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Proxemics models for human-aware navigation in robotics: Grounding

interaction and personal space models in experimental data from

psychology*

Marie-Lou Barnaud1, Nicolas Morgado2, Richard Palluel-Germain2, Julien Diard2 and Anne Spalanzani1

Abstract— In order to navigate in a social environment, a
robot must be aware of social spaces, which include proximity
and interaction-based constraints. Previous models of interac-
tion and personal spaces have been inspired by studies in social
psychology but not systematically grounded and validated with
respect to experimental data. We propose to implement personal
and interaction space models in order to replicate a classical
psychology experiment. Our robotic simulations can thus be
compared with experimental data from humans. Thanks to this
comparison, we first show the validity of our models, examine
the necessity of the interaction and personal spaces and discuss
their geometric shape. Our experiments suggest that human-
like robotic behavior can be obtained by using only correctly
calibrated personal spaces (i.e., without explicit representation
of interaction spaces and therefore, without the need to detect
interactions between humans in the environment).

I. INTRODUCTION

Human navigation, however mundane its context and

purpose, is a complex activity, subject to a large number

of external constraints. Avoiding bumping into two people

discussing together, and avoiding disturbing these people by

interrupting their interaction, are two examples of such con-

straints. The first is an instance of a safety constraint, useful

to prevent situations potentially harmful to the navigating

agent; the second is an instance of a social constraint, useful

to prevent situations potentially annoying to others. Trying

and avoiding being a nuisance, both to self and to others,

would therefore seem to be a basic requirement for human-

like navigation.

In the context of human-aware robotic navigation, au-

tonomous robots should respect these two types of con-

straints. Early robotics research have mostly focused on

safety constraints [1], [2], [3]. Recent developments have

investigated incorporating social constraints in navigation al-

gorithms and space representations [4], [5], [6]. In particular,

robotics research has integrated various models of personal

spaces (PS) and interaction spaces (IS).

For instance, PS has been modeled by asymmetrical

combinations of 2D Normal distributions, centered on the

navigating agent’s position [7], [5], or by considering several

regions around humans in the robotic environment, assigning
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each region to accompanying and following tasks [8]. PS

models have also been expanded, integrating explicit attrac-

tion towards interaction or, on the contrary, avoidance of

interaction, in order to differentially weigh four 2D Normal

distributions and obtain different PS shapes [9]. Visibility has

also been considered, for instance so that robots would avoid

zones that humans do not see (e.g., zones behind a corner,

behind other people) [6]. Interaction space has also been

modeled, for instance with Normal probability distributions,

either one-dimensional or two-dimensional, according to the

geometrical configuration of the interacting group [5].

Outside of robotics, experiments on animal navigation and

social conventions have led to a large number of theories

about personal space representation, with applications from

livestock herding [10] to understanding the psychology of

interaction in humans.

Hall [11], for instance, proposed the concept of proxemics

to describe observations and theories of the use of space

in humans. Assuming that social relationships are usually

reflected in physical distances (between people), Hall defined

four proxemic distances: the intimate, personal, social and

public distances, which are represented by four concentric

boundaries. PS conceptually matches Hall’s model of per-

sonal distance.

The boundary of PS is influenced by contextual parameters

(e.g., culture) or internal parameters (e.g., speed) making

its direct observations difficult [12], [13]. Moreover, several

authors proposed that personal space would not be concentric

but would be elongated to the front [14], [15]. PS is the

most studied space, but is not the only one. Indeed, more

recently, psychology studies have focused on other spaces,

like IS [16], either for static interactions (e.g., discussing

at the water cooler) or interactions during movement (e.g.,

walking in group), or the affordance space [17].

So far, and to the best of our knowledge, it appears

that human-aware robotics uses models of social constraints

that are somewhat inspired from known representations of

social spaces in humans, but not systematically grounded in

experimental data from social and cognitive psychology.

This is a possible shortcoming, as it could limit the ability

of robots to mimic navigation trajectories and behaviors

that appear socially acceptable and natural to surrounding

humans. Developing formal models of human-like social

navigation could also, in turn, help social psychology identify

mathematical properties of models that would be useful for

understanding human behavior.



