odd anch; = d,,
orif kis even andi, = 0, theneis good.

Suppose that is even. Then the integers, ..., Ax have the same parity, cf. e. 4§85 §1.3.1]. More-
over,n, = d; = 0 wheneven, ..., A are all odd (cf. Definitiorb.5). This in particular occurs if eitheris
of typeB, or if g is of typeD with odd rank. m|

Remark5.9. The fact that even nilpotent elementsgadre good if eithen is of typeB, or isg is of typeD
with odd rank, was already observed by O. Yakimovayifi§, Corollary 8.2] with a dfterent formulation.

Definition 5.10. A sequencel = (14, ...,4x) is said to bevery goodif n; = d, whenever is odd and if
d, = 0 whenevek is even. A nilpotent element afis said to bevery goodif it is associated with a very
good partition of dinV.

According to Corollarys.8, if eis very good theris good. The following lemma characterizes the very
good sequences.

Lemma 5.11. (i) If k is odd thenl is very good if and only ift; is odd and if(4,, . .., Ax) is a concatenation
of sequences verifying Conditiofls or (2) with k = 2.

(ii) If k is even themt is very good if and only ift is a concatenation of sequences verifying Condif®)n
or Condition(1) with k = 2.

For example, the partitions (8,3,2,2) and (75,5, 4,4, 3,1, 1) of 15 and 30 respectively are very good.

Proof. (i) Assume that1; is odd and thatAy,..., ) is a concatenation of sequences verifying Condi-
tions (1) or (2) withk = 2. So, ifk > 1, thenn, — d, = nyp — d;-. Then, a quick induction proves that
Ny — d; = N, — d,) = 0 sincedy is odd. The statement is clear foe 1.

Conversely, assume that — d; = 0. If A verifies Conditions (1) or (2), them, — d; = ny — dy- and
|2*| < |4]. So, we can assume thaidoes not verify Conditions (1) or (2). Sinkds odd, A cannot verify
Condition (3). IfA verifies Condition (4), then, —d; = n; —d;- > nyp —dy- > 0. This is impossible since
n, —d, = 0. If A verifies Condition (5), then, —d; = n;. So,n, —d, = 0 ifand only ifk = 1. Thereby, the
direct implication is proven.

(i) Assume that? is a concatenation of sequences verifying Condition (3) @andtion (1) withk = 2.

In particular,A does not verify Condition (2). Moreover, Condition (5) istwerified sincek is even. Then

d, = 0 by induction on|, whenceeis very good.
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Conversely, suppose that = 0. If k = 2, Condition (1) is verified and K = 4, then either Condition (3)
is verified, ords, ..., 44 are all odd. Suppode > 4. Condition (2) is not verified sincg, = d,, + 2 in this
case. If Condition (1) is verified thed), = 0 andA is a concatenation of* and (-1, Ax). If Condition (4)
is verified, therd,, = 0 andA is a concatenation of. and a sequence verifying Condition (3), whence the
assertion by induction ofi| since Condition (5) is not verified whéais even. m|

5.3. Assume in this subsection that (14, ..., A) verifies the following condition:

(%) Forsome ke {2,...,k}, 4 is even for all i< K, and (Ak 41, . . ., Ak)
is very good.
In particular,k’ is even and by Lemm@a 11, A1 is odd andl is not very good. For example, the sequences
A1=1(6,6,4,4,3,2,2) and (66,4,4,3,3, 3,2, 2, 1) satisfy the condition«) with k' = 4. Define a sequence
v =(v1,...,v) of integers off1,...,¢} by
Ap+ -+ A
2
If K =k, thenvy = (A1+-- -+ A)/2 = r(2)/2 = ¢. Define elementsy, . .., px of S(g°) as follows:
- if K <k, setfori e {1,...,K}, pi == O,
- if K =k, setfori € {1,...,k' — 1}, pi := %, and setpx := (%, ). In this case, set als = G,
Remind thab; is the degree ofg; fori = 1,...,¢. The following lemma is a straightforward consequence
of [PPY07 Remark 4.2]:

Yie{l,..., K}, Vi =

Lemma5.12. (i) Foralli € {1,...,K'},degp; = .
(i) Setvg:=0. Thenforie {1,...,K'}andre {1,...,v — 1},
Or =1 &= vi_1<r <.
In particular, forre {1,..., v — 2}, 6r < 6r41 if and only if r is a value of the sequenee
Example5.13 Consider the partitiom = (8,8,4,4,4,4,2,2,1,1) of 38. Thenk = 10,k = 8 and
v = (4,8,10,12,14,16,17,18). We represent in Tablé the degrees of the polynomiafs, ..., ps and
91, ..., 8. Note that dedgie = 5. In the table, the common degree of the polynomials appgan the
ith column isi.
fu=p1  Gs=p2

s a7

Ko7 s Sho=p3  G2=Ps Ca=Ps =P

fqu s 9 11 013 s Shr=p7  “Qie=pPs

degrees 1 2 3 4 5 6 7 8

TaBLE 1.

Let s be the subalgebra @fgenerated by, h, f and decompos# into simples-modulesVy, ..., Vi of
dimensiondy, ..., A¢ respectively. One can order them so thatifer{1,...,k'/2}, Vioi-1)+1y = V2. For
i €{1,...,k}, denote byg the restriction téV; of eand set; := ef“l. Theng is a regular nilpotent element
of gI(V;) and (adh)g; = 2(4; — 1.
42



Forie{l,...,k'/2}, set
VI[i] := Vag_g)e1 + Vo
and set
V[0] := V410 - - - @ Vi
Then fori € {0,1,...,k'/2}, denote byy; the simple Lie algebrao(V[i]). Fori € {1,...,K'/2}, €-1)+1 + &
is an even nilpotent element gfwith Jordan blocks of sizelfi_1).1, A2). Leti € {1,...,k'/2} and set:
Z = &2(-1)+1 T €2

Thenz lies in the center of® and
(adh)z = 2(12G-1)+1 — 1)z = 2(A2i — 1)z.

Moreover, 2{2 - 1) is the highest weight of ddacting ong’ := ;N ¢®, and the intersection of the 2{ - 1)-
eigenspace of a@uwith g is spanned by;, see for instance[09, §1]. Set

g = 00®3® @2 = s0(V[0]) ®so(V[1]) & --- @ so(V[K'/2])

and denote by® (resp.@f) the centralizer ok (resp.f) in g. Forp € S(g®), denote byp its restriction to
3" ~ (3% itis an element of Sf). Our goal is to describe the elemefis. . ., P, (see Propositioss.18.
The motivation comes from Lemnial4

Let grfeg (resp.@rfeg) be the set of elements € g (resp.ﬁf) such thatx is a regular linear form og®

(resp.3).

