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ABSTRACT

The non-horizontal cuts of a hierarchy and the floodings of an

image are well-established tools for image segmenting and fil-

tering respectively. We present definitions of non-horizontal

cuts and of floodings in the same framework of hierarchies

of partitions. We show that, given a hierarchy, there is a

one-to-one correspondence between the non-horizontal cuts

and the floodings. This opens the door to optimal image fil-

tering based on non-horizontal cuts and, conversely, to non-

horizontal cuts obtained by morphological floodings, or more

generally by connected filterings.

Index Terms— hierarchy, non-horizontal cut, flooding

1. INTRODUCTION

V. Caselles, to whom this paper is dedicated, has made some

very important and remarkable contributions to image pro-

cessing [1, 2]. He was first of all, a mathematician, and was

eager to demonstrate that great mathematical ideas can lead

to great algorithms for solving real-world problems. He was

interested in hierarchical/tree-like structures (notably trees of

shapes [3] and hierarchical segmentations [4]), realizing both

their theoretical interest and their importance for practical ap-

plications. In fact, in the framework of [5, 6] where segmen-

tations can be seen as partial partitions, trees of shapes are

hierarchies of segmentations. This paper deals with hierarchi-

cal segmentations, and show some theoretical links between

different approaches (and seemingly unrelated) existing in the

literature, namely non-horizontal cuts [7] and morphological

floodings [8]. While the results exposed here are primarily of

a theoretical nature, we believe that these links pave the way

for some novel practical image analysis tools.

Many image segmentation methods look for a partition

of the set of image pixels such that each region of the parti-

tion corresponds to an object of interest in the image. Hier-

archical segmentation methods, instead of providing a unique

partition, produce a sequence of nested partitions at different

scales, enabling to describe an object of interest as a grouping

of several objects of interest that appear at lower scales.
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Two different approaches for selecting a partition from a

hierarchy exist in the literature. The first one deals with cut of

the hierarchy, which amounts to selecting various regions in

the hierarchy to obtain a partition. L. Guigues et al. [7] were

the first to explore the notion of non-horizontal cut, meaning

that the regions are selected at several levels in the hierarchy.

The choice of the “correct” regions is made by optimizing an

energy functional (see [9] for a recent extension and [10] for

earlier versions of similar ideas). In a recent work, V. Caselles

et al. [4] explore the capabilities of the a contrario approach

for selecting an optimal partition from the hierarchy.

A different approach, called flooding, is classical in math-

ematical morphology. It consists in processing the image

function itself. Intuitively, a flooding fills some catchment

basins. The flooding filtering [8, 11, 12] is often paired with

a watershed process in order obtain an image segmentation,

especially to overcome the oversegmentation problem: a wa-

tershed applied on a flooding-filtered image provides less re-

gions. By reiterating the flooding and the watershed, we thus

obtain coarser and coarser partitions, and finally a whole hi-

erarchy of partitions. Formally, the floodings of an image can

be characterized [13, 14] from a hierarchical representation of

the image called min-tree [15].

In this paper, we present definitions of non-horizontal cuts

and of floodings in the same framework and we show that,

given a hierarchy, there is a one-to-one correspondence be-

tween non-horizontal cuts and floodings. This opens the door

to optimal image filtering based on non-horizontal cuts and,

conversely, to non-horizontal cuts obtained by morphological

floodings, or more generally by connected filterings. Previ-

ous works such as [16] allow the processing of hierarchies

of connected partitions [17]. In this paper, the connectedness

hypothesis is relaxed, i.e., the classes of the partitions are no

longer required to be connected.

2. HIERARCHIES OF PARTITIONS

In this section, we recall some basic definitions for handling

partitions and hierarchies of partitions.

A partition of a set V is a set P of nonempty disjoint sub-

sets of V whose union is V (i.e., ∀X,Y ∈ P, X ∩ Y = ∅
if X 6= Y and ∪{X ∈ P} = V ). Any element of a parti-

tion P of V is called a region (or a class) of P. If x is an ele-

ment of V , there is a unique region of P that contains x; this
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Fig. 1. Illustration of a hierarchy H = (P0,P1,P2,P3). For

each partition, each region is represented by a gray-level and

two dots with the same gray level belong to the same region.

