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Making use of the addition theorem for the cylindrical wave functions and the complexsource-point method in cylindrical coordinates, an exact solution to the Helmholtz equation is derived, which corresponds to a tightly focused (or collimated) cylindrical quasi-Gaussian beam with arbitrary waist. The solution is termed "quasi-Gaussian" to make a distinction from the standard Gaussian beam solution obtained in the paraxial approximation. The advantage of introducing this new solution is the efficient and fast computational modeling of tightly focused or quasi-collimated cylindrical wave-fronts depending on the dimensionless waist parameter kw 0 , where k is the wave number of the acoustical radiation. Moreover, a closed-form partial-wave series expansion is obtained for the incident field, which has the property that the axial scattering (i.e. along the direction of wave propagation) and the axial acoustic radiation force (which is a time-averaged quantity) on a cylinder, can be calculated without any approximations in the limit of linear acoustical waves in a nonviscous fluid. Examples are found where the extinction in the radiation force function plot is found to be correlated with conditions giving reduction of the backscattering from an elastic cylinder. Those results are useful in beam-forming design, particle manipulation in acoustic tweezers operating with focused cylindrical beams, and the prediction of the scattering and radiation forces on a cylindrical particle or liquid bridges.

Introduction

Acoustic beam modeling of focused ultrasonic transducers is an important process in beam-forming design in order to optimize design parameters, such as geometry, focus depth, acoustic beam width and directivity. This process consists of determining the acoustic pressure and its spatial distribution in front of the radiating surface. Various software packages exist (such as Abersim [START_REF] Varslot | Computer simulation of forward wave propagation in soft tissue[END_REF], Field II [START_REF] Jensen | Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers[END_REF], FOCUS [START_REF] Mcgough | Rapid calculations of time-harmonic nearfield pressures produced by rectangular pistons[END_REF] or k-Wave [START_REF] Cox | Fast calculation of pulsed photoacoustic fields in fluids using k-space methods[END_REF]), in which the acoustic beam-profile can be modeled using the Rayleigh-Sommerfeld diffraction integral [START_REF] Rayleigh | The theory of sound[END_REF]. Apertures ranging from simple geometrical shapes, such as planar, spherically/cylindrically focused waves, to more complex (arbitrarily-shaped) wave-fronts have been considered in the aforementioned packages. However, the numerical simulations for the beam-forming are generally time-consuming, which require numerical integration procedures. It is therefore important to devise fast and efficient analytical tools which allow optimized design of experimental tools and the development of novel devices.

Along that line of research, the complex-source-point method (CSPM) [START_REF] Kravtsov | Complex rays and complex caustics[END_REF][START_REF] Deschamps | Gaussian beam as a bundle of complex rays[END_REF][START_REF] Cullen | Complex Source-Point Theory of the Electromagnetic Open Resonator[END_REF][START_REF] Couture | From Gaussian beam to complex-source-point spherical wave[END_REF][START_REF] Felsen | Geometrical theory of diffraction, evanescent waves, complex rays and Gaussian beams[END_REF] has been introduced, and exact solutions of the Helmholtz equation were developed and analyzed for the fast beam-profile modeling of spherically focused quasi-Gaussian beams, both in acoustics [START_REF] Mitri | High-order pseudo-gaussian scalar acoustical beams[END_REF] and optics [START_REF] Mitri | Quasi-Gaussian electromagnetic beams[END_REF]. Moreover, the CSPM has been applied for cylindrically focused quasi-Gaussian optical beams [START_REF] Mitri | Cylindrical quasi-Gaussian beams[END_REF]. The "quasi-Gaussian" terminology has been used to make a distinction from the standard Gaussian beam solution obtained in the paraxial approximation, which does not satisfy the Helmholtz equation.

The purpose of this investigation is to extend the analysis in [START_REF] Mitri | Cylindrical quasi-Gaussian beams[END_REF] to include cylindrical acoustical beams, thus, providing an efficient tool in the modeling of strongly focused and quasi-collimated scalar cylindrical pressure fields. Cylindrically symmetric wave-fields originate in the wave diffraction theory as an exact solution of the Helmholtz equation (pp. 75-77 [START_REF]Handbook of Acoustics[END_REF]). Moreover, the analysis is extended to derive an exact partial-wave series expansion, which is used to predict the axial (i.e. along the direction of wave propagation) scattering and radiation force on an elastic cylinder centered on the beam's focus.