Lemma 5.14. (i) The intersectiom;:eg N §f is a dense open subsetg‘;ﬁgg.
(i) The morphism

. —f
6: Ggxg — g, (g,X) — g.x
is a dominant morphism from§ax 3 togf.

Proof. (i) SinceA verifies the condition), it verifies the condition (1) of the proof ofYD6, §4, Lemma 3]
and so,grfeg N §f is a dense open subset @ff. Moreover, sinca® andg® have the same index by (6,
Theorem 3]grfeg N §f is contained irf;rfeg.

(ii) Let m be the orthogonal complement gin g with respect to the Killing formx.,.). Since the
restriction tog x g of {.,.) is nondegeneratey = g m and fg,m] ¢ m. Setm® := m N g°. Since the
restriction to§f x g° of (.,.) is nondegenerate, we get the decomposition

=g eme
andm® is the orthogonal complement§6 in ¢°. Moreover, §°, m®] c mé.
By (i), grfeg N §f + @. Letxe g:eg N §f. The tangent map at {1x) of 6 is the linear map
x5 —af,  (uy) o ux+y,

whereu. denotes the coadjoint action afon ¢ =~ (g8)*. The index ofg® is equal to the index of®
and % m®] c m® So, the stabilizer ok in g° coincides with the stabilizer o in ¢. In particular,
dimm®.x = dimm®. As aresultg is a submersion at {1x) since dimg’ = dimm® + dimgf. In conclusion,

¢ is a dominant morphism froi®§ x 3 togf. O
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Let (u1,...,um) be the strictly decreasing sequence of the values of thgeseg {i,...,Ax) and let
ki, ..., km be the multiplicity ofus, ..., um respectively in this sequence. By our assumption, the énteg
Ui, ..., Mum Ki,...,kn are all even. Notice thdg;+---+kn = K. The sef{1,...,k’} decomposes into parts
Ki,...,Ky of cardinalityks, . . ., ky, respectively given by:

Yse{l,....,m}, Ksi={kot+ - -+kse1+1 ..., ko + - +Kkg}.
Here, the convention is th&g := 0.

Remarks.15 Forse {1,...,m}andi € Kg,

k)

wherej =i — (ko +---+Kg 1) andug = 0.
Decompose also the st ..., k'/2} into partsl,, . .., Iy of cardinalityk, /2, . . ., km/2 respectively, with
Vsell....m,  lg:= {%Hw,w}.

For p € S(g®) an eigenvector of ad denote by wtp) its adh-weight.

Lemmab.16.Letse {1,...,mand i€ K.
() Set j=i—(ko+---+Kks-1). Then,
s-1
WH(B) = 2(2% = 1) = > 2K - 1) + 2j(us - 1).
I=1
Moreover, if pe {%h, . . ., -1, ()%} is of degree i, themt(p) = wt(P) < 2(2v; — i) and the equality holds
if and only if p= p;.
(i) The polynomiap, isink[z, el U...Ulg].

Proof. (i) This is a consequence oPPY07 Lemma 4.3] (or Y09, Theorem 6.1]), Lemma&a.12and Re-
mark5.15
(i) Let ' be the centralizer of in § = gI(V), and Ietf’QZVi be the initial homogeneous component of the
restriction to
(9l(V[O]) ® aU(V[1]) @ - -- @ gI(V[K'/2])) N §'
of the polynomial functiorx — Qy,,(e + X). Sincep; # 0, [; is the restriction tchf of G(_szi and we have
Wt(Qy,,) = WH(B,) = 2(2v; — i), deg®Q,,, = degp; = i.
Then, by (i) and PPY07 Lemma 4.3],’362Vi is a sum of monomials whose restriction@t%is zero and of
monomials of the form
(8§(1)1 P 8§(1)k1) e (8§(&1)1 e 8§($1)ks_1)(8g(s)jl e 8§(S)ji)

whereji< --- < ji are integers oKs, and¢®, ..., (5D 9 are permutations Ky, ..., Ks 1, {j1. ..., ji}
respectively. Henc&y; isink[z, | € 11 U...Ulg]. More precisely, fot € 1 U...Uls, the element appears
in B; with a multiplicity at most 2 sincg = ex(-1)+1 + 2. O

Letse {1,...,m}andi € Ks. In view of Lemma5.16(ii), we aim to give an explicit formula fop; in
term of the elements,, ..., z¢,». Besides, according to Lemnaal6 (i), we can assume that= m. As a
first step, we state inductive formulae kif> 2, set

g ==so(V[1]) & - & so(V[K'/2 - 1]),
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and letpy, ..., P, be the restrictions ta()f := 3" ng’ of Py,..., Py respectively. Note thgi, ; = P, = O.
Set by conventiotk := 0, po := 1, pj := 1 andp_1 := 0. It will be also convenient to set
K':=ko+ -+ kmn-1.

Lemma 5.17. (i) If ky, = 2, then

Per1= 2P Zz  and Py = P (&e/2)*

(i) If km > 2, then
Pre+1 = Pies1 — 2Pie %2
andfor j=2,...,km,
Perj = Prosj = 2Phesjor Ze/2 + Pesjo (@es2)?

Proof. Fori = 1,...,K/2, letw; be the element of' := g N g such that

(adh)w; = —2(Asi — Lw; and  det€ + w;) = 1.

Remind thatpi(y), for y € o', is the initial homogeneous component of thefiokent of the termir dim V-2
in the expression det(— e— y). By Lemmab.16(ii), in order to describ, it suffices to compute det(—
e—Siwy—---— SK//zwk//z), with s, ..., S /2 in k.
1) To start with, consider the cake= k,, = 2. By Lemma5.16 p; = az andp, = bz} for somea, b € k.
One has,

det(T — e— sywy) = T#1 - 25 TH + &,
As aresulta = -2 andb = 1. This proves (i) in this case.
2) Assume from now that’ > 2. Settinge’ := €1 + - - - + &¢,2-1, Observe that

(3) det(T —e— sqw1 — -+ — Se/2Wk/2)
=det(T — € — syw1 — -+ — Sey2-1Wkj2-1) det (T — & /2 — Se/2wi/2)
=det(T — € — syw1 — - — Sejo_1wie/2-1) (THM — 250 )2 THM + i//z)

where the latter equality results from Step (1).

