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THE SYMMETRIC INVARIANTS OF CENTRALIZERS AND SLODOWY GRADI NG

JEAN-YVES CHARBONNEL AND ANNE MOREAU

Abstract. Let g be a finite-dimensional simple Lie algebra of rankℓ over an algebraically closed fieldk of
characteristic zero, and letebe a nilpotent element ofg. Denote byge the centralizer ofe in g and by S(ge)g

e
the

algebra of symmetric invariants ofge. We say thate is goodif the nullvariety of someℓ homogeneous elements
of S(ge)g

e
in (ge)∗ has codimensionℓ. If e is good then S(ge)g

e
is a polynomial algebra. The main result of

this paper stipulates that if for some homogeneous generators of S(g)g, the initial homogeneous components
of their restrictions toe+ g f are algebraically independent, with (e,h, f ) ansl2-triple of g, thene is good. As
applications, we pursue the investigations of [PPY07] and we produce (new) examples of nilpotent elements
that verify the above polynomiality condition, in simple Lie algebras of both classical and exceptional types.
We also give a counter-example in typeD7.
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1. Introduction

1.1. Let g be a finite-dimensional simple Lie algebra of rankℓ over an algebraically closed fieldk of
characteristic zero, let〈. , .〉 be the Killing form ofg and letG be the adjoint group ofg. If a is a subalgebra
of g, we denote by S(a) the symmetric algebra ofa. For x ∈ g, we denote bygx the centralizer ofx in g and
by Gx the stabilizer ofx in G. Then Lie(Gx) = Lie(Gx

0) = gx whereGx
0 is the identity component ofGx.

Moreover, S(gx) is agx-module and S(gx)g
x
= S(gx)G

x
0. An interesting question, first raised by A. Premet, is

the following:

Question 1. Is S(gx)g
x

a polynomial algebra inℓ variables?

In order to answer this question, thanks to the Jordan decomposition, we can assume thatx is nilpotent.
Besides, if S(gx)g

x
is polynomial for somex ∈ g, then it is so for any element in the adjoint orbitG.x of

x. If x = 0, it is well-known since Chevalley that S(gx)g
x
= S(g)g is polynomial inℓ variables. At the
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opposite extreme, ifx is a regular nilpotent element ofg, thengx is abelian of dimensionℓ, [DV69], and
S(gx)g

x
= S(gx) is polynomial inℓ variables too.

For the introduction, let us say most simply thatx ∈ g verifies the polynomiality conditionif S(gx)g
x

is a
polynomial algebra inℓ variables.

A positive answer to Question1 was suggested in [PPY07, Conjecture 0.1] for any simpleg and anyx ∈ g.
O. Yakimova has since discovered a counter-example in typeE8, [Y07], disconfirming the conjecture. More
precisely, the elements of the minimal nilpotent orbit inE8 do not verify the polynomiality condition. The
present paper contains another counter-example in typeD7 (cf. Example7.8). In particular, we cannot expect
a positive answer to [PPY07, Conjecture 0.1] for the simple Lie algebras of classical type. Question1 still
remains interesting and has a positive answer for a large number of nilpotent elementse∈ g as it is explained
below.

1.2. We briefly review in this paragraph what has been achieved so far about Question1. Recall that the
indexof a finite-dimensional Lie algebraq, denoted by indq, is the minimal dimension of the stabilizers of
linear forms onq for the coadjoint representation, (cf. [Di74]):

indq := min{dimqξ ; ξ ∈ q∗} where qξ := {x ∈ q ; ξ([x, q]) = 0}.

By [R63], if q is algebraic, i.e.,q is the Lie algebra of some algebraic linear groupQ, then the index ofq is
the transcendental degree of the field ofQ-invariant rational functions onq∗. The following result will be
important for our purpose.

Theorem 1.1([CMo10, Theorem 1.2]). The index ofgx is equal toℓ for any x∈ g.

Theorem1.1 was first conjectured by Elashvili in the 90’s motivated by a result of Bolsinov, [Bol91,
Theorem 2.1]. It was proven by O. Yakimova wheng is a simple Lie algebra of classical type, [Y06],
and checked by a computer programme by W. de Graaf wheng is a simple Lie algebra of exceptional
type, [DeG08]. Before that, the result was established for some particular classes of nilpotent elements by
D. Panyushev, [Pa03].

Theorem1.1 is deeply related to Question1. Indeed, thanks to Theorem1.1, [PPY07, Theorem 0.3]
applies and by [PPY07, Theorems 4.2 and 4.4], ifg is simple of typeA or C, then all nilpotent elements
of g verify the polynomiality condition. The result for the typeA was independently obtained by Brown
and Brundan, [BB09]. In [PPY07], the authors also provide some examples of nilpotent elements satisfying
the polynomiality condition in the simple Lie algebras of typesB and D, and a few ones in the simple
exceptional Lie algebras.

More recently, the analogue question to Question1 for the positive characteristic was dealt with by
L. Topley for the simple Lie algebras of typesA andC, [T12].

1.3. The main goal of this paper is to continue the investigations of [PPY07]. Let us describe the main
results. The following definition is central in our work (cf.Definition 3.2):

Definition 1.2. An elementx ∈ g is called agood element ofg if for some graded sequence (p1, . . . , pℓ) in
S(gx)g

x
, the nullvariety ofp1, . . . , pℓ in (gx)∗ has codimensionℓ in (gx)∗.

For example, by [PPY07, Theorem 5.4], all nilpotent elements of a simple Lie algebra of typeA are good,
and by [Y09, Corollary 8.2], theeven1 nilpotent elements ofg are good ifg is of typeB or C or if g is of
typeD with odd rank. We rediscover these results in a more general setting (cf. Theorem5.1and Corollary
5.8). The good elements verify the polynomiality condition (cf. Theorem3.3):

1i.e., this means that the Dynkin grading ofg associated with the nilpotent element has no odd term.
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Theorem 1.3. Let x be a good element ofg. ThenS(gx)g
x

is a polynomial algebra andS(gx) is a free
extension ofS(gx)g

x
.

Furthermore,x is good if and only if so is its nilpotent component in the Jordan decomposition (cf. Propo-
sition 3.5). As a consequence, we can restrict the study to the case of nilpotent elements.

Let e be a nilpotent element ofg. By the Jacobson-Morosov Theorem,e is embedded into asl2-triple
(e, h, f ) of g. Denote bySe := e+ g f the Slodowy slice associated with e. Identify g∗ with g, and (ge)∗

with g f , through the Killing form〈. , .〉. For p in S(g) ≃ k[g∗] ≃ k[g], denote byep the initial homogeneous
component of its restriction toSe. According to [PPY07, Proposition 0.1], ifp is in S(g)g, then ep is in
S(ge)g

e
. The main result of the paper is the following (cf. Theorem3.6) whose proof is outlined in Subsection

1.4:

Theorem 1.4. Suppose that for some homogeneous generators q1, . . . ,qℓ of S(g)g, the polynomial functions
eq1, . . . ,

eqℓ are algebraically independent. Then e is a good element ofg. In particular, S(ge)g
e

is a poly-
nomial algebra andS(ge) is a free extension ofS(ge)g

e
. Moreover,(eq1, . . . ,

eqℓ) is a regular sequence in
S(ge).

Theorem1.4 can be applied to a great number of nilpotent orbits in the simple classical Lie algebras
(cf. Section5), and for some nilpotent orbits in the exceptional Lie algebras (cf. Section6).

To state our results for the simple Lie algebras of typesB andD, let us introduce some more notations.
Assume thatg = so(V) ⊂ gl(V) for some vector spaceV of dimension 2ℓ + 1 or 2ℓ. For an endomorphism
x of V and for i ∈ {1, . . . , dimV}, denote byQi(x) the coefficient of degree dimV − i of the characteristic
polynomial ofx. Then for anyx in g, Qi(x) = 0 wheneveri is odd. Define a generating familyq1, . . . ,qℓ
of the algebra S(g)g as follows. Fori = 1, . . . , ℓ − 1, setqi := Q2i . If dimV = 2ℓ + 1, setqℓ := Q2ℓ, and if
dimV = 2ℓ, let qℓ be a homogeneous element of degreeℓ of S(g)g such thatQ2ℓ = q2

ℓ
. Denote byδ1, . . . , δℓ

the degrees ofeq1, . . . ,
eqℓ respectively. By [PPY07, Theorem 2.1], if

dimge + ℓ − 2(δ1+ · · ·+ δℓ) = 0,

then the polynomialseq1, . . . ,
eqℓ are algebraically independent. In that event, by Theorem1.4, e is good

and we will say thate is very good(cf. Corollary5.8and Definition5.10). The very good nilpotent elements
of g can be characterized in term of their associated partitionsof dimV (cf. Lemma5.11). Theorem1.4also
allows to obtain examples of good, but not very good, nilpotent elements ofg; for them, there are a few
more work to do (cf. Subsection5.3).

In this way, we obtain a large number of good nilpotent elements, including all even nilpotent elements
in type B, or in typeD with odd rank (cf. Corollary5.8). For the typeD with even rank, we obtain the
statement for some particular cases (cf. Theorem5.23). On the other hand, there are examples of elements
that verify the polynomiality condition but that are not good; see Examples7.5and7.6. To deal with them,
we use different techniques, more similar to those used in [PPY07]. These alternative methods are presented
in Section7.

As a result of all this, we observe for example that all nilpotent elements ofso(k7) are good, and that all
nilpotent elements ofso(kn), with n 6 13, verify the polynomiality condition (cf. Table5). In particular, by
[PPY07, §3.9], this provides examples of good nilpotent elements forwhich the codimension of (ge)∗sing in
(ge)∗ is 1 (cf. Remark7.7). Here, (ge)∗sing stands for the set of nonregular linear formsx ∈ (ge)∗, i.e.,

(ge)∗sing := {x ∈ (ge)∗ | dim(ge)x > indge = ℓ}.

For such nilpotent elements, note that [PPY07, Theorem 0.3] cannot be applied.
3



Our results do not cover all nilpotent orbits in typeB andD. As a matter of fact, we obtain a counter-
example in typeD7 to Premet’s conjecture (cf. Example7.8).

Proposition 1.5. The nilpotent elements ofso(k14) associated with the partition(3, 3, 2, 2, 2, 2) of 14do not
satisfy the polynomiality condition.

1.4. We outline in this paragraph the proof of Theorem1.4.
Let q1, . . . ,qℓ be homogeneous generators of S(g)g of degreesd1, . . . ,dℓ respectively. The sequence

(q1, . . . ,qℓ) is ordered so thatd16 · · · 6dℓ. Assume that the polynomial functionseq1, . . . ,
eqℓ are alge-

braically independent.
According to Theorem1.3, it suffices to show thate is good, and more accurately that the nullvariety

of eq1, . . . ,
eqℓ in g f has codimensionℓ, since eq1, . . . ,

eqℓ are invariant homogeneous polynomials. To
this end, it suffices to prove that S(ge) is a free extension of thek-algebra generated byeq1, . . . ,

eqℓ (see
Proposition2.5,(ii)). We are lead to find a subspaceV0 of S such that the linear map

V0 ⊗k k[
eq1, . . . ,

eqℓ] −→ S, v⊗a 7−→ va

is a linear isomorphism. We explain below the construction of the subspaceV0.
Let x1, . . . , xr be a basis ofge such that fori = 1, . . . , r, [h, xi ] = ni xi for some nonnegative integerni . For

j = ( j1, . . . , jr) in Nr , set:

|j | := j1+ · · ·+ jr , |j |e := j1n1 + · · · + jrnr + 2|j |, xj = x j1
1 · · · x

jr
r .

The algebra S(ge) has two gradations: the standard one and theSlodowy gradation. For all j in Nr , xj

is homogeneous with respect to these two gradations. It has standard degree|j | and, by definition, it has
Slodowy degree|j |e. Formnonnegative integer, denote by S(ge)[m] the subspace of S(ge) of Slodowy degree
m.

Let us simply denote byS the algebra S(ge) and lett be an indeterminate. For any subspaceV of S, set:

V[t] := k[t] ⊗k V, V[t, t−1] := k[t, t−1] ⊗k V, V[[ t]] := k[[ t]] ⊗k V, V((t)) := k((t)) ⊗k V,

with k((t)) the fraction field ofk[[ t]]. For V a subspace ofS[[ t]], denote byV(0) the image ofV by the
quotient morphism

S[t] −→ S, a(t) 7−→ a(0).

The Slodowy gradation ofS induces a gradation of the algebraS((t)) with t having degree 0. Letτ be the
morphism of algebras

S −→ S[t], xi 7→ txi , i = 1, . . . , r.

The morphismτ is a morphism of graded algebras. Denote byδ1, . . . , δℓ the standard degrees ofeq1, . . . ,
eqℓ

respectively, and set fori = 1, . . . , ℓ:

Qi := t−δiτ(κ(qi )) with κ(qi )(x) := qi(e+ x), ∀ x ∈ g f .

Let A be the subalgebra ofS[t] generated byQ1, . . . ,Qℓ. ThenA(0) is the subalgebra ofS generated by
eq1, . . . ,

eqℓ. For (j1, . . . , jℓ) in Nℓ, κ(q j1
1 )· · · κ(q jℓ

ℓ
) and eq j1

1 · · ·
eq jℓ
ℓ

are Slodowy homogeneous of Slodowy
degree 2d1 j1 + · · · + 2dℓ jℓ (cf. Proposition4.1,(i)). Hence,A andA(0) are graded subalgebras ofS[t] andS
respectively. Denote byA(0)+ the augmentation ideal ofA(0), and letV0 be a graded complement toS A(0)+
in S.

We first obtain thatS[[ t]] is a free extension ofA (cf. Corollary4.17), and thatS[[ t]] is a free extension
of the subalgebrãA of S[[ t]] generated byk[[ t]] andA (cf. Theorem4.21,(i)). From these results, we deduce
that the linear map

V0 ⊗k A(0) −→ S, v⊗a 7−→ va
4



is a linear isomorphism, as expected; see Theorem4.21,(iii).

1.5. The remainder of the paper will be organized as follows.

Section2 is about general facts on commutative algebra, useful for the Sections3 and4. In Section3,
the notions of good elements and good orbits are introduced,and some properties of good elements are
described. Theorem3.3asserts that the good elements verify the polynomiality condition. The main result
(Theorem3.6) is also stated in this section. Section4 is devoted to the proof of Theorem3.6. In Section5,
we give applications of Theorem3.6 to the simple classical Lie algebras. In Section6, we give applications
to the exceptional Lie algebras of typesE6, F4 andG2. This allows us to exhibit a great number of good
nilpotent orbits. Other examples, counter-examples, remarks and a conjecture are discussed in Section7. In
this last section, other techniques are developed.

Acknowledgments. This work was partially supported by the ANR-project 10-BLAN-0110.

2. General facts on commutative algebra

We state in this section preliminary results on commutativealgebra. Theorem2.20will be particularly
important in Sections3 for the proof of Theorem3.3. As for Proposition2.5, it will be used in the proof of
Theorem3.6.

2.1. As a rule, forA a graded algebra overN, we denote byA+ the ideal ofA generated by its homogeneous
elements of positive degree. ForM a gradedA-module, we setM+ := A+M.

Let S be a finitely generated regular gradedk-algebra overN. If E is a finite dimensional vector space
overk, we denote by S(E) the polynomial algebra generated byE. It is a finitely generated regulark-algebra,
graded overN by the standard gradation. LetA be a graded subalgebra ofS, different fromS and such that
A = k + A+. Let XA andXS be the affine varieties Specm(A) and Specm(S) respectively, and letπA,S be
the morphism fromXS to XA whose comorphism is the canonical injection fromA into S. Let N0 be the
nullvariety ofA+ in XS and set

N := dimS − dimA.

Lemma 2.1. (i) The irreducible components of the fibers ofπA,S have dimension at least N.
(ii) If N0 has dimension N, then the fibers ofπA,S are equidimensional of dimension N.
(iii) Suppose that S= S(E) for some finite dimensionalk-vector space E. IfN0 has dimension N, then

for some x1, . . . , xN in E, the nullvariety of x1, . . . , xN in N0 is equal to{0}.

Proof. (i) Let F be a fiber ofπA,S and letU be an open subset ofXS whose intersection withF is not empty
and irreducible. The restriction ofπA,S to U is a dominant morphism fromU to XA. So,N is the minimal
dimension of the fibers of the restriction ofπA,S to U, whence the assertion.

(ii) Denote byx0 the elementA+ of XA. SinceA is a graded algebra, there exists a regular action of the
one dimensional multiplicative group Gm on XA. Furthermore, for allx in XA, x0 is in the closure of Gm.x.
Hence the dimension of the fiber ofπA,S at x is at most dimN0. As a result, when dimN0 is the minimal
dimension of the fibers ofπA,S, all the fibers ofπA,S are equidimensional of dimensionN by (i).

(iii) For x = (xi)i∈I a family of elements ofE, denote byA[x] the subalgebra of S(E) generated byA and
x, and denote byN0(x) its nullvariety inN0. SinceN0 is a cone,N0(x) is equal to{0} if it has dimension
0. So it suffices to findN elementsx1, . . . , xN of E such thatN0(x1, . . . , xN) has dimension 0. Let us prove
by induction oni that for i = 1, . . . ,N, there existi elementsx1, . . . , xi of E such thatN0(x1, . . . , xi) has
dimensionN − i. By induction oni, with A[x1, . . . , xi] instead ofA, it suffices to findx in E such thatN0(x)
has dimensionN − 1.
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Let Z1, . . . ,Zm be the irreducible components ofN0 and letI i be the ideal of definition ofZi in S(E). Since
N0 is equidimensional of dimensionN by hypothesis, fori = 1, . . . ,m, Zi has dimensionN. In particular,
I i does not containE sinceA , S(E). So, there existsx in E, not in the union ofI1, . . . , Im. Then, for
i = 1, . . . ,m, the nullvariety ofx in Zi is equidimensional of dimensionN − 1. As a result, the nullvariety of
the ideal of S(E) generated byA+ andx is equidimensional of dimensionN − 1, whence the assertion. �

Let A be the algebraic closure ofA in S.

Lemma 2.2. Let M be a graded A-module and let V be a graded subspace of M such that M = V ⊕ M+.
Denote byτ the canonical map A⊗k V −→ M. Thenτ is surjective. Moreover,τ is bijective if and only if M
is a flat A-module.

Proof. Let M′ be the image ofτ. SinceM = V ⊕ M+ = V + A+M ⊂ M′ + A+M, we get by induction onk,

M ⊂ M′ + Ak
+M.

SinceM is graded and sinceA+ is generated by elements of positive degree,M = M′.
If τ is bijective, then all basis ofV is a basis of theA-moduleM. In particular, it is a flatA-module.

Conversely, let us suppose thatM is a flatA-module. Forv in M, denote byv the element ofV such thatv− v
is in A+M.

Claim 2.3. Let (v1, . . . , vn) be a graded sequence inM such thatv1, . . . , vn is linearly free overk. Then
v1, . . . , vn is linearly free overA.

Proof of Claim2.3. Since the sequence (v1, . . . , vn) is graded, it suffices to prove that for a graded sequence
(a1, . . . ,an) in A,

a1v1 + · · · + anvn = 0 =⇒ a1= · · · =an = 0.

Prove the statement by induction onn. First of all, by flatness, for some graded sequence (y1, . . . , yk) in M
and for some graded sequence (bi, j , i = 1, . . . , n, j = 1, . . . , k),

vi =

k∑

j=1

bi, jy j and
n∑

l=1

albl,m = 0

for i = 1, . . . , n andm = 1, . . . , k. For n = 1, sincev1 , 0, for somej, b1, j is in k∗ sinceA = k + A+. So
a1 = 0. Suppose the statement true forn− 1. Sincevn , 0, for somej, bn, j is in k∗, whence

an = −

n−1∑

i=1

bi, j

bn, j
ai and

n−1∑

i=1

ai(vi −
bi, j

bn, j
vn) = 0.

Sincev1, . . . , vn are linearly free overk, so is the sequence
(
vi − (bi, j/bn, j)vn, i = 1, . . . , n− 1

)
.

By induction hypothesis,a1= · · · =an−1 = 0, whencean = 0. �

According to Claim2.3, any graded basis ofV is linearly free overA. Hence any graded basis ofV is a
basis of theA-moduleM sinceM = AV. �

Corollary 2.4. Suppose that S= S(E) for some finite dimensionalk-vector space E, and suppose that
dimN0 = N. ThenA is the integral closure of A inS(E). In particular, A is finitely generated.
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Proof. SinceA is finitely generated, so is its integral closure in S(E) by [Ma86, §33, Lemma 1]. According
to the hypothesis onN0 and Lemma2.1,(iii), for somex1, . . . , xN in E, the nullvariety ofx1, . . . , xN in N0 is
equal to{0}. In particular,x1, . . . , xN are algebraically independent overA sinceE has dimensionN+dimA.
Let J be the ideal of S(E) generated byA+ andx1, . . . , xN. Then the radical ofJ is the augmentation ideal
of S(E) so thatJ has finite codimension in S(E). For V a graded complement toJ in S(E), S(E) is the
A[x1, . . . , xN]-submodule generated byV by Lemma2.2. Hence S(E) is a finite extension ofA[x1, . . . , xN].

Let pbe inA. SinceA[x1, . . . , xN] is finitely generated,A[x1, . . . , xN][ p] is a finite extension ofA[x1, . . . , xN].
Let

pm+ am−1pm−1 + · · · + a0 = 0

an integral dependence equation ofp overA[x1, . . . , xN]. For i = 0, . . . ,m, ai is a polynomial inx1, . . . , xN

with coefficients inA sincex1, . . . , xN are algebraically independent overA. Denote byai(0) its constant
coefficient. Sincep is in A, x1, . . . , xN are algebraically independent overA[p], whence

pm + am−1(0)pm−1 + · · · + a0(0) = 0.

As a result,A is the integral closure ofA in S(E). �

Proposition 2.5. Let us consider the following conditions on A:

1) A is a polynomial algebra,
2) A is a regular algebra,
3) A is a polynomial algebra generated bydimA homogeneous elements,
4) the A-module S is faithfully flat,
5) the A-module S is flat,
6) the A-module S is free.

(i) The conditions(1), (2), (3) are equivalent.
(ii) The conditions(4), (5), (6) are equivalent. Moreover, Condition(4) implies Condition(2) and, in that

event,N0 is equidimensional of dimension N.
(iii) If N0 is equidimensional of dimension N, then the conditions(1), (2), (3), (4), (5), (6) are all equiva-

lent.

Proof. Let n be the dimension ofA.
(i) The implications (3)⇒ (1), (1)⇒ (2) are straightforward. Let us suppose thatA is a regular algebra.

SinceA is graded and finitely generated, there exists a graded sequence (x1, . . . , xn) in A+ representing a
basis ofA+/A2

+. Let A′ be the subalgebra ofA generated byx1, . . . , xn. Then

A+ ⊂ A′ + A2
+.

So by induction onm,

A+ ⊂ A′ + Am
+

for all positive integerm. ThenA = A′ sinceA is graded andA+ is generated by elements of positive degree.
Moreover,x1, . . . , xn are algebraically independent overk sinceA has dimensionn. HenceA is a polynomial
algebra generated byn homogeneous elements.

(ii) The implications (4)⇒ (5), (6)⇒ (5) are straightforward and (5)⇒ (6) is a consequence of Lemma2.2.
(5)⇒ (4): Recall thatx0 = A+. Let us suppose thatS is a flatA-module. ThenπA,S is an open morphism

whose image containsx0. Moreover,π(XS) is stable under the action of Gm. SoπA,S is surjective. Hence,
by [Ma86, Ch. 3, Theorem 7.2],S is a faithfully flat extension ofA.
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(4)⇒ (2): SinceS is regular and sinceS is a faithfully flat extension ofA, all finitely generatedA-module
has finite projective dimension. So by [Ma86, Ch. 7,§19, Lemma 2], the global dimension ofA is finite.
Hence by [Ma86, Ch. 7, Theorem 19.2],A is regular.

If Condition (4) holds, by [Ma86, Ch. 5, Theorem 15.1], the fibers ofπA,S are equidimensional of dimen-
sionN. SoN0 is equidimensional of dimensionN.

(iii) Suppose thatN0 is equidimensional of dimensionN. By (i) and (ii), it suffices to prove that (2)⇒ (5).
By Lemma2.1,(ii), the fibers ofπA,S are equidimensional of dimensionN. Hence by [Ma86, Ch. 8, Theorem
23.1],S is a flat extension ofA sinceS andA are regular. �

2.2. We present in this paragraph some results about algebraic extensions, that are independent of Subsec-
tion 2.1. These results are used only in the proof of Proposition2.15. Our main reference is [Ma86]. For A
an algebra andp a prime ideal ofA, Ap denotes the localization ofA atp.

