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Error-Correction Capability of Reed-Muller

codes

Stéphanie Dib, François Rodier ∗

Abstract

We present an asymptotic limit between correctable and uncor-

rectable errors on the Reed-Muller codes of any order. This limit is

theoretical and does not depend of any decoding algorithm.

1 Introduction

Let F2 be the field with 2 elements, and let RM = RM(n, r) be the Reed-
Muller code of length 2n and of order r that is the set of Boolean function
with n variables of algebraic degree not more than r.
Decoding an error correcting code beyond half of the minimum distance has
been a challenge for the one who study error correcting codes. Here we
propose a theoretical bound for decoding almost all errors of Reed-Muller
code on any order by a maximum likelihood decoding.
Indeed, the decoder will often be able to recover the correct codeword using
an algorithm that generates for each received word the closest codeword even
if the received word is more distant than half of the minimum distance. On
the contrary, when the number of errors exceeds a certain value, the received
vector will be rarely closer to the correct codeword than to any other one.
Here we give a proof for that.
It is interesting to compare that fact with the phenomenon of concentration
of the nonlinearity of Boolean functions which have been studied by several
authors ([3, 4, 9, 11, 12, 13]. The r-nonlinearity of a Boolean function is
its Hamming distance to the set of Boolean functions with n variables of
algebraic degree not more than r.
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Claude Carlet [2], proved that the density of the set of Boolean functions
satisfying

NLr(f) > 2n−1 − c

√

2n−1

(

n

r

)

log 2

tends to 1 when n tends to infinity, if c > 1. The authors of the present
paper proved that this yield a concentration of the nonlinearities of almost
all Boolean functions around

2n−1 −
√

2n−1

(

n

r

)

log 2 (1)

when r ≤ 2 but missed the greater values by lack of knowledge of weight
distributions ([3, 4, 11, 12]. Kai-Uwe Schmidt generalized this result for all
r thanks to a result of Kaufman, Lovett, and Porat [8] helping him to find a
better bound for the weights of a RM code [13].
On the other hand, in Helleseth et al. [7] the error-correction capability of
Reed-Muller codes is shown for order 1 or 2 Reed-Muller codes giving the
same bound as (1). Stéphanie Dib [4, Chapter 3] proved by the same method
as for the concentration of the nonlinearities of almost all Boolean functions
that the relation (1) was the bound for correcting most of the values of
codewords for 1-order RM codes.
We show here that the value given in relation (1) is also the bound for
correcting most of the values of codewords for RM codes for any order.
For RM codes, the present work improves the paper by Helleseth et al. Error
correction capability of binary linear codes [7] where they just prove the fact
that the codes RM(n, r) are asymptotically optimal for r = 1 (cf. note after
inequality (54) of [7]) or r = 2 (example 7 of [7]).

2 Presentation

Let d(e, f) be the Hamming distance between the elements e and f in F
2n

2 .
We denote by wt(e) the weight of an element e in F

2n

2 . Let C be a linear
code of length m, of dimension k. The Reed-Muller code of length 2n and of
order r has dimension

∑r
0

(

n
r

)

and minimum distance 2n−r.

2.1 Correctable and uncorrectable errors

Let F2n

2 be the set of all binary vectors of length 2n. For any vector f ∈ F
2n

2 ,
the set

f + C = {f + g | g ∈ C}

2



is called a coset of C and contains 2k vectors. One can easily check that two
cosets are either disjoint or coincide. This means

f ∈ h+ C =⇒ f + C = h + C.

