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Conventional acoustical methods for measuring the permeability or flow resistivity of a po-
rous material require a priori estimation of the porosity. In this work, an acoustical method is
presented, in which a simplified expression (independent of both the frequency and porosity) for
the transmitted waves at the Darcy’s regime (low frequency range) is derived, and used for the
inverse determination of both the viscous static permeability (or flow resistivity) and the thick-
ness of air-saturated porous materials. The inverse problem is solved based on the least-square
numerical method using experimental transmitted waves in time domain. Tests are performed
using industrial plastic foams. Experimental and numerical validation results of this method are
presented, which show the advantage of measuring the viscous permeability and thickness of
a porous slab, without the required prior knowledge of the porosity, but by simply using the

transmitted waves.



I. INTRODUCTION

The static viscous permeability kg is one of the most important parameters, which appears
in the theories of sound propagation in porous media, in the low frequency regime!=>. This
parameter is related to the specific flow resistivity o by the relation : kg = n/o, where 7 is
the fluid viscosity. Several methods®=2% have been developed in the past to measure the static
viscous permeability or the flow resistivity. Among these methods, we distinguish between the

6=11 which do not use sound waves, and indirect methods'?=23 that

so-called direct methods
use sound waves transmitted or reflected by the porous material. The practical implementation
of the direct methods could be both complex and expensive. Most of the acoustic (indirect)
methods®23 require a priori estimation of the porosity, or other non acoustic parameters'—3
(tortuosity, viscous and thermal characteristic lengths, thermal permeability). The proposed
procedure is an indirect acoustical method for measuring the static viscous permeability (and
therefore flow resistivity), without knowing in advance the porosity or other non-acoustic setting.
This method improves and simplifies the approach developed in our previous work'®29. The
originality of this contribution with respect to Refs. 18-20 is the use of a simplified transmission
coefficient which is independent of the frequency and porosity. Some techniques use impedance

12=16 ) three!” microphones are

tube, in which standing waves are generated, and where two
used for experimental measurements. In this case, a calibration of the microphones is necessary
for a good quality of the results. In our proposed method, a tube is used, in which transient
sound waves propagate. A single microphone'®=2% is used for the measurement of experimental
signals, therefore, no calibration is required.

Sound propagation in air-saturated porous material is described by various physical pa-
rameters, which are different according to the frequency domain'. The high and low frequency

3

ranges' 3, are defined by comparing the viscous and thermal skin thicknesses § = (217/wp)'/? and

8" = (2n/wpP,)Y/? with the radius of the pores r (p is the density of the saturating fluid ; w the



pulsation frequency ; P, the Prandtl number). In the asymptotic domain (high frequencies), the
skin thicknesses become narrower and the viscous effects are concentrated in a small volume near
the frame § < r and ¢ < r. The fluid-structure interactions are described by the tortuosity®,
viscous? and thermal characteristic lengths®. In the viscous domain (low frequencies)?, the skin
thicknesses ¢ and &’ are much larger than the radius of the pores. The main important parame-
ters in this frequency domain are ; the static viscous and thermal permeabilities® and viscous and
thermal tortuosities®. In addition to these parameters, the porosity ¢ is a key parameter playing

an important role for all frequencies. In the Darcy’s regime!8=20:24:25 (

very low frequencies), the
static viscous permeability is the most influential parameter; the propagation equation reduces
to a diffusion equation”™ . The acoustic wave does not propagate, but is just attenuated. The

79 using reflected” and transmitted®®

direct and inverse problems were solved in time domain
experimental data, thus obtaining a good estimate of the static viscous permeability (or specific
flow resistivity), knowing in advance, the value of the porosity.

In this work, we present an improved method to determine simultaneously the static viscous
permeability (or flow resistivity) and thickness of the porous material, without knowing in ad-
vance, any other non acoustic parameter. The interest of solving the inverse problem with respect
to the thickness of the material is to verify the results of the inversion, since the thickness of
the material is easily measurable. The inverse problem is solved using experimental transmitted
waves. We derive a simplified expression for the transmission coefficient in the Darcy’s regime.
The obtained expression is independent of frequency and porosity. The viscous static permea-
bility and thickness of the material are the only parameters involved. The transmitted waves
predicted by the simplified expression of the transmission coefficient coincide with those obtained
using the classical expression'®?%. Inversions on real experimental data are made, using waves

transmitted by samples of air saturated porous foams. The inversion results are satisfactory and

open new perspectives for the characterization of air-saturated porous materials.