The last subfigure represents the hierarchy as a tree, called a

dendrogram, where the inclusion relation between the regions

of the successive partitions is represented by line segments;

when a same region appears in two successive partitions of the

hierarchy, this region is only represented at the lowest level.

unique class is denoted by Px. Given two partitions P and P′

of a set V , we say that P′ is a refinement of P if any region

of P′ is included in a region of P. A hierarchy (on V ) is a

sequence H = (P0, . . . ,Pℓ) of indexed partitions of V such

that Pi−1 is a refinement of Pi, for any i ∈ {1, . . . , ℓ}. A hi-

erarchy H = (P0, . . . ,Pℓ) is complete if Pℓ = {V } and P0

contains every singleton of V (i.e., P0 = {{x} | x ∈ V }).

All hierarchies considered in this article are complete and

therefore the term complete is omitted.

Fig. 1 graphically represents a hierarchy H = (P0,P1,
P2,P3) on a rectangular subset V of Z2 made of 9 dots. For

instance, it can be seen that P1 is a refinement of P2 since any

region of P1 is included in a region of P2. It can also be seen

that the hierarchy is complete since P0 is made of singletons

and P3 is made of a single region that contains all elements.

3. NON-HORIZONTAL CUTS

Let H = (P0, . . . ,Pℓ) be a hierarchy on V . A subset A of V
is a region of H if there exists i in {0, . . . ℓ} such that A is

a region of the partition Pi. We denote by RH the set of all

regions of H: RH = {A ∈ Pi | i ∈ {0, . . . , ℓ}}.

Definition 1 (non-horizontal cut) Let H be a hierarchy. A

partition P of V that only contains regions of H (i.e., P ⊆
RH) is called a (non-horizontal) cut of H.

For instance, a cut of the hierarchy H depicted in Fig. 1 is

depicted in Figs. 2(a) and (b). In Fig. 2(b), the cut is made of

the regions represented immediately below the bold line.

(a) (b) (c)

Fig. 2. Illustration of a non horizontal cut in a hierarchy and

of the pruning by this cut. (a) A non horizontal cut P of the

hierarchy H depicted in Fig. 1; (b) a representation of this

cut (bold line) on the dendrogram of the hierarchy; (c) the

dendrogram of the hierarchy HP which is the pruning of H
by P.

We are now going to see that any cut of a hierarchy H al-

lows the transform of the hierarchy H into a simpler hierarchy

called the pruning of H by the given cut. We first define the

notion of pruning for partitions. Then the pruning of a hierar-

chy is defined as the pruning of all partitions in the hierarchy.

We say that a subset A of V is trivial if it is a singleton,

i.e., if there exists x in V such that A = {x}. If P is a partition

of V , we denote by P− the set of all elements of P that are

trivial and by P+ the set P \P−.

In general, the sets P+ and P− are not partitions of V ,

but they are always partitions of a subset of V , hence they are

partial partitions of V [5, 6].

Let P and Q be two partitions of V . The pruning of P

by Q is the set P′ containing any region of P that includes a

non trivial region of Q and any singleton included in a region

of P which does not include any non-trivial region of Q: P′ =

{A ∈ P | ∃B ∈ Q+, B ⊆ A}∪{{x} | ∀B ∈ Q+, B \ [P]x 6= ∅}.

In other words, the pruning of P by Q is obtained from P by

keeping the regions which includes a non-trivial region of Q

and by replacing the other regions of P by their singletons.

For instance, the pruning of the partition P0 (resp. P1,P2

and P3) shown in Fig. 1(a) (resp. (b), (c), and (d)) by the

partition P of Fig. 2(a) is P0 (resp. P0,P and P3).

In the context of partial partitions and hierarchies of par-

tial partitions, an alternative definition for pruning would con-

sist of removing some of the regions of the partition instead

of replacing them by singletons. But in the context of this ar-

ticle, which studies hierarchies of partitions, we are interested

in prunings that lead to partitions. Indeed, from the very defi-

nition of a pruning given in the previous paragraph, it can be

seen that the pruning of a partition by another one is always a

partition.

Let H = (P0, . . . ,Pℓ) be a hierarchy and let P be a

cut of H. We call pruning of H by P the sequence of par-

titions HP = (P′
0, . . . ,P

′

ℓ
) such that, for any i in {0, . . . , ℓ},

the partition P′
i

is the pruning of Pi by P.