Therefore, the set F2n

2 can be partitioned into 22
n−k cosets of C:

F
2n

2 =
22

n
−k−1
⋃

i=0

(fi + C) , fi ∈ F
2n

2

where (fi + C) ∩ (fj + C) = ∅ for i 6= j.
If you send a word g and the decoder receive the word h, we will call e =
g − h the error. Thus, the possible error vectors are the vectors in the coset
containing h. In maximum-likelihood decoding, the decoder’s strategy is,
given h, to choose a minimum weight vector f in h+ C, and to decode h as
h− f .
The minimum weight vector in a coset is called the coset leader, and when
there is more than one vector of minimum weight in a coset, any one of them
can be selected as the coset leader.
We denote the set of all coset leaders by E0(C) (note that #E0(C) = 22

n−k).
The elements of E0(C) are called correctable errors, and the elements of
E1(C) = F

n
2 − E0(C) are called uncorrectable errors. Only coset leaders are

correctable errors, which means that 22
n−k errors can be corrected with this

decoding.
A codeword is an unambiguous correctable error if it is a coset leader, and
it is the only vector of minimum weight in this coset.

Proposition 1 .

The following statements are equivalent.

1- A codeword e is an unambiguous correctable error if and only if any of

the following statements are true;

2- ∀e′ ∈ e+ C if e 6= e′ then wt(e) < wt(e′);

3- ∀g ∈ C − {0}, wt(e) < wt(g + e);

4- ∀g ∈ C − {0}, d(e, 0) < d(g, e).

Proof

The first assertion implies the second because if e′ ∈ e + C and e 6= e′ then
e′ is not the coset leader, so wt(e) < wt(e′).
The second assertion implies the first because if e′ ∈ e + C and e 6= e′

then wt(e) < wt(e′) so e′ is not the coset leader and e is the only vector of
minimum weight in this coset.
The other statement are clear.
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2.2 The probability

We take F
2n

2 as the probability space.
We endow it with the uniform probability P .

3 The results

Let λn = c× 2n/2
√

2
(

n
r

)

log 2 and δ = 2n−1− λn/2 where c is a positive real.

We will show that if c > 1 then almost all error of weight smaller than δ are
correctable, when n tends to infinity. And that if c < 1 then almost all error
of weight higher than δ are uncorrectable, when n tends to infinity. More
precisely we will show the following two theorems.

Theorem 1 . Let c > 1. Then

Pwt(e)≤δ

(

d(e, 0) < d(e, g) for all g ∈ RM(r)− 0
)

→ 1 when n → ∞.

and

Theorem 2 . Let c < 1. Then

Pwt(e)≥δ

(

there exists g ∈ RM(r)− 0 such that d(e, 0) ≥ d(e, g)
)

→ 1 when n → ∞.

4 Proof of the Theorem 1. Decoding a large

number of errors

We intend to prove that almost all error of weight smaller than δ for c > 1
are correctable, when n tends to infinity. It is enough to prove

Pwt(e)≤δ

(

d(e, 0) < d(e, g) for all g ∈ RM(r)− 0
)

→ 1 when n → ∞.

We have just to show

Pwt(e)≤δ

(

δ < d(e, g) for all g ∈ RM(r)− 0
)

→ 1 when n → ∞

or
Pwt(e)≤δ

(

∃g ∈ RM(r)− 0, δ ≥ d(e, g)
)

→ 0 when n → ∞
that is

Pwt(e)≤δ





⋃

g∈RM(r)−0

(

δ ≥ d(e, g)
)



→ 0 when n → ∞.
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It is enough to prove that

∑

g∈RM(r)−0

Pwt(e)≤δ (δ ≥ d(e, g)) → 0 when n → ∞.

By expressing the conditional probabilities we have to show that

∑

g∈RM(r)−0

P
(

(wt(e) ≤ δ) ∩
(

δ ≥ d(e, g)
)

)

P (wt(e) ≤ δ)
→ 0 when n → ∞.

Let Bδ(g) be the ball of center g and of radius δ that is the set of e such that
d(e, g) ≤ δ. The event Bδ(g) is the set of words f in F

2n

2 such f ∈ Bδ(g),
that is d(f, g) ≤ δ.

Hence Theorem 1 is a consequence of the following proposition.