(i) If km = 2, thenk* = k' — 2 and the constant term in d&t¢ € — s;wy — - - - — Se/2-1Wkj2-1) iS Py - BY
Lemmab.16,(i),

WH(Py- 1) = WD) + Wi(Zc /2)
andp,. is the only element appearing in the ogents of detT — € — sywq — - - — Sej2-1wk/2-1) Of this
weight. Similarly,
WH(Bic12) = WH(PL) + WH((Z¢/2)?)

andp,. is the only element appearing in the @o@ents of detT — € — sjw1 — -+ — Scj2-1wkj2-1) Of this
weight. As a consequence, the equalities follow.

(i) Supposeky, > 2. Then by Lemm&.16(i),

WE(Bic 41) = WE(Di ;1) = WE(D}. ) + Wi(Ze j2).
Moreover, .., and . are the only elements appearing in thefioeents of detT — € — sjwy — -+ -
Se/2-1Wi 2-1) Of this weight with degred* + 1 andk* respectively. Similarly, by Lemma&.16(i), for
je{2,... . knh

WD) = WH(Bl ) = WE(Bie 4 1) + WE(Ze /2) = WP, _2) + WH((Ze2)°)-
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Moreover, P, j, Pi+j-1 aNd P, j_, are the only elements appearing in the ficents of det{ - € -
Siw1 — -+ — Sej2-1Wk /2-1) Of this weight with degre&” + j, k* + j — 1 andk® + j — 2 respectively.
In both cases, this forces the inductive formula (i) thriotige factorization3). m|

For a subset = {ii,...,ij} € {1,...,k'/2} of cardinalityl, denote by 1,...,0 | the elementary sym-
metric functions of,, ..., z:

Vie.. .l o= Y 27, 7
< <ap<--<aj<l

Set alsoo o := 1 ando j = 0if j > | so thato j is well defined for any nonnegative integer Set at
lastoj ;= 1foranyjif | = @. If | =I5, with s e {1,...,m}, denote by(r(s) for j > 0O, the elementary
symmetric functioro ;.

Proposition 5.18. Let se {1,...,m}and je {1,...,ks}. Then

= 1 —1
Pio+-tks1+j = (- 1) p|<0+ +ks 1 Z O'(S) (S) = (- 1)J (O'(ko)/z (kzl/)z)z Z 9 O’SS)-
r=0

Example5.19 If m= 1, thenk’ = k; and

p1 = 0'(11)0'81) 81)0'(11) = —20'(11) =-2@1+ - +2)2),
p2 = 0'(21)0'81) + (0'(11))2 + 0'(1)0'(1) 20'(1) + (0'(1))2,

T

e = (0F),)° = @2 . 2p2).

Proof. By Lemmab.16,(ii), we can assume that= m. Retain the notations of Lemntal7. In particular,
set again
=ko+-- +Kna

We prove the statement by inductionloi2. If k' = 2, thenm = 1, ky, = k' = 2 and the statement follows
from by Lemmab.17,(i). Assume now that’ > 2 and the statement true for the polynomig]s. .., Bi,_;
If kyy, = 2, the statement follows from Lemnaal7,(i).
Assumeky, > 2. For anyr > 0, we selo; := o, wherel” = {k—,; +1,...,5 =1} C Im. In particular,
o = 1 by convention. Observe that for ang 1,
O'Sm) =0y + 0 _1Z0)2.

Settingo” ; := 0, the above equality remains true for 0. By the induction hypothesis and by Lema7(ii),
for je{2,...,Kn},

T)k*ﬂ' = _p/k*+1 2pk+] 1Zk’/2+pk+J z(zk’/Z)

= Pe((-1) Z«r, (o = 2(-1)1" lzaj 101 Zeja + (F1) ZZUJ )

= (-1 P Z o +2 (Z T 101) Ze2 + <Z T 200 % )
r=0 r=0 r=0
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sincep,. = Pr.- On the other hand, we have

j
Z oMo = Y (0 T e + 0] gZer2)

j
= Z‘Tjr +(ZO-Jr10-r+ZO-Jr rl)zk//2+(ZO-Jr10- 1)Z§/2
r=0

j -
= ZO"J-_I.O'; +2(Z O—’j—l'—lo-l/') Zk//z'F(Z OJj—I’—ZO_I/') Zé//Z'
r=0

r=0 r=0

Thereby, for anyj € {2,. .., kn}, we get

Pic-rj = (-1) B Za(‘“’ of”.

For j = 1, sincepy. = Py, by Lemma5.17(ii), and our induction hypothesis,

Pes1 = Phesa — 2P Zej2 = P (-20) — 2B Zej2 = P (—207).
This proves the first equality of the proposition.
For the second one, it fiices to prove by induction ose {1,..., m} that

B — (D 512
pk0+"'+k&1 - (O-ko/z : k5_1/2)

Fors=1, thenp ,...k,_, = Po = 1 andoy 0 = 1 by convention. Assume> 2 and the statement true for

1,...,s- 1. By the first equality withj = Ks, Py,....k, = (-1)¢ _pko+---+k}1(0(k?/2)21 whence the statement by

induction hypothesis sindg is even. m]

Remark5.20 Remind that the polynomigbs™was defined before Lemnial2 As a by product of the
previous formula, whenevér = k, we obtain

B 0 m
P = Tigra -+ Tinj2:

Forse{l,...,mlandj € {1,...,Ks}, set

pko+ +k5_1+1
Pho+-tks 4] = ==
pk0+ ks 1

Proposition5.18says thapyg+...ck, ,+j IS an element of Frac(80°) N S(®) = S(8)*".
Lemmab5.21. Letse{l,...,m}and je {ks/2+1,...,Ks}. There is a polynomial 1—? of degree j such that
Pl ks 14] = RES)(pko+---+kH+l, v s Phigttks 1+ks/2)-
In particular, for any je {k;/2+1,...,ki}, we have
P = Rﬁl)(_pl, e v Prgs2)-
Proof. 1) Prove by induction onj € {1, ..., ks/2} that for some polynomiaTJ.(S) of degreej,

Y = T oror b 1152 Pl ks 14]):
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By Proposition5.18 px +..+k. +1 = —(0 0 + O = 2(7(5) Hence, the statement is true fpe 1.
ko s-1 1 0 0 1
Supposej € {2,...,ks/2} and the statement true for(s) 55)1 Sincej < ke/2, ¥ # 0, and by

i
Proposition5.18

Phottke 14j = (= 1)](0_(5)0_(5) +O.00_(5))+( 1)] ZO.(S) (s _ = 2(- 1)JO.(S)+( 1)] ZO.(S) (S).

