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Abstract We revisit the classical QuickSort and QuickSelect algo-
rithms, under a complexity model that fully takes into account the ele-
mentary comparisons between symbols composing the records to be pro-
cessed. Our probabilistic models belong to a broad category of informa-
tion sources that encompasses memoryless (i.e., independent-symbols)
and Markov sources, as well as many unbounded-correlation sources.
We establish that, under our conditions, the average-case complexity of
QuickSort is O(n log2 n) [rather than O(n log n), classically], whereas
that of QuickSelect remains O(n). Explicit expressions for the implied
constants are provided by our combinatorial–analytic methods.

Introduction. Every student of a basic algorithms course is taught that, on av-
erage, the complexity of Quicksort is O(n log n), that of binary search is O(log n),
and that of radix-exchange sort is O(n log n); see for instance [13,16]. Such state-
ments are based on specific assumptions—that the comparison of data items
(for the first two) and the comparison of symbols (for the third one) have unit
cost—and they have the obvious merit of offering an easy-to-grasp picture of
the complexity landscape. However, as noted by Sedgewick, these simplifying
assumptions suffer from limitations: they do not make possible a precise as-
sessment of the relative merits of algorithms and data structures that resort to
different methods (e.g., comparison-based versus radix-based sorting) in a way
that would satisfy the requirements of either information theory or algorithms
engineering. Indeed, computation is not reduced to its simplest terms, namely,
the manipulation of totally elementary symbols, such as bits, bytes, characters.
Furthermore, such simplified analyses say little about a great many application
contexts, in databases or natural language processing, for instance, where infor-
mation is highly “non-atomic”, in the sense that it does not plainly reduce to a
single machine word.

First, we observe that, for commonly used data models, the mean costs Sn

and Kn of any algorithm under the symbol-comparison and the key-comparison
model, respectively, are connected by the universal relation Sn = Kn ·O(log n).
(This results from the fact that at most O(log n) symbols suffice, with high
probability, to distinguish n keys; cf. the analysis of the height of digital trees,
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also known as “tries”, in [3].) The surprise is that there are cases where this
upper bound is tight, as in QuickSort; others where both costs are of the
same order, as in QuickSelect. In this work, we show that the expected cost
of QuickSort is O(n log2 n), not O(n log n), when all elementary operations—
symbol comparisons—are taken into account. By contrast, the cost of QuickSe-
lect turns out to be O(n), in both the old and the new world, albeit, of
course, with different implied constants. Our results constitute broad exten-
sions of earlier ones by Fill and Janson (Quicksort, [7]) and Fill and Nakama
(QuickSelect, [8]).

The sources that we deal with include memoryless (“Bernoulli”) sources with
possibly non-uniform independent symbols and Markov sources, as well as many
non-Markovian sources with unbounded memory from the past. A central idea
is the modelling of the source via its fundamental probabilities, namely the prob-
abilities that a word of the source begins with a given prefix. Our approach
otherwise relies on methods from analytic combinatorics [10], as well as on infor-
mation theory and the theory of dynamical systems. It relates to earlier analyses
of digital trees (“tries”) by Clément, Flajolet, and Vallée [3,19].

Results. We consider a totally ordered alphabet Σ. What we call a probabilistic
source produces infinite words on the alphabet Σ (see Definition 1). The set
of keys (words, data items) is then Σ∞, endowed with the strict lexicographic
order denoted ‘≺’. Our main objects of study are two algorithms, applied to n
keys assumed to be independently drawn from the same source S, namely, the
standard sorting algorithm QuickSort(n) and the algorithm QuickSelect(m,n),
which selects the mth smallest element. In the latter case, we shall mostly focus
our attention on situations where the rank m is proportional to n, being of
the form m = αn, so that the algorithm determines the αth quantile; it will
then be denoted by QuickQuantα(n). We also consider the cases where rank m
equals 1 (which we call QuickMin), equals n (QuickMax), or is randomly chosen
in {1, . . . , n} (QuickRand).

Our main results involve constants that depend on the source S (and possi-
bly on the real α); these are displayed in Figures 1–3 and described in Section 1.
They specialize nicely for a binary source B (under which keys are compared
via their binary expansions, with uniform independent bits), in which case they
admit pleasant expressions that simplify and extend those of Fill and Nakama [8]
and Grabner and Prodinger [11] and lend themselves to precise numerical evalu-
ations (Figure 2). The conditions Λ–tamed, Π–tamed, and “periodic” are made
explicit in Subsection 2.1. Conditions of applicability to classical source models
are discussed in Section 3.