Let t be an indeterminate, and letL be a field containingk. Let B, L1, B1 verifying the following condi-
tions:

(I) L1 is an algebraic extension ofL(t) of finite degree,
(II) L is algebraically closed inL1,
(III) B is a finitely generated subalgebra ofL, L is the fraction field ofB andB is integrally closed inL,
(IV) B1 is the integral closure ofB[t] in L1,
(V) tB1 is a prime ideal ofB1.

ForC a subalgebra ofL, containingB, we set:

R(C) := C ⊗B B1,

and we denote byµC the canonical morphismR(C) → CB1. SinceC and B1 are integral algebras, the
morphismsc 7→ c⊗1 andb 7→ 1⊗b from C andB1 to R(C) respectively are embeddings. So,C andB1 are
identified to subalgebras ofR(C) by these embeddings. We now investigate some properties ofthe algebras
R(C).

Lemma 2.6. LetµL be the canonical morphism R(L)→ LB1.
(i) The algebra R(L) is reduced andµL is an isomorphism.
(ii) The ideal tLB1 of LB1 is maximal. Furthermore B1 is a finite extension of B[t].
(iii) The algebra LB1 is the direct sum of L and tLB1.
(iv) The ring LB1 is integrally closed in L1.

Proof. (i) Let a be in the kernel ofµL. SinceL is the fraction field ofB, for someb in B, ba= 1⊗µL(ba) so
thatba= 0 anda = 0. As a result,µL is an isomorphism andR(L) is reduced sinceLB1 is integral.

(ii) Since t is not algebraic overL and sinceLB1 is integral overL[t] by Condition (IV), tLB1 is strictly
contained inLB1. Let a andb be inLB1 such thatab is in tLB1. By Condition (III), for somec in B \ {0},
ca andcb are inB1. So, by Condition (V),ca or cb is in tB1. Hencea or b is in tLB1. As a result,tLB1 is
a prime ideal and the quotientQ of LB1 by tLB1 is an integral domain. Denote byι the quotient morphism.
SinceL is a field, the restriction ofι to L is an embedding ofL into Q. According to Conditions (I) and (IV)
and [Ma86, §33, Lemma 1],B1 is a finite extension ofB[t]. ThenQ is a finite extension ofL andtLB1 is a
maximal ideal ofLB1.

(iii) Since L is algebraically closed inL1, Q andL1 are linearly disjoint overL. So,Q⊗L L1 is isomorphic
to the extension ofL1 generated byQ. Denoting this extension byQL1, QB1 is a subalgbera ofQL1 and we
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have the exact sequences

0 // tLB1 // LB1 // Q // 0

0 // tQB1 // QB1 // Q⊗L Q // 0

0 // tQB1 // tQB1 + LB1 // Q⊗1 // 0

As a result,

Q ⊂ LB1 + tQB1.

By (ii), QB1 is a finiteL[t]-module. So, by Nakayama’s Lemma, for somea in L[t], (1+ ta)QB1 is contained
in LB1. As a result,Q is contained inL1, whenceQ = L sinceL is algebraically closed inL1. The assertion
follows sinceQ is the quotient ofLB1 by tLB1.

(iv) Let a be in the integral closure ofLB1 in L1 and let

am + am−1am−1 + · · · + a0 = 0

an integral dependence equation ofa overLB1. For someb in L \ {0}, bai is in B1 for i = 0, . . . ,m− 1. Then,
by Condition (IV),ba is in B1 since it verifies an integral dependence equation overB1. As a result,LB1 is
integrally closed inL1. �

Let L2 be the Galois extension ofL(t) generated byL1, and letΓ be the Galois group of the extensionL2

of L(t). Denote byB2 the integral closure ofB[t] in L2. ForC subalgebra ofL, containingB, set

R2(C) := C ⊗B B2,

and denote byµC,2 the canonical morphismR2(C) → CB2. The action ofΓ in B2 induces an action ofΓ in
R2(C) given byg.(c⊗b) = c⊗g(b).

Lemma 2.7. Let x be a primitive element of L1, and letΓx be the stabilizer of x inΓ.
(i) The subfield L1 of L2 is the set of fixed points under the action ofΓx in L2, and B1 is the set of fixed

points under the action ofΓx in B2.
(ii) For C subalgebra of L containing B, the canonical morphism R(C)→ R2(C) is an embedding and its

image is the set of fixed points under the action ofΓx in R2(C).
(iii) For C subalgebra of L, containing B, C[t] is embedded in R(C) and R2(C). Moreover, C[t] is the set

of fixed points under the action ofΓ in R2(C).

Proof. (i) Let L′1 be the set of fixed points under the action ofΓx in L2,

L′1 = {y ∈ L2 | Γx.y = y}.

ThenL1 is contained inL′1, andL2 is an extension of degree|Γx| of L′1. Sincex is a primitive element ofL1,
the degree of this extension is equal to|Γ.x| so thatL2 is an extension of degree|Γx|. HenceL′1 = L1.

SinceB2 is the integral closure ofB[t] in L2, B2 is invariant underΓ. Moreover, the intersection ofB2 and
L1 is equal toB1 by Condition (IV). HenceB1 is the set of fixed points under the action ofΓx in B2.

(ii) For a in B2 andb in R2(C), set:

a# :=
1
|Γx|

∑

g∈Γx

g(a), b :=
1
|Γx|

∑

g∈Γx

g.b.

9



Thena 7→ a# is a projection ofB2 onto B1. Moreover, it is a morphism ofB1-module. Denote byι the
canonical morphismR(C)→ R2(C), and byϕ the morphism

R2(C) −→ R(C), c⊗a 7−→ c⊗a#.

For b in R2(C),

ϕ(b) = ϕ(b) and ι◦ϕ(b) = b

Thenϕ is a surjective morphism and the image ofι◦ϕ is the set of fixed points under the action ofΓx in
R2(C). Moreoverι is injective, whence the assertion.

(iii) From the equalities

R(C) = (C ⊗B B[t]) ⊗B[t] B1 and C[t] = C ⊗B B[t]

we deduce thatR(C) = C[t] ⊗B[t] B1. In the same way,R2(C) = C[t] ⊗B[t] B2. Then, sinceC[t] is an integral
algebra, the morphismc 7→ c⊗1 is an embedding ofC[t] in R(C) andR2(C). Moreover,C[t] is invariant
under the action ofΓ in R2(C).

Let a be inR2(C) invariant underΓ. Thena has an expansion

a =
k∑

i=1

ci⊗bi

with c1, . . . ,ck in C[t] andb1, . . . ,bk in B2. Sincea is invariant underΓ,

a =
1
|Γ|

∑

g∈Γ

g.a =
1
|Γ|

∑

g∈Γ

k∑

i=1

ci⊗g.bi .

For i = 1, . . . , k, set:

b′i :=
1
|Γ|

∑

g∈Γ

g.bi

The elementsb′1, . . . ,b
′
k are inB[t], and

a = (
k∑

i=1

cib
′
i )⊗1 ∈ C[t],

whence the assertion. �

From now on, we fix a finitely generated subalgebraC of L containingB. Denote byn the nilradical of
R(C).

Lemma 2.8. Let k be the kernel ofµC,2 and letn2 be the nilradical of R2(C).
(i) The algebras R(C) and R2(C) are finitely generated. Furthermore, they are finite extensions of C[t].
(ii) For a in k, ba= 0 for some b in B\ {0}.
(iii) The idealk is the minimal prime ideal of R2(C) such thatk ∩ B = {0}. Moreover,k ∩ B[t] = {0}.
(iv) The idealn is the kernel ofµC. Moreover,n2 = k andn is a prime ideal.
(v) The local algebra R(C)n is isomorphic to L1.

Proof. (i) According to Lemma2.7,(iii), R(C) is an extension ofC[t] and R(C) = C[t] ⊗B[t] B1. Then, by
Lemma2.6,(ii), R(C) is a finite extension ofC[t]. In particular,R(C) is a finitely generated algebra since so
is C. In the same way,R2(C) is a finite extension ofC[t] and it is finitely generated.
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(ii) Let a be ink. Thena has an expansion

a =
k∑

i=1

ci⊗bi

with c1, . . . , ck in C andb1, . . . ,bk in B2. SinceC andB have the same fraction field, for someb in B \ {0},
bci is in B, whence

ba= 1⊗(
k∑

i=1

bcibi).

Soba= 0 sincek is the kernel ofµC,2.
(iii) By (i) there are finitely many minimal prime ideals ofR2(C). Denote them byp1, . . . , pk. SinceC[t]

is an integral algebra,n2 ∩ C[t] = {0} so thatpi ∩ C = {0} for somei. Let i be such thatpi ∩ B = {0} and
let a be in k. By (ii), for someb in B \ {0}, ba is in pi . Hencek is contained inpi . SinceCB2 is an integral
algebra,k is a prime ideal. Thenpi = k sincepi is a minimal prime ideal, whence the assertion since for some
j, p j ∩C[t] = {0}.

(iv) By (iii), there is only one minimal prime ideal ofR2(C) whose intersection withB is equal to{0}. So,
it is invariant underΓ. Hencek is invariant underΓ. As a result, fora in k,

0 =
∏

g∈Γ

(a− g.a) = am + am−1am−1 + · · · + a0

with m= |Γ| anda0, . . . ,am−1 in k. Moreover, by Lemma2.7,(iii), a0, . . . ,am−1 are inC[t]. So, by (iii), they
are all equal to zero so thata is a nilpotent element. Hencek is contained inn2. Thenn2 = k by (iii).

By Lemma2.7,(ii), R(C) identifies with a subalgebra ofR2(C) so thatn = n2 ∩ R(C), andµC is the
restriction ofµC,2 to R(C). Hencen is the kernel ofµC andn is a prime ideal ofR(C).

(v) By (iii), n ∩ C = {0}. So, by (ii), nR(C)n = {0}. As a result,R(C)n is a field sincenR(C)n is a
maximal ideal ofR(C)n. Moreover, by (iii), it is isomorphic to a subfield ofL1, containingB1. So,R(C)n is
isomorphic toL1. �

Forc in L[t], denote byc(0) the constant term ofc as a polynomial int with coefficients inL.

Lemma 2.9. Assume that C is integrally closed in L. Denote byCB1 the integral closure of CB1 in L1.
(i) Let i ∈ {1, 2}. For all positive integer j, the intersection of C[t] and tjLBi equals tjC[t].
(ii) The intersection of tLB1 andCB1 equals tCB1.
(iii) The algebraCB1 is contained in C+ tCB1.
(iv) The algebra B1 is the direct sum of B and tB1.

Proof. First of all, CB1 andCB1 are finite extensions ofC[t] by Lemma2.7,(i), and [Ma86, §33, Lemma
1]. SoCB1 is the integral closure ofC[t] in L1 by Condition (IV). Denote byCB2 the integral closure of
C[t] in L2. SinceC is integrally closed inL, C[t] is integally closed inL[t]. HenceC[t] is the set of fixed
points under the action ofΓ in CB2. Let a be inCB2. Then

0 =
∏

g∈Γ

(a− g(a)) = am+ am−1am−1 + · · · + a0

with a0, . . . ,am−1 in C[t].
(i) Sincet jLB1 is contained int jLB2 and containst jC[t], it suffices to prove the assertion fori = 2. Let

us prove it by induction onj. Let c be inC[t]. Thenc− c(0) is in tLB2. By Lemma2.6,(ii), L ∩ tLB2 = {0}
sinceL is a field, whenceC ∩ tLB2 = {0} sinceC is contained inL. As a result, ifc is in tLB2, c(0) = 0 and
c is in tC[t], whence the assertion forj = 1. Suppose the assertion true forj − 1. Letc be inC[t] ∩ t jLB2.
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By induction hypothesis,c = t j−1c′ with c′ in C[t]. Thenc′ is in C[t] ∩ tLB2, whencec is in t jC[t] by the
assertion forj = 1.

(ii) Suppose thata is in tLB1. SincetLB2 is invariant underΓ, for i = 0, . . . ,m− 1, ai is in tm−iLB2. Set
for i = 0, . . . ,m− 1,

a′i :=
ai

tm−i
.

Then by (i),a′0, . . . ,a
′
m−1 are inC[t]. Moreover,

(
a
t
)m+ a′m−1(

a

tm−1
)m−1 + · · · + a′0 = 0,

so thata/t is in CB1, whence the assertion.
(iii) Suppose thata is in CB1. By Lemma2.6,(iii), L is the quotient ofLB1 by tLB1. So, denoting bya

the image ofa by the quotient morphism,

am
+ am−1(0)am−1

+ · · · + a0(0) = 0.

Thena is in C sinceC is integrally closed. Hencea is in C + tLB1. As a result, by (ii),CB1 is contained in
C + tCB1.

(iv) By Condition (III), B is integrally closed inL. So the assertion results from (iii) and Condition (IV)
for C = B. �

Corollary 2.10. The ideal R(C)t of R(C) is prime and t is not a zero divisor in R(C).

Proof. According to Lemma2.9,(iv), R(C) = C+R(C)t. Furthermore, this sum is direct sinceC∩tCB1 = {0}
by Lemma2.6,(ii) and since the restriction ofµC to C is injective. ThenR(C)t is a prime ideal ofR(C) since
C is an integral algebra.

SinceR(C)t is a prime ideal,n is contained inR(C)t. According to Lemma2.8,(iv), n is the kernel ofµC.
Let a be inn. Thena = a′t for somea′ in R(C). Since 0= µC(a′t) = µC(a′)t, a′ is in n. As a result, by
induction onm, for all positive integerm, a = amtm for someam in n.

For k positive integer, denote byJk the subset of elementsa of R(C) such thatatk = 0. Then (J1, J2, . . .)
is an increasing sequence of ideals ofR(C). For a in Jk, 0 = µC(atk) = µC(a)tk. HenceJk is contained in
n. According to Lemma2.8,(i), the k-algebraR(C) is finitely generated. So for some positive integerk0,
Jk = Jk0 for all k bigger thank0. Let a be in J1. Thena = ak0t

k0 for someak0 in k. Sinceak0t
k0+1 = 0, ak0 is

in Jk0 so thata = 0. Hencet is not a zero divisor inR(C). �

Proposition 2.11. Suppose that C is integrally closed and Cohen-Macaulay. Letp be a prime ideal of CB1,
containing t and let̃p be its inverse image byµC.

(i) The local algebra(CB1)p is normal.
(ii) The local algebra R(C)p̃ is Cohen-Macaulay and reduced. In particular, the canonical morphism

R(C)p̃ → (CB1)p is an isomorphism.
(iii) The local algebra(CB1)p is Cohen-Macaulay.

Proof. (i) Let CB1 be the integral closure ofCB1 in L1. SettingS := CB1 \ p, (CB1)p is the localization of
CB1 with respect toS. Denote by (CB1)p the localization ofCB1 with respect toS. Then (CB1)p is a finite
(CB1)p-module sinceCB1 is a finite extension ofCB1. According to Lemma2.8,(iii),

CB1 ⊂ CB1 + tCB1.

Then sincet is in p,

(CB1)p/(CB1)p = p(CB1)p/(CB1)p.
12



So, by Nakayama’s Lemma, (CB1)p = (CB1)p, whence the assertion.
(ii) According to Corollary2.10, R(C)t is a prime ideal containingn. Denote byp the intersection of

p and C. Since p̃ is the inverse image ofp by µC, Cp is the quotient ofR(C)p̃ by R(C)p̃t. SinceC is
Cohen-Macaulay, so isCp. As a result,R(C)p̃ is Cohen-Macaulay sincet is not a zero divisor inR(C) by
Corollary2.10and sinceR(C)p̃t is a prime ideal of height 1.

Denote byµC,p̃ the canonical extension ofµC to R(C)p̃. Then (CB1)p is the image ofµC,p̃. According to
Lemma2.8,(iv), the nilradicalnR(C)p̃ of R(C)p̃ is the minimal prime ideal ofR(C)p̃ and it is the kernel of
µC,p̃. By Lemma2.8,(v), the localization ofR(C)p̃ at nR(C)p̃ is a field. In particular, it is regular. Then, by
[Bou98, §1, Proposition 15],R(C)p̃ is a reduced algebra since it is Cohen-Macaulay. As a result,µC,p̃ is an
isomorphism onto (CB1)p.

(iii) results from (ii). �

2.3. Return to the situation of Subsection2.1, and keep its notations. From now on, and until the end of
the section, we assume thatS = S(E) for some finite dimensionalk-vector spaceE. As a rule, ifB is a
subalgebra of S(E), we denote byK(B) its fraction field, and we set for simplicity

K := K(S(E)).

Furthermore we assume until the end of the section that the following conditions hold:

(a) dimN0 = N,
(b) A is a polynomial algebra,
(c) K(A) is algebraically closed inK.

We aim to prove Theorem2.20(see Subsection2.4). Let (v1, . . . , vN) be a sequence of elements ofE such
that its nullvariety inN0 equals{0}. Such a sequence does exist by Lemma2.1,(iii). Set

C := A[v1, . . . , vN].

By Proposition2.5,(ii), C is a polynomial algebra if and only if so isA sinceC is a faithfully flat extension
of A. Therefore, in order to prove Theorem2.20, it suffices to prove that S(E) is a free extension ofC, again
by Proposition2.5,(ii). This is now our goal.

Condition (c) is actually not useful for the following lemma:

Lemma 2.12. The algebra C is integrally closed andS(E) is the integral closure of C in K.

Proof. SinceA has dimension dimE − N and since the nullvariety ofv1, . . . , vN in N0 is {0}, v1, . . . , vN are
algebraically independent overA and A. By Serre’s normality criterion [Bou98, §1, n◦10, Théorème 4],
any polynomial algebra over a normal ring is normal. SoC is integrally closed since so isA by definition.
Moreover,C is a graded finitely generated subalgebra of S(E) since so isA by Corollary2.4. SinceC has
dimension dimE, S(E) is algebraic overC. Then, by Corollary2.4, S(E) is the integral closure ofC in K.
Indeed, S(E) is integrally closed as a polynomial algebra and{0} is the nullvariety ofC+ in E∗. �

SetZ0 := Specm(A) andZ := Z0 × k
N. ThenZ is equal to Specm(C). Let X0 be a desingularization of

Z0 and letπ0 be the morphism of desingularization. Such a desingularization does exist by [Hir64]. Set
X := X0 × k

N and denote byπ the morphism

X −→ Z, (x, v) 7−→ (π0(x), v).

Then (X, π) is a desingularization ofZ.
Fix x0 in π−1

0 (C+). For i = 0, . . . ,N, setXi := X0 × k
i and letxi := (x0, 0ki ). DefineKi, C′i , Ci by the

induction relations:
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(1) C′0 := C0 := A andK0 is the fraction field ofA,
(2) C′i := C′i−1[vi ],
(3) Ki is the algebraic closure ofKi−1(vi) in K andCi is the integral closure ofCi−1[vi] in Ki.

Lemma 2.13. Let i = 1, . . . ,N.
(i) The field Ki is a finite extension of Ki−1(vi) and Ki−1 is algebraically closed in Ki .
(ii) The algebra Ci is finitely generated and integrally closed in K. Moreover, Ki is the fraction field of Ci.
(iii) The algebra Ci is contained inS(E) and CN = S(E). Moreover, KN = K.
(iv) The algebra Ci is a finite extension of C′i .
(v) The algebra Ci is the intersection ofS(E) and Ki. Moreover,viCi is a prime ideal of Ci.

Proof. (i) By Condition (c), K0 is algebraically closed inK. So K0 is algebraically closed inK1. By
definition, for i > 1, Ki−1 is algebraically closed inK. So it is inKi . Since the nullvariety ofv1, . . . , vN in
N0 equals{0}, v1, . . . , vN are algebraically independent overK0. HenceKi−1(vi , . . . , vN) is a field of rational
fractions overKi−1. Moreover,K is an algebraic extension ofKi−1(vi , . . . , vN) by Lemma2.12. Since S(E)
is a finitely generatedk-algebra,K is a finite extension ofKi−1(vi , . . . , vN). By definition,Ki is the algebraic
closure ofKi−1(vi) in K. HenceKi is a finite extension ofKi−1(vi).

(ii) Prove the assertion by induction oni. By definition, it is true fori = 0 andCi is the integral closure of
Ci−1[vi] in Ki for i = 1, . . . ,N, whence the assertion by (i) and [Ma86, §33, Lemma 1].

(iii) Since S(E) is integrally closed inK, Ci is contained in S(E) by induction oni. By definition, the field
KN is algebraically closed inK and it containsC. SoKN = K by Lemma2.12. SinceCN is integrally closed
in KN and it containsC, CN = S(E) by Lemma2.12.

(iv) Prove the assertion by induction oni. By definition, it is true fori = 0. Suppose that it is true for
i − 1. ThenCi is a finite extension ofC′i−1[vi ] = C′i .

(v) Prove by induction oni thatCN−i is the intersection of S(E) andKN−i for i = 0, . . . ,N. By (iii), it
is true for i = 0. Suppose that it is true fori − 1. By induction hypothesis, it suffices to prove thatCN−i is
the intersection ofCN−i+1 andKN−i . Let a be in this intersection. Thena verifies an integral dependence
equation overCN−i [vN−i+1]:

am + am−1am−1 + · · · + a0 = 0.

Denoting bya j(0) the constant term ofa j as a polynomial invN−i+1 with coefficients inCN−i ,

am + am−1(0)am−1 + · · · + a0(0) = 0

sincea is in KN−i and vN−i+1 is algebraically independent overKN−i. Hencea is in CN−i sinceCN−i is
integrally closed inKN−i by (ii).

Let a andb be inCi such thatab is in viCi . Sincevi is in E, viS(E) is a prime ideal of S(E). Soa or b is
in viS(E) sinceCi is contained in S(E). Hencea/vi or b/vi are in the intersection of S(E) andKi. Soa or b
is in viCi. �

Remark2.14. According to Lemma2.13,(i),(ii),(iv), for i = 1, . . . ,N, Ki−1, vi , Ci−1, Ki, Ci verify Conditions
(I), (II), (III), (V) verifed by L, t, B, L1, B1 in Subsection2.2. Moreover, Condition (IV) is verified by
construction (cf. Lemma2.13,(v)).

Proposition 2.15. Let i = 1, . . . ,N.
(i) The semi-local algebraOXi ,xiCi is normal and Cohen-Macaulay.
(ii) The canonical morphismOXi ,xi ⊗C′i

Ci → OXi ,xiCi is an isomorphism.
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Proof. (i) The local ringOXi ,xi is an extension ofC′i andCi is a finite extension ofC′i by Lemma2.13,(iv).
SoOXi ,xi Ci is a semi-local ring as a finite extension of the local ringOXi ,xi . Prove the assertion by induction
on i. For i = 0, OX0,x0C0 = OX0,x0 andOX0,x0 is a regular local algebra. Suppose that it is true fori − 1
and setAi−1 := OXi−1,xi−1Ci−1. ThenAi−1 is a subalgebra ofKi−1 sinceOXi−1,xi−1 is contained in the fraction
field of C′i−1. Letm be a maximal ideal ofOXi ,xi Ci. The local ringOXi ,xi is the localization ofOXi−1,xi−1[vi] at
m ∩ OXi−1,xi−1[vi ]. Hencevi is in m, andm ∩ Ai−1Ci is a prime ideal ofAi−1Ci such that the localization of
Ai−1Ci at this prime ideal is the localization ofOXi ,xiCi atm. By the induction hypothesis,Ai−1 is normal and
Cohen-Macaulay. According to Remark2.14and Proposition2.11,(i) and (iii), the localization ofAi−1Ci at
m ∩ Ai−1Ci is normal and Cohen-Macaulay, whence the assertion.

(ii) Prove the assertion by induction oni. For i = 0, C0 is contained inOX0,x0. Suppose that it is true for
i − 1. For j ∈ {i − 1, i}, denote byν j the canonical morphism

OX j ,xj ⊗C′j
C j −→ OX j ,xj C j .

Recall thatAi−1 := OXi−1,xi−1Ci−1. By induction hypothesis, the morphismνi−1⊗idCi ,

(OXi−1,xi−1 ⊗C′i−1
Ci−1) ⊗Ci−1 Ci −→ Ai−1 ⊗Ci−1 Ci

is an isomorphism. SinceC′i−1 is contained inOXi−1,xi−1,

OXi−1,xi−1 ⊗C′i−1
C′i−1[vi] = OXi−1,xi−1[vi ].