II. EQUIVALENT FLUID MODEL

In the acoustics of porous materials, one distinguishes two situations according to whether
the frame is moving or not. In the first case, the dynamics of the waves due to the coupling
between the solid skeleton and the fluid is well described by the Biot theory?*. In air-saturated
porous media, the vibrations of the solid frame can often be neglected in absence of direct contact
with the sound source, so that the waves can be considered to propagate only in fluid. This case
is described by the equivalent-fluid model, which is a particular case of the Biot model, in which
fluid-structure interactions are taken into account in two frequency response factors : dynamic
tortuosity of the medium «(w) given by Johnson et al?, and the dynamic compressibility of the
air in the porous material 3(w) given by Allard etal'. In the frequency domain, these factors
multiply the density of the fluid and its compressibility respectively and represent the deviation
from the behavior of the fluid in free space as the frequency increases. Consider a homogeneous
porous material that occupies the region 0 < z < L. A sound pulse impinges normally on the
medium. It generates an acoustic pressure field p and an acoustic velocity field v within the
material. The acoustic fields satisfy the following equivalent-fluid macroscopic equations (along

the r—axis)! :

o B o
palwijon = 22 Eljop = 3. &

where, j2 = —1, p is the saturating fluid density and K, is the compressibility modulus of the
fluid. In the low frequency domain, the viscous effects are important in all the pore volume,
and the compression dilatation cycle in the porous material is slow enough to favor the thermal
interactions between fluid and structure®. At the same time the temperature of the frame is
practically unchanged by the passage of the sound wave because of the high value of its specific
heat : the frame acts as a thermostat®. In addition, the thermal conductivity of the solid is high,
and the excess heat is immediately evacuated by the solid, which therefore remains at the same

temperature during the compression dilatation cycle?.



25,26 (

In the Darcy’s regime very low-frequency approximation), the expressions of the res-

ponses factors a(w) and B(w) when w — 0 are given by the relations®® :

_ne
pkojw’

alw) = B(w) = 1. (2)

where kg is the static permeability, ¢ the porosity and ~ the adiabatic constant.

The incident p’(t) and transmitted p’(t) fields are related in time domain by the transmission

19,20 T -

(@, 1) = /Ot () <t P L)> dr. (3)

€o

scattering operator

The temporal operator kernel T is calculated by taking the inverse Fourier transform of the

transmission coefficient of a slab of porous material given by (Appendix) :

= 2Y (w)
Tw) = 2Y (w) cosh (jk(w)L) + (1 + Y?(w)) sinh (jk(w)L)’ )
where :
Y(w)=19¢ %, and klw)=w poz(c;gaﬁ(w)

Using the expressions (2) of the dynamic tortuosity and compressibility, we obtain the following

expression for the transmission coefficient :

Flw) = 2C1V/jw
 2C1/jw cosh (LOs/jw) + (1 + C¢jw) sinh (LC2v/jw)’

where

| vpkoo [ mé
Cl — n ) 02 - Kak() (6)

By doing the Taylor series expansion of the transmission coefficient, when the frequency tends
to zero (w — 0), we obtain :

2
, LC\Cy (1 + Lz 41 (5) >
T(w) = ( ) 1-—
1+

LC
S50~ 2(1+§—gf)

Jw+ .. (7)
2C1



As a first approximation, in the very low frequencies, the transmission coefficient is given by the

first term :

sl 1 )

1+42  1+4. 1

This simplified expression of the coefficient of transmission is independent of the frequency and
the porosity of the material, and depends only on the static permeability and thickness of the
material. In the next paragraph, we compare the expression (5) of the transmission coefficient,
with its simplified expression (8), using numerical simulations of transmitted signals (Eq. 3) by
a slab of air-saturated porous material.

Consider two samples M1 and M2 of air-saturated porous foams, having the same thickness
L = 0.05m, and two different values of their static permeability. M1 is more permeable (less
resistive) than M2. The international system of units for permeability is m?. A practical unit for
permeability is the Darcy (D), (1 Darcy =0.97 x 107!2m?2). The permeability value of MI is :
ko = 3092.8D ; (flow resistivity : ¢ = 6000 N m~?s), and of M2; kg = 185.56D (flow resistivity :
o =10°> N m™%s) .