Theorem 1. (i) For a Λ–tamed source S, the mean number Tn of symbol com-
parisons of QuickSort(n) involves the entropy h(S) of the source:

Tn =
1

h(S)
n log2 n+a(S) n log n+b(S) n+o(n), for some a(S), b(S) ∈ R. (1)

(ii) For a periodic source, a term nP (log n) is to be added to the estimate (1),
where P (u) is a (computable) continuous periodic function.
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Theorem 2. For a Π–tamed source S, one has the following, with δ = δ(S) > 0.
(i) The mean number of symbol comparisons Q

(α)
n for QuickQuantα satisfies

Q(α)
n = ρS(α)n + O(n1−δ). (2)

(ii) The mean number of symbol comparisons, M
(−)
n for QuickMin (n) and M

(+)
n

for QuickMax(n), satisfies with ε = ±,

M (ε)
n = ρ

(ε)
S n + O(n1−δ), with ρ

(+)
S = ρS(1), ρ

(−)
S = ρS(0). (3)

(iii) The mean number Mn of symbol comparisons performed by QuickRand(n)
satisfies

Mn = γS n + O(n1−δ), with γS =
∫ 1

0

ρ(α)dα. (4)

These estimates are to be compared to the classical ones (see, e.g., [13, p.634]
and [12], for extensions), relative to the number of comparisons in QuickQuantα:
K(α)

n = κ(α)n + O(log n), κ(α) := 2(1− α log(α)− (1− α) log(1− α)). (5)

General strategy. We operate under a general model of source, parametrized
by the unit interval I. Our strategy comprises three main steps. The first two
are essentially algebraic, while the last one relies on complex analysis.

Step (a). We first show (Proposition 1) that the mean number Sn of symbol
comparisons performed by a (general) algorithm A(n) applied to n words from
a source S can be expressed in terms of two objects: (i) the density φn of the
algorithm, which uniquely depends on the algorithm and provides a measure of
the mean number of key-comparisons performed near a specific point; (ii) the
family of fundamental triangles, which solely depends on the source and describes
the location of pairs of words which share a common prefix.

Step (b). This step is devoted to computing the density of the algorithm. We
first deal with the Poisson model, where the number of keys, instead of being
fixed, follows a Poisson law of parameter Z. We provide an expression of the
Poissonized density relative to each algorithm, from which we deduce the mean
number of comparisons under this model. Then, simple algebra yield expressions
relative to the model where the number n of keys is fixed.

Step (c). The exact representations of the mean costs is an alternating sum
which involves two kinds of quantities, the size n of the set of data to be sorted
(which tends to infinity), and the fundamental probabilities (which tend to 0).
We approach the corresponding asymptotic analysis by means of complex integral
representations of the Nörlund–Rice type. For each algorithm–source pair, a
series of Dirichlet type encapsulates both the properties of the source and the
characteristics of the algorithm—this is the mixed Dirichlet series, denoted by
$(s), whose singularity structure in the complex plane is proved to condition
our final asymptotic estimates.

1 Algebraic analysis

The developments of this section are essentially formal (algebraic) and exact ;
that is, no approximation is involved at this stage.
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Entropy constant [Quicksort, Theorem 1]: h(S) := lim
k→∞

h
− 1

k

X
w∈Σk

pw log pw

i
.

Quantile constant ρS(α) [QuickQuant, Theorem 2, Part (i)]

ρS(α) :=
X

w∈Σ?

pw L

„
|α− µw|

pw

«
.

Here, µw := (1/2) (p
(+)
w + p

(−)
w ) involves the probabilities p

(+)
w and p

(−)
w defined in

Subsection 1.1; the function L is given by L(y) := 2[1+H(y)], where H(y) is expressed
by y+ := (1/2) + y, y− := (1/2)− y, and

H(y) :=

8<:
−(y+ log y+ + y− log y−), if 0 ≤ y < 1/2

0, if y = 1/2
y−(log y+ − log |y−|), if y > 1/2.

(6)

— Min/max constants [QuickMin, QuickMax, Theorem 2, Part (ii)]:

ρ
(ε)
S =

X
w∈Σ?

pw

h
1− p

(ε)
w

pw
log

“
1 +

pw

p
(ε)
w

”i
.