So, the statement fgrfollows from our induction hypothesis.
2) Letj € {ks/2 + 1,...,ks}. Proposition5.18 shows thajoy,+..+k, ,+j IS @ polynomial |na(s) .. cr(ks>/2

Hence, by Step 1)k +..+k, 1+j IS @ polynomial in

Pkot+-+Kg_1+1s « + + s PKo+---+Ks 1+Ks/2-

Furthermore, by Propositigh 18and Step (1), this polynomial has degree m]
Remark5.22 By Remark5.20and the above proof, K = k then for some polynomid® of degreekn/2,

P« (m)

T D~ Thnz = Rkttt Pl s o/2)
Tho/2° km-1/2
Theorem 5.23. (i) Assume that verifies the conditiorf+) and thati; = --- = Ax. Then e is good.

(i) Assume that k 4 and thata4, 15, A3, 14 are even. Then e is good.
For example, (66, 6, 6, 5, 3) satisfies the hypothesis of (i) and §64, 4) satisfies the hypothesis of (ii).
Remark5.24 If A verifies the condition«) then by Lemmé.7,
dimag®+ -2 1+---+6,) =K.

Indeed, ifkis odd, them,—d, = ny —dy whered’ = (11, ..., A, Aw+1) SO thatn,—d, = ny—dy =ny =K
sincedy 41 is odd. Ifkis even, therd; = ny = k" whered’ = (14, ..., k).

Proof. (i) In the previous notations, the hypothesis meansnhatl andk’ = k. According to Lemm&.21
and Lemma.14 for je {(k'/2+1,...,K -1},

pj = Rﬁl)(pl, s Pry2)s
whereRgl) is a polynomial of degreg¢. Moreover, ifk’ =k, then by Remarl.22and Lemmab. 14
P = R(PL, - - -, Pi/2)s
whereR s a polynomial of degreky/2.
- If K <k, setforanyje{k/2+1,...,K},
rj =0y — Rgl)(qn, s Oy )-

Then by Lemma.12
Vjie{k/2+1,...,K}, deg%;>j+1

- IfK =k, setforje{k/2+1,...,k -1},
[} =0y, - Rgl)(qvl, ooy Oy pp) AN T 0= Gy = ROy -+ Ohyz)-
Then by Lemmd&.12

Vjetk/2+1,...,k—-1}, deg%;>j+1 and dedrx>k/2+1
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In both cases,
Qi ljefl,....0 N {ejaet, - vl U {Nejaet, -2, e
is a homogeneous generating system @jSDenote bys the sum of the degrees of the polynomials

qua J € {la cee af} AN {Vk’/2+l5 .o 5Vk'}5 erk’/2+1a ey erk"
The above discussion shows that 61 + - - - + 6, + K'/2. By Remarks.24, we obtain
dimg®+ £ - 25 < 0.

In conclusion, by PPY07 Theorem 2.1] and Theoref6, eis good.

(i) In the previous notations, the hypothesis means tat k = 4. If m = 1 the statement is a
consequence of (i). Assume that= 2. Then by Propositio.18 P, = =221, P, = zi Ps = —22%22 and
P4 = (22)%. Moreover,p, = z12,. Hence, by Lemma&.14 p, = 3p2 andps = p1pa. Setr; = gy, — 202,
andrs := q,, — Qy,0y,. Then dedt, > 3 and dedts > 4. Moreover,

{Q1, - - -, e} N {Qy,, Oy} U {r2, 13}
is a homogeneous generating system gj*Senoting bys the sum of the degrees of the polynomials

{eql""’ th’} N {%Vz’ ere,} Y {erZa er3}a

we obtain that > 1 + --- + 6, + 2. But dimg® + £ — 2061 + .-+ 8, = K = 4 by Remark5.24 So,
dimg® + £ — 25 < 0. In conclusion, byPPYO07 Theorem 2.1] and Theoref6, eis good. ]

6. EXAMPLES IN SIMPLE EXCEPTIONAL LIE ALGEBRAS

We give in this section examples of good nilpotent elementmple exceptional Lie algebras (of type
Es, F4 or G2) which are not covered byP[PY07. These examples are all obtained through Theaddein

Example6.1 Suppose thag has typeEg. Let V be the module of highest weight the fundamental weight
w1 with the notation of Bourbaki. TheW has dimension 27 anglidentifies with a subalgebra of,7(k).
For x in slyz(k) and fori = 2,...,27, letpi(x) be the cofficient of T2"~' in det(T — x) and denote byj;
the restriction ofg; to g. Then €p, 0s, Gs, ds, Qo, J12) IS @ generating family of $J° since these polynomials
are algebraically independentyi§8g]. Let (e h, f) be ansl-triple of g. Then €, h, f) is ansl,-triple of
slo7(k). We denote byfp; the initial homogeneous component of the restrictioe 03" of p; whereg' is
the centralizer off in sly7(k). As usual,%; denotes the initial homogeneous component of the resini¢t
e+gf of g. Fori =2,5,6,8,9,12,

deg®p < deg;.
In some cases, from the knowledge of the maximal eigenvditleearestriction of ath to g and the adi-
weight of p;, it is possible to deduce that d&g < deg;. On the other hand,

degqu + degqu, + degqu + degqu + degqu + degeqlz < %(dlm ge + 6),

with equality if and only if€p, s, s, s, o, 12 are algebraically independent. From this, it is possible
to deduce in some cases tleas good. These cases are listed in Tabilehere the nine columns are indexed
in the following way:

1: the label of the orbi6G.ein the Bala-Carter classification,
2: the weighted Dynkin diagram @&.e,
3: the dimension of€,

4: the partition of 27 corresponding to the nilpotent eletrenf slo7(k),
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© 0N’

the degrees ofpy, °ps, s, “Ps, “Po, P12,

their ach-weights,

the maximal eigenvalueof the restriction of ati to g,
the sun of the degrees ofp,, “ps, ps. Ps. Po, P12,
the sunt’ = 3(dimg® + ¢).