Proposition 2 . If c > 1 then

∑

g∈RM(r)−0

P
(

Bδ(0) ∩Bδ(g)
)

P (Bδ(0))
→ 0 when n → ∞

Before the proof of this Proposition we have to evaluate the terms in the
sum.

Lemma 1 . For every real s, one has

P
(

Bδ(0) ∩ Bδ(g)
)

≤ exp
(

2s2(2n − wt(g))− 2sλ
)

Proof.
Replace δ by its value.

P
(

Bδ(0) ∩ Bδ(g)
)

= P
(

(wt(f) ≤ δ) ∩ (wt(f + g) ≤ δ)
)

= P
(

(2n−1 − wt(f) ≥ λ/2) ∩ (2n−1 − wt(f + g) ≥ λ/2)
)

One knows that

2n − 2wt(f) =
∑

x∈Fn

2

(−1)f(x), 2n − 2wt(f + g) =
∑

x∈Fn

2

(−1)f(x)+g(x).

5



Hence this gives using Markov’s inequality.

P
(

Bδ(0) ∩ Bδ(g)
)

= P









∑

x∈Fn

2

(−1)f(x) ≥ λ



 ∩




∑

x∈Fn

2

(−1)f(x)+g(x) ≥ λ









= P







exp



s
∑

x∈Fn

2

(−1)f(x)



 ≥ exp(sλ)



 ∩


exp



s
∑

x∈Fn

2

(−1)f(x)+g(x)



 ≥ exp(sλ)









≤ E



exp
(

s
∑

x∈Fn

2

(−1)f(x)
)

exp
(

s
∑

x∈Fn

2

(−1)f(x)+g(x)
)





/

exp(sλ)2

Since the random values f(x) are independant

P
(

Bδ(0) ∩ Bδ(g)
)

≤ E



exp
(

∑

x∈Fn

2

s(−1)f(x)
(

1 + (−1)g(x)
)





/

exp(sλ)2

≤
∏

x∈Fn

2

E
(

exp
(

s(−1)f(x)
(

1 + (−1)g(x)
))

/

exp(sλ)2

Because the random values f(x) takes the values ±1 with probability 1/2,
the calculation of the expectation gives

P
(

Bδ(0) ∩ Bδ(g)
)

≤
∏

x∈Fn

2

cosh
(

s
(

1 + (−1)g(x)
))

/

exp(sλ)2

As cosh(t) ≤ exp(t2/2)

P
(

Bδ(0) ∩ Bδ(g)
)

≤
∏

x∈Fn

2

exp
(

s2
(

1 + (−1)g(x)
)2
/2
)

/

exp(sλ)2

≤ exp



s2
(

2n +
∑

Fn

2

(−1)g(x)
)





/

exp(sλ)2

≤ exp
(

2s2(2n − wt(g))− 2sλ
)

.

4.1 Case where the distances are close to 2n−1.

We give a bound for P
(

Bδ(0) ∩ Bδ(g)
)

when the distance to 0 of the center

g is rather close to 2n−1.
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Lemma 2 . If

|2n−1 − d(g, 0)| ≤ 2n−1/
(

n

r

)

then:

P
(

Bδ(0) ∩ Bδ(g)
)

≤ 1

2c
22((n

r
)−1)

.

Proof.
From lemma 1 we have

P
(

Bδ(0) ∩Bδ(g)
)

≤ exp
(

s2
(

2n + 2n − 2wt(g)
))

/

exp(sλ)2

≤ exp
(

s22n
(

1 + 1
/(

n
r

) ))

/

exp(sλ)2

We take s = λ/2n.

P
(

Bδ(0) ∩ Bδ(g)
)

≤ exp
(

λ22−n
(

1 + 1
/(

n
r

)))

/

exp(λ2/2n−1)

≤ exp
(

2c2
(

n
r

)

log 2
((

1 + 1
/(

n
r

))))

/

exp(4c2
(

n
r

)

log 2)

Simplifying the two members of this fraction by exp
(

2c2
(

n
r

)

log 2
)

you get

P
(

Bδ(0) ∩Bδ(g)
)

≤ exp (2c2log 2)

exp(2c2
(

n
r

)

log 2)
≤ 22c

2

2c
2×2(n

r
)

4.2 Case where the distances are away from 2n−1.

We use the follwing lemma, which is an application of a result by Kaufman,
Lovett, and Porat [8].