— Random selection constant [QuickRand, Theorem 2, Part (iii)]:

γS =
X

w∈Σ?

p2
w

h
2 +

1

pw
+

X
ε=±

h
log

“
1 +

p
(ε)
w

pw

”
−

“p
(ε)
w

pw

”2

log
“
1 +

pw

p
(ε)
w

”ii
.

Figure 1. The main constants of Theorems 1 and 2, relatively to a general source (S).

h(B) = log 2 [entropy]

ρ
(ε)
B = 4 + 2

X
`≥0

1

2`

2`−1X
k=1

h
1− k log

“
1 +

1

k

”i
.
= 5.27937 82410 80958.

γB =
14

3
+ 2

∞X
`=0

1

22`

2`−1X
k=1

h
k + 1 + log(k + 1)− k2 log

“
1 +

1

k

”i
.
= 8.20730 88638.

Figure 2. The constants relative to a binary source.
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3
, 1

3
, 1

3
). The curves illustrate the fractal character of the con-

stants involved in QuickSelect. (Compare with κ(α) in Eq. (5), which appears as limit
of ρS(α), for an unbiased r–ary source S, when r →∞.)
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Figure 4. Left : the shift transformation T of a ternary Bernoulli source with P(0) =
1/2, P(1) = 1/6, P(2) = 1/3. Middle: fundamental intervals Iw materialized by semi-
circles. Right : the corresponding fundamental triangles Tw.

1.1. A general source model. Throughout this paper, a totally ordered (finite
or denumerable) alphabet Σ of “symbols” or “letters” is fixed.

Definition 1. A probabilistic source, which produces infinite words of Σ∞, is
specified by the set {pw, w ∈ Σ?} of fundamental probabilities pw, where pw is
the probability that an infinite word begins with the finite prefix w. It is further-
more assumed that πk := sup{pw : w ∈ Σk} tends to 0, as k →∞.

For any prefix w ∈ Σ?, we denote by p
(−)
w , p

(+)
w , pw the probabilities that

a word produced by the source begins with a prefix w′ of the same length as
w, which satisfies w′ ≺ w, w′ � w, or w′ = w, respectively. Since the sum of
these three probabilities equals 1, this defines two real numbers aw, bw ∈ [0, 1]
for which

aw = p
(−)
w , 1− bw = p

(+)
w , bw − aw = pw.

Given an infinite word X ∈ Σ∞, denote by wk its prefix of length k. The sequence
(awk

) is increasing, the sequence (bwk
) is decreasing, and bwk

− awk
tends to 0.

Thus a unique real π(X) ∈ [0, 1] is defined as common limit of (awk
) and (bwk

).
Conversely, a mapping M : [0, 1] → Σ∞ associates, to a number u of the interval
I := [0, 1], a word M(u) := (m1(u), m2(u), m3(u), . . .) ∈ Σ∞. In this way, the
lexicographic order on words (‘≺’) is compatible with the natural order on the
interval I; namely, M(t) ≺ M(u) if and only if t < u. Then, the fundamental
interval Iw := [aw, bw] is the set of reals u for which M(u) begins with the prefix
w. Its length equals pw.

Our analyses involve the two Dirichlet series of fundamental probabilities,

Λ(s) :=
∑

w∈Σ?

p−s
w , Π(s) :=

∑
k≥0

π−s
k ; (7)

these are central to our treatment. They satisfy, for s < 0, the relations Π(s) ≤
Λ(s) ≤ Π(s + 1). The series Λ(s) always has a singularity at s = −1, and Π(s)
always has a singularity at s = 0, The regularity properties of the source can be
expressed in terms of Λ near s = −1, and Π near 0, as already shown in [19].

An important subclass is formed by dynamical sources, which are closely
related to dynamical systems on the interval; see Figure 4 and [19]. One starts
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with a partition {Iσ} indexed by symbols σ ∈ Σ, a coding map τ : I → Σ
which equals σ on Iσ, and a shift map T : I → I whose restriction to each Iσ

is increasing, invertible, and of class C2. Then the word M(u) is the word that
encodes the trajectory (u, Tu, T 2u, . . .) via the coding map τ , namely, M(u) :=
(τ(u), τ(Tu), τ(T 2u), . . .). All memoryless (Bernoulli) sources and all Markov
chain sources belong to the general framework of Definition 1: they correspond
to a piecewise linear shift, under this angle. For instance, the standard binary
system is obtained by T (x) = {2x} ({·} is the fractional part). Dynamical sources
with a non-linear shift allow for correlations that depend on the entire past (e.g.,
sources related to continued fractions obtained by T (x) = {1/x}).