Label O_O_I_O_O dimg® partition ded’pi weights v ¥ ¥

1. Es 2 2 2 2 2 6 (17,9,1) 1,1,11,1,1 28,10,14,1622 16 6 6
2

2. Es(a1) 2 2 0 2 2 8 (13,9,5) 11,1111 28,10,14,1622 16 6 7
2

3. Ds 2 0 2 0 2 10 (11,9511 1,1,1,1,1,1 28,10,14,1622 14 6 8
2

4, As+AL 2 0 2 0 2 12 @751 111112 2810141620 10 7 9
0

5. Ds(ay) 1 1 0 1 1 14 (87,6321 111,122 2810141420 10 8 10
2

6. As 2 1 0 1 2 14 (@e%,51) 11,1112 2810141620 10 7 10
1

7. A+AL 1 1 0 1 1 16 (76,5432 11,1222 2810121420 8 9 11
1

8. D4 0 0 2 0 0 18 (B,19) 11,1222 2810121420 10 9 12
2

9. As+2A, 0 0 2 0 O 20 (8,3%,1%) 112223 288121418 6 11 13
0

10. Al+2A, 1 0 1 0 1 24 (84,3,221) 112223 288121418 5 11 15
0

TABLE 2. Data forEg

For the orbitl, X = X’. Hence,%p, s, s, s, T, 112 are algebraically independent and by Theofef)
eis good. For the orbitg,3,... 10, we observe thaX < ¥, i.e.,

deg®p, + deg®ps + deg®pes + deg®pg + deg®ps + deg®pio < %(dim a® +6).

So, we need some more arguments that we give below.

2.
3. Since 14< 16, degfp; < deg%; fori = 9,12.

4,

5. Since 10< 14, de¢fps < degg. Moreover, the multiplicity of the weight 10 equals 1. Sdher

Since 16< 22, deg®p12 < dego.
Since 10< 14, dedgp; < deg%; fori = 8,9.

degqu >1,or degfiqlz >2,0r E‘qlz € qug
Since 10< 14, de¢fp; < deg%; for i = 8,9. Moreover, the multiplicity of the weight 10 equals 1.
So, either de@]s >1,or degeqlz > 2, 0r Et]lz € kqu

Since 8< 10 and 8 < 20, deg®p; < deg; for i = 6,12.
50



8. Since the center of® has dimension 2 and the weightstofn the center are 2 and 10, d&m <
deg%s. Moreover, since the weights @fin ¢® are 92, 6,10, deg®pg < deg%y and since the
multiplicity of the weight 10 equals 1, either dég > 1, or dedgi2 > 2, or (12 € kqu.

9. Since 6< 8 and %6 < 14, dedg®p; < deg% fori = 5,9.

10. Since 5< 8, 2x5 < 12 and X5 < 18, deg’p; < deg% fori =5,8,9,12.

In case<, 3,4,7,9, 10, the discussion shows that

degqu + degqu, + degqu + degqu + degqu + degeqlz = %(dlm ge + 6)

Hence, G, s, 06, s, o, 12 are algebraically independent and by Theorgi e is good. In cases
5,6, 8, if the above equality does not hold, then for soarie k*,

1 .
deg%yp, + deg%s + dege + deg%ys + degTe + degK(qio — aoé) = E(dlm a® + 6).

Hence®p, s, e, s, To, (012 — acé) are algebraically independent and by Theofefeis good.

In addition, according toHPY07 Theorem 0.4] and Theoref6, the elements of the minimal orbit of
Ee, labelledAs, are good. In conclusion, it remains nine unsolved nilpotebits in typeEsg.

Example6.2 Suppose thai is simple of typeF,4. Let'V be the module of highest weight the fundamental
weight w4 with the notation of Bourbaki. ThelW has dimension 26 anglidentifies with a subalgebra of
slhg(k). Forxin slyg(k) and fori = 2, ..., 26, letpi(X) be the cosficient of T26- in det (T — x) and denote by

i the restriction ofp; to g. Then @, Gs, ds, G12) IS @ generating family of S$f° since these polynomials are
algebraically independent)ye88]. Let (e h, f) be ansl,-triple of g. Then € h, f) is ansl,-triple of slyg(k).

As in Example6.1, in some cases, it is possible to deduce #hatgood. These cases are listed in Takle
indexed as in Examplé. 1

Label O—C=0—>0 dimg® partition dedp; weights v ¥ ¥
1. Fa 2 2 2 2 4 17,9) 1,111 2101422 22 4 4
2. Bs 2 2 0 2 6 (11,9,5,1) 1,1,1,1 2101422 14 4 5
3. Ca+ A 0 2 0 2 8 97,59 1,112 2101420 10 5 6
4. Cs 10 1 2 10 (962,5) 1,112 2101420 10 5 7
5. Bs 2 2 0 O 10 (7,19 1,122 2101220 10 6 7
6. Ao+ Ay 0 2 0 O 12 (8,33,12) 1223 281218 6 8 8
7. By+ A 10 1 0 14 (8,44,3,221) 1223 281218 6 8 9
8. Ao+ Ay 01 0 1 16 (542,33,22) 1,223 281218 5 8 10

TaBLE 3. Data forF,
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For the orbit, 3, 4, 5, 7,8, we observe thal < ¥’. So, we need some more arguments to conclude as in

Example6.1.
2. Since 14< 22, degeplz < degeqlz.
3. Since 10< 14, deg®ps < degs.
4. Since 10< 14, ded®pg < degg. Moreover, the multiplicity of the weight 10 equals 1 so that
degqu >1or degeqlz >2o0r Et]lz € kqu
5. The multiplicity of the weight 10 equals 1. So, either dag> 1, or degq;» > 2, or 2 € kqu.
7. Suppose thafgp, ©s, s, Q12 have degree,P, 2,3. We expect a contradiction. Since the center

has dimension 2 and since the multiplicity of the weight 6adg, forz of weight 6 in the center,
%6 € kez S € k2, Sho € k2. So, for some andb in k*,

05 s — 2% = O, 2, — b =0
Hence o, de, 0308 — acg, 03, — beg are algebraically independent element af)Séuch that
degp + degs + deg¥a3as — acg) + deg¥af, —bgg) > 1+2+5+7>2+3+9
whence a contradiction by’PY07 Theorem 2.1] (see Lemnial).

8. Since %5 < 12 and %5 < 18, dedgtg > deg®pg and dedq;,» > deg®pi».

In addition, according toHPY07 Theorem 0.4] and Theoref6, the elements of the minimal orbit of
F4, labelledA;, are good. In conclusion, it remains six unsolved nilpotebits in typeF,.