Furthermore,

(OXi−1,xi−1 ⊗C′i−1
Ci−1) ⊗Ci−1 Ci = OXi−1,xi−1 ⊗C′i−1

Ci = (OXi−1,xi−1 ⊗C′i−1
C′i−1[vi]) ⊗C′i−1[vi ] Ci ,

whence an isomorphism
OXi−1,xi−1[vi ] ⊗C′i−1[vi ] Ci −→ Ai−1 ⊗Ci−1 Ci .

Letm be as in (i). Set
p := m ∩ Ai−1Ci , m̃ := ν−1

i (m),

and denote bỹp the inverse image ofp by the canonical morphism

Ai−1 ⊗Ci−1 Ci −→ Ai−1Ci .

According to Proposition2.11,(ii), the canonical morphism

(OXi−1,xi−1Ci−1 ⊗Ci−1 Ci)p̃ −→ (OXi−1,xi−1Ci)p

is an isomorphism sinceOXi−1,xi−1Ci−1 is a finitely generated subalgebra ofKi−1, containingCi−1, which is
Cohen-Macaulay and integrally closed. Letp# be the inverse image ofp̃ by the isomorphism

OXi−1,xi−1[vi ] ⊗C′i−1[vi ] Ci −→ OXi−1,xi−1Ci−1 ⊗Ci−1 Ci .

Then the canonical morphism

(OXi−1,xi−1[vi ] ⊗C′i
Ci)p# −→ (OXi−1,xi−1Ci)p

is an isomorphism. From the equalities

(OXi−1,xi−1[vi ] ⊗C′i
Ci)p# = (OXi ,xi ⊗C′i

Ci)m̃, (OXi−1,xi−1Ci)p = (OXi ,xi Ci)m

we deduce that the support of the kernel ofνi in Spec(OXi ,xi ⊗C′i
Ci) does not contaiñm. As a result, denoting

by Si this support,Si does not contain the inverse images byνi of the maximal ideals ofOXi ,xi Ci.
According to Lemma2.8,(iv), the kernel of the canonical morphism

Ai−1 ⊗Ci−1 Ci −→ OXi−1,xi−1Ci
15



is the nilradical ofAi−1 ⊗Ci−1 Ci . Hence, the kernel of the canonical morphism

OXi−1,xi−1[vi ] ⊗C′i
Ci → OXi−1,xi−1[vi ]Ci

is the nilradical ofOXi−1,xi−1[vi ] ⊗C′i
Ci since the canonical map

OXi−1,xi−1[vi] ⊗C′i−1[vi ] Ci −→ Ai−1 ⊗Ci−1 Ci

is an isomorphism by induction hypothesis. As a result, all element ofSi is the inverse image of a prime
ideal inOXi ,xi Ci. HenceSi is empty, andνi is an isomorphism. �

The following Corollary results from Proposition2.15and Lemma2.13,(iii) sinceπ−1(C+) = π−1
0 (C+) ×

{0}.

Corollary 2.16. Let x be inπ−1(C+).
(i) The semi-local algebraOX,xS(E) is normal and Cohen-Macaulay.
(ii) The canonical morphismOX,x ⊗C S(E)→ OX,xS(E) is an isomorphism.

Let d be the degree of the extensionK of K(C). Let x be inπ−1(C+), and denote byQx the quotient of
OX,xS(E) bymxS(E), with mx the maximal ideal ofOX,x.

Lemma 2.17. Let V be a graded complement toS(E)C+ in S(E).
(i) Thek-space V has finite dimension,S(E) = CV and K= K(C)V.
(ii) Thek-space Qx has dimension d. Furthermore, for all subspace V′ of dimension d of V such that Qx

is the image of V′ by the quotient map, the canonical map

OX,x ⊗k V′ −→ OX,xS(E)

is bijective.

Proof. (i) According to Lemma2.12, S(E) is a finite extension ofC. Hence, thek-spaceV is finite dimen-
sional. On the other hand, we have S(E) = V+S(E)C+. Hence, by induction onm, S(E) = CV+S(E)Cm

+ for
anym, whence S(E) = CV sinceC+ is generated by elements of positive degree. As a result,K = K(C)V
since thek-spaceV is finite dimensional.

(ii) Let d′ be the dimension ofQx. By (i), sinceC+ is contained inmx,

OX,xS(E) = V +mxS(E).

As a result, for some subspaceV′ of dimensiond′ of V, Qx is the image ofV′ by the quotient map. Then,

OX,xS(E) = OX,xV
′ +mxS(E),

and by Nakayama’s Lemma,OX,xS(E) = OX,xV′. Let (v1, . . . , vd′) be a basis ofV′. Suppose that the sequence
(v1, . . . , vd′) is not linearly free overOX,x. A contradiction is expected. Letl be the smallest integer such that

a1v1 + · · · + ad′vd′ = 0

for some sequence (a1, . . . ,ad′) in ml
x, not contained inml+1

x . According to Corollary2.16,(i) and [Ma86,
Ch. 8, Theorem 23.1],OX,xS(E) is a flat extension ofOX,x sinceOX,xS(E) is a finite extension ofOX,x. So,
for somew1, . . . , wm in S(E) and for some sequences (bi,1, . . . ,bi,m, i = 1, . . . , d′) in OX,x,

vi =

m∑

j=1

bi, jw j and
d′∑

j=1

a jb j,k = 0

16



for all i = 1, . . . , d′ and fork = 1, . . . ,m. SinceOX,xS(E) = OX,xV′,

w j =

d′∑

k=1

c j,kvk

for some sequence (c j,k, j = 1, . . . ,m, i = 1, . . . , d′) in OX,x. Setting

ui,k =

m∑

j=1

bi, jc j,k

for i, k = 1, . . . , d′, we have
vi =
∑

k∈I

ui,kvk and
∑

j∈I

a ju j,i = 0

for all i = 1, . . . , d′. Sincev1, . . . , vd′ is linearly free modulomxS(E),

ui,k − δi,k ∈ mx

for all (i, k), with δi,k the Kronecker symbol. As a result,ai is inml+1
x for all i, whence a contradiction. Then

the canonical map
OX,x ⊗k V′ −→ OX,xS(E)

is bijective. SinceK = K(C)S(E) and sinceK(C) is the fraction field ofOX,x, v1, . . . , vd′ is a basis ofK over
K(C). Hence,d′ = d and the assertion follows. �

Recall thatK0 is the fraction field ofA. Let vN+1, . . . , vN+r be elements ofE such thatv1, . . . , vN+r is a
basis ofE. Denoting byt1, . . . , tr some indeterminates, letϑ be the morphism ofC-algebras

C[t1, . . . , tr ] −→ S(E), ti 7−→ vN+i ,

and letϑ̃ be the morphism ofK0[v1, . . . , vN]-algebras

K0[v1, . . . , vN, t1, . . . , tr ] −→ K0 ⊗A S(E), ti 7−→ vN+i .

For i = (i1, . . . , iN) in NN and forj = ( j1, . . . , jr) in Nr , set:

vi := vi11 · · · v
iN
N , tj := t j1

1 · · · t
jr
r .

For a in A, denote bya the polynomial ink[v1, . . . , vN, t1, . . . , tr ] such thatϑ(a) = a.

Lemma 2.18. Let I be the ideal of C[t1, . . . , tr ] generated by the elements a− a with a inA.
(i) For all graded generating family(a1, . . . ,am) of A+, I is the ideal generated by the sequence(ai−ai , i =

1, . . . ,m).
(ii) The ideal I is the kernel ofϑ.

Proof. (i) Let I ′ be the ideal ofC[t1, . . . , tr ] generated by the sequence (ai − ai , i = 1, . . . ,m). Since the map
a 7→ a is linear, it suffices to prove thata − a is in I ′ for all homogeneous elementa of A+. Prove it by
induction on the degree ofa. For some graded sequence (b1, . . . ,bm) in A,

a = b1a1 + · · · + bmam

so that

a− a =
m∑

i=1

bi(ai − ai) +
m∑

i=1

ai(bi − bi).

If a has minimal degree,b1, . . . ,bm are ink andbi = bi for i = 1, . . . ,m. Otherwise, fori = 1, . . . ,m, if bi is
not ink, bi has degree smaller thana, whence the assertion by induction hypothesis.
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(ii) By definition, I is contained in the kernel ofϑ. Let a be inC[t1, . . . , tr ]. Thena has an expansion

a =
∑

(i,j )∈NN×Nr

ai,j v
itj

with theai,j ’s in A, whence

a =
∑

(i,j )∈NN×Nr

(ai,j − ai,j )v
itj +

∑

(i,j )∈NN×Nr

ai,j v
i tj .

If ϑ(a) = 0, then ∑

(i,j )∈NN×Nr

ai,j v
itj = 0

since the restriction ofϑ to k[v1, . . . , vN, t1, . . . , tr ] is injective, whence the assertion. �

For x in π−1(C+), denote byϑx the morphism

OX,x[t1, . . . , tr ] −→ K, atj 7−→ av j1
N+1 · · · v

jr
N+r .

Proposition 2.19. Let x be inπ−1(C+).
(i) The kernel ofϑx is the ideal ofOX,x[t1, . . . , tr ] generated by I. Furthermore, the image ofϑx is the

subalgebraOX,xS(E) of K.
(ii) The intersection ofmxS(E) andS(E) is equal to C+S(E).

Proof. (i) From the short exact sequence

0 −→ I −→ C[t1, . . . , tr ] −→ S(E) −→ 0

we deduce the exact sequence

OX,x ⊗C I −→ OX,x ⊗C C[t1, . . . , tr ] −→ OX,x ⊗C S(E) −→ 0.

Moreover, we have a commutative diagram

0

��
OX,x ⊗C I

d //

δ

��

OX,x ⊗C C[t1, . . . , tr ]

δ

��

d // OX,x ⊗C S(E)

δ

��

// 0

OX,xI

��

d // OX,x[t1, . . . , tr ]

��

d // OX,xS(E)

��

// 0

0 0 0

with exact columns by Corollary2.16,(ii). For a in OX,x[t1, . . . , t] such that da = 0,

a = δb, b = dc with b ∈ OX,x ⊗C C[t1, . . . , tr ], c ∈ OX,x ⊗C I ,

so thata = d◦δc. HenceOX,xI is the kernel ofϑx.
(ii) Let a1, . . . ,am be a graded generating family ofA+. For i = 1, . . . ,m,

ai =
∑

(j ,k)∈NN×Nr

ai,j ,kv
j tk ,

18



with theai,j ,k ’s in k. Set:

a′i :=
∑

k∈NN

ai,0,k tk .

For i = 1, . . . ,m,
a′i ∈ ai − ai +C+[t1, . . . , tr ]

sinceai is in A+ so thatϑ(a′i ) is in C+S(E).
SinceC+ is contained inmx, C+S(E) is contained inmxS(E) ∩ S(E). Let a be inmx[t1, . . . , tr ] such that

ϑx(a) is in S(E). According to (i),
a ∈ C[t1, . . . , tr ] + OX,xI .

So, by Lemma2.17,(i),
a = b+ b1(a1 − a1) + · · · + bm(am − am),

with b in C[t1, . . . , tr ] andb1, . . . ,bm in OX,x. Then,

b = b0 + b+, with b0 ∈ k[t1, . . . , tr ] and b+ ∈ C+[t1, . . . , tr ]

bi = bi,0 + bi,+, with bi,0 ∈ k and bi,+ ∈ mx

for i = 1, . . . ,m. Sincea is inmx[t1, . . . , tr ] anda1, . . . ,am are inC+,

b0 − b1,0a1 − · · · − bm,0am ∈ mx[t1, . . . , tr ]

Moreover, fori = 1, . . . ,m,
ai − a′i ∈ C+[t1, . . . , tr ].

Hence
b0 − b1,0a′1 − · · · − bm,0a′m = 0 since mx[t1, . . . , tr ] ∩ k[t1, . . . , tr ] = 0.

As a result,ϑx(a) is in C+S(E) sinceϑx(a) = ϑx(b0) + ϑx(b+). �

2.4. We are now in a position to prove the main result of the section. Recall the main notations:E is a
finite dimensional vector space overk, A is a graded subalgebra of S(E), different from S(E) and such that
A = k + A+, N0 is the nullvariety ofA+ in E∗, K is the fraction field of S(E) andK(A) that one ofA, the
algebraic closure ofA in S(E).

Theorem 2.20.Suppose that the following conditions are verified:

(a) N0 has dimension N,
(b) A is a polynomial algebra,
(c) K(A) is algebraically closed in K.

ThenA is a polynomial algebra. Moreover,S(E) is a free extension ofA.

Proof. Use the notations of Subsection2.3. In particular, set

C = A[v1, . . . , vN],

with (v1, . . . , vN) a sequence of elements ofE such that its nullvariety inN0 is equal to{0} (cf. Lemma2.1,(iii)),
and letK(C) be the fraction field ofC. As already explained, according to Proposition2.5,(ii), it suffices to
prove that S(E) is a free extension ofC. Let V be as in Lemma2.18, a graded complement to S(E)C+ in
S(E). Recall thatX is a desingularization ofZ = Specm(C) and thatπ is the morphism of desingularization.
Let x be inπ−1(C+). According to Proposition2.19,(ii), for some subspaceV′ of V, V′ is a complement to
mxS(E) in OX,xS(E). Then, by Lemma2.17,(ii), V′ has dimension the degree of the extensionK of K(C)
and the canonical map

OX,x ⊗k V′ −→ OX,xS(E)
19



is bijective. Moreover,
V′ ⊕ S(E)C+ = S(E) and V′ = V.

Indeed, fora ∈ S(E), write a = b + c with b ∈ V′ andc ∈ mxS(E). SinceV′ is contained in S(E), c is in
S(E), whencec in S(E)C+ by Proposition2.19,(ii). In addition, S(E) = CV as it has been observed in the
proof of Lemma2.17,(i). As a result, the canonical map

C ⊗k V −→ S(E)

is bijective. This concludes the proof of the theorem. �

3. Good elements and good orbits

Recall thatk is an algebraically closed field of characteristic zero. As in the introduction,g is a simple
Lie algebra overk of rankℓ, 〈. , .〉 denotes the Killing form ofg, andG denotes the adjoint group ofg.

3.1. The notions of good element and good orbit ing are introduced in this paragraph.
For x in g, denote bygx its centralizer ing, by Gx its stabilizer inG, by Gx

0 the identity component of

Gx and byKx the fraction field of the symmetric algebra S(gx). Then S(gx)g
x

and Kg
x

x denote the sets of
Gx

0-invariant elements of S(gx) andKx respectively.

Lemma 3.1. Let x be ing. Then Kg
x

x is the fraction field ofS(gx)g
x

and Kg
x

x is algebraically closed in Kx.

Proof. Let a be in Kx, algebraic overKg
x

x . For all g in Gx
0, g.a verifies the same equation of algebraic

dependence overKg
x

x asa. Since a polynomial in one indeterminate has a finite number of roots, theGx
0-

orbit of a is finite. But this orbit is then reduced to{a}, Gx
0 being connected. Hencea is in Kg

x

x . This shows

thatKg
x

x is algebraically closed inKx.
Let K0 be the fraction field of S(gx)g

x
. According to [CMo10, Theorem 1.2] (see also Theorem1.1), the

index ofgx is equal toℓ. So, by [R63], the transcendence degree ofKg
x

x overk is equal toℓ. For x nilpotent,
S(gx)g

x
containsℓ algebraically independent elements by [PPY07, Proposition 0.1 and Corollary 2.3]. So

for all x in g, S(gx)g
x

containsℓ algebraically independent elements. ThusKg
x

x is an algebraic extension of
K0. Let A be the integral closure of S(gx)g

x
in Kg

x

x . We haveK0A = Kg
x

x . Indeed, fora in Kg
x

x , by multiplying
the coefficients of an algebraic dependance equation ofa overK0 by a power of some, judiciously chosen,
b ∈ S(gx)g

x
, we observe thatba is integral over S(gx)g

x
. Henceba ∈ A. As, in addition,K0A is clearly

contained inKg
x

x , we get the announced equality. As a result,Kg
x

x is the fraction field ofA. Furthermore,
since S(gx) is integrally closed,A is contained in S(gx). HenceA = S(gx)g

x
because S(gx) ∩ Kg

x

x = S(gx)g
x

andK0 = Kg
x

x . �

Definition 3.2. An elementx ∈ g is called agood element ofg if for some homogeneous elementsp1, . . . , pℓ
of S(gx)g

x
, the nullvariety ofp1, . . . , pℓ in (gx)∗ has codimensionℓ in (gx)∗. A G-orbit in g is calledgoodif

it is the orbit of a good element.

Since the nullvariety of S(g)g+ in g is the nilpotent cone ofg, 0 is a good element ofg. For (g, x) in G × g
and fora in S(gx)g

x
, g(a) is in S(gg(x))g

g(x)
. So, an orbit is good if and only if all its elements are good.

Theorem 3.3. Let x be a good element ofg. ThenS(gx)g
x

is a polynomial algebra andS(gx) is a free
extension ofS(gx)g

x
.

Proof. Let p1, . . . , pℓ be homogeneous elements of S(gx)g
x

such that the nullvariety ofp1, . . . , pℓ in (gx)∗

has codimensionℓ. Denote byA the subalgebra of S(gx)g
x

generated byp1, . . . , pℓ. ThenA is a graded
subalgebra of S(gx) and the nullvariety ofA+ in (gx)∗ has codimensionℓ. So, by Lemma2.1,(ii), A has
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dimensionℓ. Hence,p1, . . . , pℓ are algebraically independent andA is a polynomial algebra. Denote byA
the algebraic closure ofA in S(gx). By Lemma3.1, A is contained in S(gx)g

x
and the fraction field of S(gx)g

x

is algebraically closed inKx. As a matter of fact,A = S(gx)g
x

since the fraction fields ofA and S(gx)g
x

have
the same transcendence degree. Hence, by Theorem2.20, S(gx)g

x
is a polynomial algebra and S(gx) is free

extension of S(gx)g
x
. �

Remark3.4. The algebra S(gx)g
x

may be polynomial even thoughx is not good. Indeed, let us consider
a nilpotent elemente of g = so(k10) in the nilpotent orbit associated with the partition (3, 3, 2, 2). Then
the algebra S(ge)g

e
is polynomial, generated by elements of degrees 1, 1, 2, 2, 5. But the nullcone has an

irreducible component of codimension at most 4. So,e is not good. We refer the reader to Example7.5 for
more details.

For x ∈ g, denote byxs andxn the semisimple and the nilpotent components ofx respectively.

Proposition 3.5. Let x be ing. Then x is good if and only if xn is a good element of the derived algebra of
gxs.

Proof. Let z be the center ofgxs and leta be the derived algebra ofgxs. Then

gx = z ⊕ axn, S(gx)g
x
= S(z) ⊗k S(axn)a

xn
.

By the first equality, (axn)∗ identifies with the orthogonal complement toz in (gx)∗. Setd := dimz. Suppose
that xn is a good element ofa and letp1, . . . , pℓ−d be homogeneous elements of S(axn)a

xn whose nullvariety
in (axn)∗ has codimensionℓ − d. Denoting byv1, . . . , vd a basis ofz, the nullvariety ofv1, . . . , vd, p1, . . . , pℓ−d

in (gx)∗ is the nullvariety ofp1, . . . , pℓ−d in (axn)∗. Hence,x is a good element ofg.
Conversely, let us suppose thatx is a good element ofg. By Theorem3.3, S(gx)g

x
is a polynomial algebra

generated by homogeneous polynomialsp1, . . . , pℓ. Sincez is contained in S(gx)g
x
, p1, . . . , pℓ can be chosen

so thatp1, . . . , pd are inz andpd+1, . . . , pℓ are in S(axn)a
xn . Then the nullvariety ofpd+1, . . . , pℓ in (axn)∗ has

codimensionℓ − d. Hence,xn is a good element ofa. �

3.2. In view of Theorem3.3, we wish to find a sufficient condition for that an elementx ∈ g is good.
According to Proposition3.5, it is enough to consider the case wherex is nilpotent.

Let e be a nilpotent element ofg, embedded into ansl2-triple (e, h, f ) of g. Identify the dual ofg with
g, and the dual ofge with g f through the Killing form〈. , .〉 of g. For p in S(g) ≃ k[g], denote byκ(p)
the restriction tog f of the polynomial functionx 7→ p(e + x) and denote byep its initial homogeneous
component. According to [PPY07, Proposition 0.1], forp in S(g)g, ep is in S(ge)g

e
.

The proof of the following theorem will be achieved in Subsection 4.4.

Theorem 3.6. Suppose that for some homogeneous generators q1, . . . ,qℓ of S(g)g, the polynomial functions
eq1, . . . ,

eqℓ are algebraically independent. Then e is a good element ofg. In particular, S(ge)g
e

is a poly-
nomial algebra andS(ge) is a free extension ofS(ge)g

e
. Moreover,(eq1, . . . ,

eqℓ) is a regular sequence in
S(ge).

The overall idea of the proof is the following.

According to Theorem3.3, it suffices to prove thate is good, and more accurately that the nullvariety of
eq1, . . . ,

eqℓ in g f has codimensionℓ sinceeq1, . . . ,
eqℓ are invariant homogeneous polynomials. As explained

in the introduction, we will use the Slodowy grading on S(ge)[[ t]] and S(ge)((t)), induced from that on S(ge),
to deal with this problem. This is the main purpose of Section4.
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4. Slodowy grading and proof of Theorem 1.4

This section is devoted to the proof of Theorem3.6 (or Theorem1.4). The proof is achieved in Subsec-
tion 4.5. As in the previous section,g is a simple Lie algebra overk and (e, h, f ) is ansl2-triple of g. Let us
simply denote byS the algebra S(ge).

Let q1, . . . ,qℓ be homogeneous generators of S(g)g of degreesd1, . . . ,dℓ respectively. The sequence
(q1, . . . ,qℓ) is ordered so thatd16 · · · 6dℓ. We assume in the whole section that the polynomial functions
eq1, . . . ,

eqℓ are algebraically independent. The aim is to show thate is good (cf. Definition3.2).

4.1. Letx1, . . . , xr be a basis ofge such that fori = 1, . . . , r, [h, xi ] = ni xi for some nonnegative integerni .
For j = ( j1, . . . , jr) in Nr , set:

|j | := j1+ · · ·+ jr , |j |e := j1n1 + · · · + jrnr + 2|j |, xj = x j1
1 · · · x

jr
r .

The algebraS has two gradations: the standard one and theSlodowy gradation. For all j in Nr , xj is
homogeneous with respect to these two gradations. It has standard degree|j | and Slodowy degree|j |e. In this
section, we only consider the Slodowy gradation. So, by gradation we will always mean Slodowy gradation.
For mnonnegative integer, denote byS[m] the subspace ofS of degreem.

Let t be an indeterminate. For all subspaceV of S, set:

V[t] := k[t] ⊗k V, V[t, t−1] := k[t, t−1] ⊗k V, V[[ t]] := k[[ t]] ⊗k V, V((t)) := k((t)) ⊗k V,

with k((t)) the fraction field ofk[[ t]]. For V a subspace ofS[[ t]], denote byV(0) the image ofV by the
quotient morphism

S[t] −→ S, a(t) 7−→ a(0).

The gradation ofS induces a gradation of the algebraS((t)) with t having degree 0. ForV a graded
subspace ofS((t)) and form a nonnegative integer, letV[m] be its component of degreem. In particular, for
V a graded subspace ofS, V((t)) is a graded subspace ofS((t)) and

V((t))[m] = V[m]((t)).

Let τ be the morphism of algebras,

τ : S −→ S[t], xi 7→ txi for i = 1, . . . , r.

The morphismτ is a morphism of graded algebras. Denote byδ1, . . . , δℓ the standard degrees ofeq1, . . . ,
eqℓ

respectively, and set fori = 1, . . . , ℓ

Qi := t−δiτ(κ(qi )).

Let A be the subalgebra ofS[t] generated byQ1, . . . ,Qℓ. Then observe thatA(0) is the subalgebra ofS
generated byeq1, . . . ,

eqℓ. For j = ( j1, . . . , jℓ) in Nℓ, set

qj := q j1
1 · · ·q

jℓ
ℓ
, κ(q)j := κ(q j1

1 )· · · κ(q jℓ
ℓ

), eqj := eq j1
1 · · ·

eq jℓ
ℓ
, Qj := Q j1

1 · · ·Q
jℓ
ℓ
.