In this paper, we present a study of several models of

social space representations, grounding their comparison

in experimental data from the social psychology literature.

More precisely, we consider a classical experiment by Efran

and Cheyne [18], where human participants had to walk

down a corridor, choosing whether they would pass between

two confederates involved in an interaction, or avoid them

and pass behind. We then define mathematical models of

personal and interaction spaces. They provide navigation

costs to a cost-based trajectory planning algorithm.

Our experiment addresses three questions. Can the exper-

iment and experimental observations be replicated using our

simulated robot? We demonstrate it does, in some portions of

the parameter space we explored, and it does not, elsewhere.

To replicate experimental data, is it necessary to involve an

interaction space representation, or are personal spaces suffi-

cient? We demonstrate that personal spaces are sufficient, and

that interaction space models may be superfluous. Finally,

what geometrical shapes can personal spaces have in order

to explain experimental data? We demonstrate that personal

spaces need to have an asymmetrical shape, elongated to the

front.

To substantiate these claims, the rest of this paper is

structured as follows. We first describe Efran and Cheyne’s

experimental protocol and data collection, then we introduce

the mathematical models for personal and interaction spaces.

Our experiment, and the simulator it is implemented in, are

then described, followed by the presentation and analysis of

our experimental data.

II. EFRAN AND CHEYNE’S EXPERIMENTS

We summarize here the main elements and findings of the

classical experiment by Efran and Cheyne [18].

Two confederates, involved in a mock discussion, stood

in narrow corridors. The experiment took place in three

different corridors, of widths 2.28 m, 2.49 m and 2.36 m.

Confederate A was back to one wall, confederate B was

facing him (or her), some distance d away. From trial

to trial, distance d varied, from 0.61 m to 1.37 m. We

considered 13, 15 and 15 different distances for the three

corridors, respectively, for a total of 43 possible different

spatial configurations. The space “outside” of the interacting

pair depended on the corridor: for instance, it was only

0.21 m at its smallest (in the first corridor).

In this setting, participants were people who simply hap-

pened to walk down this corridor. They could do so either by

walking outside of the interacting pair, or between confed-

erates (see Fig. 1, top). When participants were gone from

the corridor, confederates took note of the passage chosen.

However, some inclusion criteria had to be met (e.g., no-one

else was in the corridor during the observation). Participants

were unaware that they were observed for the purpose of

the experiment. There were respectively 132, 901 and 223

participants, in the three corridors. Observations were the

probabilities, for each distance d, that a participant would

pass between confederates: experimental data are shown in

Fig. 1 (bottom).

Fig. 1. Summary of Efran and Cheyne’s experiment [18]. Top: Schema
of the experimental setup. Bottom: Experimental data is the probability of
passing between confederates, as a function of the distance d between them.

Observations indicate, of course, that a larger distance d
between confederates increased the probability that partici-

pants would pass between them, and decreased the probabil-

ity of passing behind confederate B. These experimental data

quantify precisely how this probability varied as a function

of distance d between confederates. These are the data that

we aim to mathematically replicate, in our experiment.

III. PERSONAL SPACE AND INTERACTION SPACE

MODELS

A. Personal space model

We model PS in the form of a real-valued cost. Its value

is 0 for positions where nothing hinders the navigating

agent; on the other hand, its value is 1 for positions where

something maximally disturbs or hinders it (i.e., unwanted

contact or collision). Between these extremes, the cost varies

gradually as a function of distance and angle to the navigat-

ing agent. Following Kirby [7], this mathematically takes

the form of two Normal probability distributions on the x, y
plane, joined together seamlessly on the coronal plane of the

navigating agent (i.e., the plane separating what is in front

to what is to the rear of the navigating agent). These two

2D Normal distributions have independent front variance σh

and rear variance σr, but, by construction, they have the same

side variance σs. Their covariance matrices are Σh for the



Fig. 2. Personal space model of parameters σh = 1.0, σr = 0.3, σs =
0.5, visualized as a real-valued function. Inset: The same personal space,
visualized as a contour plot.