Example6.3. Suppose that is simple of typeG,. LetV be the module of highest weight the fundamental
weight w1 with the notation of Bourbaki. TheW has dimension 7 angd identifies with a subalgebra of
sl;(k). Forxin slz(k) and fori = 2,...,7, let pi(x) be the cofficient of T’ in det (T — x) and denote by;

the restriction ofg; to g. Thenqy, gg is a generating family of $J° since these polynomials are algebraically
independent,J1e8g. Let (e h, f) be ansly-triple of g. Then €, h, f) is ansl-triple of slz(k). In all cases,
we deduce that is good from Tablel, indexed as in Example. 1

Label =0 dimg® partition dedp; weights v ¥ X
1. G, 2 2 2 ) 1,1 210 10 2 2
2. AL+ Ay 0 2 4 @1 1,2 2,8 4 3 3
3. A 10 6 323 1,3 2,6 3 4 4
4. A 0 1 8 (2,19 1,4 2,4 2 5 5

TaBLE 4. Data forG,

7. Or"er EXAMPLES, REMARKS AND A CONJECTURE

This section provides examples of nilpotent elements whéfify the polynomiality condition but that
are not good. We also obtain an example of nilpotent elenmetypie D7 which does not verify the polyno-
miality condition (cf. Exampl€’.8). Then we conclude with some remarks and a conjecture.
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7.1. Some general results.In this subsectiong is a simple Lie algebra ovérand € h, f) is ansl,-triple
of g. Forpin S(g), ®p is the initial homogeneous component of the restrictiomp &b the Slodowy slice
e+ g'. Recall thak[e + g] identifies with S§®) by the Killing form(.,.) of g.

Letno € a®®c A?gf be the bivector defining the Poisson bracket asf)Saduced from the Lie bracket.
According to the main theorem oP[07, S(g®) is the graded algebra relative to the Kazhdan filtratiorhef t
finite W-algebra associated withso that S§€) inherits another Poisson structure. The so-obtainedegrad
algebra structure is the Slodowy graded algebra strucsere $ubsectiod.1). Letn € S@®) & A%gf be
the bivector defining this other Poisson structure. Acaaydd [Pr02 Proposition 6.3] (see als®PY07,
§2.4]), no is the initial homogeneous componentoDenote byr the dimension o€ and set:

W= n(r—t’)/Z € S([°) @ /\r—t’gf, wo = ng—f)/Z € SE®) ® /\r—f af.

Thenwy is the initial homogeneous componenmf
Letvs,...,u be abasis of. Foruin S@®) e A' a°, denote byj(u) the image ob1A - - - A v, by the right
interior product ofu so that

i € 569 0: /\ o

Lemma 7.1. Let q,...,d, be some homogeneous generatorS@)°® and let r,...,r, be algebraically
independent homogeneous elemenS(gF.
(i) For some homogeneous element S@j)S,

driA---Adrp = pdoggA--- Adg,.

(i) The following inequality holds:
d 1
Z deg¥; < deg® + 5(dimg® + £).
i=1
(iii) The polynomialsty, ..., %, are algebraically independent if and only if
d 1
Z deg; = deg’p+ >(dimg® + £).
i=1

Proof. (i) Sincequ,...,q, are generators of ¢, fori € {1,...,¢}, r; = R(qu,...,q) whereR is a
polynomial in¢ indeterminates, whence the assertion with

R .
=det(—, 1<i,j <.
p (qu <0

(i) Remind that forp in S(g), x(p) denotes the restriction td of the polynomial functiorx — p(e + X).
According to PPYO07 Theorem 1.2],

J(dk(ag) A -+ - A dk(a)) = aw
for someain k*. Hence by (i),
J(dk(ry) A -+ A di(re)) = ax(p)w.

The initial homogeneous component of the right-hand side€igy and the degree of the initial homoge-
neous component of the left-hand side is at least
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The assertion follows sinaeg has degree

1 : e

E(dlmg - {).

(iii) If %4,..., %, are algebraically independent, then the degree of thalifitmogeneous component
of j(driA--- Adry) equals
deg%,+---+deg%, - ¢
whence 1
deg%,+---+deg%, = deg®p + E(dim a®+ )

by the proof of (ii). Conversely, if the equality holds, then
4) jdFin---AdTy) = a®pwg
by the proof of (ii). In particular4, ..., %, are algebraically independent. m|

Corollary 7.2. Fori =1,...,¢, letri := R(qy, ..., q) be ahomogeneous elemensdf)® such thata—r\)_| # 0.

Then%.,..., %, are algebraically independent if and only if |

14
i=1

. OR, .
withp=—"Fori=1,...,¢
. aq;
. 0R . . .
Proof. Slnce—q # Oforalli, rq,...,r, are algebraically independent and
i
¢ OR
driA---Adr, = —dg,A---Ad
1 ¢ D a4 0 o
whence the corollary by Lemmal, (iii). m]

Let Q;ng be the set of nonregular elements of the difabf ¢&. If g

we will say thatg® is nonsingular

f
sing

has codimension at least 2 dh,
Corollary 7.3. Letry,...,r,and p be as in Lemmaland such thaft,,..., %, are algebraically indepen-
dent.
(i) If ®p is a greatest divisor ad% 1A --- A d%, in S(®) @ A’ a®, theng® is nonsingular.
(i) Assume that there are homogeneous polynomials. p p; in S@€)° verifying the following condi-
tions:
1) %41,..., %, areink[py,..., p¢],
2) if d is the degree of a greatest divisordy; A - - - Adp, in S(g°), then

degp;+---+degp, =d + %(dim a®+0).
Theng® is nonsingular.

Proof. (i) Suppose thafp is a greatest divisor of @A --- Ad%, in S@°) @ A’ ¢®. Then for somev; in
S@®) ®c A’ ¢® whose nullvariety i" has codimension at least 2,

der]_/\ <o /\dq’g = epa)l.

Thereforej(w) = awo by Equality @). Sincex s in g;ng
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(i) By Condition (1),
d¥iA---AdF, = qdpA--- Adp,
for someg in S(3°)*°, and for some greatest divisqrof dp;A - -- Adp; in S@°) @ A g5,
dpiA---Adp, = d ws.
So, by Equality 4),

) a9 j(w1) = a®pwo,
so that®p dividesqq in S(g®). By Condition (2) and Equalitys), wo andw; have the same degree. Then
qq is ink*®p, and for some&’ in k*,

j(w1) = & wo,

f

whence (ii), again sinceis in Ssing

if and only if wp(X) = 0. O

The following proposition is a particular case 651Q §5.7]. More precisely, part (i) follows from)510Q
Remark 5.7] and part (ii) follows fromJ51Q Theorem 5.7].