Method

Following Eq.( 6) in [START_REF] Mitri | Cylindrical quasi-Gaussian beams[END_REF], the scalar velocity potential field of a cylindrical quasi-Gaussian beam propagating in fluid medium of density  0 and speed of sound c 0 with normal incidence (i.e.  = 0, where  is the tilt angle of the incident wavefront with respect to the axis of the cylinder), can be expressed as,
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where 0  is the characteristic velocity potential amplitude at the center of the coordinate system, J 0 (.) is the cylindrical Bessel function of the first kind [START_REF] Abramowitz | Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables[END_REF], I 0 (.) is the modified cylindrical Bessel function of the first kind, k is the wave number,

  2 2 R x ix y      , and   1 cos R x ix     
   (Fig. 1). At normal incidence,  = 0, there is no propagation along the axis of the cylinder such that the axial wave number k z = k sin = 0. The parameter 2 0 2 R x kw  (known as the Rayleigh range) is expressed through a variable w 0 , which corresponds to the beam's waist. Note that the incident pressure field can be obtained from the velocity potential such that p = i  0 . cyl qG  .

To illustrate the solution presented in Eq.( 1), the spatial distribution of the velocity potential magnitude is numerically evaluated in the cross-sectional plane for different values of the dimensionless waist kw 0 . The results are displayed in Fig. 2. As expected, at low kw 0 values, the cylindrical beam is tightly focused (or strongly divergent), and begins to spread as kw 0 increases. This behavior was also observed for spherical quasi-Gaussian waves (Fig. 1 in [START_REF] Sapozhnikov | An exact solution to the Helmholtz equation for a quasi-Gaussian beam in the form of a superposition of two sources and sinks with complex coordinates[END_REF]). Consider now a cylindrical particle centered on the axis of the cylindrical coordinates system. Making use of the expression for the addition theorem for the cylindrical wave functions (Eq.(2) on p. 360 in Ref. [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF]) taking into account the geometry of the present problem (Fig. 1), the expression of the velocity potential field given in Eq.( 1), is rewritten in term of a partial-wave expansion as,
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where  = cos -1 (x/r), and
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It is instructive to analyze the dependence of the velocity potential field of a cylindrical quasi-Gaussian beam on the coefficient

  n R kx 
as given by Eq.(3). In the limit of tightly focused (or strongly divergent) beams (i.e. kw 0 < 1), with the assumption that R kx << 1 n  , the asymptotic form of the modified cylindrical Bessel function of the first kind is used [START_REF] Abramowitz | Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables[END_REF];    
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In this limit, it can be verified from Eq.( 3) that
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 so the series in Eq.( 2) will only contain the monopole (n = 0) and dipole (|n| = 1) partial-waves.

For collimated beams (i.e. kw 0 >> 1), using the asymptotic expansion of the modified cylindrical Bessel function of the first kind [START_REF] Abramowitz | Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables[END_REF];  
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)
approaches unity. Such properties for tightly focused (or strongly divergent) or quasi-collimated beams can be further analyzed by numerical computation of Eq.( 3) versus the partial-wave number n. The results are displayed in Fig. 3 for various kw 0 values. Indeed, as kw 0 increases and tends to infinity, the coefficient

  1, nR kx
 and Eq.( 2) reduces to the series expansion of plane waves.