1.2. The algorithm QuickValα. We consider an algorithm that is dual of
QuickSelect: it takes as input a set of words X and a value V , and returns
the rank of V inside the set X ∪ {V }. This algorithm is of independent interest
and is easily implemented as a variant of QuickSelect by resorting to the usual
partitioning phase, then doing a comparison between the value of the pivot and
the input value V (rather than a comparison between their ranks). We call this
modified QuickSelect algorithm QuickValα when it is used to seek the rank
of the data item with value M(α). The main idea here is that the behaviors of
QuickValα(n) and QuickQuantα(n) should be asymptotically similar. Indeed,
the α–quantile of a random set of words of large enough cardinality must be,
with high probability, close to the word M(α).

1.3. An expression for the mean number of symbol comparisons. The
first object of our analysis is the density of the algorithm A(n), which measures
the number of key–comparisons performed by the algorithm. The second object
is the collection of fundamental triangles (see Figure 4).

Definition 2. The density of an algorithm A(n) which compares n words from
the same probabilistic source S is defined as follows:

φn(u, t) du dt := “the mean number of key–comparisons performed by
A(n) between words M(u′),M(t′), with u′ ∈ [u, u+du] and t′ ∈ [t, t+dt].”

For each w ∈ Σ?, the fundamental triangle of prefix w, denoted by Tw, is the
triangle built on the fundamental interval Iw := [aw, bw] corresponding to w; i.e.,
Tw := {(u, t) : aw ≤ u ≤ t ≤ bw}. We set T ≡ Tε := {(u, t) : 0 ≤ u ≤ t ≤ 1}.

Our first result establishes a relation between the mean number Sn of symbol-
comparisons, the density φn, and the fundamental triangles Tw:

Proposition 1. Fix a source on alphabet Σ, with fundamental triangles Tw. For
any integrable function g on the unit triangle T , define the integral transform

J [g] :=
∑

w∈Σ?

∫
Tw

g(u, t) du dt.

Then the mean number Sn of symbol comparisons performed by A(n) is equal to

Sn = J [φn] =
∑

w∈Σ?

∫
Tw

φn(u, t) du dt,
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where φn is the density of algorithm A(n).

Proof. The coincidence function γ(u, t) is the length of the largest common prefix of
M(u) and M(t), namely, γ(u, t) := max{` : mj(u) = mj(t), ∀j ≤ `}. Then, the number
of symbol comparisons needed to compare two words M(u) and M(t), is γ(u, t) + 1
and the mean number Sn of symbol comparisons performed by A(n) satisfies

Sn =

Z
T

[γ(u, t) + 1] φn(u, t) du dt,

where φn(u, t) is the density of the algorithm. Two useful identities areX
`≥0

(` + 1)1[γ=`] =
X
`≥0

1[γ≥`] [γ ≥ `] =
[

w∈Σ`

(Iw × Iw) .

The first one holds for any integer-valued random variable γ (1A is the indicator of A).
The second one follows from the definitions of the coincidence γ and of the fundamental
intervals Iw. Finally, the domain T ∩ [γ ≥ `] is a union of fundamental triangles. 2

1.4. Computation of Poissonized densities. Under the Poisson model PoiZ
of parameter Z, the number N of keys is no longer fixed but rather follows a
Poisson law of parameter Z:

P[N = n] = e−Z Zn

n!
Then, the expected value S̃Z in this model, namely,

S̃Z := e−Z
∑
n≥0

Zn

n!
Sn = e−Z

∑
n≥0

Zn

n!
J [φn] = J

[
e−Z

∑
n≥0

Zn

n!
φn

]
= J [φ̃Z ],

involves the Poissonized density φ̃Z , defined as

φ̃Z(u, t) := e−Z
∑
n≥0

Zn

n!
φn(u, t).

The following statement shows that the Poissonized densities relative to Quick-
Sort and QuickVal admit simple expressions, which in turn entail nice expres-
sions for the mean value S̃Z in this Poisson model, via the equality S̃Z = J [φ̃Z ].