Proposition 4.1. (i) For j in Nℓ, κ(q)j and eqj are homogeneous of degree2d1 j1 + · · · + 2dℓ jℓ.
(ii) The map Q7→ Q(0) is an isomorphism of graded algebras from A onto A(0).

Proof. (i) Denote byt 7→ h(t) the one-parameter subgroup ofG generated by adh. Then fori = 1, . . . , r, for
y in g f andt in k∗,

〈xi , t
2h(t−1)(e+ y)〉 = t2〈h(t)(xi) , e+ y〉 = t2+ni 〈xi , e+ y〉,

whence

〈xj , t2h(t−1)(e+ y)〉 = t|j |e〈xj , e+ y〉
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for all j in Nr . For j in Nℓ, qj is homogeneous of standard degreed1 j1 + · · · + dℓ jℓ andqj is invariant under
the one parameter subgroupt 7→ h(t). So, for all (t, y) in k∗ × g f ,

κ(q)j (t2h(t−1)(y)) = t2d1 j1+···+2dℓ jℓκ(q)(y).

Hence,κ(q)j is homogeneous of degree 2d1 j1+ · · ·+2dℓ jℓ so thatκ(q)j is a linear combination of monomials
xk of degree 2d1 j1 + · · · + 2dℓ jℓ. As a result,eqj is homogeneous of degree 2d1 j1 + · · · + 2dℓ jℓ either.

(ii) The set (Qj , j ∈ Nℓ) is a basis of thek-spaceA and the image ofQj by the mapQ 7→ Q(0) is equal
to eqj . Moreover, by (i),Qj and eqj are homogeneous of degree 2d1 j1 + · · · + 2dℓ jℓ so thatQ 7→ Q(0)
is a morphism of graded algebras. By definition, its image isA(0). Since eq1, . . . ,

eqℓ are algebraically
independent, it is injective. �

By Proposition4.1,(ii), A and A(0) are isomorphic graded subalgberas ofS[t] and S respectively. In
particular,A is a polynomial algebra sinceA(0) is polynomial by our hypothesis.

Denote byA+ andA(0)+ the ideals ofA andA(0) generated by the homogeneous elements of positive
degree respectively, and denote byÃ the subalgebra ofS[[ t]] generated byk[[ t]] and A, i.e.,

Ã := k[[ t]]A.

Lemma 4.2. (i) The algebraÃ is isomorphic tok[[ t]] ⊗k A. In particular, it is regular.
(ii) The element t of̃A is prime.
(iii) All prime element of A is a prime element ofÃ.

Proof. (i) Let am,m ∈ N, be inA such that
∑

m∈N

tmam = 0.

If am , 0 for somem, thenap(0) = 0 if p is the smallest one such thatap , 0. By Proposition4.1,(ii), it is
not possible. Hence, the canonical map

k[[ t]] ⊗k A −→ Ã

is an isomorphism. As observed just above,A is a polynomial algebra. TheñA is a regular algebra by [Ma86,
Ch. 7, Theorem 19.5].

(ii) By (i), A is the quotient ofÃ by tÃ so thatt is a prime element of̃A.
(iii) By (i), for a in A, the quotientÃ/Ãa is isomorphic tok[[ t]] ⊗k A/Aa. Hencea is a prime element of

Ã if it is a prime element ofA. �

As it has been explained in Subsection3.2, in order to prove Theorem3.6, we aim to prove thatS is
a free extension thatA(0). As a first step, we describe in Subsections4.2, 4.3 and4.4 some properties of
the algebraA. We show in Subsection4.3 thatS((t)) is a free extension ofA (cf. Proposition4.9,(iii)), and
we show in Subsection4.4 that S[[ t]] is a free extension ofA (cf. Corollary 4.17). In Subsection4.5, we
consider the algebrãA and prove thatS[[ t]] is a free extension of̃A (cf. Theorem4.21,(i)). The expected
result will follow from this (cf. Theorem4.21,(iii)).

4.2. Letθe be the map
G× (e+ g f ) −→ g, (g, x) 7→ g(x),

and letJe be the ideal of S(ge) generated by the elementsκ(q1), . . . , κ(qℓ).

Lemma 4.3. (i) The mapθe is a smooth morphism onto a dense open subset ofg, containing G.e.
(ii) The nullvariety ofJe in g f is equidimensional of dimension r− ℓ.
(iii) The idealJe of S(ge) is radical.
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Proof. (i) Since g = g f + [e, g], θe is a submersion at (1g, e). Then,θe is a submersion at all points of
G× (e+ g f ) since it isG-equivariant for the left multiplication inG and since

lim
t→∞

t−2h(t)(x) = e

for all x in e+ g f . So, by [H77, Ch. III, Proposition 10.4],θe is a smooth morphism onto a dense open subset
of g, containingG.e.

(ii) Let Se be the Slodowy slicee+ g f associated withe. By (i), θe is equidimensional of dimension
dimSe. Denote byVe the nullvariety ofJe in g f . ThenG× (e+Ve) is the inverse image byθe of the nilpotent
cone ofg. Hence,G× (e+ Ve) is equidimensional of dimension

dimg − ℓ + dimSe = dimge− ℓ + dimg

since the nilpotent cone is irreducible of codimensionℓ and containsG.e. From this, we deduce thatVe is
equidimensional of dimensionr − ℓ.

(iii) Let Xe be the subscheme ofe+ g f defined by the idealJe of S. In particular,e+Ve is the underlying
variety of Xe. By (ii), Xe is a complete intersection. In particular, it is Cohen-Macaulay. Let X be an
irreducible component ofVe. Denoting byU an open subset ofg f such thatU ∩ Ve is not empty and
contained inX, G.(e+U) is an open subset ofg by (i). Moreover, its intersection with the nilpotent cone of g
is not empty and contained inG.(e+X). As a result, for somex in X, e+ x is a regular nilpotent element ofg.
Forq in S(g), denote by dq and dκ(q) the differentials ofq andκ(q) respectively. So, by [Ko63, Theorem 9],
dq1(e+x), . . . ,dqℓ(e+x) are linearly independent. Fori = 1, . . . , ℓ, dκ(qi )(e+x) is the restriction of dqi (e+x)
to g f sinceqi is G-invariant. So, the orthogonal complement of dκ(q1)(e+ x), . . . , dκ(qℓ)(e+ x) in g f is the
intersection ofg f and [e+x, g]. In particular, it has dimension dimg f −ℓ so that dκ(q1)(e+x), . . . , dκ(qℓ)(e+x)
are linearly independent. As a result,e+ x is a smooth point ofXe. Then, by [Bou98, §1, Proposition 15],
Xe is reduced andJe is radical. �

Denote byV the nullvariety ofA+ in g f × k, and byV0 the nullvariety ofA(0)+ in g f . Then denote byV∗
the union of the irreducible components ofV which are not contained ing f × {0}. Note thatV0 × {0} is the
nullvariety of t in V, and that

V = V∗ ∪ V0 × {0}.

Corollary 4.4. (i) The varietyV∗ is equidimensional of dimension r+ 1− ℓ. Moreover, for X an irreducible
component ofV∗ and for z ink, the nullvariety of t− z in X has dimension r− ℓ.

(ii) The algebra S[t, t−1] is a free extension of A.
(iii) The ideal S[t, t−1]A+ of S[t, t−1] is radical.

Proof. (i) Let V′∗ be the intersection ofV∗ andg f × k∗ and letX be an irreducible component ofV′∗. ThenV′∗
is the nullvariety ofQ1, . . . ,Qℓ in g f × k∗ sinceA+ is the ideal ofA generated byQ1, . . . ,Qℓ. In particular,X
has dimension at leastr+1−ℓ. Forz in k∗, denote byXz the subvariety ofg f such thatXz×{z} = X∩g f ×{z}.
By definition, fori = 1, . . . , ℓ, Qi = t−δiτ◦κ(qi ). HenceV′∗ is the nullvariety ofτ◦κ(q1), . . . , τ◦κ(qℓ) in g f × k∗

andXz is the image ofX1 by the homothetyv 7→ z−1v. By Lemma4.3,(ii), X1 has dimensionr − ℓ. HenceXz

has dimensionr − ℓ andX has dimension at mostr + 1− ℓ. As a result,X has dimensionr + 1− ℓ andXz is
strictly contained inX, whence the assertion sinceX is not contained ing f × {0} by definition.

(ii) The algebraS[t, t−1] is graded andA is a graded polynomial subalgebra ofS[t, t−1]. According to
(i), the fiber atA+ of the extensionS[t, t−1] of A is equidimensional of dimensionr + 1 − ℓ. Hence, by
Proposition2.5, S[t, t−1] is a free extension ofA.
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(iii) Let Ie be the ideal ofS[t, t−1] generated byτ◦κ(q1), . . . , τ◦κ(qℓ). Sincetδi Qi = τ◦κ(qi ) for i = 1, . . . , ℓ,
we getIe = S[t, t−1]A+. Denote byτ the endomorphism of the algebraS[t, t−1] defined by

τ(t) = t, τ(x1) = tx1, . . . , τ(xr) = txr .

Thenτ is an automorphism andIe = τ(S[t, t−1]Je). So, it suffices to prove that the idealS[t, t−1]Je is radical.
Let J′e be the radical ofS[t, t−1]Je. Fora in S[t, t−1], a has a unique expansion

a =
∑

m∈Z

tmam

with (am,m ∈ Z) a sequence of finite support inS. Denote byν(a) the cardinality of this finite support.
Moreover,a is in S[t, t−1]Je if and only if am is in Je for all m. Suppose thatS[t, t−1]Je is strictly contained
in J′e. A contradiction is expected. Leta be inJ′e \ S[t, t−1]Je such thatν(a) is minimal. Denote bym0 the
smallest integer such thatam0 , 0. For some positive integer,ak and (t−m0a)k are inS[t, t−1]Je and we have

(t−m0a)k = ak
m0
+
∑

m>0

tmbm

with thebm’s in Je. Thenak
m0

is in Je and by Lemma4.3,(iii), am0 is in Je. As a resulta′ := a− tm0am0 is an
element ofJ′e such thatν(a′) < ν(a). By the minimality ofν(a), a′ is in S[t, t−1]Je and so isa, whence the
contradiction. �

Let I∗ be the ideal of definition ofV∗ in S[t]. ThenI∗ is an ideal ofS[t] containing the radical ofS[t]A+.
It will be shown thatV∗ = V and thatS[t]A+ is radical (cf. Theorem4.21). Thus,I∗ will be at the end equal
to S[t]A+.

Let p1, . . . ,pm be the minimal prime ideals containingS[t]A+ and letq1, . . . , qm be the primary decompo-
sition ofS[t]A+ such thatpi is the radical ofqi for i = 1, . . . ,m.

Lemma 4.5. (i) For a in S[t], a is inI∗ if and only if tma is in S[t]A+ for some positive integer m. Moreover,
for some nonnegative integer l, tlI∗ is contained in S[t]A+.

(ii) The idealI∗ is the intersection of the prime idealspi which do not contain t. Furthermore, for such i,
pi = qi , i.e. qi is radical.

Proof. (i) Let a be inS[t]. If tla is in S[t]A+ for some positive integerl, thena is equal to 0 onV∗ so that
a is in I∗. Conversely, ifa is in I∗, thenta is in the radical ofS[t]A+ sinceV is contained in the union of
V∗ andg f × {0}. According to Corollary4.4,(iii), for some positive integerm, tm(ta) is in S[t]A+. SinceI∗
is finitely generated as an ideal ofS[t], we deduce that for some nonnegative integerl, tlI∗ is contained in
S[t]A+, whence the assertion.

(ii) Let i ∈ {1, . . . ,m}. Thenpi does not containt if and only if the nullvariety ofpi in g f × k is an
irreducible component ofV∗, whence the first part of the statement.

By (i), for some nonnegative integerl, tlI∗ is contained inS[t]A∗. Let l be the minimal nonnegative
integer verifying this condition. Ifl = 0, I∗ = S[t]A+, whence the assertion. Supposel positive. Denote by
I′∗ the ideal ofS[t] generated bytl andS[t]A+. It suffices to prove thatS[t]A+ is the intersection ofI∗ andI′∗.
As a matter of fact, if so, the primary decomposition ofS[t]A+ is the union of the primary decompositions
of I∗ andI′∗ since the minimal prime ideals containingI∗ do not containt.

Let a be in the intersection ofI∗ andI′∗. Then

a = tlb+
ℓ∑

i=1

aiQi
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with b, a1, . . . ,al in S[t]. Since S[t]A+ is contained inI∗, tlb is in I∗ and b is in I∗ by (i). Hencetlb
anda are inS[t]A+. As a result,S[t]A+ is the intersection ofI∗ andI′∗ sinceS[t]A+ is contained in this
intersection. �

4.3. LetV0 be a graded complement toS A(0)+ in S. We will show that the linear map

V0 ⊗k A(0) −→ S, v⊗a 7−→ va

is a linear isomorphism (cf. Theorem4.21).

Lemma 4.6. We have S[[ t]] = V0[[ t]] + S[[ t]]A+ and S((t)) = V0((t)) + S((t))A+.

Proof. The equalityS((t)) = V0((t)) + S((t))A+ will follow from the equalityS[[ t]] = V0[[ t]] + S[[ t]]A+.
SinceS[[ t]], V0[[ t]] and S[[ t]]A+ are graded, it suffices to show that ford a positive integer,

S[[ t]] [d] ⊂ V0[[ t]] [d] + (S[[ t]]A+)
[d] ,

the inclusionV0[[ t]] + S[[ t]]A+ ⊂ S[[ t]] being obvious.
Let d be a positive integer and leta be in S[[ t]] [d] . Let (ϕ1, . . . , ϕm) be a basis thek[[ t]]-module

(S[[ t]]A+)[d] . Such a basis does exist sincek[[ t]] is a principal ring andS[[ t]] [d] is a finite freek[[ t]]-module.
Thenϕ1(0), . . . , ϕm(0) generate (S A(0)+)[d] . SinceS[d] = V[d]

0 ⊕ (S A(0)+)[d] ,

a− a0 −

m∑

j=1

a0, jϕ j = tψ0,

with a0 in V[d]
0 , a0,1, . . . ,a0,m in k andψ0 ∈ S[[ t]] [d] . Suppose that there are sequences (a0, . . . ,an) and

(ai,1, . . . ,ai,m), for i = 0, . . . , n, in V[d]
0 andk respectively such that

a−
n∑

i=0

ai t
i −

n∑

i=0

m∑

j=1

tiai, jϕ j = tn+1ψn

for someψn in S[[ t]] [d] . Then for somean+1 in V[d]
0 andan+1,1, . . . ,an+1,m in k,

ψn − an+1 −

m∑

j=1

an+1, jϕ j ∈ tS[[ t]]

so that

a−
n+1∑

i=0

ai t
i −

n+1∑

i=0

m∑

j=1

ai, jϕ jt
i ∈ tn+2S[[ t]] .

As a result,
a ∈ V0[[ t]] [d] + (S[[ t]]A+)

[d]

sinceS[[ t]] [d] is a finitek[[ t]]-module. �

Recall thatp1, . . . ,pm are the minimal prime ideals ofS[t] containingS[t]A+. SinceA+ is a graded
subspace ofS[t], S[t]A+ is a graded ideal ofS[t], and so arep1, . . . ,pm. According to Lemma4.5,(ii), I∗
is the intersection of thepi ’s which do not containt. Hence,I∗ is graded. Thereby,I∗ ∩ V0[t] has a graded
complement inV0[t]. Set

W := I∗ ∩ V0[t].

ThenW(0) is a graded subspace ofV0. Denote byV′0 a graded complement toW(0) in V0. Then set

V′′0 :=W(0)

so thatV0 = V′0 ⊕ V′′0 .
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Lemma 4.7. Let (vi , i ∈ J) be a graded basis of V′0.
(i) The sequence(vi , i ∈ J) is linearly free overk[t].
(ii) The sum of W and of V′0[t] is direct.

Proof. We prove (i) and (ii) all together.
Let (ci , i ∈ J) be a sequence ink[t], with finite supportJc, such that

∑

i∈J

civi = w

for somew in W. Suppose thatJc is not empty. A contradiction is expected. SinceV′0 is a complement to
V′′0 , ci(0) = 0 for all i in J. Then, fori in Jc, ci = tmi c′i with mi > 0 andc′i (0) , 0. Denote bym the smallest
of the integersmi , for i ∈ Jc. Thenw = tmw′ for somew′ in V0[t], and

∑

i∈Jc

tmi−mc′i vi = w
′.

According to Lemma4.5,(i), w′ is in I∗. So,c′i (0) = 0 for i such thatmi = m, whence the contradiction.�

As a rule, forM ak[t]-submodule ofS[t], we denote bŷM thek[[ t]]-module generated byM, i.e.,

M̂ = k[[ t]] M.

Lemma 4.8. Let M be ak[t]-submodule of S[t].
(i) Let a be in the intersection of S[t] and M̂. For some q ink[t] such that q(0) , 0, qa is in M.
(ii) For N ak[t]-submodule of S[t], the intersection of̂M andN̂ is thek[[ t]] -module generated by M∩N.

Proof. (i) Denote bya the image ofa in S[t]/M by the quotient map and byJ its annihilator ink[t]. Then
we have a commutative diagram with exact lines and columns:

0 // M
d // S[t]

d // S[t]/M // 0

0 // J
d // k[t]

d //

δ

OO

k[t]a //

δ

OO

0

0

OO

0

OO

Sincek[[ t]] is a flat extension ofk[t], tensoring this diagram byk[[ t]] gives the following diagram with exact
lines and columns:

0 // M̂
d // S[[ t]]

d // k[[ t]] ⊗k[t] S[t]/M // 0

0 // k[[ t]] J
d // k[[ t]]

d //

δ

OO

k[[ t]]a //

δ

OO

0

0

OO

0

OO

For b in k[[ t]], (δ◦d)b = (d◦δ)b = 0 sincea is in M̂, whence db = 0. As a result,k[[ t]] J = k[[ t]]. So qa is in
M for someq in k[t] such thatq(0) , 0.

(ii) Sincek[[ t]] is a flat extension ofk[t], the canonical morphism

k[[ t]] ⊗k[t] M −→ M̂.
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is an isomorphism and from the short exact sequence

0 −→ M ∩ N −→ M ⊕ N −→ M + N −→ 0

we deduce the short exact sequence

0 −→ k[[ t]] ⊗k[t] M ∩ N −→ k[[ t]] ⊗k[t] (M ⊕ N) −→ k[[ t]] ⊗k[t] (M + N) −→ 0,

whence the short exact sequence

0 −→ M̂ ∩ N −→ M̂ ⊕ N̂ −→ M̂ + N −→ 0,

and whence the assertion. �

Proposition 4.9. (i) The space V0[[ t]] is the direct sum of V′0[[ t]] andŴ.
(ii) The space S[[ t]] is the direct sum of V′0[[ t]] and of W+ S[[ t]]A+.
(iii) The linear map

V′0((t)) ⊗k A −→ S((t)), v⊗a 7−→ v⊗a

is a graded isomorphism onto S((t)).
(iv) For all nonnegative integer d,

dimS[d] =

d∑

i=0

dimV′0
[d−i]

×dimA[i] .

Proof. (i) According to Lemma4.8,(ii), the intersection ofV′0[[ t]] and Ŵ is thek[[ t]]-submodule generated

by the intersection ofV′0[t] andW. So, by Lemma4.7,(iii), the sum ofV′0[[ t]] and Ŵ is direct.

Let (vi , i ∈ J) be a graded basis ofV′0. Let d be a positive integer and letv be inV[d]
0 . Denote byJd the set

of indicesi such thatvi has degreed. SinceV0 is the direct sum ofV′0 andV′′0 , for somew in W[d] and for
someci , i ∈ Jd, in k,

v −
∑

i∈J

civi = w(0).

Sincew − w(0) is in tV0[t][d] ,
v −
∑

i∈Jd

civi − w ∈ tV0[t][d] .

As a result,
V[d]

0 [[ t]] ⊂ V′0
[d][[ t]] + Ŵ[d] + tV[d]

0 [[ t]] .

Then by induction onm,
V[d]

0 [[ t]] ⊂ V′0
[d][[ t]] + Ŵ[d] + tmV[d]

0 [[ t]] .

So, sinceV[d]
0 [[ t]] is a finitely generatedk[[ t]]-module,

V[d]
0 [[ t]] = V′0

[d][[ t]] + Ŵ[d] ,

whence the assertion.
(ii) According to Lemma4.5,(i), for some nonnegative integerl, tlI∗ is contained inS[t]A+. Hence

Ŵ+ S[[ t]]A+ is equal toW+ S[[ t]]A+. So, by (i) and Lemma4.6,

S[[ t]] = V′0[[ t]] +W+ S[[ t]]A+.

According to Lemma4.7,(ii), the intersection ofV′0[t] andS[t]A+ is equal to{0} sinceS[t]A+ is contained
in I∗. As a result, by Lemma4.8,(ii), the intersection ofV′0[[ t]] and S[[ t]]A+ is equal to{0}. If a is in the
intersection ofV′0[[ t]] and W + S[[ t]]A+, tla is in the intersection ofV′0[[ t]] and S[[ t]]A+. So the sum of
V′0[[ t]] and W+ S[[ t]]A+ is direct.

28



(iii) According to Lemma4.5,(i), W is contained inS((t))A+. So, by (ii),

S((t)) = V′0((t)) ⊕ S((t))A+.

Sincek[[ t]] is a flat extension ofk[t], and since

S((t)) = k[[ t]] ⊗k[t] S[t, t−1],

we deduce thatS((t)) is a flat extension ofA by Corollary4.4,(ii). So, by Lemma2.2, all basis ofV′0[[ t]]
overk is linearly free overA. The assertion follows.

(iv) First of all, the canonical map
k((t)) ⊗k A −→ k((t))A

is an isomorphism by Lemma4.2,(i). As a result, we have the canonical isomorphism

V′0((t)) ⊗k((t)) k((t))A −→ V′0((t)) ⊗k((t)) (k((t)) ⊗k A),

and for all nonnegative integeri,
dimA[i] = dimk((t))(k((t))A)[i] .

From the above isomorphism, it results that the canonical morphism

V′0((t)) ⊗k((t)) k((t))A −→ V′0((t)) ⊗k A

is an isomorphism of graded spaces sinceV′0((t)) ⊗k((t)) k((t)) = V′0((t)). As a result, by (iii), the canonical
morphism

V′0((t)) ⊗k((t)) k((t))A −→ S((t))

is a graded isomorphism. So, for all nonnegative integerd,

dimk((t))S((t))[d] =

d∑

i=0

dimk((t))V
′
0((t))[d−i]

×dimk((t))(k((t))A)[i] ,

whence the assertion since dimS[i] = dimk((t))S((t))[i] and dimV′0
[i]
= dimk((t))V′0((t))[i] for all i. �

4.4. Let (wk, k ∈ K) be a graded sequence inW such that (wk(0), k ∈ K) is a basis ofV′′0 = W(0). Fork in
K, denote bymk the smallest integer such thattmkwk is in S[t]A+. According to Lemma4.5,(i), mk is finite
for all k. Moreover,mk is positive sinceW(0)∩ S A(0)+ = {0}. Set

Θ := {(k, i) | k ∈ K, i ∈ {0, . . . ,mk − 1}},

and set for all (k, i) in Θ,
wk,i := tiwk.

Let EΘ be thek-subspace ofV0[t] generated by the elementswk,i , (k, i) ∈ Θ.
Set

Î∗ := k[[ t]]I∗.

It is an ideal ofS[[ t]].

Lemma 4.10. (i) For some q ink[t] such that q(0) , 0, qI∗ is contained in W+ S[t]A+.
(ii) The space W is contained in EΘ + S[t]A+. Moreover,Î∗ is the sum of EΘ and S[[ t]]A+.
(iii) The sequence(wk,i , (k, i) ∈ Θ) is a graded basis of EΘ.
(iv) For all nonnegative integer i, E[i]

Θ
has finite dimension.

(v) For i a nonnegative integer, there exists a nonnegative integer li such that tli E[i]
Θ

is contained in
V′0[[ t]]A+.
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Proof. (i) Let a be inI∗. According to Lemma4.6and Lemma4.8,(i), for someq in k[t] such thatq(0) , 0,
qa ∈ I∗ andqa = a1 + a2 with a1 in V0[t] and a2 in S[t]A+. Thena1 is in I∗ since so area2 andqa. So
a1 ∈ I∗ ∩ V0[t] =W. The assertion follows becauseI∗ is finitely generated.