The partial-wave series expansion for the incident cylindrical quasi-Gaussian beam Eq.( 2) allows the evaluation of the axial acoustical scattering (i.e. along the direction of wave propagation) by a cylinder with its center coinciding with the origin of the cylindrical coordinates system. An elastic polymer material is chosen here to illustrate the analysis, however, the formulation remains valid for fluid [START_REF] Alemar | Spectral-analysis of the scattering of acoustic-waves from a fluid cylinder .1. Denser fluid loading[END_REF][START_REF] Alemar | Spectral-analysis of the scattering of acoustic-waves from a fluid cylinder .2. Denser fluid inside[END_REF][START_REF] Alemar | Spectral-analysis of the scattering of acoustic-waves from a fluid cylinder .3. Solution of the inverse scattering problem[END_REF], viscoelastic [START_REF] Schuetz | Acoustic reflection from cylinders---nonabsorbing and absorbing[END_REF][START_REF] Lee | The effects of material attenuation on acoustic resonance scattering from cylindrical tubes[END_REF][START_REF] Mitri | Acoustic backscattering form function of absorbing cylinder targets (L)[END_REF][START_REF] Mitri | Radiation force acting on an absorbing cylinder placed in an incident plane progressive acoustic field[END_REF], layered cylinders [START_REF] Mitri | Acoustic radiation force on coated cylinders in plane progressive waves[END_REF][START_REF] Mitri | Theoretical calculation of the acoustic radiation force on layered cylinders in a plane standing wave-comparison of near-and far-field solutions[END_REF], shells [START_REF] Murphy | Resonance scattering of acoustic waves from cylindrical shells[END_REF][START_REF] Hasegawa | Acoustic radiation pressure acting on spherical and cylindrical shells[END_REF][START_REF] Mitri | Acoustic radiation force on cylindrical shells in a plane standing wave[END_REF], and layered cylindrical shells [START_REF] Gaunaurd | Sonar cross section of a coated hollow cylinder in water[END_REF][START_REF] Mitri | Acoustic radiation force due to incident plane-progressive waves on coated cylindrical shells immersed in ideal compressible fluids[END_REF].

Consider that the elastic cylinder of radius a is immersed in non-viscous water. The scattered velocity potential field by the cylinder produces a cylindrical wave-field expressed as,
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where
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n H is the cylindrical Hankel function of the first kind of order and n C are the scattering coefficients determined by applying appropriate boundary conditions [START_REF] Faran | Sound scattering by solid cylinders and spheres[END_REF] at the interface fluid-structure, with the assumption that the surrounding fluid is nonviscous. These functions depend on the cylinder's elastic parameters such as the longitudinal, the shear or transverse sound speed and the mass densities of both the fluid and the cylinder. After arithmetic manipulation, it is found that these coefficients are equivalent to those obtained from the study of the acoustic scattering by plane waves (See Eq.( 4) in [START_REF] Mitri | Theoretical calculation of the acoustic radiation force acting on elastic and viscoelastic cylinders placed in a plane standing or quasistanding wave field[END_REF]).

In the far-field kr  , the asymptotic form for the Hankel function is  so that a steady-state far-field form-function can be defined as [START_REF] Dardy | Dynamic wide-bandwidth acoustic form-function determination[END_REF][START_REF] Flax | Theory of Resonance Scattering -Ch[END_REF],
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Now that the expressions for the incident and scattered fields are known, the evaluation of the acoustic radiation force (ARF) becomes possible. Taking advantage of the far-field scattering, the ARF is expressed as [START_REF] Mitri | Theoretical and experimental determination of the acoustic radiation force acting on an elastic cylinder in a plane progressive wave -farfield derivation approach[END_REF],
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and the cylinder's differential surface is d

Lr d  r
Se with a length L. The unit vector in the radial direction is r e and the symbol  denotes time-averaging.

Taking the asymptotic limits for Eq.( 2) and Eq.( 4) in the far-field scattering limit (i.e. kr  ), and substituting them into Eq.( 6) using Eq.( 7) as well as the property of the following angular integral,
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where  ij is the Kronecker delta function, the axial radiation force can be expressed as, 0 ,
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where S = 2aL is the cross-sectional surface of the cylinder,
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 is a characteristic energy density, and qG Y is the radiation force function, which is the radiation force per unit cross-sectional surface and unit energy density. Its expression is given by,
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where
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Note that in the limit of collimated beams (i.e. kw 0 >> 1), Eq.( 10) can be further simplified using the asymptotic limit for the modified cylindrical Bessel function of the first kind, and the expression for the radiation force function for plane progressive waves is recovered, and is given by,
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Numerical results and discussion