For instance, Fig. 2c depicts as a dendrogram the prun-

ing of the hierarchy H of Fig. 1 by the cut represented in

Figs. 2(a) and (b).
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Fig. 3. Illustration of floodings. The partition depicted in

(a) is the flooding of the partition P1 depicted in Fig. 1 by

the set A made of the vertices which are bold circled in (b).

The dendrogram depicted in (c) (resp. (d)) represents the M-

flooding H′ (resp. H′′) of the hierarchy H (resp. H′) by

the point x (resp. y), where H is the hierarchy depicted in

Fig. 1 and where x and y are the points shown in (b). The

cuts induced by these hierarchies H′ and H are superimposed

in bold to the dendrograms.

As a direct consequence of the definition of prunings and

cuts, we deduce the following property, which states that cuts

can be used to transform a hierarchy into another hierarchy.

Property 2 Let H be a hierarchy and let P be a cut of H.

The pruning HP of H by P is a hierarchy.

4. FLOODINGS AND NON-HORIZONTAL CUTS

We are now going to study operators called floodings act-

ing on hierarchies. These operators can also be extended to

arbitrary maps. In the literature these operators are studied

since the 90’s (often without a formal definition) in the con-

text of watershed segmentation and connected image filtering

where they are sometimes called closing by reconstruction or

swamping [8].

We start by defining the flooding of a partition and then we

extend this definition to a hierarchy by considering floodings

of all partitions of the hierarchy.

Let P be a partition of V and let A ⊆ V . The flooding

of P by A, denoted by floodA(P), is P if A is not a region

of P, and otherwise, if A is a region of P, floodA(P) contains

any region of P distinct from A and any singleton of A:

floodA(P) = P if A /∈ P;

floodA(P) = (P \A) ∪ {{x} | x ∈ A} if A ∈ P.

Fig. 3(a) shows an example of a flooding of a partition by

a set of points.

From the definition, it can be seen that any flooding of a

partition is a partition.

Let H = (P0, . . . ,Pℓ) be a hierarchy, let k in {1, . . . , ℓ},

and let M be a non trivial region of Pk. We say that M is

a (non-trivial) minimum of H if any subset of M in Pk−1 is

trivial. We denote by MH the set of all minima of H. We

also denote by MH the set of all elements of V that belong

to a minimum of H. If x is an element in MH, then we de-

note by MH
x the minimum of H that contains x. Observe

that MH is not, in general, a partition of V . Indeed, in gen-

eral, there exists some points of V that do not belong to any

minimum of H. For instance, if we consider the hierarchy H
of Fig. 3(c), the four leftmost dots do not belong to any min-

imum of H: H contains only two minima that correspond to

the two darkest squares.

In the following, if H is a hierarchy, we denote by DH

the set of all points in V that do not belong to any minimum

of H, i.e. DH = V \MH. We also denote by DH the set of

all singletons included in DH.

Let H = (P0, . . . ,Pℓ) be a hierarchy and let x ∈ V . If x
belongs to MH, the minimum-flooding, or simply M-flooding,

of H by x is the sequence of partitions H′ = (P′
0, . . . ,P

′

ℓ
)

such that, for any i in {1, . . . ℓ}, the partition P′
i

is the flood-

ing of Pi by MH
x , i.e., P′

i
= floodMH

x

(P). If x belongs

to DH, the M-flooding of H by x is H itself.

It can be seen that the M-flooding of H by x is a hierarchy.

This hierarchy is obtained by replacing MH
x by its singletons.

For instance, the hierarchy H′ in Fig. 3c is the M-flooding

of the hierarchy H in Fig. 1 by the point x shown in Fig. 3b

The hierarchy H′′ (Fig. 3d) is the M-flooding of H′ by y.

Definition 3 (flooding) Let H and H′ be two hierarchies.

If there exists x in V such that H′ is the M-flooding of H
by x, then we say that H′ is an elementary flooding of H.

We say that H′ is a flooding of H if there exists a se-

quence (H0, . . . ,Hn) of hierarchies such that H0 = H, Hn =
H′, and Hi is an elementary flooding of Hi−1, for any i
in {1, . . . , n}.