Lemma 3 . Let α be a strictly positive real number. The number Br,n of

functions g in RM(r, n) satisfying

|wt(g)− 2n−1| ≥ 2n−1/
(

n

r

)

fulfills

Br,n ≤ 2α(
n

r
)

if n is large enough.

Proof

We use the relation (6) in the proof of Lemma 3 in K.-U. Schmidt’s article
[13].
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We use this lemma to evaluate Π =
∑

P
(

Bδ(0) ∩ Bδ(g)
)

where the sum is

on the nonzero g in RM(n, r) fulfilling

|wt(g)− 2n−1| ≥ 2n−1
/

(

n

r

)

.

Lemma 4 . Let α be a strictly positive real number. Then

Π < 2α(
n

r
)2

−
c
2

1−2−r (
n

r
)

Proof.
From lemma 1, for all s, we have

P
(

Bδ(0) ∩ Bδ(g)
)

≤ exp
(

2s2(2n − wt(g))− 2sλ
)

Let us take s =
λ

2n+1 − 2wt(g)
. We have, expressing the value of λ and

noting that wt(g) is not less than the minimum distance 2n−r of RM(n, r):

P
(

Bδ(0) ∩Bδ(g)
)

≤ exp

(

− λ2

2n+1 − 2wt(g)

)

≤ exp



−
c2 × 2n+1

(

n
r

)

log 2

2n+1 − 2n−r+1





≤ 2
−

c
2
×(n

r
)

1−2−r .

Therefore

Π ≤ Br,n2
−

c
2

1−2−r (
n

r
) ≤ 2α(

n

r
)2

−
c
2

1−2−r (
n

r
).

4.3 Evaluation of P (Bδ(0))

Proposition 3 . Let r be a fixed integer, δ = 2n−1−c
√

2n−1
(

n
r

)

log 2 where

c is a positive constant. We have

P (Bδ(0)) =
1

2π

2−c2(n

r
)

2c

√

(

n
r

)

log 2
(1 + o(1)) (2)

when n tends to infinity.

This is proved in Stéphanie Dib’s thesis [4]. We recall briefly the proof for
completeness.
The following lemma (see [2, lemma 1]) gives well-known asymptotic estimate
of the sum of binomial coefficients.
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Lemma 5 . Let n be a positive integer and k ≤ n. Then

k
∑

i=0

(

2n

i

)

< 22n · exp
(

−(n− k)2

n

)

.

When k is sufficiently close to n, the following lemma (see [6, chapter IX,

(9.98)], [5, chapter VII]) gives an asymptotic estimation for
(

2n
k

)

:

Lemma 6 . Let n be a positive integer and |n− k| ≤ n
5
8 . Then

(

2n

k

)

=
22n√
π · n · exp

(

−(n− k)2

n

)

· (1 + o(1)) , (3)

where the term o(1) is independent of the choice of k.

Proof of the Proposition.

The number of Boolean functions whose Hamming distance to 0 is bounded

from above by some number δ equals
∑

0≤i≤δ

(

2n

i

)

. Thus we have

∑

0≤i≤δ

(

2n

i

)

=
∑

0≤i<2n−1−2(n−1) 5
8

(

2n

i

)

+
∑

2n−1−2(n−1) 5
8≤i≤δ

(

2n

i

)

.

The first sum on the right hand side is taken care of by lemma 5 which will
show that it is negligible with respect of the second sum.
To estimate a lower bound of the second sum (which we denote S), we use
(3)

S =
22

n

√
π 2n−1

· (1 + o(1)) ·
∑

2n−1−2(n−1) 5
8 ≤i≤δ

exp

(

−(2n−1 − i)2

2n−1

)

.