(ii) Let us prove the first assertion. It suffices to prove

W ⊂ EΘ + S[t]A+ + tmS[t]

for all m. Indeed,W, EΘ, S[t]A+ are contained inI∗. So, if w = e+ a + tmb, with w ∈ W, e ∈ EΘ and
b ∈ S[t], thenb is in I∗ and so, formbig enough, it is inS[t]A+ by Lemma4.5,(i).

Prove now the inclusion by induction onm. The inclusion is tautological form = 0, and it is truem = 1
becauseEΘ(0) = V′′0 . Suppose that it is true form> 0. Letw be inW. By induction hypothesis,

w = a+ b+ tmc, with a ∈ EΘ, b ∈ S[t]A+, c ∈ S[t].

SinceEΘ andS[t]A+ are contained inI∗, c is in I∗ by Lemma4.5,(i). According to (i), for someq in k[t]
such thatq(0) , 0, qc= a′ + b′ with a′ in W andb′ in S[t]A+. Since the inclusion is true form= 1,

tm(a′ + b′) ∈ tmEΘ + S[t]A+ + tm+1S[[ t]] ,

and by definition,tmEΘ is contained inEΘ + S[t]A+. Moreover,q(0)c is in qc+ tS[t]. Then

tmc ∈ EΘ + S[t]A+ + tm+1S[t] and w ∈ EΘ + S[t]A+ + tm+1S[t],

whence the statement.
Turn to the second assertion. By (i),̂I∗ is the sum ofŴ andS[[ t]]A+. An element ofŴ is the sum of

termstmwm, with m ∈ N andwn ∈W. Form big enough,tmwm ∈ S[t]A+ by Lemma4.5,(i). So Î∗ is the sum
of W andS[[ t]]A+, whence the assertion by the previous inclusion.

(iii) By definition, the sequence (wk,i , (k, i) ∈ Θ) is graded. So it suffices to prove that it is free overk. Let
(ck,i , (k, i) ∈ Θ) be a sequence ink, with finite support, such that

∑

k∈K

mk−1∑

i=0

ck,iwk,i = 0.

Let us prove thatck,i = 0 for all (k, i). Supposeck,i , 0 for some (k, i). A contradiction is expected. LetK′

be the set ofk such thatck,i , 0 for somei. Denote byi0 the smallest integer such thatck,i0 , 0 for somek
in K′ and set:

K′0 := {k ∈ K′ | ck,i0 , 0}.

Then ∑

k∈K′0

ck,i0wk(0) = 0,

whence the contradiction since the elements (wk(0), k ∈ K) are linearly independent.
(iv) Let Ki be the set ofk such thatwk is in S[t][i] . For suchk, wk(0) is inS[i] . HenceKi is finite sinceS[i]

has finite dimension and since the elements (wk(0), k ∈ K) are linearly independent. Fork in K, k[t]wk ∩ EΘ
has dimensionmk by (iii). HenceE[i]

Θ
has finite dimension.

(v) Let k be inKi. Set

Θ[i] := Θ ∩ (Ki × N).

By Proposition4.9,(iii), tl+mkwk is in V′0[[ t]]A+ sincetmkwk is in S[t]A+ by definition, whence the assertion

sinceE[i]
Θ

is generated by the finite sequence (wk, j , (k, j) ∈ Θ[i]). �
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Definition 4.11. We say that a subsetT of Θ is completeif

(k, i) ∈ T =⇒ (k, j) ∈ T, ∀ j ∈ {0, . . . , i}.

For T subset ofΘ, denote byKT the image ofT by the projection (k, i) 7→ k, and byET the subspace of
EΘ generated by the elementswk,i , (k, i) ∈ T. In particular,KΘ = K.

Lemma 4.12. For some complete subset T ofΘ such that KT = K, the subspace ET is a complement to
S[t]A+ in EΘ + S[t]A+. In particular, the sum of ET and S[t]A+ is direct.

Proof. SinceV′′0 ∩S A(0)+ = {0}, the sum ofEK×{0} andS[t]A+ is direct. LetT be the set of complete subsets
T of Θ verifying the following conditions:

(1) for all k in K, (k, 0) is in T,
(2) the sum ofET andS[t]A+ is direct.

Since the sum ofEK×{0} andS[t]A+ is direct,T is not empty. If (T j , j ∈ J) is an increasing sequence of
elements ofT, with respect to the inclusion, its union is inT. Then, by Zorn’s Lemma,T has a maximal
element. Denote it byT∗. It remains to prove thatwk,i is in ET∗ + S[t]A+ for all (k, i) in Θ.

Let k be in K. Denote byi the biggest integer such that (k, i) is in T∗. Prove by induction oni′ that for
mk > i′ > i, wk,i′ is in ET∗ + S[t]A+. By maximality ofT∗ andi, wk,i+1 is in ET∗ + S[t]A+. Suppose thatwk,i′

is in ET∗ + S[t]A+. Then, for somea in S[t]A+ andcm, j , (m, j) ∈ T∗ in k,

wk,i′ =
∑

(m, j)∈T∗

cm, jwm, j + a,

whence

wk,i′+1 =
∑

(m, j)∈T∗

cm, j t
j+1wm+ ta.

By maximality of T∗, t j+1wm is in ET∗ + S[t]A+ for all (m, j) such thatt jwm is in T∗. Hencewk,i′+1 is in
ET∗ + S[t]A+. The lemma follows. �

Fix a complete subsetT∗ of Θ such that

KT∗ = K and EΘ + S[t]A+ = ET∗ ⊕ S[t]A+,

and set

E := ET∗ .

Such a setT∗ does exist by Lemma4.12.

Corollary 4.13. (i) The space S[[ t]] is the direct sum of V′0[[ t]] , E and S[[ t]]A+.
(ii) The space S[[ t]] is the sum of EA and V′0[[ t]]A.

Proof. (i) According to Proposition4.9,(ii), S[[ t]] is the direct sum ofV′0[[ t]] and W + S[[ t]]A+. By
Lemma4.10,(ii) (and its proof),W + S[[ t]]A+ is equal toEΘ + S[[ t]]A+. SinceEΘ + S[t]A+ is the di-
rect sum ofE andS[t]A+, we deduce thatW+ S[[ t]]A+ is the direct sum ofE andS[[ t]]A+. Hence,S[[ t]]
is the direct sum ofV′0[[ t]], E andS[[ t]]A+.

(ii) By (i) and by induction onm,

S[[ t]] ⊂ V′0[[ t]]A+ EA+ S[[ t]]Am
+ .

HenceS[[ t]] is the sum ofV′0[[ t]]A andEAsinceS[[ t]] is graded andA+ is generated by elements of positive
degree. �
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Definition 4.14. For k in K, denote byνk the degree ofwk. For T andT′ subsets ofΘ, we say thatT is
smaller than T′, and we denoteT ≺ T′, if the following conditions are satisfied:

(1) T is contained inT′

(2) if for k in KT andk′ in KT′ , we haveνk′ < νk, thenk′ is in KT .

Let µ be the linear map

E ⊗k A⊕ V′0[[ t]] ⊗k A −→ S[[ t]] , w⊗a+ v⊗b 7−→ wa+ vb.

For T a subset ofT∗, denote byµT the restriction ofµ to the subspace

ET ⊗k A⊕ V′0[[ t]] ⊗k A.

Lemma 4.15. LetT∗ be the set of subsets T of T∗ such thatµT is injective.
(i) The setT∗ is not empty.
(ii) The setT∗ has a maximal element with respect to the order≺.
(iii) The set T∗ is in T∗.

Proof. (i) For k in K, setTk := {(k, 0)}. Suppose thatTk is not inT∗. A contradiction is expected. Then for
somea in A \ {0}, wka is in V′0[[ t]]A+, whence

wka =
∑

i∈J

vibi

with (bi , i ∈ J) in k[[ t]]A+ with finite support. By Lemma4.10,(v), for some positive integer,tlwk is in
V′0[[ t]]A+. Then

tlwk =
∑

i∈J

vici

with (ci , i ∈ J) in k[[ t]]A+ with finite support. Hence
∑

i∈J

vit
lbi =

∑

i∈J

vicia.

According to Proposition4.9,(iii), tlbi = cia for all i. Sincea , 0, a(0) , 0 by Proposition4.1,(ii). Then, by
Lemma4.2,(ii), ci = tlc′i for somec′i in Ã = k[[ t]]A. As a result,

wk =
∑

i∈J

vic
′
i ,

whence the contradiction by Corollary4.13,(i).
(ii) Let (Tl , l ∈ L) be a net inT∗ with respect to≺. Let T be the union of the setsTl , l ∈ L. SinceET is

the space generated by the subspacesETl , l ∈ L, the mapµT is injective. Letl0 be inL andk in KT such that
νk < νk′ for somek′ in KTl0

. SinceKT is the union of the setsKTl , l ∈ L, we deduce thatk is in KTl for some
l in L. By properties of the nets, for somel′ in L, Tl ≺ Tl′ andTl0 ≺ Tl′ so thatk is in KTl′

. Hence,k is in
KTl0

, whenceTl0 ≺ T. As a result,≺ is an inductive order inT∗, and by Zorn’s Theorem, it has a maximal
element.

(iii) Let T be a maximal element ofT∗ with respect to≺. SupposeT strictly contained inT∗. A contra-
diction is expected. Letk be in K such that (k, i) is not inT and (k, i) is in T∗ for somei. We can suppose
thatνk is minimal under this condition. Leti∗ be the smallest integer such that (k, i∗) is not inT and (k, i∗) is
in T∗. ThenT ≺ T ∪ {(k, i∗)}. So, by the maximality ofT, for somea in A \ {0},

wk,i∗a ∈ ETA+ V′0[[ t]]A.
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SinceET , V′0[[ t]], A, wk,i∗ are graded, we can suppose thata is homogeneous. Thena has positive degree.
Otherwise,wk,i∗ ∈ ETA + V′0[[ t]]A ⊂ ET + V′0[[ t]] + S[[ t]]A+, and we deduce from Corollary4.13,(i), that
wk,i∗ ∈ ET sincewk,i∗ ∈ ET∗ . This is impossible by the choice of (k, i∗). Thus, by Corollary4.13,(ii),

wk,i∗a ∈ ETA+ + V′0[[ t]]A+.

Hence
wk,i∗a =

∑

(n, j)∈T

wn, jan, j +
∑

i∈J

vibi

with (an, j , (n, j) ∈ T) in A+ and (bi , i ∈ J) in Ã+ with finite support.
By Corollary4.13,(ii),

tmkwk =
∑

(l,s)∈T∗

wl,sal,s,k +
∑

i∈J

vibi,k

with (al,s,k, (l, s) ∈ T∗) in A+ and (bi,k, i ∈ J) in Ã+ with finite support. Moreover these two sequences are
graded, so thatal,s,k = 0 if νl > νk. By minimality of νk, (l, s) is in T if al,s,k , 0. For (n, j) in T such that
mk − i∗ + j > mn,

tmk−i∗wn, j =
∑

(l,s)∈T∗

wl,sal,s,n, j +
∑

i∈J

vibi,n, j

with (al,s,n, j , (l, s) ∈ T∗) in A+ and (bi,n, j , i ∈ J) in Ã+ with finite support. Moreover these two sequences are
graded, so thatal,s,n, j = 0 if νl > νn. So, by minimality ofνk, (l, s) is in T if al,s,n, j , 0 andνn 6 νk. As a
result, ∑

(l,s)∈T

wl,sal,s,ka+
∑

i∈J

vibi,ka =
∑

(n, j)∈T

wn, jt
mk−i∗an, j +

∑

i∈J

vit
mk−i∗bi

=
∑

(n, j)∈T
mk−i∗+ j<mn

wn,mk−i∗+ jan, j +
∑

(n, j)∈T
mk−i∗+ j>mn

wl,sal,s,n, jan, j

+
∑

i∈J

vi t
mk−i∗bi +

∑

(n, j)∈T
mk−i∗+ j>mn

∑

i∈J

vibi,n, jan, j

whence ∑

(l,s)∈T

wl,sal,s,ka+
∑

i∈J

vibi,ka =
∑

(n, j)∈T
mk−i∗+ j<mn

wn,mk−i∗+ jan, j +
∑

(n, j)∈T
mk−i∗+ j>mn

∑

(l,s)∈T

wl,sal,s,n, jan, j

+
∑

i∈J

vi(t
mk−i∗bi +

∑

(n, j)∈T
mk−i∗+ j>mn

bi,n, jan, j).

SinceµT is injective, for alli in J,

tmk−i∗bi +
∑

(n, j)∈T
mk−i∗+ j>mn

bi,n, jan, j − bi,ka = 0,(1)

and for all (l, s) in T,

al,s+i∗−mk +
∑

(n, j)∈T
mk−i∗+ j>mn

an, jal,s,n, j − al,s,ka = 0.(2)

with al,s = 0 if s< 0.

Claim 4.16. For all (l, s) in T, a dividesal,s in A.
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Proof of Claim4.16. Prove the claim by induction onνl. Let l be inKT such that

νl′ > νl and (l′, s′) ∈ T =⇒ al′ ,s′ = 0.

Then by Equality (2), al,s+i∗−mk = al,s,ka, whence the satement forl. Suppose thata dividesal′ ,s′ in A for all
(l′, s′) in T such thatνl′ > νl. By Equality (2) and the induction hypothesis,a dividesal,s+i∗−mk in A since
al,s,n, j = 0 for νn 6 νl , whence the claim. �

By Claim 4.16 and Equality (1), for all i in J, a divides tmk−i∗bi in k[[ t]]A. Sincea has positive de-
gree, all prime divisor ofa in A has positive degree and does not dividet sincet has degree 0. Then, by
Lemma4.2,(iii), a dividesbi in k[[ t]]A. As a result,

wk,i∗ ∈ ETA+ V′0[[ t]]A

whence

wk,i∗ ∈ V′0[[ t]] + ET + S[[ t]]A+.

Sincewk,i∗ is in E, wk,i∗ is in ET by Corollary4.13,(i). We get a contradiction because (k, i∗) is not inT. �

Corollary 4.17. The canonical map

E ⊗k A⊕ V′0[[ t]] ⊗k A −→ S[[ t]]

is an isomorphism. In particular, S[[ t]] is a free extension of A.

Proof. By Lemma4.15, T∗ is the biggest element ofT∗. Henceµ is injective. Then, by Corollary4.13,(ii),
µ is bijective. As a matter of fact,µ is an isomorphism ofA-modules, whence the corollary. �

4.5. Recall that̃A is the subalgebra ofS[[ t]] generated byk[[ t]] and A. Our next aim is to show thatS[[ t]]
is a free extension of̃A (cf. Theorem4.21). Theorem3.6will then follows.

For I an ideal ofÃ, denote byσI andνI the canonical morphisms

S[[ t]] ⊗A I
σI // S[[ t]] ⊗A Ã S[[ t]] ⊗Ã I

νI // S[[ t]] I .

Consider onS[[ t]]⊗AI andS[[ t]]⊗ÃI the linear topologies such that{tn(S[[ t]]⊗AI )}n∈N and{tn(S[[ t]]⊗ÃI )}n∈N
are systems of neighborhood of 0 in theseS[[ t]]-modules. Denote byϕI the canonical morphism

S[[ t]] ⊗A I
ϕI // S[[ t]] ⊗Ã I

and byKI its kernel. ThenϕI is continuous with respect to the above topologies.

Lemma 4.18. Let I be an ideal ofÃ.
(i) The morphismσI is injective.
(iii) The moduleKI is the S[[ t]] -submodule of S[[ t]] ⊗A I generated by the elements r⊗a− 1⊗ra with r in

k[[ t]] and a in I.

Proof. (i) According to Corollary4.17, S[[ t]] is a flat extension ofA. The assertion follows sinceI is
contained inÃ.

(ii) Let K′I theS[[ t]]-submodule ofS[[ t]] ⊗A I generated by the elementsr⊗a− 1⊗ra with r in k[[ t]] and
a in I . ThenK′I is contained inKI . Let us prove the other inclusion.

Let (x, y) be inS[[ t]] × I and leta be in Ã. According to (i),a has an expansion

a =
∑

i=1

r iai
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with r1, . . . , rm in k[[ t]] and a1, . . . ,am in A. Then, inS[[ t]] ⊗A I ,

x⊗ay − ax⊗y =
m∑

i=1

x⊗r iaiy − r i x⊗aiy =

m∑

i=1

x(1⊗r iaiy − r i⊗aiy) ∈ K
′
I .

As a result,KI = K′I sinceKI is the S[[t]]-submodule ofS[[ t]] ⊗A I generated by thexa⊗y − x⊗ay’s. �

Corollary 4.19. Let I be an ideal ofÃ. The moduleKI is the closure of the S[[ t]] -submodule of S[[ t]] ⊗A I
generated by the set{t⊗a− 1⊗ta}a∈I .

Proof. Let LI the S[[ t]]-submodule generated by the set{t⊗a − 1⊗ta}a∈I . Prove by induction onn that
tn⊗a − 1⊗tna is in LI for all a in I . The statement is straightforward forn = 0, 1. Supposen > 2 and the
statement true forn− 1. Fora in I ,

tna− 1⊗tna = tn−1(t⊗a− 1⊗ta) + tn−1
⊗ta− 1⊗tn−1ta.

By induction hypothesis,tn−1⊗ta− 1⊗tn−1ta is in LI , whencetn⊗a− 1⊗tna is in LI . As a result, forr in k[t],
r⊗a−1⊗ra is inLI . So, forr in k[[ t]], r⊗a−1⊗ra is in the closure ofLI in S[[ t]] ⊗A I . SinceϕI is continuous,
KI is a closed submodule ofS[[ t]] ⊗A I , whence the corollary by Lemma4.18,(iii). �

Proposition 4.20. Let I be an ideal ofÃ.
(i) The canonical morphism

V′0Ã⊗Ã I −→ S[[ t]] ⊗Ã I

is an embedding.
(ii) For the structure of S[[ t]] -module on S[[ t]] ⊗Ã I, t is not a divisor of0 in S[[ t]] ⊗Ã I.

Proof. (i) We have the commutative diagram

V′0Ã⊗Ã I
d //

δ

��

S[[ t]] ⊗Ã I

δ

��
V′0I

d // S[[ t]] I

with canonical arrows d andδ. According to Proposition4.9,(iii), the left down arrowδ is an isomorphism.
Let a be inV′0Ã⊗Ã I such that da = 0. Then d◦δa = 0, whenceδa = 0 since the bottom horizontal arrow d
is an embedding so thata = 0.

(ii) Let a be inS[[ t]] ⊗A I such thattϕI (a) = 0. According to Corollary4.19, for l in N such thatl > 2,

ta−
m∑

i=1

bi(t⊗ai − 1⊗tai) ∈ tlS[[ t]] ⊗A I

for someb1, . . . ,bm in S[[ t]] and for somea1, . . . ,am in I . For i = 1, . . . ,m,

bi = bi,0 + tb′i

with bi,0 in S andb′i in S[[ t]], whence

t(a−
m∑

i=1

b′i (t⊗ai − 1⊗tai)) −
m∑

i=1

bi,0(t⊗ai − 1− ⊗tai) ∈ tlS[[ t]] ⊗A I .

Set:

a′ := a−
m∑

i=1

b′i (t⊗ai − 1⊗tai) and a′′ =
m∑

i=1

bi,0(t⊗ai − 1⊗tai).
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ThenϕI (a) = ϕI (a′) and by Lemma4.18,(i), σI (a′′) is in tS[[ t]] ⊗k k[[ t]]. Moreover, fori = 1, . . . ,m, ai has
a unique expansion

ai =
∑

n∈N

tnai,n

with ai,n, n ∈ N, in A. Then

σI (a
′′) =

m∑

i=1

bi,0(
∑

n∈N

tai,n⊗t
n − ai,n⊗t

n+1)

= t
m∑

i=1

ai,0bi,0⊗1+
∑

n∈N∗

m∑

i=1

bi,0(tai,n − ai,n−1)⊗tn.

Since the right hand side is divisible byt in S[[ t]] ⊗k k[[ t]], for all positive integern,

m∑

i=1

bi,0ai,n−1 = 0

sincebi,0 andai,n−1 are inS for all i. HenceσI (a′′) = 0 anda′′ = 0 by Lemma4.18,(ii). Thus,

a′ ∈ tl−1S[[ t]] ⊗A I .

As a result,ϕI (a) is in tlS[[ t]] ⊗Ã I for all positive integerl. Since theS[[ t]]-module S[[ t]] ⊗Ã I is finitely
generated, by a Krull’s theorem [Ma86, Ch. 3, Theoreom 8.9], for someb in S[[ t]], (1 + tb)ϕI (a) = 0,
whenceϕI (a) = 0 sincetϕI (a) = 0. �

Remind thatV0 is the nullvariety ofA(0)+ in g f , and thatÃ = k[[ t]]A.

Theorem 4.21. (i) The algebra S[[ t]] is a free extension of̃A.
(ii) The varietiesV andV∗ are equal. Moreover,V0 is equidimensional of dimension r− ℓ.
(iii) The A(0)-module S is free and V0 = V′0. In particular, the canonical morphism

V0 ⊗k A(0) −→ S, v⊗a 7−→ va

is an isomorphism.

Proof. (i) First of all, prove thatS[[ t]] is a flat extension of̃A. Then the freeness of the extension will result
from the equalityV0 = V′0, Lemma4.6and Proposition4.9,(iii).

By the criterion of flatness [Ma86, Ch. 3, Theorem 7.7], it is equivalent to say that for all ideal I of Ã, the
canonical morphismνI ,

S[[ t]] ⊗Ã I −→ S[[ t]] I

is injective. Leta be in the kernel ofνI . Consider the commutative diagram

V′0Ã⊗Ã I
d //

δ

��

S[[ t]] ⊗Ã I

δ

��
V′0I

d // S[[ t]] I

of the proof of Proposition4.20,(i). According to Lemma4.10,(v), for l sufficiently big,tla = db for someb
in V′0Ã⊗Ã I . Thenδb = 0 sinceνI (tla) = 0. By Proposition4.9,(iii), δ is an isomorphism. Henceb = 0 and
tla = 0. Then, by Proposition4.20,(ii), a = 0, whence the the flatness.
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(ii) Denote byk[t]0 the localization ofk[t] at tk[t]. Then k[[ t]] is a faithfully flat extension ofk[t]0.
Hence,S[[ t]] is a faithfully flat extension of

S[t]0 := k[t]0 ⊗k[t] S.

Set

Ã0 := k[t]0 ⊗k A.

Then

Ã = k[[ t]] ⊗k[t]0 Ã0

so thatÃ is faithfully flat extension ofÃ0. For M a Ã0-module, we have

k[[ t]] ⊗k[t]0 (S[t]0 ⊗Ã0
M) = (k[[ t]] ⊗k[t]0 S[t]0) ⊗Ã0

M = S[[ t]] ⊗Ã (Ã⊗Ã0
M).

Hence,S[t]0 is a flat extension of̃A0 since so is the extensionS[[ t]] of Ã.
The varietyV is the union ofV∗ andV0× {0}. MoreoverV0× {0} is the nullvariety ing f ×k of the ideal of

k[t]A generated byt andA+. Then, by [Ma86, Ch. 5, Theorem 15.1],V0 is equidimensional of dimension
r − ℓ sinceS[t]0 is a flat extension of̃A0 by (i) and sinceÃ0 has dimensionℓ+1. SinceV is the nullvariety of
ℓ functions, all irreducible component ofV has dimension at leastr +1− ℓ by [Ma86, Ch. 5, Theorem 13.5].
Hence any irreducible component ofV0 × {0} is not an irreducible component ofV. As a result,V0 × {0} is
contained inV∗ and soV = V∗.

(iii) SinceA(0) is a polynomial algebra,S is a free extension ofA(0) by (ii) and Proposition2.5. Moreover,
by Lemma2.2, the linear map

V0 ⊗k A(0) −→ S, v⊗a 7−→ va

is a graded isomorphism with respect to the gradation ofV0 ⊗k A(0) induced by those ofV0 andA(0). As a
result, for all nonnegative integeri,

dimS[i] =

i∑

j=0

dimV[i− j]
0

×dimA(0)[ j] ,

whence dimV[i]
0 = dimV′0

[i] for all i by Proposition4.9,(iv) since dimA[i] = dimA(0)[i] for all i by Proposi-
tion 4.1,(ii). ThenV0 = V′0. �

As explained in Subsection3.2, by Theorem3.3and Proposition2.5,(ii), Theorem3.6results from The-
orem4.21,(ii).