Fig. 3. Interaction space models. Top: Interaction space as a Normal
probability distribution. Bottom: Interaction space as a constant function.

front 2D Normal and Σr for the rear 2D Normal, with:

Σh =

(

σh 0
0 σs

)

, Σr =

(

σr 0
0 σs

)

. (1)

Therefore, the personal space cost at position (x, y) relative

to the navigating agent, and angle α = 0 is given by:

PS(x, y) ∝

{

N (x, y ; [x0, y0],Σh) if x0 ≥ 0
N (x, y ; [x0, y0],Σr) otherwise .

(2)

The general formulation, for any angle α, can be found

elsewhere [7]: it basically amounts to rotating the front/rear

axis by angle α. An example of a personal space cost

function is shown in Fig. 2.

B. Interaction space model

In this paper, we explore two mathematical definitions

for the interaction space (IS) model. We only consider one-

dimensional functions, because the geometry of Efran and

Cheyne’s experiment only provides information about pas-

sage through the “critical line”, that is to say the axis crossing

the corridor at the position of the interacting confederates.

The first mathematical model was already used in previous

works [5], and consists in a Normal probability distribution,

defined by:

ISN (x) ∝ N (x ; center, dist/sint) , (3)

with center the middle position between the interacting

people, dist the distance between them, and sint a free

parameter. The proportionality coefficient is defined so that

the maximum value taken by this function is 1 to represent

maximum hindrance.

The second mathematical model is simply a constant value

between interacting people, defined by:

ISc(x) = h = min(pint/dist, 1) , (4)

with h the “height” of the constant, given by the ratio

between pint, a free strictly positive parameter, and dist the

distance between the interacting people, provided it does not

exceed a maximum value of 1 (for representing maximum

hindrance, as previously). This model represents a constant

valued hindrance between interacting people, whatever the

position that would be chosen by the navigating agent to

pass between them.

The two mathematical definitions of interaction space we

investigate are illustrated in Fig. 3.

IV. EXPERIMENT

A. Simulation of Efran and Cheyne’s experiment

We have replicated Efran and Cheyne’s experiment in a

robotic simulator. To do so, we have created three different

environments, that are corridors of the same dimensions as

described by Efran and Cheyne. Static, simulated confeder-

ates A and B, and a moving simulated participant (i.e., the

simulated robot) were placed in these environments. Each

was implemented as a rectangle of lengths 0.3 m from “front”

to “back” and 0.4 m long from left to right.

Simulated confederates were placed as in the original

experiment, with the distance d between them a controlled

parameter. The simulated robot was placed, at the beginning

of each simulation, at the entrance of the corridor, and

was provided a navigation goal at the other end. To solve

the navigation task, it would therefore have to traverse the

corridor, either by passing between or behind confederates,

as human participants had to.

B. Trajectory generation

We used the RiskRRT (Risk Rapid-exploring Random

Tree) trajectory generation algorithm [19], which is a variant

of the RRT (Rapid-exploring Random Tree) algorithm [20]

adapted for dynamic environment, using partial planning.

The RiskRRT trajectory generation algorithm deploys a tree

of nodes with associated costs, taking into account possible

collisions with static and dynamic obstacles, along with

social costs, and selects the branch of lower maximal cost

that also progresses toward the specified goal. A sample

navigation scenario, illustrating the RiskRRT algorithm, is

shown in Fig. 4.

C. Collision costs and social costs

In RiskRRT, costs associated with nodes represent risk,

either of collision, or of social hindrance. This cost

for a position (x, y) is therefore defined as a function

of the probability that position (x, y) is collision free,



Fig. 4. Example of a navigation scenario and the possible trajectories
computed by the RiskRRT algorithm. Near the simulated confederates,
potential collisions and social costs increase the calculated costs of some
branches of the tree. Larger costs are represented by circles of larger
diameter. In this example, the simulated participant chooses to avoid passing
between confederates.