We use that the function in the sum is monotonous to replace the sum by an
integral.

S =
22

n

√
π 2n−1

· (1 + o(1)) ·
∫

2n−1−2(n−1) 5
8 +1≤i≤δ

exp

(

−(2n−1 − i)2

2n−1

)

di.

=
22

n

√
π
· (1 + o(1)) ·

∫

c

√

(n

r
) log 2≤v≤2

n−1
8 −2

1−n

2

exp
(

−v2
)

dv.

By [5, chapter VII, Lemma 2] and the fact that

c2
(

n

r

)

log 2−
(

2
n−1
8 − 2

1−n

2

)2 → −∞

9



which implies that

∫ ∞

2
n−1
8 −2

1−n

2

exp
(

−v2
)

dv = o





∫ ∞

c

√

(n

r
) log 2

exp
(

−v2
)

dv





the last integral is equivalent to

exp
(

−c2
(

n
r

)

log 2
)

2c

√

(

n
r

)

log 2
=

2−c2 (n

r
)

2c

√

(

n
r

)

log 2
.

Thus

∑

0≤i≤δ

(

2n

i

)

=
22

n

√
π

2−c2 (n

r
)

2c

√

(

n
r

)

log 2
(1 + o(1)).

4.4 Proof of Theorem 1

Therefore

∑

g∈RM(r)−0

P
(

Bδ(0) ∩ Bδ(g)
)

P (Bδ(0))

≤ O(nr/2)
(

2(
n

r
)2−c22((n

r
)−1)2c

2(n

r
) + 2α(

n

r
)2

− c
2

1−2−r (
n

r
)2c

2(n

r
)
)

.

This tends to 0 because the exponent of 2 is, for the left term

(

n

r

)

− c22
((

n

r

)

− 1
)

+ c2
(

n

r

)

= −
(

n

r

)

c2 + 2c2 → −∞

and for the right term

α
(

n

r

)

− c2

1− 2−r

(

n

r

)

+ c2
(

n

r

)

=
(

n

r

)

(

α− 2−rc2

1− 2−r

)

.

So just take

α <
2−rc2

1− 2−r

so that this term tends to −∞.
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5 The error correction capability function

Let ǫC(t) the ratio of the number of errors correctables of weight t to the
number of possible errors of weight t. An important property of this ratio is
that for any t in the range from half the minimum distance to the covering
radius, ǫC(t) decreases with the growing t as the next lemma says.

Lemma 7 .

For any [n, k] code C and any t = 0, 1, . . . , n− 1

ǫC(t + 1) ≤ ǫC(t)

with strict inequality for tC ≤ t ≤ rC where we set tC = ⌊(dC − 1)/2⌋ and

denote the covering radius of C by rC.

Proof

See Helleseth et al. [7, Lemma 2]. This property is due to the fact that
the sets of correctable and uncorrectable errors form a monotone structure,
(see, for example, [10, p. 58, Theorem 3.11]) and a result of Bollobas about
shadows [1, Theorem 3]

5.1 A corollary of Theorem 1

Corollary 1 . If c > 1, then ǫC(t) → 1 when n → ∞.

Proof.
Suppose that ǫC(tc) 6→ 1. Then there exists η < 1 such that ǫC(tc) < η for
an infinity of n.
For an RM(n, r) code, let

22
n

√
π

2−c2 (n

r
)

2c

√

(

n
r

)

log 2
= A(c)

For c1 > c2 > 1 fixed, the area of weights between c1 and c2 contains only
a proportion η of correctable words as the function ǫC decreases. From
Proposition 3 there are about

∑

0≤i≤δ1

(

2n

i

)

= A(c1)(1 + o(1)).

words of weight in [0, c1] and in the area of weight between c1 et c2

∑

δ1≤i≤δ2

(

2n

i

)

= A(c2)(1 + o(1)).
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As A(c1) = o(A(c2)) there are at most

A(c1)(1 + o(1)) + ηA(c2)(1 + o(1)) = ηA(c2)(1 + o(1))

correctable words of weights [0, c2], which shows that it is impossible that
almost all words are correctable as says Theorem 1.