The incident signal and its spectrum are given in the figures (1-a) and (1-b), respectively. The
frequency bandwidth of the incident signal is (450-550)Hz. Fig. 2 shows a comparison between
two simulated transmitted signals computed with different expressions of the transmission coef-
ficients for the sample M1. The first signal (solid line) corresponds to the simulated transmitted
signal using the expression (5) of the transmission coefficient, and the second one (dashed line)
using the relation (8). The amplitude is represented by an arbitrary unit and the point num-
ber represented in the abscissa is proportional to time. We note that for this frequency range
(450-550)Hz, the transmitted waves predicted by the two terms of the transmission coefficient
are slightly different, a small shift is observed between the two signals; 10% for the amplitude,
and 0.2% for the phase. By making the same comparison with the sample M2, which is less

permeable than M1, the results given in figure 3 show a significant difference between the two



simulated signals (shift of 49% for the amplitude, and of 0.5% for phase). We can conclude that
the approximation (8) of the transmission coefficient is much more accurate when the porous
medium is more permeable (less resistive).

Another test is performed by taking an incident signal (Figs. 4-a, 4-b) with lower frequencies
(30-70)Hz. The transmitted signals calculated from equations (5) and (8), are compared in
figures 5 and 6, for the samples M1 and M2, respectively, in the frequency domain (30-70)Hz.
These comparisons show a very good agreement, since it is practically impossible to distinguish
between the two curves for both M1 and M2 samples. Indeed, the simplified expression of the
transmission coefficient given by equation (8) is developed in very low frequencies. This study
showed that the simplified expression (8) gives the same results as the expression (5) for the
lower frequencies, especially for the most permeable (less resistive) materials. It would be more
advantageous to use the simplified expression (Eq. 8) of the transmission coefficient, since it is
fast, and does not depend on the frequency or porosity, and is simpler.

The transmission coefficient T(w) given by Eq. 7 can be written as :

2(1+522) . o _
2). The modulus of the transmission coefficient is given by :

sene (152 11 (°6)

- (i) ()

Table (I) shows values of w/w, and | T'(w) | for various values of frequency and flow resistivity.

where w, =

It can be seen that the values of (w/w,) are small compared to 1, and those of | T'(w) | are
almost constant for the same value of the flow resistivity, especially for low frequencies and low
resistivities. These results confirm those obtained in the previous paragraph, and again shows

the possibility of using the simplified expression (8).



ITI. INVERSION OF EXPERIMENTAL DATA

The experimental set up is sketched in Fig. 7. Its picture is given in Fig. 8. The tube length
is adaptable to avoid reflection, and to permit the propagation of transient signals, according to
the frequency range desired. The tube material is PVC, its wall thickness is of 3 mm. For mea-
surements in the frequency range (20-100)Hz, a length of 50m is sufficient. It is not important to
keep the pipe straight ; it can be rolled in order to save space without perturbations on experi-
mental signals. The tube diameter is 5 cm (the cut-off of tube f, ~ 4kHz). A sound source Driver
unit "Brand" constituted by loudspeaker Realistic 40-9000 is used. Tone-bursts are provided by
synthesized function generator Standford Research Systems model DS345-30MHz. The signals
are amplified and filtered using model SR 650-Dual channel filter, Standford Research Systems.
The signals (incident and transmitted) are measured using the same microphone (Bruel&Kjaer,
4190) in the same position in the tube, avoiding the need of a calibration. The incident signal
is measured without any porous sample, however, the transmitted signal is measured with the
porous sample.

Consider a cylindrical sample of plastic foam F1 of diameter of 5 cm. Sample F1 was characte-

rized using direct®? and indirect methods!'®'?

, given the values of the static viscous permeability
and thickness marked by = in Table II. Fig. 9-a shows the experimental incident signal (dashed
line) generated by the loudspeaker in the frequency bandwidth (20-40)Hz, and the experimen-
tal transmitted signal (solid line). Fig. 9-b shows their spectra. The inverse problem is to find
the viscous static permeability kg and the thickness L of the porous sample, which minimize
numerically the cost function U(kg, L) = Z::zjlv(p’;xp(x,ti) — p'(x,t;))?, wherein pl, (z,t;) is
the discrete set of values of the experimental transmitted signal and p(z,t;) the discrete set
of values of the simulated transmitted signal. This inverse problem is solved numerically by

the least-square method. For its iterative solution, we used the simplex search method (Ned-

