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Abstract – Making use of the addition theorem for the cylindrical wave functions and the complex-

source-point method in cylindrical coordinates, an exact solution to the Helmholtz equation is derived, 

which corresponds to a tightly focused (or collimated) cylindrical quasi-Gaussian beam with arbitrary 

waist. The solution is termed “quasi-Gaussian” to make a distinction from the standard Gaussian beam 

solution obtained in the paraxial approximation. The advantage of introducing this new solution is the 

efficient and fast computational modeling of tightly focused or quasi-collimated cylindrical wave-fronts 

depending on the dimensionless waist parameter kw0, where k is the wave number of the acoustical 

radiation. Moreover, a closed-form partial-wave series expansion is obtained for the incident field, 

which has the property that the axial scattering (i.e. along the direction of wave propagation) and the 

axial acoustic radiation force (which is a time-averaged quantity) on a cylinder, can be calculated 

without any approximations in the limit of linear acoustical waves in a nonviscous fluid. Examples are 

found where the extinction in the radiation force function plot is found to be correlated with conditions 

giving reduction of the backscattering from an elastic cylinder. Those results are useful in beam-forming 

design, particle manipulation in acoustic tweezers operating with focused cylindrical beams, and the 

prediction of the scattering and radiation forces on a cylindrical particle or liquid bridges.   

 

Keywords: addition theorem, complex-source-point method, quasi-Gaussian beams, scattering, 

radiation force, elastic cylinder. 
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1. Introduction 

Acoustic beam modeling of focused ultrasonic transducers is an important process in beam-forming 

design in order to optimize design parameters, such as geometry, focus depth, acoustic beam width and 

directivity. This process consists of determining the acoustic pressure and its spatial distribution in front 

of the radiating surface. Various software packages exist (such as Abersim [1], Field II [2], FOCUS [3] 

or k-Wave [4]), in which the acoustic beam-profile can be modeled using the Rayleigh-Sommerfeld 

diffraction integral [5]. Apertures ranging from simple geometrical shapes, such as planar, 

spherically/cylindrically focused waves, to more complex (arbitrarily-shaped) wave-fronts have been 

considered in the aforementioned packages. However, the numerical simulations for the beam-forming 

are generally time-consuming, which require numerical integration procedures. It is therefore important 

to devise fast and efficient analytical tools which allow optimized design of experimental tools and the 

development of novel devices.  

Along that line of research, the complex-source-point method (CSPM) [6,7,8,9,10] has been 

introduced, and exact solutions of the Helmholtz equation were developed and analyzed for the fast 

beam-profile modeling of spherically focused quasi-Gaussian beams, both in acoustics [11] and optics 

[12]. Moreover, the CSPM has been applied for cylindrically focused quasi-Gaussian optical beams 

[13]. The “quasi-Gaussian” terminology has been used to make a distinction from the standard Gaussian 

beam solution obtained in the paraxial approximation, which does not satisfy the Helmholtz equation.  

The purpose of this investigation is to extend the analysis in [13] to include cylindrical acoustical 

beams, thus, providing an efficient tool in the modeling of strongly focused and quasi-collimated scalar 

cylindrical pressure fields. Cylindrically symmetric wave-fields originate in the wave diffraction theory 

as an exact solution of the Helmholtz equation (pp. 75-77 [14]). Moreover, the analysis is extended to 

derive an exact partial-wave series expansion, which is used to predict the axial (i.e. along the direction 
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of wave propagation) scattering and radiation force on an elastic cylinder centered on the beam’s focus. 

 

2. Method  

Following Eq.(6) in [13], the scalar velocity potential field of a cylindrical quasi-Gaussian beam 

propagating in fluid medium of density 0 and speed of sound c0 with normal incidence (i.e.  = 0, 

where  is the tilt angle of the incident wavefront with respect to the axis of the cylinder), can be 

expressed as, 

 
 . 0

0

0

,cyl i t

qG

R

J k e
I kx

  
   (1) 

where 0  is the characteristic velocity potential amplitude at the center of the coordinate system, J0(.) is 

the cylindrical Bessel function of the first kind [15], I0(.) is the modified cylindrical Bessel function of 

the first kind, k is the wave number,  
2 2

Rx ix y     , and  1cos Rx ix        (Fig. 1). At 

normal incidence,  = 0, there is no propagation along the axis of the cylinder such that the axial wave 

number kz = k sin = 0. The parameter 2

0 2Rx kw  (known as the Rayleigh range) is expressed through 

a variable w0, which corresponds to the beam’s waist. Note that the incident pressure field can be 

obtained from the velocity potential such that p = i 0
.cyl

qG . 