PWithoutColl(x, y), and the probability that it is “hindrance-

free”, PWithoutHind(x, y), with:

cost(x, y) =

1− (PWithoutColl(x, y) · PWithoutHind(x, y)) . (5)

In the simulation of Efran and Cheyne’s experiment,

the probability of collision involves the probability of

collision with walls in the occupancy map given to the

robot, pCollW(x, y), or the confederates pCollCA(x, y) and

pCollCB(x, y):

PWithoutColl(x, y) = (1− pCollW(x, y))

· (1− pCollCA(x, y)) · (1− pCollCB(x, y)) . (6)

The probability of social hindrance involves several com-

ponents: the probability that the robot at position (x, y)
would invade personal spaces of confederates A and B

pHindCA(x, y) and pHindCB(x, y), the probability of inter-

rupting their interaction pInt(x, y), and the probability that

outside elements would invade the personal space of the

navigating agent pNav(x, y):

PWithoutHind(x, y) =

(1− pHindCA(x, y)) · (1− pHindCB(x, y)) (7)

· (1− pInt(x, y)) · (1− pNav(x, y)) .

The first two terms refer to the PS models centered on each

confederate, using the asymmetric 2D Normal model of PS

Fig. 5. Top: Illustration of the critical line, the only portion of interest
when deciding whether to pass between or outside confederates (top view
of the experimental situation). Bottom: Height of the critical line represents
passing probabilities (perspective drawing of the experimental situation).

given by Eq. (2). pInt(x, y) refers either to the Normal model

of IS of Eq. (3), or to the constant model of IS of Eq. (4),

or can be replaced by a constant zero value for testing

experimental scenarios where the interaction space model

is disabled. Finally, pNav(x, y) is computed by attaching a

personal space model to the navigating agent, and finding the

object, in the navigating agent’s neighborhood, of maximal

hindrance (i.e., the navigating agent avoids being close to

static or dynamic obstacles as they would invade its personal

space).

Again, because of the simple geometry of the navigation

scenario in Efran and Cheyne’s experiment, costs only need

to be computed on the “critical line” passing through confed-

erates and crossing the corridor (see Fig. 5, top; the critical

line is, because of the geometry of Efran and Cheyne’s

experiment, parallel with body and gaze orientations of

confederates, and normal to the walls). In other words, we

only used, from the RiskRRT algorithm, the cost computation

for these positions of interest, ignoring the whole trajectory

generation before or after the critical line, etc. We computed

costs along this critical line, every 0.02 m, excepting posi-

tions occupied by confederates.

With these costs, we computed the probability of passing

between or outside the confederates. Two methods have been

explored, either by selecting the side of lowest average cost

(“average” method), or by selecting the side containing the

lowest cost overall (“minimum” method). A hypothetical sit-

uation illustrating the difference is shown in Fig. 5 (bottom).

On this example, the “average” method would select passing

outside of confederates (smaller average cost on the left

side), whereas the “minimum” method would select passing

between confederates (smaller minimum value on the right

side).



Condition Parameters Min Max Step

PS Only
σh 0.7 1.5 0.1
σr 0.1 1.3 0.1
σs 0.3 1.5 0.1

PS + constant IS

σh 0.6 1.4 0.2
σr 0.1 1.3 0.2
σs 0.3 1.3 0.2
pint 0.0 0.8 0.2

PS + Normal IS
σh 0.4 1.6 0.2
σr 0.1 1.3 0.2
σs 0.3 1.5 0.2
sint 0.5 8.0 0.5

Constant IS Only pint 0.0 1.5 0.1

Normal IS Only sint 0.5 8 0.5

TABLE I

PARAMETER RANGES AND SAMPLING PRECISION FOR EACH

EXPERIMENTAL CONDITION.

Experimental results showed that the “minimum” method

yields similar observations (i.e., candidate models are ranked

in the same order), with systematically worse model fit

(i.e., there are larger discrepancies between data and model

predictions) than the “average” method. Therefore, for the

remainder of this paper, and because of lack of space, we

only report below experiments with the “average” method.