Proposition 2. Set f1(θ) := e−θ−1+θ. The Poissonized densities of QuickSort
and QuickValα satisfy

g̃Z(u, t) = 2(t− u)−2 f1(Z(t− u)),
g̃
(α)
Z (u, t) = 2 (max(α, t)−min(α, u))−2

f1 (Z(max(α, t)−min(α, u)) .

The mean number of comparisons of QuickSort and QuickValα in the Poisson
model satisfy

S̃Z = 2J [(t− u)−2 · f1(Z(t− u))]
S̃

(α)
Z = 2J

[
(max(α, t)−min(α, u))−2 · f1(Z(max(α, t)−min(α, u))

]
.

Proof. The probability that M(u′) and M(t′) are both keys for some u′ ∈ [u, u + du]
and t′ ∈ [t, t + dt] is Z2du dt. Denote by [x, y] := [x(u, t), y(u, t)] the smallest closed
interval that contains {u, t, α} (QuickValα) or {u, t} (QuickSort). Conditionally, given

ICALP 2009, to appear --- 7 ---



that M(u) and M(t) are both keys, M(u) and M(t) are compared if and only if M(u) or
M(t) is chosen as the pivot amongst the setM := {M(z); z ∈ [x, y]}. The cardinality of
the “good” set {M(u), M(t)} is 2, while the cardinality of M equals 2+N [x, y], where
N [x, y] is the number of keys strictly between M(x) and M(y). Then, for any fixed set
of words, the probability that M(u) and M(t) are compared is 2/(2+N [x(u, t), y(u, t)]).
To evaluate the mean value of this ratio in the Poisson model, we remark that, if we
draw Poi (Z) i.i.d. random variables uniformly distributed over [0, 1], the number N(λ)
of those that fall in an interval of (Lebesgue) measure λ is Poi (λZ) distributed, so that

E
»

2

N(λ) + 2

–
=

X
k≥0

2

k + 2
e−λZ (λZ)k

k!
=

2

λ2Z2
f1(λZ). 2

1.5. Exact formulae for Sn. We now return to the model of prime interest,
where the number of keys is a fixed number n.

Proposition 3. Assume that Λ(s) of (7) converges at s = −2. Then the mean
values Sn, associated with QuickSort and QuickValα can be expressed as

Sn =
n∑

k=2

(
n

k

)
(−1)k$(−k), for n ≥ 2,

where $(s) is a series of Dirichlet type given, respectively, by
$(s) = 2J [(t− u)−(2+s)], $(s) = 2J [(max(α, t)−min(α, u))−(2+s)].

The two functions $(s) are defined for <s ≤ −2; they depend on the algorithm
and the source and are called the mixed Dirichlet series.

For QuickSort, the series $(s) admits a simple form in terms of Λ(s):

$(s) =
Λ(s)

s(s + 1)
, Sn = 2

n∑
k=2

(−1)k

k(k − 1)

(
n

k

) ∑
w∈Σ∗

pk
w. (8)

For QuickVal, similar but more complicated forms can be obtained.

Proof (Prop. 3). Consider any sequence Sn whose Poissonized version is of the form

eSZ ≡ e−Z
X
n≥0

Sn
Zn

n!
=

Z
D

λ(x) f1(Zµ(x)) dx, (9)

for some domain D ⊂ Rd and some weights λ(x), µ(x) ≥ 0, with, additionally, µ(x) ≤ 1.
By expanding f1, then exchanging the order of summation and integration, one obtains

eSZ =

∞X
k=2

(−1)k$(−k)
Zk

k!
, where $(−k) :=

Z
D

λ(x) µ(x)k dx. (10)

Analytically, the form (10) is justified as soon as the integral defining $(−2) is con-

vergent. Then, since Sn is related to eSZ via the relation Sn = n![Zn](eZ eSZ), it can be
recovered by a binomial convolution. 2

2 Asymptotic analysis

For asymptotic purposes, the singular structure of the involved functions, most
notably the mixed Dirichlet series $(s), is essential. With tameness assump-
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tions described in Subsection 2.1, it becomes possible to develop complex inte-
gral representations (Subsection 2.2), themselves strongly tied to Mellin trans-
forms [9,18]. We can finally conclude with the proofs of Theorems 1 and 2 in
Subsection 2.3.

2.1. Tamed sources. We now introduce important regularity properties of a
source, via its Dirichlet series Λ(s),Π(s), as defined in (7). Recall that Λ(s)
always has a singularity at s = −1, and Π(s) always has a singularity at s = 0.