 To illustrate the solution presented in Eq.(1), the spatial distribution of the velocity potential 

magnitude is numerically evaluated in the cross-sectional plane for different values of the dimensionless 

waist kw0. The results are displayed in Fig. 2. As expected, at low kw0 values, the cylindrical beam is 

tightly focused (or strongly divergent), and begins to spread as kw0 increases. This behavior was also 

observed for spherical quasi-Gaussian waves (Fig. 1 in [16]).  

 Consider now a cylindrical particle centered on the axis of the cylindrical coordinates system. Making 
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use of the expression for the addition theorem for the cylindrical wave functions (Eq.(2) on p. 360 in 

Ref. [17]) taking into account the geometry of the present problem (Fig. 1), the expression of the 

velocity potential field given in Eq.(1), is rewritten in term of a partial-wave expansion as, 

 
     

   

. 0

0

0

,

,

i t
incyl

qG n n R

nR

i t n in

n R n

n

e
J kr J ikx e

I kx

e kx i J kr e


 

 

 





 




  

  





 (2) 

where  = cos
–1

(x/r), and  

     0 .n R n R Rkx I kx I kx   (3) 

 It is instructive to analyze the dependence of the velocity potential field of a cylindrical quasi-

Gaussian beam on the coefficient  n Rkx  as given by Eq.(3). In the limit of tightly focused (or strongly 

divergent) beams (i.e. kw0 < 1), with the assumption that Rkx << 1n , the asymptotic form of the 

modified cylindrical Bessel function of the first kind is used [15];    2 2

00
4 !.

R

n

n R kx
I kx k w n


  In this 

limit, it can be verified from Eq.(3) that  0 0
1,

R
R kx

kx


    1 0
1 4,

R
R kx

kx


   and 

 2 0
0,

R
n R kx

kx 
   so the series in Eq.(2) will only contain the monopole (n = 0) and dipole (|n| = 1) 

partial-waves.  

 For collimated beams (i.e. kw0 >> 1), using the asymptotic expansion of the modified cylindrical 

Bessel function of the first kind [15];   2 ,R

R

kx

n R Rkx
I kx e kx


 the coefficient  n Rkx  in Eq.(3) 

approaches unity. Such properties for tightly focused (or strongly divergent) or quasi-collimated beams 

can be further analyzed by numerical computation of Eq.(3) versus the partial-wave number n. The 

results are displayed in Fig. 3 for various kw0 values. Indeed, as kw0 increases and tends to infinity, the 

coefficient   1,n Rkx   and Eq.(2) reduces to the series expansion of plane waves. 
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 The partial-wave series expansion for the incident cylindrical quasi-Gaussian beam Eq.(2) allows the 

evaluation of the axial acoustical scattering (i.e. along the direction of wave propagation) by a cylinder 

with its center coinciding with the origin of the cylindrical coordinates system. An elastic polymer 

material is chosen here to illustrate the analysis, however, the formulation remains valid for fluid 

[18,19,20], viscoelastic [21,22,23,24], layered cylinders [25,26], shells [27,28,29], and layered 

cylindrical shells [30,31].  

Consider that the elastic cylinder of radius a is immersed in non-viscous water. The scattered velocity 

potential field by the cylinder produces a cylindrical wave-field expressed as, 

     1.

, 0 ,cyl i t n in

s qG n R n n

n

e kx i C H kr e 


 



     (4) 

where 
   1

.nH is the cylindrical Hankel function of the first kind of order n, and nC  are the scattering 

coefficients determined by applying appropriate boundary conditions [32] at the interface fluid-structure, 

with the assumption that the surrounding fluid is nonviscous. These functions depend on the cylinder’s 

elastic parameters such as the longitudinal, the shear or transverse sound speed and the mass densities of 

both the fluid and the cylinder. After arithmetic manipulation, it is found that these coefficients are 

equivalent to those obtained from the study of the acoustic scattering by plane waves (See Eq.(4) in 

[33]). 

 In the far-field kr  , the asymptotic form for the Hankel function is 

       1 2 4
2 ,

i kr n

n
kr

H kr kr e
 


 


  so that a steady-state far-field form-function can be defined as 

[34,35],  

   

 

.

,

0

2
,

2
.

cyl

i kr ts qG

in

n R n

n

r
f ka e

a

kx C e
i ka









 








 
  

 

 

 (5) 
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Now that the expressions for the incident and scattered fields are known, the evaluation of the acoustic 

radiation force (ARF) becomes possible. Taking advantage of the far-field scattering, the ARF is 

expressed as [36],   

 
2

2

0
0

1
Re d ,

2
is

kr
k





 F S  (6) 

where,  

.
2

. .* .