D. Experimental conditions, parameter spaces, and model

fit measure

To answer our questions about the necessity of modeling

interaction spaces, we have explored several model combi-

nations, resulting in five experimental conditions:

1) in the “PS Only” condition, personal spaces of the

navigating agent and confederates were used in com-

putations, but not interaction spaces (i.e., pInt = 0 in

Eq. (8) above);

2) in the “PS + Constant IS” condition, personal spaces

were used, along with an interaction space of constant

value between confederates (i.e., pInt = ISc);

3) in the “PS + Normal IS” condition, personal spaces

were used, along with an interaction space following a

Normal probability distribution between confederates

(i.e., pInt = ISN );

4) in the “Constant IS Only” condition, personal spaces

were disabled, leaving only an interaction space of

constant value between confederates;

5) finally, in the “Normal IS Only” condition, personal

spaces were disabled, leaving only an interaction space

of Normal shape between confederates.

For each condition, the possible parameters dimensions

were sampled at discrete values: this allows a grid search

for evaluating models. Ranges and precision steps are given

Table I.

Enumerating all model combinations and parameter space

evaluation points yielded 8, 091 candidate models that we

experimentally evaluated. Each of these candidate models

was simulated in all of the 43 spatial configurations of

our simulation of Efran and Cheyne’s experiment (recall

there were three corridors, with 13 + 15 + 15 possible

distances d between confederates). Overall, we performed

8, 091 · 43 = 347, 913 simulations in our experiment (and

again the same number for the “minimum” method, that we

discounted previously).

Each of these simulations provided the probability to pass

between the confederates, Sim P, for each experimental con-

dition, parameter values, and spatial configurations at hand.

We therefore measured the model fit of each simulation, by

comparing our simulated data with the experimental data of

Efran and Cheyne, Obs P, using the root of the squared error:

Model fit =
√

(Sim P − Obs P)2 , (8)

(i.e., we measured the RMSE for a single point). Model fit

is good when the measured error is small.

V. EXPERIMENTAL RESULTS

The model fit measure we presented was aggregated in

various ways during data analysis. For instance, we found

out that analyzing results for each of the three simulated

corridors, or by averaging over corridors, had minimal impact

on observations. Therefore, in the remainder of the paper, we

only discuss this global analysis of data (but see Table II).

A. Can we replicate Efran and Cheyne’s data?

The first data analysis we report aimed at verifying

whether the proposed models and their combinations could

account for the experimental data of Efran and Cheyne.

To do so, we studied, for each condition, the 200 parameter

values with best and worse model fits found in the parameter

space. Fig. 6 shows the results for conditions “PS Only”,

“PS + Constant IS” and “PS + Normal IS”. We observe

that, in these conditions, the best parameter values allow

the simulated models to closely match experimental data,

contrary to the worst parameter values, where the navigat-

ing agent passes much more frequently or less frequently

between confederates.

We also studied the geometry of model fit across the

parameter space, to verify whether better solutions could

possibly exist outside of the chosen parameter space. We

focus here on model fit in the “PS Only” condition, for

all parameter values. Recall that parameter space is three-

dimensional in this case, with three independent variance

coefficients σh, σr and σs: we plot model fit against ratios

σr/σh and σs/σh (Fig. 7, top) and ratios σr/σs and σh/σs

(Fig. 7, bottom).

We observe flat valleys in model fit landscapes, where it

is very close to its minimal value of 0.084. It is doubtful

that better solutions exist outside of the parameter space

we explored; examining data by Efran and Cheyne, we can

hypothesize that we reached a minimal, residual value for

model fit, that is due to experimental noise and small data

sample (e.g., see the odd drop in passage probability around

distance d = 1.15 m, for corridor 1, in Fig. 1).