Definition 3. Consider a source S, with Λ(s),Π(s) its Dirichlet series.
(a) The source S is Π–tamed if the sequence πk satisfies πk ≤ Ak−γ for

some A > 0, γ > 1. In this case, Π(s) is analytic for <(s) < −1/γ.
(b) The source S is Λ–tamed if Λ(s) is meromorphic in a “hyperbolic domain”

F =
{

s
∣∣ <s ≤ −1 +

c

(1 + |=s|)d

}
(c, d > 0), (11)

is of polynomial growth as |s| → ∞ in F , and has only a pole at s = −1, of
order 1, with a residue equal to the inverse of the entropy h(S).

(c) The source S is Λ–strongly tamed if Λ(s) is meromorphic in a half-plane
F = {<(s) ≤ σ1}, (12)

for some σ1 > −1, is of polynomial growth as |s| → ∞ in F , and has only a pole
at s = −1, of order 1, with a residue equal to the inverse of the entropy h(S).

(d) The source S is periodic if Λ(s) is analytic in <(s) < −1, has a pole of
order 1 at s = −1, with a residue equal to the inverse of the entropy h(S), and
admits an imaginary period iΩ, that is, ω(s) = ω(s + iΩ).

Essentially all “reasonable” sources are Π– tamed and “most” classical sources
are Λ–tamed; see Section 3 for a discussion. The properties of $(s) turn out to
be related to properties of the source via the Dirichlet series Λ(s),Π(s).

Proposition 4. The mixed series $(s) of QuickValα relative to a Π–tamed
source with exponent γ is analytic and bounded in <(s) ≤ −1+δ with δ < 1−1/γ.
The mixed series $(s) of QuickSort is meromorphic and of polynomial growth in
a hyperbolic domain (11) when the source is Λ–tamed, and in a vertical strip (12)
when the source is Λ–strongly tamed.

2.2. General asymptotic estimates. The sequence of numerical values $(−k)
lifts into an analytic function $(s), whose singularities essentially determine the
asymptotic behaviour of QuickSort and QuickSelect.

Proposition 5. Let (Sn) be a numerical sequence which can be written as

Sn =
n∑

k=2

(
n

k

)
(−1)k$(−k), for n ≥ 2.

(i) If the function $(s) is analytic in <(s) < C, with −2 < C < −1, and
is of polynomial growth with order at most r, then the sequence Sn admits a
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Nörlund–Rice representation, for n > r + 1 and any −2 < d < C:

Sn =
1

2iπ

∫ d+i∞

d−i∞
$(s)

n!
s(s + 1) · · · (s + n)

ds. (13)

(ii) If, in addition, $(s) is meromorphic in <(s) < D for some D > −1, has
only a pole (of order k0 ≥ 0) at s = −1 and is of polynomial growth in <(s) < D
as |s| → +∞, then Sn satisfies Sn = An + O(n1−δ), for some δ > 0, with

An = −Res
(

n! $(s)
s(s + 1) · · · (s + n)

; s = −1
)

= n

(
k0∑

k=0

ak logk n

)
.

2.3. Application to the analysis of the three algorithms. We conclude
our discussion of algorithms QuickSort and QuickVal, then that of QuickQuant.

— Analysis of QuickSort. In this case, the Dirichlet series of interest is
$(s)
s + 1

=
2

s + 1
J [(t− u)−(2+s)] = 2

Λ(s)
s(s + 1)2

. (14)

For a Λ–tamed source, there is a triple pole at s = −1: a pole of order 1 arising
from Λ(s) and a pole of order 2 brought by the factor 1/(s + 1)2. For a periodic
source, the other poles located on <s = −1 provide the periodic term nP (log n),
in the form of a Fourier series. This concludes the proof of Theorem 1.

— Analysis of QuickValα. In this case, the Dirichlet series of interest is
$(s)
s + 1

=
2

s + 1
J [(max(α, t)−min(α, u))−(2+s)] .

Proposition 4 entails that $(s) is analytic at s = −1. Then, the integrand in (13)
has a simple pole at s = −1, brought by the factor 1/(s + 1) and Proposition 5
applies as soon as the source S is Π–tamed. Thus, for δ < 1− (1/γ) :

V (α)
n = ρS(α)n + O(n1−δ). (15)

The three possible expressions of the function (u, t) 7→ max(α, t) − min(α, u)
on the unit triangle give rise to three intervals of definition for the function H
defined in Figure 1 (respectively, ]−∞,−1/2], [−1/2,+1/2], [1/2,∞[).