, , ,

cyl

qG cyl cyl cyl

is qG s qG s qG

i

k r

  
       

   

 (7) 

and the cylinder’s differential surface is d Lr d rS e  with a length L. The unit vector in the radial 

direction is 
re  and the symbol    denotes time-averaging. 

Taking the asymptotic limits for Eq.(2) and Eq.(4) in the far-field scattering limit (i.e. kr  ), and 

substituting them into Eq.(6) using Eq.(7) as well as the property of the following angular integral, 

   
2

'

, 1 , 1
0

cos ,
i n n

n n n ne d
 

    


    (8) 

where ij is the Kronecker delta function, the axial radiation force can be expressed as, 

0,

x

qG

F

Y SE

 



rF e
 (9) 

where S = 2aL is the cross-sectional surface of the cylinder, 
22

0 0 0

1

2
E k   is a characteristic energy 

density, and qGY  is the radiation force function, which is the radiation force per unit cross-sectional 

surface and unit energy density. Its expression is given by,  

 
 

   

   

1 1 1 1

2

0 1 1 1 1

1
,

n R n n n n n

qG n R

nR n R n n n n n

I kx
Y I kx

I kx ka I kx

    

    


   

    

  
   

    
  (10) 

where  Re ,n nC   and  Im .n nC    
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Note that in the limit of collimated beams (i.e. kw0 >> 1), Eq.(10) can be further simplified using the 

asymptotic limit for the modified cylindrical Bessel function of the first kind, and the expression for the 

radiation force function for plane progressive waves is recovered, and is given by,   

     1 1 1 1

1
1 .p n n n n n n

n

Y
ka

     


   



          (11) 

 

3. Numerical results and discussion 

The following examples are now considered to illustrate the analysis by plotting the magnitude of the 

backscattering form-function  ,f ka     as well as the radiation force function qGY  for a cylindrical 

quasi-Gaussian beam incident upon a polymethylmetacrylate (PMMA) elastic cylinder (PMMA = 1191 

kg/m
3
; cL = 2690 m/s; cT = 1340 m/s) immersed in water (0 = 1000 kg/m

3
; c0 = 1500 m/s). The 

computations are evaluated in the dimensionless frequency range 0 < ka  10 for two values of the 

dimensionless beam waist parameter kw0 = 1, corresponding to a tightly focused (or strongly divergent) 

cylindrical beam, and kw0 = 25, corresponding to a quasi-collimated beam. It is important to emphasize 

that the diffraction limit is reached for a beam waist w0 approaching half the wavelength λ/2 of the 

incident radiation (i.e., kw0 = π) [37]. Beams with a dimensionless waist kw0 < π are not directional, and 

below this limit, wave reflections at the aperture of the focused source generate exponentially decaying 

evanescent waves which become relatively important as kw0 → 0 [38]. If one aims to construct a beam 

with a dimensionless waist kw0 < π using a finite source confined in a bounded space, it becomes 

essential to consider the effects of the evanescent wavefield at the focus. Note here that the 

corresponding source terms contributing to that part of the evanescent component become exponentially 

large at the source relative to the homogeneous (propagating) part of the wavefield. This fact may 

introduce a significant complication in modeling the tightly focused field as exponentially-large source 
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amplitudes have to be taken into consideration so as to retain the evanescent component at the focus of 

the beam to make a tight focus, and the linear assumptions of the Helmholtz equation do not hold. In the 

present study, the focus is on propagating waves and the theoretical development disregards the 

evanescent contributions to the homogeneous field. 

In Fig. 4, the numerical plots for  ,f ka     are displayed for kw0 = 1 (solid line) and kw0 = 25 

(dashed line). An interesting observation is related to the plot for kw0 = 1 (i.e. solid line) in which a 

reduction in the backscattering is noticed. Inspection of Fig. 5 shows that the reduction in the 

backscattering has a major effect on the radiation force function qGY that approaches zero at those 

particular values of ka (Fig. 5); that is, the reduction in the backscattering shown in the plots for 

 ,f ka     closely matches the zeros of 
0qGY  for kw0 = 1. This behavior has been also observed in 

the study of the backscattering and radiation force of a spherical quasi-Gaussian beam on an elastic 

sphere (Fig. 2 in [39]), but was not observed in the case of a rigid sphere [40]. At the specific ka values 

for which the backscattering is reduced, the radiation force function 0qGY   for kw0 = 1, and the 

transmission of acoustical waves through the elastic cylinder in the forward direction (i.e. axial direction 

 = 0) is maximized. This is not the case as kw0 increases to reach 25 (i.e. dashed curves) so the plots for 

 ,f ka     and qGY approach the plane wave limit, respectively (Fig. 1 in [23] & Fig. 1 in [24]).  