The following examples are now considered to illustrate the analysis by plotting the magnitude of the cylindrical beam, and kw 0 = 25, corresponding to a quasi-collimated beam. It is important to emphasize that the diffraction limit is reached for a beam waist w 0 approaching half the wavelength λ/2 of the incident radiation (i.e., kw 0 = π) [START_REF] Siegman | Lasers[END_REF]. Beams with a dimensionless waist kw 0 < π are not directional, and below this limit, wave reflections at the aperture of the focused source generate exponentially decaying evanescent waves which become relatively important as kw 0 → 0 [START_REF] Marston | Quasi-Gaussian beam analytical basis and comparison with an alternative approach (L)[END_REF]. If one aims to construct a beam with a dimensionless waist kw 0 < π using a finite source confined in a bounded space, it becomes essential to consider the effects of the evanescent wavefield at the focus. Note here that the corresponding source terms contributing to that part of the evanescent component become exponentially large at the source relative to the homogeneous (propagating) part of the wavefield. This fact may introduce a significant complication in modeling the tightly focused field as exponentially-large source amplitudes have to be taken into consideration so as to retain the evanescent component at the focus of the beam to make a tight focus, and the linear assumptions of the Helmholtz equation do not hold. In the present study, the focus is on propagating waves and the theoretical development disregards the evanescent contributions to the homogeneous field.

In Fig. 4, the numerical plots for

  , f ka   
are displayed for kw 0 = 1 (solid line) and kw 0 = 25 (dashed line). An interesting observation is related to the plot for kw 0 = 1 (i.e. solid line) in which a reduction in the backscattering is noticed. Inspection of Fig. 5 shows that the reduction in the backscattering has a major effect on the radiation force function qG Y that approaches zero at those particular values of ka (Fig. 5); that is, the reduction in the backscattering shown in the plots for

  , f ka   
closely matches the zeros of 0 qG Y for kw 0 = 1. This behavior has been also observed in the study of the backscattering and radiation force of a spherical quasi-Gaussian beam on an elastic sphere (Fig. 2 in [START_REF] Mitri | Mechanism of the quasi-zero axial acoustic radiation force experienced by elastic and viscoelastic spheres in the field of a quasi-Gaussian beam and particle tweezing[END_REF]), but was not observed in the case of a rigid sphere [START_REF] Mitri | Interaction of an acoustical Quasi-Gaussian beam with a rigid sphere: linear axial scattering, instantaneous force, and time-averaged radiation force[END_REF]. At the specific ka values for which the backscattering is reduced, the radiation force function 0 qG Y  for kw 0 = 1, and the transmission of acoustical waves through the elastic cylinder in the forward direction (i.e. axial direction  = 0) is maximized. This is not the case as kw 0 increases to reach 25 (i.e. dashed curves) so the plots for   , f ka    and qG Y approach the plane wave limit, respectively (Fig. 1 in [START_REF] Mitri | Acoustic backscattering form function of absorbing cylinder targets (L)[END_REF] & Fig. 1 in [START_REF] Mitri | Radiation force acting on an absorbing cylinder placed in an incident plane progressive acoustic field[END_REF]).

It is noticeable from Fig. 5 that for a tightly focused (or strongly divergent) cylindrical quasi-Gaussian beam centered on the elastic cylinder, the (axial) radiation force function approaches closely to zero, however, is not found to be negative (i.e. not a force of attraction). In some situations, theoretical predictions have demonstrated the existence of a negative (pulling) force on a rigid cylinder in a focused

Gaussian beam [START_REF] Azarpeyvand | Acoustic radiation force on a rigid cylinder in a focused Gaussian beam[END_REF] (and spheres as well [START_REF] Chen | Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers[END_REF][START_REF] Zhang | Acoustic Radiation Force of a Gaussian Beam Incident on Spherical Particles in Water[END_REF]), however, the mathematical expression for the incident Gaussian beam provided therein differs from Eq.( 2). Note also that in the context of Bessel beams, earlier works have shown the existence of a force of attraction on a sphere [START_REF] Marston | Axial radiation force of a Bessel beam on a sphere and direction reversal of the force[END_REF][START_REF] Mitri | Langevin Acoustic Radiation Force of a High-Order Bessel Beam on a Rigid Sphere[END_REF][START_REF] Mitri | Negative axial radiation force on a fluid and elastic spheres illuminated by a high-order Bessel beam of progressive waves[END_REF], which is associated with a reduction in the backscattering as well [START_REF] Zhang | Geometrical interpretation of negative radiation forces of acoustical Bessel beams on spheres[END_REF].