ler Mead)?” which does not require numerical or analytic gradients. A large variation range is



applied for each estimated parameter in solving the inverse problem : kg € [1,9] x 103D and
L € [3,7]cm. The variations in the cost function present one clear minimum corresponding to the
following solution of the inverse problem : ky = 560D, or o = 33137 N m~*s, and L = 2.49cm.
Using these values, we present in Figs. 10(a)-10(b), the variations of the cost function U when
varying only one of the parameters around the minimum. This result is consistent with what
has been found using classical methods®%1819 (marked by * in Table II). A comparison bet-
ween an experimental transmitted signal and simulated transmitted signal is given in Fig. 11
for the optimized values of the inverted parameters. The agreement between theoretical and
experimental data is good, which leads us to conclude that the optimized values of the viscous
permeability and the thickness of the sample are accurate within 10%. This study has been also
carried, out in other frequency bandwidth summarized in Table I1. The inverse problem has also
been solved if the material thickness is held constant, the results of the inversion are markek
by f. It can be seen that for the different frequency bandwidths of the experimental incident
signals, the optimized values obtained using this method are close to those produced using clas-
sical methods®%!819  The results of the inversion for the permeability when the thickness is
known or unknown are slightly different but close enough in general. Two other plastic foams
samples F2 and F3, having a very different values of their permeability are also studied. Their

characteristics®9-18:19

are marked by * in Tables III and IV. After solving the inverse problem in
different frequency regimes, the results are presented in the same Tables (III and IV). Note that
for the sample F3, which is highly permeable (not resistive), it was possible to use experimental
data at relatively high frequency (up to 1kHz). In this case, the approximation (8) remains valid
for higher frequencies, relative to samples F1 and F2, which are much less permeable. Here, again
the inverted values of the permeability of the samples F2 and F3, are very close to those given
by the classical methods®%'81® (marked by * in Tables III and IV). The difference between the

optimized values and those given by other methods®?181® does not exceed 10%, except for the

inverted value of the thickness (sample F2) in the frequency band (20-40)Hz.

10



The results of the inverse problem (Tables II, ITT and IV) show that overall (except for some
cases) the results of the inversion for the permeabilities are better when the material thickness is
assumed unknown. The advantage of solving the inverse problem with respect to the thickness,
is to check the results of the inversion, since the thickness of the material is easily measurable.
This simple method seems to be effective for measuring the permeability of the porous material
saturated with air and offers another faster and simpler alternative to conventional methods®=23.
Note that this experiment can not be used for very highly resistive porous materials (permeability
< 9 x 107" m?). In fact, the acoustic excitation generates Biot’s vibrations of the structure?,
which induces a structural disturbance resulting from the elasticity. These vibrations are not
taken into account in the equivalent fluid model used in this work.

The great advantage of this method compared to other indirect methods using acoustic

12-23

waves , is that it is not necessary, to know in advance, the value of the porosity, in order to

measure the permeability of the porous material.

*

IV. CONCLUSION

A simple and effective method is developed for the experimental measurement of the static
viscous permeability (or flow resistivity) and thickness of an air-saturated porous material. The
development of the transmission coefficient in the Darcy’s regime (low frequency), was used
to extract a simplified expression. This study shows that this new expression gives the same
results as the general one dependent on the frequency'®2°, but has the advantage of being
more reliable, simpler and faster. The inverse problem is solved using experimental transmitted
data. The reconstructed values of permeability and thickness are close to those using classical
methods”~?!'. The most important result in this study is that it is now possible to measure

the viscous permeability and thickness, without knowing the porosity of the materials, and just

11



by using the experimental transmitted wave. This method is an improved alternative to other

7-9,17-21 10—16

methods using acoustic methods , or non-acoustic methods

12



APPENDIX A :REFLECTION AND TRANSMISSION COEF-

FICIENTS

Let us consider a homogeneous, isotropic and rigid porous material structure, which occupies
a finite space, 0 < x < L. A short sound pulse arrives at x = 0 at normal incidence on the
material at time ¢t = 0. It gives rise to an acoustic pressure field p(x) and an acoustic velocity
field v(z) within the material, which satisfying the equations (1). The expression of a pressure
wave incident plane, unit amplitude, arriving at normal incidence to the porous material is given

by :
pi(az,t) — e—j(kom_wt)7 where ko = w —w P

ko is the wave number of the free fluid. In the medium (I) (z < 0), the movement results from

the superposition of incident and reflected waves :
P ($,t) _ e—j(kom—wt) + Re—j(—kom—wt)’ (10)

where R is the reflection coefficient. According to Eq. 1, the expression of the velocity field in

the medium (I) wrote :

vi(x,t) = Zif <e_j(k°x_“t) - R(w)e‘j(_kox_“’t)) , where Zr =/ pK,. (11)