Proposition 7.4. Suppose that® is nonsingular.
(i) If there exist algebraically independent homogeneousngohjals p, ..., p; in S &)* such that

degp;+-- -+ degp, = %(dim a®+0)

thenS(g®)* is a polynomial algebra generated by, p. ., p;.
(i) Suppose that the semiinvariant elementS(@f) are invariant. 1fS@€)*° is a polynomial algebra then
it is generated by homogeneous polynomials fp, p, such that

degp;+---+degp, = %(dim g+ 0).

7.2. New examples.To produce new examples, our general strategy is to applyoBition7.4,(i). To that
end, we first apply Corollary.3in order to prove thag® is nonsingular. Then, we search for independent
homogeneous polynomiats, . . ., p, in S@€)*° satisfying the conditions of Corollary.3 (i) with d = 0.

Example7.5. Let e be a nilpotent element eb(k1°) associated with the partition (3 2,2). Then S¢&)* is
a polynomial algebra butis not good as explained below.

In this case/ = 5 and letqy, ..., s be as in Subsectiod.2. The degrees ofy;,..., 9 are 12,2,3,2
respectively. By a computation performed by Magtg, . . ., g5 verify the algebraic relation:

W - 403502 = 0.
Set:
- ._{ o] if 1=1235
' ;- 4gsq? i i =4
The polynomialg4, ..., rs are algebraically independent oveand
drin---Adrs =20adgyA--- AdQs

Moreover, %4 has degree at least 7. Then, by Coroll@rg, %4, ..., %5 are algebraically independent since
1
E(dlmge+5)+3= 14=1+2+2+2+7,

and by Lemm&.1,(ii) and (iii), %4 has degree 7.
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A precise computation performed by Maple shows that p% for someps in the center ofi¢, and that
&4 = pa%s for some polynomiap, of degree 5 in S€)%°. Settingp; := %; fori = 1,2, 5, the polynomi-
als p1,..., ps are algebraically independent homogeneous polynomiatkegfee 12, 1,5, 2 respectively.
Furthermore, a computation performed by Maple proves Heagteatest divisors offgA - - - A dps in S(g°)
have degree 0, and tha, is in the ideal of S{®) generated bys and ps. So, by Corollary7.3(ii), ¢ is
nonsingular, and by Propositiah4, (i), S@€)° is a polynomial algebra generated py, . .., ps. Moreover,
eis not good since the nullvariety @k, . .., ps in (g®)* has codimension at most 4.

Example?.6. In the same way, for the nilpotent elememtf so(k*!) associated with the partition,(3 2, 2, 1),
we can prove that §)*° is a polynomial algebra generated by polynomials of degrée?12, 7, ¢¢ is non-
singular bute is not good.

We also obtain that for the nilpotent elemanbf so(k!?) (resp.so(k'®)) associated with the partition
(5,3,2,2) or (3,3,2,2,1,1) (resp. (5,3,2,2,1), (4,4D,%r (3,3,2,2,1,1,1)), §0)* is a polynomial algebra;®
is nonsingular bugis not good.

We can summarize our conclusions for the small ranks. Asshatg = so(V) for some vector spaceé of
dimension 2+ 1 or 2 and lete € g be a nilpotent element @fassociated with the partitioh= (11,.. ., A)
of dimV. If £ < 6, our previous results (Corollary.8, Lemma5.11, Theorem5.23 Examples7.5 and
7.6) show that eithee is good, ore is not good but SE)*° is nevertheless a polynomial algebra afds
nonsingular. We describe in Takbethe partitionsi corresponding to good, and those corresponding to
the case whereis not good. The third column of the table gives the degredlefienerators in the latter
case.

Type eis good sge)ﬂe is polynomial,g® is nonsingular degrees of the generators
buteis not good

Bn, Dh,n<4 anya [%]

Bs 1#(3,3,221) 1=(33221) 11,227

Ds 1+#(33,22) 1=(3322) 1,1,2,25

Bs 1¢{(53221),(44221), 1€{(53221),(44,22]1), {1,1,1,2,2,7;1,1,2,2,3,6;
(3,32,2,1,1,1) (3,322,1,1,1) 1,1,2,2,6,7)

De 1¢{(5322),(33,221,1) 1€{(532,2),(33221,1) (1,1,1,2,2,5;1,1,2,2,3,7

TaBLE 5. Conclusions for of typeB, or D, with £ < 6

Remark7.7. The above discussion shows that there are good nilpotemiealks for which the codimension
of (ge);ing in (¢®)* is 1. Indeed, byPPYO07 §3.9], for some nilpotent elemest in B3, the codimension of

(g“‘");ing in (¢)* is 1 but, inBgz, all nilpotent elements are good (cf. TaBle

7.3. A counter-example. From the rank 7, there are elements that do no satisfy thanpwiiality condi-
tion. The following example disconfirms a conjecture of Peethat any nilpotent element of a simple Lie
algebra of classical type satisfies the polynomiality ctoui

Example7.8. Let e be a nilpotent element ab(k'4) associated with the partition (3 2,2, 2,2). Thene
does not satisfy the polynomiality condition.

In this case{ = 7 and let,, . . ., g7 be as in Subsection2. The degrees dly,,..., 9yare12,2,3,4,5,3
respectively. By a computation performed by Maple, we cangthaty;, . .., %, verify the two following
algebraic relations:

165205 + S — 8% s %02 — 64%E 47 =0, W2 - W’ =0
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Set:

g if i=12347
rii=4 160305% + 0} — 8030505 — 643072 if i=5
0303 — 0505 if i=6

The polynomials, ..., r; are algebraically independent oveand

driA--- Adry = 20306 (320305 — 80303) doz A - - A day

Moreover, %5 and &g have degree at least 13 aF(dq3q6(32q§q5 - 8q3q§)) has degree 15. Then, by Corol-
lary 7.2, %1,..., %7 are algebraically independent since

1 .
z(dlmge+7)+15:37=1+2+2+3+3+26

and by Lemma&.1,(ii) and (iii), %5 and %¢ have degree 13.

A precise computation performed by Maple shows that pg for someps in the center o6®, %4 = p3ps
for some polynomiapy of degree 2 in SE)*°, &5 = p3 %y ps for some polynomiaps of degree 7 in ),
and % = ps%7ps for some polynomialps of degree 8 in S€)°. Settingp; = &; fori = 1,2,7, the
polynomialsp, ..., py are algebraically independent homogeneous polynomiategfee 12,1,2,7,8,3
respectively. Let be a reductive factor af*. According to [Ca85 Ch. 13],

[~ s0p(k) X spa(k) =~ k x spy(k).