— Analysis of QuickQuantα. The main chain of arguments connecting the asymp-
totic behaviors of QuickValα(n) and QuickQuantα(n) is the following.
(a) The algorithms are asymptotically “similar enough”: If X1, . . . , Xn are n
i.i.d. random variables uniform over [0, 1], then the α–quantile of set X is with
high probability close to α. For instance, it is at distance at most (log2 n)/

√
n

from α with an exponentially small probability (about exp(− log2 n)).
(b) The function α 7→ ρS(α) is Hölder with exponent c = min(1/2, 1− (1/γ)).
(c) The error term in the expansion (15) is uniform with respect to α.

3 Sources, QuickSort, and QuickSelect

We can now recapitulate and examine the situation of classical sources with
respect to the tameness and periodicity conditions of Definition 3. All the sources
listed below are Π–tamed, so that Theorem 2 (for QuickQuant) is systematically

ICALP 2009, to appear --- 10 ---



applicable to them. The finer properties of being Λ–tamed, Λ–strongly tamed,
or periodic only intervene in Theorem 1, for Quicksort.

Memoryless sources and Markov chains. The memoryless (or Bernoulli) sources
correspond to an alphabet of some cardinality r ≥ 2, where symbols are taken
independently, with pj the probability of the jth symbol. The Dirichlet series is

Λ(s) = (1− p−s
1 − · · · − p−s

r )−1

Despite their simplicity, memoryless sources are never Λ–strongly tamed. They
can be classified into three subcategories (Markov chain sources obey a similar
trichotomy).
(i) A memoryless source is said to be Diophantine if at least one ratio of the
form (log pi)/(log pj) is irrational and poorly approximable by rationals. All Dio-
phantine sources are Λ-tamed in the sense of Definition 3(b); i.e., the existence
of a hyperbolic region (11) can be established. Note that, in a measure-theoretic
sense, almost all memoryless sources are Diophantine.
(ii) A memoryless source is periodic when all ratios (log pi)/(log p1) are rational
(this includes cases where p1 = · · · = pr, in particular, the model of uniform
random bits). The function Λ(s) then admits an imaginary period, and its poles
are regularly spaced on <(s) = −1. This entails the presence of an additional
periodic term in the asymptotic expansion of the cost of QuickSort, which cor-
responds to complex poles of Λ(s); this is Case (ii) of Theorem 1.
(iii) Finally, Liouvillean sources are determined by the fact that the ratios are
not all rational, but all the irrational ratios are very well approximated by ratio-
nals (i.e., have infinite irrationality measure); for their treatment, we can appeal
to the Tauberian theorems of Delange [6]

Dynamical sources were described in Section 1. They are principally deter-
mined by a shift transformation T . As shown by Vallée [19] (see also [3]), the
Dirichlet series of fundamental intervals can be analysed by means of transfer op-
erators, specifically the ones of secant type. We discuss here the much researched
case where T is a non-linear expanding map of the interval. (Such a source may
be periodic only if the shift T is conjugated to a piecewise affine map of the
type previously discussed.) One can then adapt deep results of Dolgopyat [4], to
the secant operators. In this way, it appears that a dynamical source is strongly
tamed as soon as the branches of the shift (i.e., the restrictions of T to the in-
tervals Iσ) are not “too often” of the “same form”—we say that such sources
are of type D1. Such is the case for continued fraction sources, which satisfy a
“Riemann hypothesis” [1,2]. The adaptation of other results of Dolgopyat [5]
provides natural instances of tamed sources with a hyperbolic strip: this occurs
as soon as the branches all have the same geometric form, but not the same
arithmetic features—we say that such sources are of type D2.

Theorem 3. The memoryless and Markov chain sources that are Diophantine
are Λ–tamed. Dynamical sources of type D2 are Λ–tamed and dynamical sources
of type D1 are Λ–strongly tamed. The estimates of Theorem 1 and 2 are then
applicable to all these sources, and, in the case of Λ–strongly tamed sources, the
error term of QuickSort in (1) can be improved to O(n1−δ), for some δ > 0.
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It is also possible to study “intermittent sources” in the style of what is done
for the subtractive Euclidean algorithm [20, §2,6]: a higher order pole of Λ(s)
then arises, leading to complexities of the form n log3 n for QuickSort, whereas
QuickQuant remains of order n.
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