5.2 Proof of the Theorem 2. An asymptotic decoding

upper bound

In the case of RM codes we have a simplification of the proof of the Theorem
3 b in [7].
For Reed-Muller codes of order r, that is to say RM(n, r) we take

t = 2n−1 − c

√

2n−1

(

n

r

)

ln 2.

Proposition 4 . If c < 1, then ǫC(t) → 0 when n → ∞.

For every t, one has (cf. Lemma 3 of [7])

ǫC(t)×
t
∑

i=0

(

2n

i

)

≤
t
∑

i=0

ǫC(i)
(

2n

i

)

= number of correctable erreurs of weight smaller than t
≤ total number of correctable errors
≤ 22

n−k.

We have, from Proposition 3

t
∑

i=0

(

2n

i

)

= #Bt =
22

n−c2(n

r
)

2c

√

π
(

n
r

)

ln 2
(1 + o(1)).

Whence

ǫC(t) ≥ 22
n−k

t
∑

i=0

(

2n

i

)

=
2c

√

π
(

n
r

)

ln 2

22
n−c2(n

r
) × 2

∑

r

i=0(
n

i
)−2n

(1 + o(1))

=
2c

√

π
(

n
r

)

ln 2

2
∑

r

i=0(
n

i
)−c2(n

r
)
(1 + o(1)).

If c < 1, when n → ∞ then the denominateur tends toward infinity, so
ǫC(t) → 0.
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Remark.

The theorem is still true if we take t = 2n−1 − c
√
2n−1k ln 2 with c < 1 if

k ≤ 2(n−1)/4 (to be able to use Proposition 3).

5.3 End of the proof of Theorem 2.

If wt(t) > δ, then ǫ(t) → 0. The proportion of correctable errors of weight t
tends to 0, whence so is the proportion of correctable errors of weight greater
than t. Therefore Theorem 2 is true.

5.4 Asymptotically optimality of RM codes

A sequence (Cm)m of [m, k] codes where k = o(m) as m → ∞ is called
asymptotically optimal if for any fixed ǫ, 0 < ǫ < 1

m− 2tCm
(ǫ) ∼

√
mk ln 4

where the error correction capability function tC(ǫ) is the maximum t such
that ǫC(t) ≥ ǫ.

Theorem 3 . The sequence RM(n, r)n is asymptotically optimal.

Proof.
Let us take ǫ and try to find tC(ǫ). Let c < 1.
If 2t = 2n − c

√
2nk log 4 then the words of weight t are almost all uncor-

rectable, therefore ǫC2n
(t) ≃ 0. And we have ǫC2n

(t) < ǫ for n big enough
(and consequently t ≥ tC2n

(ǫ)).

As a result tC2n
(ǫ) ≤ 2n−1 − c

√
2n−1k log 4.

Let now c > 1.
If 2t = 2n−c

√
2nk log 4 then the words of weight t are almost all correctable,

therefore ǫC2n
(t) ≃ 1. And we have ǫC2n

(t) > ǫ for n big enough (and
consequently t < tC2n

(ǫ)).

As a result, if c1 < 1 < c2, one has

2n − c2
√

2nk log 4 < 2tC2n
(ǫ) < 2n − c1

√

2nk log 4

or
c1
√

2nk log 4 < 2n − 2tC2n
(ǫ) < c2

√

2nk log 4

or

c1 <
2n − 2tC2n

(ǫ)√
2nk log 4

< c2.
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As c1 and c2 may be as close to 1 as we wish, we have

2n − 2tC2n
(ǫ)√

2nk log 4
→ 1 quand n → ∞.
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