Remark4.22. According to the part (ii) of Theorem4.21, I∗ is the radical ofS[t]A+. HenceS[t]A+ is radical
by Lemma4.5,(ii), and thenI∗ = S[t]A+.

5. Consequences of Theorem 1.4for the simple classical Lie algebras

This section concerns some applications of Theorem1.4 to the simple classical Lie algebras.

5.1. The first consequence of Theorem3.6is the following.

Theorem 5.1. Assume thatg is simple of typeA or C. Then all the elements ofg are good.

Proof. This follows from [PPY07, Theorems 4.2 and 4.4], Theorem3.6and Proposition3.5. �
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5.2. In this subsection and the next one,g is assumed to be simple of typeB or D. More precisely, we
assume thatg is the simple Lie algebraso(V) for some vector spaceV of dimension 2ℓ + 1 or 2ℓ. Theng
is embedded intõg := gl(V) = End(V). For x an endomorphism ofV and for i ∈ {1, . . . , dimV}, denote
by Qi(x) the coefficient of degree dimV − i of the characteristic polynomial ofx. Then, for anyx in g,
Qi(x) = 0 wheneveri is odd. Define a generating family (q1, . . . ,qℓ) of the algebra S(g)g as follows. For
i = 1, . . . , ℓ − 1, setqi := Q2i . If dimV = 2ℓ + 1, setqℓ = Q2ℓ and if dimV = 2ℓ, let qℓ be a homogeneous
element of degreeℓ of S(g)g such thatQ2ℓ = q2

ℓ
.

Let (e, h, f ) be ansl2-triple of g. Following the notations of Subsection3.2, for i ∈ {1, . . . , ℓ}, denote by
eqi the initial homogeneous component of the restriction tog f of the polynomial functionx 7→ qi(e+ x), and
by δi the degree ofeqi . According to [PPY07, Theorem 2.1],eq1, . . . ,

eqℓ are algebraically independent if
and only if

dimge + ℓ − 2(δ1+ · · ·+ δℓ) = 0.

Our first aim in this subsection is to describe the sum dimge + ℓ − 2(δ1+ · · ·+ δℓ) in term of the partition of
dimV associated withe.

Remark5.2. The sequence of the degrees (δ1, . . . , δℓ) is described by [PPY07, Remark 4.2].

Forλ = (λ1, . . . , λk) a sequence of positive integers, withλ1> · · · >λk, set:

|λ| := k, r(λ) := λ1+ · · ·+λk.

Assume that the partitionλ of r(λ) is associated with a nilpotent orbit ofso(kr(λ)). Then the even integers
of λ have an even multiplicity, [CMc93, §5.1]. Thusk andr(λ) have the same parity. Moreover, there is an
involution i 7→ i′ of {1, . . . , k} such thati = i′ if λi is odd, andi′ ∈ {i − 1, i + 1} if λi is even. Set:

S(λ) :=
∑

i=i′ , i odd

i −
∑

i=i′, i even

i

and denote bynλ the number of even integers in the sequenceλ.
From now on, assume thatλ is the partition of dimV associated with the nilpotent orbitG.e.

Lemma 5.3. (i) If dimV is odd, i.e., k is odd, then

dimge + ℓ − 2(δ1+ · · ·+ δℓ) =
nλ − k− 1

2
+ S(λ).

(ii) If dimV is even, i.e., k is even, then

dimge + ℓ − 2(δ1+ · · ·+ δℓ) =
nλ + k

2
+ S(λ).

Proof. (i) If dim V is odd, then by [PPY07, §4.4, (14)],

2(δ1+ · · ·+ δℓ) = dimge+
dimV

2
+

k− nλ
2
− S(λ),

whence

dimge+ ℓ − 2(δ1+ · · ·+ δℓ) =
nλ − k− 1

2
+ S(λ)

since dimV = 2ℓ + 1.
(ii) If dim V is even, thenδℓ = k/2 by [PPY07, Remark 4.2] and by [PPY07, §4.4, (14)],

2(δ1+ · · ·+ δℓ) + k = dimge +
dimV

2
+

k− nλ
2
− S(λ)

whence

dimge+ ℓ − 2(δ1+ · · ·+ δℓ) =
nλ + k

2
+ S(λ)
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since dimV = 2ℓ. �

The sequenceλ = (λ1, . . . , λk) verifies one of the following five conditions:

1) λk andλk−1 are odd,
2) λk andλk−1 are even,
3) k > 3, λk andλ1 are odd andλi is even for anyi ∈ {2, . . . , k− 1},
4) k > 4, λk is odd and there isk′ ∈ {2, . . . , k − 2} such thatλk′ is odd andλi is even for anyi ∈
{k′ + 1, . . . , k− 1},

5) k = 1 orλk is odd andλi is even for anyi < k.

For example, (4, 4, 3, 1) verifies Condition (1); (6, 6, 5, 4, 4) verifies Condition (2); (7, 6, 6, 4, 4, 4, 4, 3) ver-
ifies Condition (3); (8, 8, 7, 5, 4, 4, 2, 2, 3) verifies Condition (4) withk′ = 4; (9) and (6, 6, 4, 4, 3) verify
Condition (5). Ifk = 2, then one of the conditions (1) or (2) is satisfied.

Definition 5.4. Define a sequenceλ∗ of positive integers, with|λ∗| 6 |λ|, as follows:

- if k = 2 or if Condition (3) or (5) is verified, then setλ∗ := λ,
- if Condition (1) or (2) is verified, then set:

λ∗ := (λ1, . . . , λk−2),

- if k > 3 and if the Condition (4) is verified, then set

λ∗ := (λ1, . . . , λk′−1).

In any case, the partition ofr(λ∗) corresponding toλ∗ is associated with a nilpotent orbit ofso(kr(λ∗)).
Recall thatnλ is the number of even integers in the sequenceλ.

Definition 5.5. Denote bydλ the integer defined by:

- if k = 2, thendλ := nλ,
- if k > 2 and if Condition (1) or (4) is verified, thendλ := dλ∗ ,
- if k > 2 and if Condition (2) is verified, thendλ := dλ∗ + 2,
- if k > 2 and if Condition (3) is verified, thendλ := 0,
- if Condition (5) is verified, thendλ := 0.

Lemma 5.6. (i) Assume that k is odd. If Condition(1), (2) or (5) is verified, then

nλ − k− 1
2

+ S(λ) =
nλ∗ − |λ∗| − 1

2
+ S(λ∗).

Otherwise,
nλ − k− 1

2
+ S(λ) =

nλ∗ − |λ∗| − 1
2

+ S(λ∗) + k− |λ∗| − 2.

(ii) If k is even, then
nλ + k

2
+ S(λ) =

nλ∗ + |λ∗|
2

+ S(λ∗) + dλ − dλ∗ .

Proof. (i) If Condition (3) or (5) is verified, there is nothing to prove. If Condition (1) is verified,

nλ = nλ∗ , S(λ) = S(λ∗) + 1.

Then
nλ − k− 1

2
+ S(λ) =

nλ∗ − |λ∗| − 1
2

− 1+ S(λ∗) + 1

whence the assertion. If Condition (2) is verified,

nλ = nλ∗ + 2, S(λ) = S(λ∗).
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Then,
nλ − k− 1

2
+ S(λ) =

nλ∗ − |λ∗| − 1
2

+ S(λ∗)

whence the assertion. If Condition (4) is verified,

nλ = nλ∗ + k− |λ∗| − 2, S(λ) = S(λ∗) + k − |λ∗| − 1.

Then,
nλ − k− 1

2
+ S(λ) =

nλ∗ − |λ∗| − 1
2

− 1+ S(λ∗) + k− |λ∗| − 1

whence the assertion.
(ii) If k = 2 or if k > 2 and Condition (3) or (5) is verified, there is nothing to prove. Let us suppose that

k > 3. If Condition (1) is verified,

nλ = nλ∗ , S(λ) = S(λ∗) − 1.

Then
nλ + k

2
+ S(λ) =

nλ∗ + |λ∗|
2

+ 1+ S(λ∗) − 1

whence the assertion sincedλ = dλ∗ . If Condition (2) is verified,

nλ = nλ∗ + 2, S(λ) = S(λ∗).

Then,
nλ + k

2
+ S(λ) =

nλ∗ + |λ∗|
2

+ 2+ S(λ∗)

whence the assertion sincedλ − dλ∗ = 2. If Condition (4) is verified,

nλ = nλ∗ + k− |λ∗| − 2, S(λ) = S(λ∗) + |λ∗| + 1− k.

Then,
nλ + k

2
+ S(λ) =

nλ∗ + |λ∗|
2

+ k− |λ∗| − 1+ S(λ∗) + |λ∗| − k+ 1

whence the assertion sincedλ = dλ∗ . �

Lemma 5.7. (i) If λ1 is odd and ifλi is even for i> 2, thendimge+ ℓ − 2(δ1 + · · · + δℓ) = 0.
(ii) If k is odd, thendimge+ ℓ − 2(δ1+ · · ·+ δℓ) = nλ − dλ.
(iii) If k is even, thendimge+ ℓ − 2(δ1+ · · ·+ δℓ) = dλ.

Proof. (i) By the hypothesis,nλ = k− 1 andS(λ) = 1, whence the assertion by Lemma5.3,(i).
(ii) Let us prove the assertion by induction onk. For k = 3, if λ1 andλ2 are even,nλ = 2, dλ = 0 and

S(λ) = 3, whence the equality by Lemma5.3,(i). Assume thatk > 3 and suppose that the equality holds for
the integers smaller thank. If Condition (1) or (2) is verified, then by Lemma5.3,(i), Lemma5.6,(i) and by
induction hypothesis,

dimge+ ℓ − 2(δ1+ · · ·+ δℓ) = nλ∗ − dλ∗ .

But if Condition (1) or (2) is verified, thennλ − dλ = nλ∗ − dλ∗ . If Condition (5) is verified, then

nλ = k− 1, S(λ) = k, dλ = 0,

whence the equality by Lemma5.3,(i). Let us suppose that Condition (4) is verified. By Lemma5.3,(i),
Lemma5.6,(i) and by induction hypothesis,

dimge+ ℓ − 2(δ1+ · · ·+ δℓ) = nλ∗ − dλ∗ + k− |λ∗| − 2 = nλ − dλ

whence the assertion since Condition (3) is never verified whenk is odd.
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(iii) The statement is clear fork = 2 by Lemma5.3,(ii). Indeed, if Condition (1) is verified, thendλ =
nλ = 0 andS(λ) = −1 and if Condition (2) is verified, thendλ = nλ = 2 andS(λ) = 0. If Condition (3)
is verified,nλ = k − 2 andS(λ) = 1 − k, whence the statement by Lemma5.3,(ii). When Condition (4)
is verified, by induction on|λ|, the statement results from Lemma5.3,(ii) and Lemma5.6,(ii), whence the
assertion since Condition (5) is never verified whenk is even. �

Corollary 5.8. (i) If λ1 is odd and ifλi is even for all i> 2, then e is good.
(ii) If k is odd and if nλ = dλ, then e is good. In particular, ifg is of typeB, then the even nilpotent

elements ofg are good.
(iii) If k is even and if dλ = 0, then e is good. In particular, ifg is of typeD and of odd rank, then the even

nilpotent elements ofg are good.

Proof. As it has been already noticed, by [PPY07, Theorem 2.1], the polynomialseq1, . . . ,
eqℓ are alge-

braically independent if and only if

dimge + ℓ − 2(δ1+ · · ·+ δℓ) = 0.

So, by Theorem3.6and Lemma5.7, if eitherλ1 is odd andλi is even for alli > 2, or if k is odd andnλ = dλ,
or if k is even anddλ = 0, thene is good.

Suppose thate is even. Then the integersλ1, . . . , λk have the same parity, cf. e.g. [Ca85, §1.3.1]. More-
over,nλ = dλ = 0 wheneverλ1, . . . , λk are all odd (cf. Definition5.5). This in particular occurs if eitherg is
of typeB, or if g is of typeD with odd rank. �

Remark5.9. The fact that even nilpotent elements ofg are good if eitherg is of typeB, or isg is of typeD
with odd rank, was already observed by O. Yakimova in [Y09, Corollary 8.2] with a different formulation.

Definition 5.10. A sequenceλ = (λ1, . . . , λk) is said to bevery goodif nλ = dλ wheneverk is odd and if
dλ = 0 wheneverk is even. A nilpotent element ofg is said to bevery goodif it is associated with a very
good partition of dimV.

According to Corollary5.8, if e is very good thene is good. The following lemma characterizes the very
good sequences.

Lemma 5.11. (i) If k is odd thenλ is very good if and only ifλ1 is odd and if(λ2, . . . , λk) is a concatenation
of sequences verifying Conditions(1) or (2) with k= 2.

(ii) If k is even thenλ is very good if and only ifλ is a concatenation of sequences verifying Condition(3)
or Condition(1) with k= 2.

For example, the partitions (5, 3, 3, 2, 2) and (7, 5, 5, 4, 4, 3, 1, 1) of 15 and 30 respectively are very good.

Proof. (i) Assume thatλ1 is odd and that (λ2, . . . , λk) is a concatenation of sequences verifying Condi-
tions (1) or (2) withk = 2. So, if k > 1, thennλ − dλ = nλ∗ − dλ∗ . Then, a quick induction proves that
nλ − dλ = n(λ1) − d(λ1) = 0 sinceλ1 is odd. The statement is clear fork = 1.

Conversely, assume thatnλ − dλ = 0. If λ verifies Conditions (1) or (2), thennλ − dλ = nλ∗ − dλ∗ and
|λ∗| < |λ|. So, we can assume thatλ does not verify Conditions (1) or (2). Sincek is odd,λ cannot verify
Condition (3). Ifλ verifies Condition (4), thennλ − dλ = nλ − dλ∗ > nλ∗ − dλ∗ > 0. This is impossible since
nλ − dλ = 0. If λ verifies Condition (5), thennλ − dλ = nλ. So,nλ − dλ = 0 if and only ifk = 1. Thereby, the
direct implication is proven.

(ii) Assume thatλ is a concatenation of sequences verifying Condition (3) or Condition (1) withk = 2.
In particular,λ does not verify Condition (2). Moreover, Condition (5) is not verified sincek is even. Then
dλ = 0 by induction on|λ|, whencee is very good.
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Conversely, suppose thatdλ = 0. If k = 2, Condition (1) is verified and ifk = 4, then either Condition (3)
is verified, orλ1, . . . , λ4 are all odd. Supposek > 4. Condition (2) is not verified sincedλ = dλ∗ + 2 in this
case. If Condition (1) is verified thendλ∗ = 0 andλ is a concatenation ofλ∗ and (λk−1, λk). If Condition (4)
is verified, thendλ∗ = 0 andλ is a concatenation ofλ∗ and a sequence verifying Condition (3), whence the
assertion by induction on|λ| since Condition (5) is not verified whenk is even. �

5.3. Assume in this subsection thatλ = (λ1, . . . , λk) verifies the following condition:

(∗) For some k′ ∈ {2, . . . , k}, λi is even for all i6 k′, and(λk′+1, . . . , λk)
is very good.

In particular,k′ is even and by Lemma5.11, λk′+1 is odd andλ is not very good. For example, the sequences
λ = (6, 6, 4, 4, 3, 2, 2) and (6, 6, 4, 4, 3, 3, 3, 2, 2, 1) satisfy the condition (∗) with k′ = 4. Define a sequence
ν = (ν1, . . . , νk) of integers of{1, . . . , ℓ} by

∀ i ∈ {1, . . . , k′}, νi :=
λ1 + · · · + λi

2
.

If k′ = k, thenνk = (λ1+ · · ·+λk)/2 = r(λ)/2 = ℓ. Define elementsp1, . . . , pk′ of S(ge) as follows:

- if k′ < k, set fori ∈ {1, . . . , k′}, pi := eqνi ,
- if k′ = k, set fori ∈ {1, . . . , k′ − 1}, pi := eqνi and setpk := (eqνk)

2. In this case, set also ˜pk := eqνk.

Remind thatδi is the degree ofeqi for i = 1, . . . , ℓ. The following lemma is a straightforward consequence
of [PPY07, Remark 4.2]:

Lemma 5.12. (i) For all i ∈ {1, . . . , k′}, deg pi = i.
(ii) Setν0 := 0. Then for i∈ {1, . . . , k′} and r ∈ {1, . . . , νk′ − 1},

δr = i ⇐⇒ νi−1 < r 6 νi .

In particular, for r ∈ {1, . . . , νk′ − 2}, δr < δr+1 if and only if r is a value of the sequenceν.

Example5.13. Consider the partitionλ = (8, 8, 4, 4, 4, 4, 2, 2, 1, 1) of 38. Thenk = 10, k′ = 8 and
ν = (4, 8, 10, 12, 14, 16, 17, 18). We represent in Table1 the degrees of the polynomialsp1, . . . , p8 and
eq1, . . . ,

eq18. Note that degeq19 = 5. In the table, the common degree of the polynomials appearing on the
ith column isi.

eq4= p1
eq8= p2

eq3
eq7

eq2
eq6

eq10= p3
eq12= p4

eq14= p5
eq16= p6

eq1
eq5

eq9
eq11

eq13
eq15

eq17= p7
eq18= p8

degrees 1 2 3 4 5 6 7 8

Table 1.

Let s be the subalgebra ofg generated bye, h, f and decomposeV into simples-modulesV1, . . . ,Vk of
dimensionλ1, . . . , λk respectively. One can order them so that fori ∈ {1, . . . , k′/2}, V(2(i−1)+1)′ = V2i . For
i ∈ {1, . . . , k}, denote byei the restriction toVi of eand setεi := eλi−1

i . Thenei is a regular nilpotent element
of gl(Vi) and (adh)εi = 2(λi − 1)εi .
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For i ∈ {1, . . . , k′/2}, set

V[i] := V2(i−1)+1 + V2i

and set

V[0] := Vk′+1 ⊕ · · · ⊕ Vk.

Then fori ∈ {0, 1, . . . , k′/2}, denote bygi the simple Lie algebraso(V[i]). For i ∈ {1, . . . , k′/2}, e2(i−1)+1+e2i

is an even nilpotent element ofgi with Jordan blocks of size (λ2(i−1)+1, λ2i). Let i ∈ {1, . . . , k′/2} and set:

zi := ε2(i−1)+1 + ε2i .

Thenzi lies in the center ofge and

(adh)zi = 2(λ2(i−1)+1 − 1)zi = 2(λ2i − 1)zi .

Moreover, 2(λ2i −1) is the highest weight of adh acting ongei := gi∩ge, and the intersection of the 2(λ2i −1)-
eigenspace of adh with gei is spanned byzi , see for instance [Y09, §1]. Set

g := g0 ⊕ g1 ⊕ · · · ⊕ gk′/2 = so(V[0]) ⊕ so(V[1]) ⊕ · · · ⊕ so(V[k′/2])

and denote byge (resp.g f ) the centralizer ofe (resp. f ) in g. For p ∈ S(ge), denote byp its restriction to
g

f
≃ (ge)∗; it is an element of S(ge). Our goal is to describe the elementsp1, . . . , pk′ (see Proposition5.18).

The motivation comes from Lemma5.14.
Let g f

reg (resp.g f
reg) be the set of elementsx ∈ g f (resp.g f ) such thatx is a regular linear form onge

(resp.ge).

Lemma 5.14. (i) The intersectiong f
reg∩ g

f is a dense open subset ofg f
reg.

(ii) The morphism

θ : Ge
0 × g

f
−→ g f , (g, x) 7−→ g.x

is a dominant morphism from Ge0 × g
f to g f .

Proof. (i) Sinceλ verifies the condition (∗), it verifies the condition (1) of the proof of [Y06, §4, Lemma 3]
and so,g f

reg ∩ g
f is a dense open subset ofg f . Moreover, sincege andge have the same index by [Y06,

Theorem 3],g f
reg∩ g

f is contained ing f
reg.

(ii) Let m be the orthogonal complement tog in g with respect to the Killing form〈. , .〉. Since the
restriction tog × g of 〈. , .〉 is nondegenerate,g = g ⊕ m and [g,m] ⊂ m. Setme := m ∩ ge. Since the
restriction tog f

× g
e of 〈. , .〉 is nondegenerate, we get the decomposition

ge = g
e
⊕me

andme is the orthogonal complement tog f in ge. Moreover, [ge,me] ⊂ me.
By (i), g f

reg∩ g
f
, ∅. Let x ∈ g f

reg∩ g
f . The tangent map at (1g, x) of θ is the linear map

ge × g
f
−→ g f , (u, y) 7−→ u.x+ y,

whereu. denotes the coadjoint action ofu on g f ≃ (ge)∗. The index ofge is equal to the index ofge

and [ge,me] ⊂ me. So, the stabilizer ofx in ge coincides with the stabilizer ofx in ge. In particular,
dimme.x = dimme. As a result,θ is a submersion at (1g, x) since dimg f = dimme + dimg f . In conclusion,
θ is a dominant morphism fromGe

0 × g
f to g f . �
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Let (µ1, . . . , µm) be the strictly decreasing sequence of the values of the sequence (λ1, . . . , λk′) and let
k1, . . . , km be the multiplicity ofµ1, . . . , µm respectively in this sequence. By our assumption, the integers
µ1, . . . , µm, k1, . . . , km are all even. Notice thatk1+ · · ·+ km = k′. The set{1, . . . , k′} decomposes into parts
K1, . . . ,Km of cardinalityk1, . . . , km respectively given by:

∀ s ∈ {1, . . . ,m}, Ks := {k0+ · · ·+ ks−1 + 1, . . . , k0 + · · · + ks}.

Here, the convention is thatk0 := 0.

Remark5.15. For s∈ {1, . . . ,m} andi ∈ Ks,

νi := k0(
µ0

2
) + · · · + ks−1(

µs−1

2
) + j(

µs

2
),

where j = i − (k0 + · · · + ks−1) andµ0 = 0.

Decompose also the set{1, . . . , k′/2} into partsI1, . . . , Im of cardinalityk1/2, . . . , km/2 respectively, with

∀ s ∈ {1, . . . ,m}, Is := {
k0 + · · · + ks−1

2
+ 1, . . . ,

k0 + · · · + ks

2
}.

For p ∈ S(ge) an eigenvector of adh, denote by wt(p) its adh-weight.

Lemma 5.16. Let s∈ {1, . . . ,m} and i∈ Ks.
(i) Set j= i − (k0 + · · · + ks−1). Then,

wt(pi) = 2(2νi − i) =
s−1∑

l=1

2kl (µl − 1)+ 2 j(µs − 1).

Moreover, if p∈ { eq1, . . . ,
eqℓ−1, (eqℓ)2} is of degree i, thenwt(p) = wt(p) 6 2(2νi − i) and the equality holds

if and only if p= pi.
(ii) The polynomialpi is in k[zl , l ∈ I1 ∪ . . . ∪ Is].

Proof. (i) This is a consequence of [PPY07, Lemma 4.3] (or [Y09, Theorem 6.1]), Lemma5.12and Re-
mark5.15.

(ii) Let g̃ f be the centralizer off in g̃ = gl(V), and leteQ2νi
be the initial homogeneous component of the

restriction to (
gl(V[0]) ⊕ gl(V[1]) ⊕ · · · ⊕ gl(V[k′/2])

)
∩ g̃ f

of the polynomial functionx 7→ Q2νi (e+ x). Sincepi , 0, pi is the restriction tog f of eQ2νi
and we have

wt(eQ2νi
) = wt(pi) = 2(2νi − i), degeQ2νi

= degpi = i.

Then, by (i) and [PPY07, Lemma 4.3],eQ2νi
is a sum of monomials whose restriction tog f is zero and of

monomials of the form

(ες(1)1 . . . ες(1)k1
) · · · (ες(s−1)1 . . . ες(s−1)ks−1

)(ες(s) j1 . . . ες(s) ji )

where j1< · · · < j i are integers ofKs, andς(1), . . . , ς(s−1), ς(s) are permutations ofK1, . . . ,Ks−1, { j1, . . . , j i}
respectively. Hence,pi is in k[zl , l ∈ I1∪ . . .∪ Is]. More precisely, forl ∈ I1∪ . . .∪ Is, the elementzl appears
in pi with a multiplicity at most 2 sincezl = ε2(l−1)+1 + ε2l. �

Let s ∈ {1, . . . ,m} and i ∈ Ks. In view of Lemma5.16,(ii), we aim to give an explicit formula forpi in
term of the elementsz1, . . . , zk′/2. Besides, according to Lemma5.16,(ii), we can assume thats = m. As a
first step, we state inductive formulae. Ifk′ > 2, set

g
′ := so(V[1]) ⊕ · · · ⊕ so(V[k′/2− 1]),
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and letp′1, . . . , p
′
k′ be the restrictions to (g′) f := g′∩g f of p1, . . . , pk′ respectively. Note thatp′k′−1 = p′k′ = 0.