In particular, the center dfhas dimension 1. Ldix,, ..., X37} be a basis of® such thatxs7 lies in the center
of I and such thak,. .., xsg are in [, ]] + g5 with g the nilpotent radical 0§®. Thenp, is a polynomial

in k[xq,...,Xs7] depending onxz7. As a result, by PDV74, Theorems 3.3 and 4.5], the semiinvariant
polynomials of S§®) are invariant.

Claim7.9. The algebra® is nonsingular.

Proof. [Proof of Claim7.9] The spacek! is the orthogonal direct sum of two subspadgsandV, of
dimension 6 and 8 respectively and such #dt f are ing := so(V1) @ so(V5). Theng® = gngis a
subalgebra of dimension 21 containing the centeg®ofFor p in S(g€), denote byp its restriction to§f.
The partition (33, 2, 2, 2, 2) verifies the condition (1) of the proof o¥ D6, §4, Lemma 3]. So, the proof of
Lemmab.14remains valid, and the morphism

Gexs —af, (9.0 g(x)

is dominant. As a result, fap in S@€)*°, the diferential ofp is the restriction t@f of the diferential ofp.

A computation performed by Maple proves tiat° is a greatest divisor offi{f A --- A dp7 in S@°). If g

is a greatest divisor of} A --- A dp7 in S(g®), theng is in SE®)*° since the semiinvariant polynomials are
invariant. Soq = pg for some nonnegative integdr One can suppose thgty, ..., Xig} is a basis of the
orthogonal complement ’@)f in ¢®. Then the Pfian of the matrix

(% %1, 1<, < 16)
is ink*p§ so thatp is a greatest divisor ofgiA - - - A dp; in S(g®). Since
degpy +---+degp; =2+22=2+ :—ZL(dimge +0),

we conclude thag® is nonsingular by Corollary.3,(ii). m|
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Claim 7.10 Suppose that $f)* is a polynomial algebra. Then for some homogeneous polyalemj
and p;, of degrees at least 5 and at most 8 respectively?)S(is generated bys, po, ps, Pa, 5, P P7-
Furthermore, the possible values for (giggdegpy) are (38) or (6 7).

Proof. [Proof of Claim7.1( Since the semiinvariants are invariants, by Claiiand Propositiory .4,(ii),
there are homogeneous generatars . ., ¢, of S@)* such that

degy;< --- <degy,,
and 1
deg(’01+ Ce +deg()p€ = E(dlmge + f) =22

According to Mo06¢c, Theorem 1.1.8] orY06h], the center ofy® has dimension 2. Hence; andy, have
degree 1. Thereby, we can suppose that p; andg, = p3 since p; and psz are linearly independent
elements of the center gf. Sincep, and p4 are homogneous elements of degree 2 suchghat., ps are
algebraically indepentpz andg,4 have degree 2 and we can suppose ¢ghat p, andys = ps. Sincep; has
degree 3¢5 has degree at most 3 and at least 2 since the cengérhafs dimension 2. Suppose thathas
degree 2. A contradiction is expected. Then

degps + degpy =22—-(1+1+2+2+2)=14

Moreover, sinceps, ..., py are algebraically independegt; has degree at most 8 apg has degree at least
6. Hencepy is in the ideal ofk[ p1, ps3, 3, ¥4, 5] generated by, andps. But a computation shows that the
restriction ofp; to the nullvariety ofp; andps in g' is different from 0, whence the expected contradiction.
As a resultys has degree 3 and

degys + degpy = 13

One can supposg; = py and the possible values for (deg degyy) are (58) and (67) sincep; has degree
at most 8. O

Suppose that §J® is a polynomial algebra. A contradiction is expected. jeandpg, be as in Clainy.10
and such that deg, < degp;. Then (deg;, degp;) equals (58) or (6 7). A computation shows that we
can choose a basfg;, . .., 37} of g® with x37 = ps, with p1, p2, pP3, P4, P7 iNk[Xs, ..., X37] and with ps, ps
of degree 1 inx;. Moreover, the cd@icient of x; in ps is a prime element df[xs, ..., X37], the codficient
of x; in pg is a prime element ok[x, ..., X37] having degree 1 in,, and the cofficient of x; %o in pg
equalsang with a a prime homogeneous polynomial of degree 2 suchahat, po, ps, ps are algebraically
independent. In particulag is not invariant. Ifp; has degree 5, then

Ps = P5ro+r1

with ro in k[ p1, P2, P3, Pa] @andry in k[ ps1, P2, P3, P4, P7] SO thatpg has degree 1 iy, and the cofficient of
X1 in ps is the product ofy and the cofficient of x; in pg. But this is impossible since this ddieient is
prime. So,p; has degree 6 angl, has degree 7. We can suppose thfat ps. Then

Ps = Psfo + Pgfi+ 12

with rop homogeneous of degree 1 kfip1, ps], r1 homogeneous of degree 2 kfips, po, p3, Pa], andry
homogeneous of degree 8lifip1, p2, P, P4, P7]. According to the above remarks @g and the cofficient
of X1 in pg, 1 is ink*p sincer; has degree 2.

For p in S(g®), denote byp its image in S§®)/p3S(@®). A computation shows that for somein
S@°)/psS@°),

Ps =14°U,  Pe = —Papru.
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Furthermorep; andpy are ditferent prime elements of §)/p3S(s®) and the cofficientu; of x; in uis the
product of two diferent polynomials of degree 1. The @idgient of x; in Pg is U1 Pa>To Since

Ps = Psfo + 2.

On the other hand, the cfieient of x; in Pg is —u1Pap7, whence the contradiction sincghas degree 1.
7.4. A conjecture. All examples of good elements we achieved satisfy the hygsishof Theoren3.6.

Conjecture 7.11. Let g be a simple Lie algebra and let e be a nilpotentgofif e is good then for some
graded generating sequen@@, . .., q,) in S@)%, ;.. - ., 1, are algebraically independent over In other
words, the converse implication of Theor&rfi holds.

Notice that it may happen that for somg...,r, in S()%, the elementsty,..., %, are algebraically
independent ovek, and that howevee is not good. This is the case for instance for the nilpotestneints
in so(k!?) associated with the partition (8, 2, 2), cf. Example7.6.

In fact, according toPPYO07 Corollary 2.3], for any nilpoteng of g, there exist,...,r, in S(g)% such
that %4, ..., %, are algebraically independent over
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