It is also important to note an equivalent partial-wave series expansion for the incident field Eq.( 2).

Using the properties of the cylindrical Bessel and modified Bessel functions of the first kind
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the series in Eq.( 2) can be expressed as,
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where n  is the Neumann factor, defined by 0 1   , and 2, j   for j = 1,…n.

In a real source coordinate system such that 0 0, x  a closely related generalized partial-wave series expansion that resembles to Eq.( 12) has been provided (Eq.( 1) in [START_REF] Mitri | Axial time-averaged acoustic radiation force on a cylinder in a nonviscous fluid revisited[END_REF]), which can be applied for computing the axial acoustic radiation force in the cases of plane travelling waves [START_REF] Mitri | Radiation force acting on an absorbing cylinder placed in an incident plane progressive acoustic field[END_REF][START_REF] Mitri | Acoustic radiation force on coated cylinders in plane progressive waves[END_REF][START_REF] Mitri | Theoretical and experimental determination of the acoustic radiation force acting on an elastic cylinder in a plane progressive wave -farfield derivation approach[END_REF][START_REF] Hasegawa | Acoustic radiation force experienced by a solid elastic cylinder in a plane progressive sound field[END_REF], plane standing [START_REF] Mitri | Theoretical calculation of the acoustic radiation force on layered cylinders in a plane standing wave-comparison of near-and far-field solutions[END_REF][START_REF] Mitri | Acoustic radiation force on cylindrical shells in a plane standing wave[END_REF][START_REF] Wei | Acoustic radiation force on a compressible cylinder in a standing wave[END_REF] or quasi-standing waves [START_REF] Mitri | Theoretical calculation of the acoustic radiation force acting on elastic and viscoelastic cylinders placed in a plane standing or quasistanding wave field[END_REF], diverging cylindrical waves [START_REF] Mitri | Axial acoustic radiation force of progressive cylindrical diverging waves on a rigid and a soft cylinder immersed in an ideal compressible fluid[END_REF], and diverging or converging cylindrical travelling, standing and quasi-standing waves [START_REF] Mitri | Axial time-averaged acoustic radiation force on a cylinder in a nonviscous fluid revisited[END_REF][START_REF] Mitri | Erratum: Axial time-averaged acoustic radiation force on a cylinder in a nonviscous fluid revisited[END_REF]. Following the generalized formalism (Eq.( 15) in [START_REF] Mitri | Axial time-averaged acoustic radiation force on a cylinder in a nonviscous fluid revisited[END_REF]), and noting that   nR kx  as given by Eq.( 3) is a real coefficient, the radiation force function for a cylindrical quasi-Gaussian beam qG Y , is expressed as,
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which is equivalent to Eq. [START_REF] Felsen | Geometrical theory of diffraction, evanescent waves, complex rays and Gaussian beams[END_REF].

It is obvious from Eq.( 13) that for a collimated beam (kw 0  ), the expression for the radiation force function reduces to the plane wave result [START_REF] Hasegawa | Acoustic radiation force experienced by a solid elastic cylinder in a plane progressive sound field[END_REF], which is equivalent to Eq.( 11).

Conclusion

In summary, an exact acoustical beam solution that satisfies the wave equation is introduced and some of its intrinsic characteristics, as well as its scattering and radiation force properties are delineated for a tightly focused and quasi-collimated cylindrical wave-fronts incident upon an elastic cylinder. Those results are useful in beam-forming design as well as modeling the interaction of a cylindrical quasi-Gaussian acoustical beam with a cylindrical particle for applications in acoustical tweezers, imaging and particle manipulation. 
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