Set by conventionk0 := 0, p0 := 1, p′0 := 1 andp−1 := 0. It will be also convenient to set

k∗ := k0 + · · · + km−1.

Lemma 5.17. (i) If km = 2, then

pk∗+1 = −2 p′k∗ zk′/2 and pk∗+2 = p′k∗ (zk′/2)2.

(ii) If km > 2, then
pk∗+1 = p′k∗+1 − 2 p′k∗ zk′/2

and for j= 2, . . . , km,
pk∗+ j = p′k∗+ j − 2 p′k∗+ j−1 zk′/2 + p′k∗+ j−2 (zk′/2)2.

Proof. For i = 1, . . . , k′/2, letwi be the element ofg f
i := gi ∩ g f such that

(adh)wi = −2(λ2i − 1)wi and det (ei + wi) = 1.

Remind thatpi(y), for y ∈ g f , is the initial homogeneous component of the coefficient of the termTdimV−2νi

in the expression det (T − e− y). By Lemma5.16,(ii), in order to describepi , it suffices to compute det (T −
e− s1w1 − · · · − sk′/2wk′/2), with s1, . . . , sk′/2 in k.

1) To start with, consider the casek′ = km = 2. By Lemma5.16, p1 = az1 andp2 = bz2
1 for somea, b ∈ k.

One has,
det (T − e− s1w1) = T2µ1 − 2s1Tµ1 + s2

1.

As a result,a = −2 andb = 1. This proves (i) in this case.

2) Assume from now thatk′ > 2. Settinge′ := e1 + · · · + ek′/2−1, observe that

det (T − e− s1w1 − · · · − sk′/2wk′/2)(3)

= det (T − e′ − s1w1 − · · · − sk′/2−1wk′/2−1) det (T − ek′/2 − sk′/2wk′/2)

= det (T − e′ − s1w1 − · · · − sk′/2−1wk′/2−1) (T2µm − 2sk′/2Tµm + s2
k′/2)

where the latter equality results from Step (1).

(i) If km = 2, thenk∗ = k′ − 2 and the constant term in det (T − e′ − s1w1 − · · · − sk′/2−1wk′/2−1) is p′k∗ . By
Lemma5.16,(i),

wt(pk∗+1) = wt(p′k∗) + wt(zk′/2)

andp′k∗ is the only element appearing in the coefficients of det (T − e′ − s1w1 − · · · − sk′/2−1wk′/2−1) of this
weight. Similarly,

wt(pk∗+2) = wt(p′k∗) + wt((zk′/2)2)

andp′k∗ is the only element appearing in the coefficients of det (T − e′ − s1w1 − · · · − sk′/2−1wk′/2−1) of this
weight. As a consequence, the equalities follow.

(ii) Supposekm > 2. Then by Lemma5.16,(i),

wt(pk∗+1) = wt(p′k∗+1) = wt(p′k∗ ) + wt(zk′/2).

Moreover, p′k∗+1 and p′k∗ are the only elements appearing in the coefficients of det (T − e′ − s1w1 − · · · −

sk′/2−1wk′/2−1) of this weight with degreek∗ + 1 andk∗ respectively. Similarly, by Lemma5.16,(i), for
j ∈ {2, . . . , km},

wt(pk∗+ j) = wt(p′k∗+ j) = wt(p′k∗+ j−1) + wt(zk′/2) = wt(p′k∗+ j−2) + wt((zk′/2)2).
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Moreover, p′k∗+ j , p′k∗+ j−1 and p′k∗+ j−2 are the only elements appearing in the coefficients of det (T − e′ −
s1w1 − · · · − sk′/2−1wk′/2−1) of this weight with degreek∗ + j, k∗ + j − 1 andk∗ + j − 2 respectively.

In both cases, this forces the inductive formula (ii) through the factorization (3). �

For a subsetI = {i1, . . . , i l} ⊆ {1, . . . , k′/2} of cardinality l, denote byσI ,1, . . . , σI ,l the elementary sym-
metric functions ofzi1, . . . ,zil :

∀ j ∈ {1, . . . , l}, σI , j =
∑

16a1<a2<···<aj6l

zia1
zia2

. . . ziaj
.

Set alsoσI ,0 := 1 andσI , j := 0 if j > l so thatσI , j is well defined for any nonnegative integerj. Set at
lastσI , j := 1 for any j if I = ∅. If I = Is, with s ∈ {1, . . . ,m}, denote byσ(s)

j , for j > 0, the elementary
symmetric functionσIs, j.

Proposition 5.18. Let s∈ {1, . . . ,m} and j∈ {1, . . . , ks}. Then

pk0+···+ks−1+ j = (−1) j pk0+···+ks−1

j∑

r=0

σ
(s)
j−rσ

(s)
r = (−1) j (σ(1)

k0/2
. . . σ

(s−1)
ks−1/2

)2
j∑

r=0

σ
(s)
j−rσ

(s)
r .

Example5.19. If m= 1, thenk′ = k1 and

p1 = −σ
(1)
1 σ

(1)
0 − σ

(1)
0 σ

(1)
1 = −2σ(1)

1 = −2(z1 + · · · + zk′/2),

p2 = σ
(1)
2 σ

(1)
0 + (σ(1)

1 )2 + σ
(1)
0 σ

(1)
2 = 2σ(1)

2 + (σ(1)
1 )2,

· · · ,

pk′ = (σ(1)
k′/2)2 = (z1z2 . . . zk′/2)2.

Proof. By Lemma5.16,(ii), we can assume thats = m. Retain the notations of Lemma5.17. In particular,
set again

k∗ := k0 + · · · + km−1.

We prove the statement by induction onk′/2. If k′ = 2, thenm= 1, km = k′ = 2 and the statement follows
from by Lemma5.17,(i). Assume now thatk′ > 2 and the statement true for the polynomialsp′1, . . . , p

′
k′−1.

If km = 2, the statement follows from Lemma5.17,(i).
Assumekm > 2. For anyr > 0, we setσ′r := σI ′,r whereI ′ = { k

∗

2 + 1, . . . , k′

2 − 1} ⊂ Im. In particular,
σ′0 = 1 by convention. Observe that for anyr > 1,

σ
(m)
r = σ′r + σ

′
r−1zk′/2.

Settingσ′
−1 := 0, the above equality remains true forr = 0. By the induction hypothesis and by Lemma5.17,(ii),

for j ∈ {2, . . . , km},

pk∗+ j = p′k∗+ j − 2 p′k∗+ j−1 zk′/2 + p′k∗+ j−2 (zk′/2)2

= pk∗
(
(−1) j

j∑

r=0

σ′j−rσ
′
r − 2(−1) j−1

j−1∑

r=0

σ′j−r−1σ
′
r zk′/2 + (−1) j−2

j−2∑

r=0

σ′j−r−2σ
′
r z2

k′/2
)
.

= (−1) j pk∗
( j∑

r=0

σ′j−rσ
′
r + 2 (

j−1∑

r=0

σ′j−r−1σ
′
r ) zk′/2 + (

j−2∑

r=0

σ′j−r−2σ
′
r ) z2

k′/2
)
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sincep′k∗ = pk∗ . On the other hand, we have

j∑

r=0

σ
(m)
j−rσ

(m)
r =

j∑

r=0

(σ′j−r + σ
′
j−r−1zk′/2)(σ′r + σ

′
r−1zk′/2)

=

j∑

r=0

σ′j−rσ
′
r + (

j∑

r=0

σ′j−r−1σ
′
r +

j∑

r=0

σ′j−rσ
′
r−1) zk′/2 + (

j∑

r=0

σ′j−r−1σ
′
r−1) z2

k′/2

=

j∑

r=0

σ′j−rσ
′
r + 2 (

j−1∑

r=0

σ′j−r−1σ
′
r) zk′/2 + (

j−2∑

r=0

σ′j−r−2σ
′
r) z2

k′/2.

Thereby, for anyj ∈ {2, . . . , km}, we get

pk∗+ j = (−1) j pk∗

j∑

r=0

σ
(m)
j−rσ

(m)
r .

For j = 1, sincep′k∗ = pk∗ , by Lemma5.17,(ii), and our induction hypothesis,

pk∗+1 = p′k∗+1 − 2 p′k∗ zk′/2 = pk∗(−2σ′1) − 2 pk∗ zk′/2 = pk∗(−2σ(m)
1 ).

This proves the first equality of the proposition.

For the second one, it suffices to prove by induction ons∈ {1, . . . ,m} that

pk0+···+ks−1
= (σ(1)

k0/2
. . . σ

(s−1)
ks−1/2

)2.

For s = 1, thenpk0+···+ks−1
= p0 = 1 andσ∅,0 = 1 by convention. Assumes > 2 and the statement true for

1, . . . , s− 1. By the first equality withj = ks, pk0+···+ks
= (−1)ks pk0+···+ks−1

(σ(s)
ks/2

)2, whence the statement by
induction hypothesis sinceks is even. �

Remark5.20. Remind that the polynomial ˜pk was defined before Lemma5.12. As a by product of the
previous formula, wheneverk′ = k, we obtain

p̃k = σ
(1)
k0/2

. . . σ
(m)
km/2

.

For s∈ {1, . . . ,m} and j ∈ {1, . . . , ks}, set

ρk0+···+ks−1+ j :=
pk0+···+ks−1+ j

pk0+···+ks−1

.

Proposition5.18says thatρk0+···+ks−1+ j is an element of Frac(S(ge)g
e
) ∩ S(ge) = S(ge)g

e
.

Lemma 5.21. Let s∈ {1, . . . ,m} and j∈ {ks/2+ 1, . . . , ks}. There is a polynomial R(s)j of degree j such that

ρk0+···+ks−1+ j = R(s)
j (ρk0+···+ks−1+1, . . . , ρk0+···+ks−1+ks/2).

In particular, for any j∈ {k1/2+ 1, . . . , k1}, we have

p j = R(1)
j (p1, . . . , pk1/2).

Proof. 1) Prove by induction onj ∈ {1, . . . , ks/2} that for some polynomialT(s)
j of degreej,

σ
(s)
j = T(s)

j (ρk0+···+ks−1+1, . . . , ρk0+···+ks−1+ j).
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By Proposition5.18, ρk0+···+ks−1+1 = −(σ(s)
1 σ

(s)
0 + σ

(s)
0 σ

(s)
1 ) = −2σ(s)

1 . Hence, the statement is true forj = 1.

Supposej ∈ {2, . . . , ks/2} and the statement true forσ(s)
1 , . . . , σ

(s)
j−1. Since j 6 ks/2, σ(s)

j , 0, and by
Proposition5.18,

ρk0+···+ks−1+ j = (−1) j(σ(s)
j σ

(s)
0 + σ0σ

(s)
j ) + (−1) j

j−1∑

r=1

σ
(s)
j−rσ

(s)
r = 2(−1) jσ

(s)
j + (−1) j

j−1∑

r=1

σ
(s)
j−rσ

(s)
r .

So, the statement forj follows from our induction hypothesis.

2) Let j ∈ {ks/2 + 1, . . . , ks}. Proposition5.18 shows thatρk0+···+ks−1+ j is a polynomial inσ(s)
1 , . . . , σ

(s)
ks/2

.
Hence, by Step 1),ρk0+···+ks−1+ j is a polynomial in

ρk0+···+ks−1+1, . . . , ρk0+···+ks−1+ks/2.

Furthermore, by Proposition5.18and Step (1), this polynomial has degreej. �

Remark5.22. By Remark5.20and the above proof, ifk′ = k then for some polynomial̃Rof degreekm/2,

p̃k

σ
(1)
k0/2

. . . σ
(m−1)
km−1/2

= σ
(m)
km/2
= R̃(ρk0+···+km−1+1, . . . , ρk0+···+km−1+km/2).

Theorem 5.23. (i) Assume thatλ verifies the condition(∗) and thatλ1 = · · · = λk′ . Then e is good.
(ii) Assume that k= 4 and thatλ1, λ2, λ3, λ4 are even. Then e is good.

For example, (6, 6, 6, 6, 5, 3) satisfies the hypothesis of (i) and (6, 6, 4, 4) satisfies the hypothesis of (ii).

Remark5.24. If λ verifies the condition (∗) then by Lemma5.7,

dimge+ ℓ − 2(δ1 + · · · + δℓ) = k′.

Indeed, ifk is odd, thennλ−dλ = nλ′−dλ′ whereλ′ = (λ1, . . . , λk′ , λk′+1) so thatnλ−dλ = nλ′−dλ′ = nλ′ = k′

sinceλk′+1 is odd. Ifk is even, thendλ = nλ′ = k′ whereλ′ = (λ1, . . . , λk′).

Proof. (i) In the previous notations, the hypothesis means thatm= 1 andk′ = km. According to Lemma5.21
and Lemma5.14, for j ∈ {k′/2+ 1, . . . , k′ − 1},

p j = R(1)
j (p1, . . . , pk′/2),

whereR(1)
j is a polynomial of degreej. Moreover, ifk′ = k, then by Remark5.22and Lemma5.14,

p̃k = R̃(p1, . . . , pk/2),

whereR̃ is a polynomial of degreek/2.

- If k′ < k, set for anyj ∈ {k′/2+ 1, . . . , k′},

r j := qν j − R(1)
j (qν1, . . . , qνk′/2

).

Then by Lemma5.12,
∀ j ∈ {k′/2+ 1, . . . , k′}, deger j > j + 1.

- If k′ = k, set for j ∈ {k/2+ 1, . . . , k′ − 1},

r j := qν j − R(1)
j (qν1, . . . , qνk′/2

) and rk := qνk − R̃(qν1, . . . , qνk/2).

Then by Lemma5.12,

∀ j ∈ {k/2+ 1, . . . , k− 1}, deger j > j + 1 and degerk > k/2+ 1.
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In both cases,
{q j | j ∈ {1, . . . , ℓ} r {νk′/2+1, . . . , νk′}} ∪ {rk′/2+1, . . . , rk′}

is a homogeneous generating system of S(g)g. Denote byδ̂ the sum of the degrees of the polynomials

eq j , j ∈ {1, . . . , ℓ} r {νk′/2+1, . . . , νk′},
erk′/2+1, . . . ,

erk′ .

The above discussion shows thatδ̂ > δ1 + · · · + δℓ + k′/2. By Remarks5.24, we obtain

dimge+ ℓ − 2δ̂ 6 0.

In conclusion, by [PPY07, Theorem 2.1] and Theorem3.6, e is good.
(ii) In the previous notations, the hypothesis means thatk′ = k = 4. If m = 1 the statement is a

consequence of (i). Assume thatm = 2. Then by Proposition5.18, p1 = −2z1, p2 = z2
1, p3 = −2z2

1z2 and
p4 = (z1z2)2. Moreover,p̃4 = z1z2. Hence, by Lemma5.14, p2 =

1
4 p2

1 andp3 = p1 p̃4. Setr2 := qν2 −
1
4q2

ν1

andr3 := qν3 − qν1qν4. Then deger2 > 3 and deger3 > 4. Moreover,

{q1, . . . ,qℓ} r {qν2, qν3} ∪ {r2, r3}

is a homogeneous generating system of S(g)g. Denoting byδ̂ the sum of the degrees of the polynomials

{ eq1, . . . ,
eqℓ} r {

eqν2,
eqν3} ∪ {

er2,
er3},

we obtain that̂δ > δ1 + · · · + δℓ + 2. But dimge + ℓ − 2(δ1 + · · · + δℓ) = k′ = 4 by Remark5.24. So,
dimge+ ℓ − 2δ̂ 6 0. In conclusion, by [PPY07, Theorem 2.1] and Theorem3.6, e is good. �

6. Examples in simple exceptional Lie algebras

We give in this section examples of good nilpotent elements in simple exceptional Lie algebras (of type
E6, F4 or G2) which are not covered by [PPY07]. These examples are all obtained through Theorem3.6.

Example6.1. Suppose thatg has typeE6. LetV be the module of highest weight the fundamental weight
̟1 with the notation of Bourbaki. ThenV has dimension 27 andg identifies with a subalgebra ofsl27(k).
For x in sl27(k) and for i = 2, . . . , 27, let pi(x) be the coefficient of T27−i in det (T − x) and denote byqi

the restriction ofpi to g. Then (q2, q5, q6, q8, q9, q12) is a generating family of S(g)g since these polynomials
are algebraically independent, [Me88]. Let (e, h, f ) be ansl2-triple of g. Then (e, h, f ) is ansl2-triple of
sl27(k). We denote byepi the initial homogeneous component of the restriction toe+ g̃ f of pi whereg̃ f is
the centralizer off in sl27(k). As usual,eqi denotes the initial homogeneous component of the restriction to
e+ g f of qi . For i = 2, 5, 6, 8, 9, 12,

degepi 6 degeqi .

In some cases, from the knowledge of the maximal eigenvalue of the restriction of adh to g and the adh-
weight of epi , it is possible to deduce that degepi < degeqi . On the other hand,

degeq2 + degeq5 + degeq6 + degeq8 + degeq9 + degeq12 6
1
2

(dimge+ 6),

with equality if and only ifeq2,
eq5,

eq6,
eq8,

eq9,
eq12 are algebraically independent. From this, it is possible

to deduce in some cases thate is good. These cases are listed in Table2 where the nine columns are indexed
in the following way:

1: the label of the orbitG.e in the Bala-Carter classification,
2: the weighted Dynkin diagram ofG.e,
3: the dimension ofge,
4: the partition of 27 corresponding to the nilpotent element eof sl27(k),
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5: the degrees ofep2,
ep5,

ep6,
ep8,

ep9,
ep12,

6: their adh-weights,
7: the maximal eigenvalueν of the restriction of adh to g,
8: the sumΣ of the degrees ofep2,

ep5,
ep6,

ep8,
ep9,

ep12,
9: the sumΣ′ = 1

2(dimge + ℓ).

Label ❝ ❝ ❝ ❝ ❝

❝

dimge partition degepi weights ν Σ Σ′

1. E6 2 2 2 2 2
2

6 (17,9,1) 1,1,1,1,1,1 2,8,10,14,16,22 16 6 6

2. E6(a1) 2 2 0 2 2
2

8 (13,9,5) 1,1,1,1,1,1 2,8,10,14,16,22 16 6 7

3. D5 2 0 2 0 2
2

10 (11,9,5,1,1) 1,1,1,1,1,1 2,8,10,14,16,22 14 6 8

4. A5 + A1 2 0 2 0 2
0

12 (9, 7,52,1) 1,1,1,1,1,2 2,8,10,14,16,20 10 7 9

5. D5(a1) 1 1 0 1 1
2

14 (8,7,6,3,2,1) 1,1,1,1,2,2 2,8,10,14,14,20 10 8 10

6. A5 2 1 0 1 2
1

14 (9, 62,5,1) 1,1,1,1,1,2 2,8,10,14,16,20 10 7 10

7. A4 + A1 1 1 0 1 1
1

16 (7, 6,5, 4,3,2) 1,1,1,2,2,2 2,8,10,12,14,20 8 9 11

8. D4 0 0 2 0 0
2

18 (73, 16) 1,1,1,2,2,2 2,8,10,12,14,20 10 9 12

9. A3 + 2A1 0 0 2 0 0
0

20 (53, 33, 13) 1,1,2,2,2,3 2,8,8,12,14,18 6 11 13

10. A1 + 2A2 1 0 1 0 1
0

24 (5,42, 33, 22,1) 1,1,2,2,2,3 2,8,8,12,14,18 5 11 15

Table 2. Data forE6

For the orbit1, Σ = Σ′. Hence,eq2,
eq5,

eq6,
eq8,

eq9,
eq12 are algebraically independent and by Theorem3.6,

e is good. For the orbits2,3,. . . ,10, we observe thatΣ < Σ′, i.e.,

degep2 + degep5 + degep6 + degep8 + degep9 + degep12 <
1
2

(dimge + 6).

So, we need some more arguments that we give below.

2. Since 16< 22, degep12 < degeq12.
3. Since 14< 16, degepi < degeqi for i = 9, 12.
4. Since 10< 14, degepi < degeqi for i = 8, 9.
5. Since 10< 14, degep8 < degeq8. Moreover, the multiplicity of the weight 10 equals 1. So, either

degeq6 > 1, or degeq12 > 2, or eq12 ∈ k
eq2

6.
6. Since 10< 14, degepi < degeqi for i = 8, 9. Moreover, the multiplicity of the weight 10 equals 1.

So, either degeq6 > 1, or degeq12 > 2, or eq12 ∈ k
eq2

6.
7. Since 8< 10 and 2×8 < 20, degepi < degeqi for i = 6, 12.
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8. Since the center ofge has dimension 2 and the weights ofh in the center are 2 and 10, degep5 <

degeq5. Moreover, since the weights ofh in ge are 0, 2, 6, 10, degep9 < degeq9 and since the
multiplicity of the weight 10 equals 1, either degeq6 > 1, or degeq12 > 2, or eq12 ∈ k

eq2
6.

9. Since 6< 8 and 2×6 < 14, degepi < degeqi for i = 5, 9.
10. Since 5< 8, 2×5 < 12 and 3×5 < 18, degepi < degeqi for i = 5, 8, 9, 12.

In cases2, 3, 4, 7, 9, 10, the discussion shows that

degeq2 + degeq5 + degeq6 + degeq8 + degeq9 + degeq12 =
1
2

(dimge+ 6).

Hence, eq2,
eq5,

eq6,
eq8,

eq9,
eq12 are algebraically independent and by Theorem3.6, e is good. In cases

5, 6, 8, if the above equality does not hold, then for somea in k∗,

degeq2 + degeq5 + degeq6 + degeq8 + degeq9 + dege(q12− aq2
6) =

1
2

(dimge + 6).

Henceeq2,
eq5,

eq6,
eq8,

eq9,
e(q12 − aq2

6) are algebraically independent and by Theorem3.6, e is good.

In addition, according to [PPY07, Theorem 0.4] and Theorem3.6, the elements of the minimal orbit of
E6, labelledA1, are good. In conclusion, it remains nine unsolved nilpotent orbits in typeE6.

Example6.2. Suppose thatg is simple of typeF4. LetV be the module of highest weight the fundamental
weight̟4 with the notation of Bourbaki. ThenV has dimension 26 andg identifies with a subalgebra of
sl26(k). For x in sl26(k) and fori = 2, . . . , 26, letpi(x) be the coefficient ofT26−i in det (T − x) and denote by
qi the restriction ofpi to g. Then (q2, q6, q8, q12) is a generating family of S(g)g since these polynomials are
algebraically independent, [Me88]. Let (e, h, f ) be ansl2-triple of g. Then (e, h, f ) is ansl2-triple of sl26(k).
As in Example6.1, in some cases, it is possible to deduce thate is good. These cases are listed in Table3,
indexed as in Example6.1.

Label ❝ ❝ ❝ ❝> dimge partition degepi weights ν Σ Σ′

1. F4 2 2 2 2 4 (17,9) 1,1,1,1 2,10,14,22 22 4 4

2. B4 2 2 0 2 6 (11,9,5,1) 1,1,1,1 2,10,14,22 14 4 5

3. C3 + A1 0 2 0 2 8 (9, 7,52) 1,1,1,2 2,10,14,20 10 5 6

4. C3 1 0 1 2 10 (9, 62,5) 1,1,1,2 2,10,14,20 10 5 7

5. B3 2 2 0 0 10 (73,15) 1,1,2,2 2,10,12,20 10 6 7

6. Ã2 + A2 0 2 0 0 12 (53,33,12) 1,2,2,3 2,8,12,18 6 8 8

7. B2 + A1 1 0 1 0 14 (52,42, 3,22,1) 1,2,2,3 2,8,12,18 6 8 9

8. Ã2 + A1 0 1 0 1 16 (5,42,33, 22) 1,2,2,3 2,8,12,18 5 8 10

Table 3. Data forF4
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For the orbits2, 3, 4, 5, 7,8, we observe thatΣ < Σ′. So, we need some more arguments to conclude as in
Example6.1.

2. Since 14< 22, degep12 < degeq12.
3. Since 10< 14, degep8 < degeq8.
4. Since 10< 14, degep8 < degeq8. Moreover, the multiplicity of the weight 10 equals 1 so that

degeq6 > 1 or degeq12 > 2 or eq12 ∈ k
eq2

6.
5. The multiplicity of the weight 10 equals 1. So, either degeq6 > 1, or degeq12 > 2, or eq12 ∈ k

eq2
6.