Overall, these results show that the chosen parameter

spaces contain good solutions allowing to replicate Efran and

Cheyne’s data, but not trivially so, as portions of parameter



Condition
Best parameters Best model fit

Parameters Corr1 Corr2 Corr3 Overall Corr1 Corr2 Corr3 Overall

PS Only
σh 1.5 1.3 1.5 0.9

0.085 0.024 0.017 0.084σr 1.1 1.0 0.6 0.1
σs 0.3 0.6 1.5 1.5

PS + Constant IS

σh 1.4 1.2 1.4 0.8

0.085 0.024 0.016 0.084
σr 1.3 0.9 0.7 0.1
σs 0.3 0.7 1.3 1.1
pint 0.6 0.2 0.6 0.4

PS + Normal IS

σh 1.0 1.0 1.4 0.6

0.087 0.025 0.016 0.083
σr 1.1 1.3 1.3 0.1
σs 0.3 0.5 1.3 1.5
sint 7.0 7.5 6.0 8.0

Constant IS Only pint 1.0 0.9 1.1 1.0 0.144 0.294 0.216 0.230

Normal IS Only sint 5.5 7.0 6.0 6.5 0.179 0.325 0.308 0.283

TABLE II

SUMMARY OF THE BEST PARAMETERS AND MODEL FITS FOR EACH EXPERIMENTAL CONDITION.

Fig. 6. Comparison of simulated passage probabilities and experimental
observations by Efran and Cheyne, in corridor 2 (data are similar for
other corridors). a) The 200 best parameter values in the “PS Only”
condition replicate experimental data very well, contrary to the 200 worst
(b). Observations are similar in the “PS + Constant IS” (c,d) and “PS +
Normal IS” (e,f) conditions.

Fig. 7. Model fit in the “PS Only” condition, as a function of ratios σr/σh

and σs/σh (Top) and as a function of ratios σr/σs and σh/σs (Bottom).
Insets show the corresponding PS shapes for example positions in these
spaces.



Fig. 8. Model fit as a function of the single parameter for the “Constant
IS Only” (a) condition and the “Normal IS Only” (b) condition. In both
cases, an optimal parameter value lies inside the explored parameter space.

spaces yield simulations that do not correspond to human

behavior.

Experimental results and analyses are similar for other

conditions. In particular, concerning the “Constant IS Only”

and “Normal IS Only” conditions, we observe an overall

worse fit, everywhere in the parameter space, compared to

the “PS Only” condition (Fig. 8). These two conditions are

therefore eliminated from further analysis.

B. Are interaction spaces necessary?

Previous analyses have left three conditions in competi-

tion: “PS Only”, “PS + Constant IS” and “PS + Normal

IS”. Analysis of the best parameter values shows similar best

model fits for each of the three conditions (see Table II). We

have investigated this similarity and found that, for parameter

values in models with IS, there was an equivalent parameter

value for the personal space in the “PS Only” condition.

Intuitively, this equivalent model simply replaces the IS

between confederates by an increase in the front variance

of the PS. We compared for instance the best parameters in

the “PS Only” and the “PS + Normal IS”, in the overall

analysis (all three corridors combined). Removing a Normal

IS with sint = 8.0 modifies the front variance of the PS

from σh = 0.6 to σh = 0.9. The situation is similar when

comparing the “PS Only” and “PS + Constant IS” conditions,

but with less marked increases in σh.

This means that models with explicit IS are equivalent to

a model without IS, but with different parameters. This is

both a good and a bad news. The bad news is that, in terms

of scientific analysis, this leads to a negative conclusion: this

shows that the data of Efran and Cheyne cannot discriminate

between models with or without IS. From these data, it is

impossible to know whether humans use an IS representation,

or whether they only rely on a PS representation. It could also

be the case that humans only use plastic PS representations,

that are modified according to context, as some psychological

experiments have already suggested [14], [13].

On the other hand, the good news is that using only a PS

of fixed parameters yields very good results, with respect to

the replication of Efran and Cheyne’s experiment: notice that

valleys of near optimal parameter configurations are wide

(Fig. 7), indicating a robust model. We pursue the previous

example: assume removing the IS from the optimal “PS +

Normal IS”, but not increasing σh. It can be verified that

not increasing σh would only marginally affect model fit

(compare, in Fig. 7 (top), the point at σs/σh = 1.5/0.6 = 2.5
and σr/σh = 0.1/0.6 = 0.16 with the point at σs/σh =
1.5/0.9 = 1.6 and σr/σh = 0.1/0.9 = 0.11: both lie in the

near-optimal valley).