In the medium (II) corresponding to the porous material, the expressions of the pressure and

velocity fields are :

o, 1) = A(w)e T E@T=wt) | B()ei(-kwr—wt) (12)
va(,t) = —— (Afw)e Bt _ gkt (13)
T Z(w)

In these expressions A(w) and B(w) are function of pulsation for determining, Z(w) and k(w)
are the characteristic impedance and the wave number, respectively, of the acoustic wave in the

porous medium. These are two complex quantities :
k(w)=w\|—2—,  Z(w)=

13



Finally, in the medium (III), the expressions of the pressure and velocity fields of the wave

transmitted through the porous material are :

p3(x,t) = T(w)e 7 ho@=L)—wt) (14)

1 - .
’L)g(l‘,t) = Z_fT(w)e_](kO(m_L)_wt)7 (15)

where T'(w) is the transmission coefficient. To determine the coefficients of reflection and trans-
mission, the continuity conditions are written to the interfaces x = 0 and « = L of the porous

medium :
p1(07) =p2(07), pa(L7) =ps(LT), vi1(07) = dv2(07), ua(L™) = vg(L™). (16)

Using expressions (16) and relations (10-15), we obtain the following relations between A(w),

B(w), R(w) and T'(w) :

1+ R(w) = A(w) + B(w% T = A(w)e—jk(w)L + B(w)ejk(w)L’

1 Bw) =05

The solution of this system of equations gives the expressions of the reflection and transmission

coefficients :
R(w) = (1-Y?(w))
(14 Y2(w)) + 2Y (w) coth (jk(w)L)
Tw) = 2Y (w)
~ 2Y (w) cosh (jk(w)L) + (1 + Y2(w)) sinh (jk(w)L)’
where :

14



APPENDIX B : TAYLOR EXPANSION OF THE TRANSMIS-

SION COEFFICIENT

. The transmission coefficient T'(w) is given by (5) :

~ 2C1V/jw
~ 2C1\jwcosh (LCyy/jw) + (1 + CEjw) sinh (LCyy/jw)

1 ) 1
= = 1+02 fw T
<cosh (LC2vijw) ) |4 + (201\1/%) tanh(LCq+/jw)

The Taylor series expansion in the vicinity of zero, of cosh (LCQ\/ jw) and tanh(LCs/jw), gives :

1
cosh <LC’2\/jw> =1+ §L2C'22jw + 0([jw]?)

o (LZ*Q\/]TU) =1- %L2C’22jw +0([jw]?), (17)
and
tanh(LCy\/jw) = LCy/jw — %L3C§(jw)3/2 +0(ju]??).
We have

S CUYN fanh(LOy o) = =2 4 1+ (_ip3cs 41 0
<2C’1\/j_w tanh(LCo+/jw) 50 + 5, 3 C35 + LCyCY ) jw + O([jw]?)

and
! 1 ~113¢§ + LC}C
4GP | <ﬁ> 1 BRI 5, 4 o) | a9
1 + (201\1/j_w> tanh(LC’2 ]w) + 20, 201 (1 + 2_012)

Using Egs. (17) and (18), one finds

. 1 L2C?2 L1303 + LC?C
T(w) = <7ch> 1— 2 +( 3 2 1) jw + O([jw]?)
L+ 567 2 2C <1—|—L02)

2C1

Simplifying and rearranging terms, we find Eq. 7 :

2
N 1 LC1Cy <1+L0_6;2+%<Lcc;z) >
T(w) = ———— 1— jw+0([j ]2)
L+ LCs
2 (1 n _201)

15



Table I. Values of (w/w,) and | T(w) | for different values of frequency and resistivity.