7. Suppose thateq2,
eq6,

eq8,
eq12 have degree 1, 2, 2, 3. We expect a contradiction. Since the center

has dimension 2 and since the multiplicity of the weight 6 equals 1, forz of weight 6 in the center,
eq6 ∈ kez, eq8 ∈ kz2, eq12 ∈ kz3. So, for somea andb in k∗,

eq2
2

eq8 − aeq2
6 = 0, eq2

12− beq3
8 = 0

Hence,q2, q6, q2
2q8 − aq2

6, q
2
12− bq3

8 are algebraically independent element of S(g)g such that

degeq2 + degeq6 + dege(q2
2q8 − aq2

6) + dege(q2
12− bq3

8) > 1+ 2+ 5+ 7 > 2+ 3+ 9

whence a contradiction by [PPY07, Theorem 2.1] (see Lemma7.1).
8. Since 2×5 < 12 and 3×5 < 18, degeq8 > degep8 and degeq12 > degep12.

In addition, according to [PPY07, Theorem 0.4] and Theorem3.6, the elements of the minimal orbit of
F4, labelledA1, are good. In conclusion, it remains six unsolved nilpotentorbits in typeF4.

Example6.3. Suppose thatg is simple of typeG2. LetV be the module of highest weight the fundamental
weight̟1 with the notation of Bourbaki. ThenV has dimension 7 andg identifies with a subalgebra of
sl7(k). For x in sl7(k) and fori = 2, . . . , 7, let pi(x) be the coefficient ofT7−i in det (T − x) and denote byqi

the restriction ofpi to g. Thenq2, q6 is a generating family of S(g)g since these polynomials are algebraically
independent, [Me88]. Let (e, h, f ) be ansl2-triple of g. Then (e, h, f ) is ansl2-triple of sl7(k). In all cases,
we deduce thate is good from Table4, indexed as in Example6.1.

Label ❝ ❝< dimge partition degepi weights ν Σ Σ

1. G2 2 2 2 (7) 1,1 2,10 10 2 2

2. A1 + Ã1 0 2 4 (32,1) 1,2 2,8 4 3 3

3. Ã1 1 0 6 (3, 22) 1,3 2,6 3 4 4

4. A1 0 1 8 (22,13) 1,4 2,4 2 5 5

Table 4. Data forG2

7. Other examples, remarks and a conjecture

This section provides examples of nilpotent elements whichverify the polynomiality condition but that
are not good. We also obtain an example of nilpotent element in typeD7 which does not verify the polyno-
miality condition (cf. Example7.8). Then we conclude with some remarks and a conjecture.
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7.1. Some general results.In this subsection,g is a simple Lie algebra overk and (e, h, f ) is ansl2-triple
of g. For p in S(g), ep is the initial homogeneous component of the restriction ofp to the Slodowy slice
e+ g f . Recall thatk[e+ g f ] identifies with S(ge) by the Killing form 〈. , .〉 of g.

Let η0 ∈ g
e⊗k
∧2 g f be the bivector defining the Poisson bracket on S(ge) induced from the Lie bracket.

According to the main theorem of [Pr02], S(ge) is the graded algebra relative to the Kazhdan filtration of the
finite W-algebra associated withe so that S(ge) inherits another Poisson structure. The so-obtained graded
algebra structure is the Slodowy graded algebra structure (see Subsection4.1). Let η ∈ S(ge) ⊗k

∧2 g f be
the bivector defining this other Poisson structure. According to [Pr02, Proposition 6.3] (see also [PPY07,
§2.4]), η0 is the initial homogeneous component ofη. Denote byr the dimension ofge and set:

ω := η(r−ℓ)/2 ∈ S(ge) ⊗k
∧r−ℓ g f , ω0 := η(r−ℓ)/2

0 ∈ S(ge) ⊗k
∧r−ℓ g f .

Thenω0 is the initial homogeneous component ofω.
Let v1, . . . , vr be a basis ofg f . Forµ in S(ge)⊗k

∧i ge, denote byj(µ) the image ofv1∧ · · · ∧ vr by the right
interior product ofµ so that

j(µ) ∈ S(ge) ⊗k
r−i∧
g f .

Lemma 7.1. Let q1, . . . ,qℓ be some homogeneous generators ofS(g)g and let r1, . . . , rℓ be algebraically
independent homogeneous elements ofS(g)g.

(i) For some homogeneous element p ofS(g)g,

dr1∧ · · · ∧drℓ = pdq1∧ · · · ∧dqℓ.

(ii) The following inequality holds:

ℓ∑

i=1

deger i 6 degep+
1
2

(dimge+ ℓ).

(iii) The polynomialser1, . . . ,
erℓ are algebraically independent if and only if

ℓ∑

i=1

deger i = degep+
1
2

(dimge+ ℓ).

Proof. (i) Since q1, . . . ,qℓ are generators of S(g)g, for i ∈ {1, . . . , ℓ}, r i = Ri(q1, . . . ,qℓ) whereRi is a
polynomial inℓ indeterminates, whence the assertion with

p = det (
∂Ri

∂q j
, 1 6 i, j 6 ℓ).

(ii) Remind that forp in S(g), κ(p) denotes the restriction tog f of the polynomial functionx 7→ p(e+ x).
According to [PPY07, Theorem 1.2],

j(dκ(q1) ∧ · · · ∧ dκ(qℓ)) = aω

for somea in k∗. Hence by (i),

j(dκ(r1) ∧ · · · ∧ dκ(rℓ)) = aκ(p)ω.

The initial homogeneous component of the right-hand side isaepω0 and the degree of the initial homoge-
neous component of the left-hand side is at least

deger1+ · · ·+degerℓ − ℓ.
53



The assertion follows sinceω0 has degree

1
2

(dimge − ℓ).

(iii) If er1, . . . ,
erℓ are algebraically independent, then the degree of the initial homogeneous component

of j(dr1∧ · · · ∧drℓ) equals
deger1+ · · ·+degerℓ − ℓ

whence

deger1+ · · ·+degerℓ = degep+
1
2

(dimge+ ℓ)

by the proof of (ii). Conversely, if the equality holds, then

j(der1∧ · · · ∧derℓ) = aepω0(4)

by the proof of (ii). In particular,er1, . . . ,
erℓ are algebraically independent. �

Corollary 7.2. For i = 1, . . . , ℓ, let ri := Ri(q1, . . . ,qi) be a homogeneous element ofS(g)g such that
∂Ri

∂qi
, 0.

Thener1, . . . ,
erℓ are algebraically independent if and only if

deger1+ · · ·+degerℓ =
ℓ∑

i=1

degepi +
1
2

(dimge+ ℓ)

with pi =
∂Ri

∂qi
for i = 1, . . . , ℓ.

Proof. Since
∂Ri

∂qi
, 0 for all i, r1, . . . , rℓ are algebraically independent and

dr1∧ · · · ∧drℓ =
ℓ∏

i=1

∂Ri

∂qi
dq1∧ · · · ∧dqℓ

whence the corollary by Lemma7.1,(iii). �

Let g f
sing be the set of nonregular elements of the dualg f of ge. If g f

sing has codimension at least 2 ing f ,
we will say thatge is nonsingular.

Corollary 7.3. Let r1, . . . , rℓ and p be as in Lemma7.1and such thater1, . . . ,
erℓ are algebraically indepen-

dent.
(i) If ep is a greatest divisor ofder1∧ · · · ∧derℓ in S(ge) ⊗k

∧ℓ ge, thenge is nonsingular.
(ii) Assume that there are homogeneous polynomials p1, . . . , pℓ in S(ge)g

e
verifying the following condi-

tions:

1) er1, . . . ,
erℓ are ink[p1, . . . , pℓ],

2) if d is the degree of a greatest divisor ofdp1∧ · · · ∧dpℓ in S(ge), then

degp1+ · · ·+degpℓ = d +
1
2

(dimge + ℓ).

Thenge is nonsingular.

Proof. (i) Suppose thatep is a greatest divisor of der1∧ · · · ∧derℓ in S(ge) ⊗k
∧ℓ ge. Then for someω1 in

S(ge) ⊗k
∧ℓ ge whose nullvariety ing f has codimension at least 2,

der1∧ · · · ∧derℓ =
epω1.

Thereforej(ω1) = aω0 by Equality (4). Sincex is in g f
sing if and only ifω0(x) = 0, we get (i).
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(ii) By Condition (1),

der1∧ · · · ∧derℓ = qdp1∧ · · · ∧dpℓ

for someq in S(ge)g
e
, and for some greatest divisorq′ of dp1∧ · · · ∧dpℓ in S(ge) ⊗k

∧ℓ ge,

dp1∧ · · · ∧dpℓ = q′ω1.

So, by Equality (4),

qq′ j(ω1) = aepω0,(5)

so thatep dividesqq′ in S(ge). By Condition (2) and Equality (5), ω0 andω1 have the same degree. Then
qq′ is in k∗ ep, and for somea′ in k∗,

j(ω1) = a′ω0,

whence (ii), again sincex is in g f
sing if and only ifω0(x) = 0. �

The following proposition is a particular case of [JS10, §5.7]. More precisely, part (i) follows from [JS10,
Remark 5.7] and part (ii) follows from [JS10, Theorem 5.7].

Proposition 7.4. Suppose thatge is nonsingular.
(i) If there exist algebraically independent homogeneous polynomials p1, . . . , pℓ in S(ge)g

e
such that

degp1+ · · ·+degpℓ =
1
2

(dimge+ ℓ)

thenS(ge)g
e

is a polynomial algebra generated by p1, . . . , pℓ.
(ii) Suppose that the semiinvariant elements ofS(ge) are invariant. IfS(ge)g

e
is a polynomial algebra then

it is generated by homogeneous polynomials p1, . . . , pℓ such that

degp1+ · · ·+degpℓ =
1
2

(dimge + ℓ).

7.2. New examples.To produce new examples, our general strategy is to apply Proposition7.4,(i). To that
end, we first apply Corollary7.3 in order to prove thatge is nonsingular. Then, we search for independent
homogeneous polynomialsp1, . . . , pℓ in S(ge)g

e
satisfying the conditions of Corollary7.3,(ii) with d = 0.

Example7.5. Let ebe a nilpotent element ofso(k10) associated with the partition (3, 3, 2, 2). Then S(ge)g
e

is
a polynomial algebra bute is not good as explained below.

In this case,ℓ = 5 and letq1, . . . ,q5 be as in Subsection5.2. The degrees ofeq1, . . . ,
eq5 are 1, 2, 2, 3, 2

respectively. By a computation performed by Maple,eq1, . . . ,
eq5 verify the algebraic relation:

eq2
4 − 4eq3

eq2
5 = 0.

Set:

r i :=

{
qi if i = 1, 2, 3, 5

q2
4 − 4q3q2

5 if i = 4.

The polynomialsr1, . . . , r5 are algebraically independent overk and

dr1∧ · · · ∧dr5 = 2q4 dq1∧ · · · ∧dq5

Moreover,er4 has degree at least 7. Then, by Corollary7.2, er1, . . . ,
er5 are algebraically independent since

1
2

(dimge+ 5)+ 3 = 14= 1+ 2+ 2+ 2+ 7,

and by Lemma7.1,(ii) and (iii), er4 has degree 7.
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A precise computation performed by Maple shows thater3 = p2
3 for somep3 in the center ofge, and that

er4 = p4
er5 for some polynomialp4 of degree 5 in S(ge)g

e
. Settingpi := er i for i = 1, 2, 5, the polynomi-

als p1, . . . , p5 are algebraically independent homogeneous polynomials ofdegree 1, 2, 1, 5, 2 respectively.
Furthermore, a computation performed by Maple proves that the greatest divisors of dp1∧ · · · ∧dp5 in S(ge)
have degree 0, and thatp4 is in the ideal of S(ge) generated byp3 and p5. So, by Corollary7.3,(ii), ge is
nonsingular, and by Proposition7.4,(i), S(ge)g

e
is a polynomial algebra generated byp1, . . . , p5. Moreover,

e is not good since the nullvariety ofp1, . . . , p5 in (ge)∗ has codimension at most 4.

Example7.6. In the same way, for the nilpotent elementeof so(k11) associated with the partition (3, 3, 2, 2, 1),
we can prove that S(ge)g

e
is a polynomial algebra generated by polynomials of degree 1, 1, 2, 2, 7, ge is non-

singular bute is not good.
We also obtain that for the nilpotent elemente of so(k12) (resp.so(k13)) associated with the partition

(5,3,2,2) or (3,3,2,2,1,1) (resp. (5,3,2,2,1), (4,4,2,2,1), or (3,3,2,2,1,1,1)), S(ge)g
e

is a polynomial algebra,ge

is nonsingular bute is not good.

We can summarize our conclusions for the small ranks. Assumethatg = so(V) for some vector spaceV of
dimension 2ℓ+1 or 2ℓ and lete∈ g be a nilpotent element ofg associated with the partitionλ = (λ1, . . . , λk)
of dimV. If ℓ 6 6, our previous results (Corollary5.8, Lemma5.11, Theorem5.23, Examples7.5 and
7.6) show that eithere is good, ore is not good but S(ge)g

e
is nevertheless a polynomial algebra andge is

nonsingular. We describe in Table5 the partitionsλ corresponding to goode, and those corresponding to
the case wheree is not good. The third column of the table gives the degrees ofthe generators in the latter
case.

Type e is good S(ge)g
e

is polynomial,ge is nonsingular degrees of the generators
but e is not good

Bn, Dn, n 6 4 anyλ ∅

B5 λ , (3,3, 2,2,1) λ = (3, 3,2,2,1) 1,1,2,2, 7
D5 λ , (3,3, 2,2) λ = (3, 3,2,2) 1,1,2,2,5
B6 λ < {(5, 3,2,2,1), (4, 4,2,2,1), λ ∈ {(5, 3,2,2, 1), (4, 4,2,2, 1), {1,1,1,2, 2,7; 1,1,2, 2,3,6;

(3,3, 2,2,1,1, 1)} (3, 3,2,2,1, 1,1)} 1,1,2,2, 6,7}
D6 λ < {(5, 3,2,2), (3,3, 2,2,1,1)} λ ∈ {(5, 3,2,2), (3, 3,2,2,1, 1)} {1,1,1,2,2,5; 1,1,2,2,3,7}

Table 5. Conclusions forg of typeBℓ or Dℓ with ℓ 6 6

Remark7.7. The above discussion shows that there are good nilpotent elements for which the codimension
of (ge)∗sing in (ge)∗ is 1. Indeed, by [PPY07, §3.9], for some nilpotent elemente′ in B3, the codimension of

(ge
′

)∗sing in (ge
′

)∗ is 1 but, inB3, all nilpotent elements are good (cf. Table5).

7.3. A counter-example. From the rank 7, there are elements that do no satisfy the polynomiality condi-
tion. The following example disconfirms a conjecture of Premet that any nilpotent element of a simple Lie
algebra of classical type satisfies the polynomiality condition.

Example7.8. Let e be a nilpotent element ofso(k14) associated with the partition (3, 3, 2, 2, 2, 2). Thene
does not satisfy the polynomiality condition.

In this case,ℓ = 7 and letq1, . . . ,q7 be as in Subsection5.2. The degrees ofeq1, . . . ,
eq7 are 1, 2, 2, 3, 4, 5, 3

respectively. By a computation performed by Maple, we can prove thateq1, . . . ,
eq7 verify the two following

algebraic relations:

16eq2
3

eq5
2 + eq4

4 − 8eq3
eq5

eq2
4 − 64eq3

3
eq7

2 = 0, eq3
eq2

6 −
eq2

7
eq4

2 = 0
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Set:

r i :=



qi if i = 1, 2, 3, 4, 7
16q2

3q5
2 + q4

4 − 8q3q5q2
4 − 64q3

3q7
2 if i = 5

q3q2
6 − q2

7q2
4 if i = 6

The polynomialsr1, . . . , r7 are algebraically independent overk and

dr1∧ · · · ∧dr7 = 2q3q6 (32q2
3q5 − 8q3q2

4) dq1∧ · · · ∧dq7

Moreover,er5 and er6 have degree at least 13 ande(2q3q6(32q2
3q5 − 8q3q2

4)) has degree 15. Then, by Corol-
lary 7.2, er1, . . . ,

er7 are algebraically independent since

1
2

(dimge+ 7)+ 15= 37= 1+ 2+ 2+ 3+ 3+ 26

and by Lemma7.1,(ii) and (iii), er5 and er6 have degree 13.
A precise computation performed by Maple shows thater3 = p2

3 for somep3 in the center ofge, er4 = p3p4

for some polynomialp4 of degree 2 in S(ge)g
e
, er5 = p3

3
eq7p5 for some polynomialp5 of degree 7 in S(ge)g

e
,

and er6 = p4
er7p6 for some polynomialp6 of degree 8 in S(ge)g

e
. Settingpi := er i for i = 1, 2, 7, the

polynomialsp1, . . . , p7 are algebraically independent homogeneous polynomials ofdegree 1, 2, 1, 2, 7, 8, 3
respectively. Letl be a reductive factor ofge. According to [Ca85, Ch. 13],

l ≃ so2(k) × sp4(k) ≃ k × sp4(k).

In particular, the center ofl has dimension 1. Let{x1, . . . , x37} be a basis ofge such thatx37 lies in the center
of l and such thatx1, . . . , x36 are in [l, l] + geu with geu the nilpotent radical ofge. Thenp2 is a polynomial
in k[x1, . . . , x37] depending onx37. As a result, by [DDV74, Theorems 3.3 and 4.5], the semiinvariant
polynomials of S(ge) are invariant.

Claim 7.9. The algebrage is nonsingular.

Proof. [Proof of Claim 7.9] The spacek14 is the orthogonal direct sum of two subspacesV1 andV2 of
dimension 6 and 8 respectively and such thate, h, f are ing := so(V1) ⊕ so(V2). Thenge = g ∩ ge is a
subalgebra of dimension 21 containing the center ofge. For p in S(ge), denote byp its restriction tog f .
The partition (3, 3, 2, 2, 2, 2) verifies the condition (1) of the proof of [Y06, §4, Lemma 3]. So, the proof of
Lemma5.14remains valid, and the morphism

Ge
0 × g

f
−→ g f , (g, x) 7−→ g(x)

is dominant. As a result, forp in S(ge)g
e
, the differential ofp is the restriction tog f of the differential ofp.

A computation performed by Maple proves thatp3
10 is a greatest divisor of dp1 ∧ · · · ∧ dp7 in S(ge). If q

is a greatest divisor of dp1 ∧ · · · ∧ dp7 in S(ge), thenq is in S(ge)g
e

since the semiinvariant polynomials are
invariant. Soq = pd

3 for some nonnegative integerd. One can suppose that{x1, . . . , x16} is a basis of the

orthogonal complement tog f in ge. Then the Pfaffian of the matrix
(
[xi , x j], 1 6 i, j 6 16

)

is in k∗p8
3 so thatp2

3 is a greatest divisor of dp1∧ · · · ∧dp7 in S(ge). Since

degp1 + · · · + degp7 = 2+ 22= 2+
1
2

(dimge + ℓ),

we conclude thatge is nonsingular by Corollary7.3,(ii). �
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Claim 7.10. Suppose that S(ge)g
e

is a polynomial algebra. Then for some homogeneous polynomials p′5
and p′6 of degrees at least 5 and at most 8 respectively, S(ge)g

e
is generated byp1, p2, p3, p4, p′5, p′6, p7.

Furthermore, the possible values for (degp′5, degp′6) are (5, 8) or (6, 7).

Proof. [Proof of Claim7.10] Since the semiinvariants are invariants, by Claim7.9and Proposition7.4,(ii),
there are homogeneous generatorsϕ1, . . . , ϕℓ of S(ge)g

e
such that

degϕ16 · · · 6degϕℓ,

and

degϕ1+ · · ·+degϕℓ =
1
2

(dimge+ ℓ) = 22.

According to [Mo06c, Theorem 1.1.8] or [Y06b], the center ofge has dimension 2. Hence,ϕ1 andϕ2 have
degree 1. Thereby, we can suppose thatϕ1 = p1 andϕ2 = p3 since p1 and p3 are linearly independent
elements of the center ofge. Sincep2 andp4 are homogneous elements of degree 2 such thatp1, . . . , p4 are
algebraically indepent,ϕ3 andϕ4 have degree 2 and we can suppose thatϕ3 = p2 andϕ4 = p4. Sincep7 has
degree 3,ϕ5 has degree at most 3 and at least 2 since the center ofge has dimension 2. Suppose thatϕ5 has
degree 2. A contradiction is expected. Then

degϕ6 + degϕ7 = 22− (1+ 1+ 2+ 2+ 2) = 14.

Moreover, sincep1, . . . , p7 are algebraically independent,ϕ7 has degree at most 8 andϕ6 has degree at least
6. Hencep7 is in the ideal ofk[p1, p3, ϕ3, ϕ4, ϕ5] generated byp1 andp3. But a computation shows that the
restriction ofp7 to the nullvariety ofp1 andp3 in g f is different from 0, whence the expected contradiction.
As a result,ϕ5 has degree 3 and

degϕ6 + degϕ7 = 13.

One can supposeϕ5 = p7 and the possible values for (degϕ6, degϕ7) are (5, 8) and (6, 7) sinceϕ7 has degree
at most 8. �

Suppose that S(g)g is a polynomial algebra. A contradiction is expected. Letp′5 andp′6 be as in Claim7.10
and such that degp′5 < degp′6. Then (degp′5, degp′6) equals (5, 8) or (6, 7). A computation shows that we
can choose a basis{x1, . . . , x37} of ge with x37 = p3, with p1, p2, p3, p4, p7 in k[x3, . . . , x37] and with p5, p6

of degree 1 inx1. Moreover, the coefficient of x1 in p5 is a prime element ofk[x3, . . . , x37], the coefficient
of x1 in p6 is a prime element ofk[x2, . . . , x37] having degree 1 inx2, and the coefficient of x1x2 in p6

equalsa2p2
3 with a a prime homogeneous polynomial of degree 2 such thata, p1, p2, p3, p4 are algebraically

independent. In particular,a is not invariant. Ifp′5 has degree 5, then

p5 = p′5r0 + r1

with r0 in k[p1, p2, p3, p4] and r1 in k[p1, p2, p3, p4, p7] so thatp′5 has degree 1 inx1, and the coefficient of
x1 in p5 is the product ofr0 and the coefficient of x1 in p′5. But this is impossible since this coefficient is
prime. So,p′5 has degree 6 andp′6 has degree 7. We can suppose thatp′6 = p5. Then

p6 = p5r0 + p′6r1 + r2

with r0 homogeneous of degree 1 ink[p1, p3], r1 homogeneous of degree 2 ink[p1, p2, p3, p4], and r2

homogeneous of degree 8 ink[p1, p2, p3, p4, p7]. According to the above remarks onp5 and the coefficient
of x1x2 in p6, r1 is in k∗p2

3 sincer1 has degree 2.
For p in S(ge), denote byp its image in S(ge)/p3S(ge). A computation shows that for someu in

S(ge)/p3S(ge),
p5 = p4

2u, p6 = −p4p7u.
58



Furthermore,p4 andp7 are different prime elements of S(ge)/p3S(ge) and the coefficientu1 of x1 in u is the
product of two different polynomials of degree 1. The coefficient of x1 in p6 is u1p4

2r0 since

p6 = p5r0 + r2.

On the other hand, the coefficient ofx1 in p6 is −u1p4p7, whence the contradiction sincer0 has degree 1.

7.4. A conjecture. All examples of good elements we achieved satisfy the hypothesis of Theorem3.6.

Conjecture 7.11. Let g be a simple Lie algebra and let e be a nilpotent ofg. If e is good then for some
graded generating sequence(q1, . . . ,qℓ) in S(g)g, eq1, . . . ,

eqℓ are algebraically independent overk. In other
words, the converse implication of Theorem3.6holds.

Notice that it may happen that for somer1, . . . , rℓ in S(g)g, the elementser1, . . . ,
erℓ are algebraically

independent overk, and that howevere is not good. This is the case for instance for the nilpotent elements
in so(k12) associated with the partition (5, 3, 2, 2), cf. Example7.6.

In fact, according to [PPY07, Corollary 2.3], for any nilpotente of g, there existr1, . . . , rℓ in S(g)g such
that er1, . . . ,

erℓ are algebraically independent overk.
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