For instance, the hierarchies H′ and H′′ of Figs. 3(c) and

(d)are two floodings of the hierarchy H of Fig. 1.

Let us now state the main result of this section that estab-

lishes the correspondence between floodings and cuts.

If H is a hierarchy, we call partition induced by H, the

partition, denoted by Γ(H), that contains any minimum of H
and any singleton on V which is not included in a minimum

of H: Γ(H) = MH ∪DH.

Property 4 Let H be a hierarchy. The partition induced by

any flooding of H is a cut of H.

Theorem 5 Let H be a hierarchy on V . The map Γ is a one-

to-one correspondence between the floodings of H and the

non-trivial cuts of H. The inverse Γ−1 of Γ maps to any

cut P of H the pruning of H by P: Γ−1(P ) = HP. More

precisely, the following statements hold true:

- for any flooding H′ of H, Γ(H′) is a cut of H such that the

pruning of H by the cut Γ(H′) is precisely H′; and

- for any non-trivial cut P of H, the pruning HP of H by P is

a flooding of H such that the partition induced by HP is P.
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Fig. 4. Flooding of an image. (a) A greyscale 1D image and

its topographical interpretation; (b) a geodesic reconstruction

of (a) from the selected minima; (c) the min-tree of (a); (d) an

elementary flooding of (c) which is the min-tree of (b).

5. ILLUSTRATIONS AND CONCLUSION

Geodesic reconstruction is a basis for connected filtering

based on morphological attributes [15]. Any greyscale image

can be equivalently represented by its min-tree [15] (i.e. the

connected components inclusion hierarchy of the lower im-

age thresholds). Let M be the set of regional minima of an

image I , and let X be one of these minima. The geodesic re-

construction of I from M\{X} as defined in [8] is precisely

the image corresponding to the flooding by x ∈ X of the

min-tree of the image I (see, e.g., Fig. 4). In the framework

presented in this article, the image resolution must be doubled

before computing the hierarchy so that the considered image

do not contain trivial minimum that cannot be “flooded”.

Note that, as illustrated in Fig. 5, the very same flood-

ing process can be applied to any hierarchy representing an

image (e.g. the quasi flat-zones of a greyscale image). This

can be useful for obtaining non-horizontal cuts in a hierarchy

based on floodings, hence based on morphological attributes

of the regions in the hierarchy. Fig. 6 illustrates a flooding

process on the constrained-connectivity hierarchy [19] of a

real image Fig. 6a. It can be noted that this hierarchy Fig. 6b

exhibit numerous small zones (transition zones [20]) at a very

high level. Hence a horizontal cut cannot remove those small

zones. The flooding process with a volume attribute leads to

non-horizontal cuts (Figs. 6c,d) removing those small zones.

Conversely, a last consequence of Th. 5 is that connected

filters can benefit from optimal non-horizontal cuts such as

[4] (Number of False Alarms) or [7, 9] (Mumford-Shah ener-

gies). In Figs. 6(e) and (f), a flooding is obtained as a pruning

by an optimal (for a Mumford-Shah energy) non-horizontal

cut of the component tree of the image. Future works include

the assessment of the practical benefits of floodings by non-

horizontal cuts and of non-horizontal cuts by floodings.

(a) (b)

(c) (d) (e)

Fig. 5. Flooding of the quasi-flat zones hierarchy of a

greyscale image. (a) A greyscale 1D image; (b) the gradient

magnitude of (a) depicted as an edge-weighted graph; (c) the

quasi flat-zones hierarchy of (a) which is also the min-tree of

(b) (see [18]); (d) an elementary flooding of (c); (e) a flooding

of (c), which is also an elementary flooding of (d). Note that

the cut induced by each hierarchy is the partition given by the

ellipsoid at the bottom of subfigures (c), (d) and (e).

(a) (b)

(c) (d)

(e) (f)

Fig. 6. (a-d) Cut by flooding in the constrained-connectivity

hierarchy [19] of a greyscale image (a). (b) The saliency map

[21, 16] of this hierarchy. (c,d) Two non-horizontal cuts by

flooding with a volume-based attribute. (e,f) An opening by

reconstruction (dual of a flooding) and an alternate-filter of

(a) obtained from an optimal cut according to Mumford-Shah

energy.
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