It is noticeable from Fig. 5 that for a tightly focused (or strongly divergent) cylindrical quasi-Gaussian 

beam centered on the elastic cylinder, the (axial) radiation force function approaches closely to zero, 

however, is not found to be negative (i.e. not a force of attraction). In some situations, theoretical 

predictions have demonstrated the existence of a negative (pulling) force on a rigid cylinder in a focused 

Gaussian beam [41] (and spheres as well [42,43]), however, the mathematical expression for the 

incident Gaussian beam provided therein differs from Eq.(2). Note also that in the context of Bessel 
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beams, earlier works have shown the existence of a force of attraction on a sphere [44,45,46], which is 

associated with a reduction in the backscattering as well [47].  

It is also important to note an equivalent partial-wave series expansion for the incident field Eq.(2). 

Using the properties of the cylindrical Bessel and modified Bessel functions of the first kind 

    ,n n

n ni J z i J z

 and     ,n nI z I z  the series in Eq.(2) can be expressed as,  

   

     

.

0

0

0

cos ,

cyl i t n in

qG n R n

n

i t n

n R n n

n

e kx i J kr e

e kx i J kr n

 

  


 








   

  




(12) 

where n  is the Neumann factor, defined by  0 1  , and 2,j  for  j = 1,…n. 

 In a real source coordinate system such that 0 0,x   a closely related generalized partial-wave series 

expansion that resembles to Eq.(12) has been provided (Eq.(1) in [48]), which can be applied for 

computing the axial acoustic radiation force in the cases of plane travelling waves [24,25,36,49], plane 

standing [26,29,50] or quasi-standing waves [33], diverging cylindrical waves [51], and diverging or 

converging cylindrical travelling, standing and quasi-standing waves [48,52]. Following the generalized 

formalism (Eq.(15) in [48]), and noting that  n Rkx as given by Eq.(3) is a real coefficient, the 

radiation force function for a cylindrical quasi-Gaussian beam qGY , is expressed as, 

     

 
     

1 1 1 1

0

1 1 1 12
00

2
2 2

2
2 2 ,

qG n R n R n n n n n n

n

n R n R n n n n n n

nR

Y kx kx
ka

I kx I kx
I kx ka

     

     



   





   



      

    




  (13) 

which is equivalent to Eq.(10).  

It is obvious from Eq.(13) that for a collimated beam (kw0  ), the expression for the radiation force 

function reduces to the plane wave result [49], which is equivalent to Eq.(11).  
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4. Conclusion 

In summary, an exact acoustical beam solution that satisfies the wave equation is introduced and some 

of its intrinsic characteristics, as well as its scattering and radiation force properties are delineated for a 

tightly focused and quasi-collimated cylindrical wave-fronts incident upon an elastic cylinder. Those 

results are useful in beam-forming design as well as modeling the interaction of a cylindrical quasi-

Gaussian acoustical beam with a cylindrical particle for applications in acoustical tweezers, imaging and 

particle manipulation.  
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FIGURE CAPTIONS 

 

Fig.1. (Colour online) Geometry of the problem displaying a cross section of a cylinder centered on a 

coordinates system (xOy). The parameter r is the radial distance from the center of the coordinates 

system to an observation point M,  is the polar angle in the (x,y) cross-sectional plane where x denotes 

the direction of wave propagation, and a is the cylinder’s radius. The other parameters are defined in the 

text. 

 

Fig. 2. (Colour online) The plots for the magnitude of the velocity potential field of a cylindrical quasi-

Gaussian beam for different values of the dimensionless waist of the beam kw0. The wave number for 

the computations is k = 2510
3
 m

–1
, and the units along the axes are in mm.  

 

Fig. 3. (Colour online) The plots for the amplitude of the coefficient  n Rkx  given by Eq.(3) vs. the 

partial-wave number n for various values of the dimensionless waist number kw0 noted on the figure.  

 

Fig. 4. (Colour online) The plots for the magnitude of the backscattering form-function for kw0 = 1 

(solid line) and kw0 = 25 (dashed line). The function  ,f ka    approaches zero at ka ~ 6.9 for kw0 

= 1. 

 

Fig. 5. (Colour online) The same as in Fig. 4, but the plots correspond to the radiation force function 

qGY . There exists noticeable correlation between the zeros of the radiation force function qGY for kw0 = 1 

with the minima of the magnitude of the backscattering form function. 