Taking only PS models into account, ignoring IS alto-

gether, also would yield simpler robotic implementation.

First, it reduces parameter space by one-dimension; as we

showed that it would not decrease model performance, a

parsimony argument supports this simplification. This ob-

servation also leads to an intriguing possibility for human-

aware navigation in robotics. This suggests that detecting

interactions in human populated environments, which is

possibly a costly and difficult step, might be superfluous.

At least for interactions when people are separated by

small distances, a representation of their PS already ensures

avoiding interrupting their interactions. Whether this extends

to interactions on a larger spatial scale, or involving more that

two people, is an open question.

C. What is the geometry of personal space?

Examining the model fit landscapes of the “PS Only”

condition (Fig. 7) suggests that only some PS shapes yield

adequate replication of Efran and Cheyne’s data. Examples

in valleys of good solutions all have similar geometries, with

an asymmetrical shape, elongated to the front and short to

the rear.

This result is not compatible with Hall’s original pro-

posal [11] of PS as concentric circles (a circular PS can

be seen in Fig. 7 as a mediocre solution). In contrast,

it strongly supports other proposals which have suggested

asymmetrical shapes, similar to the ones we obtained in our

experiment [14].

VI. CONCLUSION

In this paper, we have presented an experiment comparing

robotic simulations of PS and IS with experimental data from

psychological literature, in a corridor crossing navigation

scenario involving avoiding people in interaction. We have

proposed several models of IS, and a model of PS, to

investigate their combinations extensively.



Our results indicate that the proposed models, with correct

parameter values, can adequately replicate the experimen-

tal data of Efran and Cheyne. This could benefit future

robotic applications, by providing PS parameters that were

demonstrated to yield navigation strategies very close to hu-

man behavior (i.e., grounding Kirby’s asymmetrical Normal

model [7] in data from experimental psychology). We have

also demonstrated that PS was sufficient in the navigation

scenario we explored, and that omitting an explicit IS would

only marginally decrease model fit. In a robotic application

context, this suggests that detecting interactions might by

superfluous, and only representing PS would be enough to

obtain human-like group avoidance.

Finally, the analysis of PS geometry strongly suggests that

human PS would be asymmetrical and elongated to the front,

supporting some non-mathematical models of PS in psycho-

logical literature. However, because of the simplicity of Efran

and Cheyne’s experiment, some geometrical properties could

not be investigated (e.g., the critical line “hides” the 2D shape

of IS).

The generalizability of our results thus appears to be an

interesting topic for future research. A large number of

variations on Efran and Cheyne’s initial experiments are

easily imagined; we describe a few. For instance, if one of the

confederates is not a person but a robot, would a different

personal space be needed around the robotic confederate?

Would it have a personal space, at all? If there is a single

person in a corridor reading a poster on the wall, would

a person-object interaction space be needed to correctly

describe human navigation behavior? If there is a TV-set

in the corridor, but no-one currently watching it, would an

“enaction” space be needed?

Some of these variants would ask questions already treated

experimentally in the psychological literature. For instance,

in some of our previous experiments, we have studied the

influence of affective variables like closeness or friendship

between confederates and the navigating agent on his or

her navigation behavior [21], [22]. The method we have

described here could be applied to this data to refine and

enrich our model of social navigation.

A more technical question concerns the generalizability of

our work with respect to the choice of RiskRRT as a robotic

simulator. In our simulations, it appears that computing nav-

igation costs along the critical line was the only component

of RiskRRT that was used. This suggests a certain robustness

of our approach, in the sense that it is probably independent

of the specificities of RiskRRT, and should extend to other

cost-based social navigation method.

At the core of the experiment we presented here, lies

the method we used for grounding robotic social navigation

in human data. This method appears general enough to be

extended to other and more complex scenarios, hopefully

yielding testable predictions and helping to close the loop

between robotics and experimental psychology.
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