50 Hz 100 Hz 300 Hz 500 Hz 1000 Hz
o (Nm™s) | wjwe | | T| | wiwe | | T || w/we | |T|| wlwe | |T||w/we||T]
3000 0.03 | 0.84 | 0.06 {084 ] 0.2 | 086 | 0.34 | 0.89 | 0.68 | 1.02
10% 0.04 | 062 | 0.08 | 0.62 | 0.26 | 0.64 | 0.44 | 0.68 | 0.88 | 0.83
10° 0.15 | 0.14 | 0.31 [ 0.14 | 093 | 0.19 | 1.55 | 0.26 3.1 0.46
106 1.21 | 0.02 | 243 | 0.04 | 7.29 | 0.12 | 12.16 | 0.19 | 24.32 | 0.39

16



Table II. Characteristics of the sample F1 obtained by conventional methods (marked by ),
either by solving the inverse problem only for the permeability (marked by £), or by solving the

inverse problem simultaneously for the permeability and thickness (not marked).

Frequency range (Hz) | (20-40) (30-50) (40-60) (200-600)

Permeability ko (Darcy) | 559 592° 513" 604" 540*

Flow resistivity o (N m™%s) | 31304 ¥ 31346° 36145%  30717%  34364*

Permeability ko (Darcy) 560 580 505 553 540*
Flow resistivity o (N m™s) | 33137 31994 36746 33556 34364*

Thickness L (cm) | 2.49 2.45 2.45 2.34 2.5%

17



Table III. Characteristics of the sample F2 obtained by conventional methods (marked by
), either by solving the inverse problem only for the permeability (marked by ), or by solving

the inverse problem simultaneously for the permeability and thickness (not marked).

Frequency range (Hz) | (20-40) (30-50) (40-60) (50-70) (60-80)

Permeability ko (Darcy) | 180¢ 228" 267 225¢ 197 226*

Flow resistivity o (N m™%s) | 102860% 81448 69498¢ 82569 94241% 81820*

Permeability ko (Darcy) 211 232 231 231 222 226*
Flow resistivity o (N m™*s) | 87946 79986 80332 80332 83589  81820*

Thickness L (cm) 4.8 4.24 4.16 4.06 4.6 4.15*

18



Table IV. Characteristics of the sample F3 obtained by conventional methods (marked by

), either by solving the inverse problem only for the permeability (marked by ), or by solving

the inverse problem simultaneously for the permeability and thickness (not marked).

Frequency range (Hz) | (30-50)  (300-500) (500-700) (600-800) (800-1000)
Permeability ko (Darcy) | 2515.4%  3309.3%  3226,8%  2546.4° 450528  2886*
Flow resistivity o (N m™s) | 7377%  5607.5¢  5750.8%  5187.3 4119* 6428*
Permeability ko (Darcy) | 2783 3144 3144 2938 2938 2886*
Flow resistivity o (N m~s) | 6668 5902 5902 6316 6316 6428*
Thickness L (cm) 5.5 4.92 5.3 5.08 5.2 5*

19
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FIGURE CAPTIONS

Fig. 1-a. Incident signal (450-550)Hz.

Fig. 1-b. Spectrum of the incident signal (450-550)Hz.

Fig. 2. (Color online) Comparison between simulated transmitted signals corresponding to Eq.(5)

(solid line) and Eq.(8) (dashed line), for the sample M1.

Fig. 3. (Color online) Comparison between simulated transmitted signals corresponding to Eq.

(5) (solid line) and Eq. (8) (dashed line), for the sample M2.

Fig. 4-a. Incident signal (30-70)Hz.

Fig. 4-b. Spectrum of the incident signal (30-70)Hz.

Fig. 5. (Color online) Comparison between simulated transmitted signals corresponding to Eq.

(5) (solid line) and Eq. (8) (dashed line), for the sample M1, in the frequency band (30-70)Hz.

Fig. 6. (Color online) Comparison between simulated transmitted signals corresponding to Eq.

(5) (solid line) and Eq. (8) (dashed line), for the sample M2, in the frequency band (30-70)Hz.

Fig. 7. Experimental setup of acoustic measurements.

Fig. 8. (Color online) Picture of the experimental setup.
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Fig. 9-a. Experimental incident signal (dashed line) and experimental transmitted signal (so-

lid line).

Fig. 9-b. Spectra of the incident (dashed line) and experimental transmitted signal (solid line).

Fig. 10-a. Variation of the minimization function U with static viscous permeability ko.

Fig. 10-b. Variation of the minimization function U with the thickness of the porous mate-

rial L.

Fig. 11. (Color online) Comparison between the experimental transmitted signal (dashed line)

and the simulated transmitted signals (solid line) using the reconstructed values of kg and L.
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