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Supersmooth Testing on the Sphere over Analytic Classes

Peter T. Kim∗, Ja-Yong Koo†and Thanh Mai Pham Ngoc ‡

Saturday 5th September, 2015

Abstract

We consider the nonparametric goodness-of-fit test of the uniform density on the sphere when
we have observations whose density is the convolution of an error density and the true underlying
density. We will deal specifically with the supersmooth error case which includes the Gaussian
distribution. Similar to deconvolution density estimation, the smoother the error density the harder
is the rate recovery of the test problem. When considering nonparametric alternatives expressed over
analytic classes, we show that it is possible to obtain original separation rates much faster than any
logarithmic power of the sample size according to the ratio of the regularity index of the analytic class
and the smoothness degree of the error. Furthermore, we show that our fully data driven statistical
procedure attains these optimal rates.

Keywords : Spherical deconvolution, fully data driven procedure, minimax hypothesis testing, non-
parametric alternatives, supersmooth error, analytic classes, rotational harmonics.
MSC 2010. Primary 62G10, secondary 62H11.

1 Introduction

In this paper, we deal with the nonparametric problem of testing the uniform density on the unit
sphere when only corrupted observations are available. In particular, consider the following spherical
convolution model:

Yi = WiXi, i = 1, . . . , N (1)

where W is an SO(3) random element, with SO(3) the rotation group in R3 and Y,X are S2 random
elements where S2 denotes the unit sphere of R3. The elements W and X assumed independent. Let
f, g, h denote the densities of X,Y,W respectively. We assume that the noise density h is known.
Roughly speaking, one has a genuine directional measurement Xi which is perturbated by a small
random rotation Wi. Statistically, model (1) is describing the spherical analogue of a convolution model
on the real line where one would observe Y made up of the true measurement X, corrupted by an
additive noise W , Y = X + W . As we are on the sphere, the additive noise turns naturally to be a
rotation and we have the following relation:

g = h ∗ f,

where convolution (∗) is defined below in (8).
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Inverse problems are characterized by their degree of ill-posedness. Spherical convolution is no
exception. The severity of the current problem is determined by the regularity of the noise matrix W .
In this paper we will focus on extremely ill-posed problem: the errors are very regular i.e supersmooth
and we would like to test the corrupted observations Y for the case where the density follows the
uniform distribution against nonparametric alternatives over analytic class of functions. Supersmooth
error means that the operator norm of the rotational Fourier transform of W (defined in (4)) decays
exponentially for which the Gaussian distribution on SO(3) is the primary example. Of course, the more
regular the noise is, the more difficult the testing problem becomes as the corrupted observations tend
to spread more uniformly over the sphere making separation between the two hypotheses harder.

In practise, the spherical convolution model (1) may be viewed as a first attempt to describe the
ultra high energy cosmic rays (UHECR) problem. The UHECR provide an extreme kinetic energy (of
the order of 1019 eV) and are the rarest particles in the universe. Astrophysicists aim at highlighting
the mechanisms which generate those cosmic rays. So far, it is not clear which processes produce them.
To find out about this question, measurements of the incoming directions of the UHECR on Earth are
collected in observatories such as the Pierre Auger one in Argentina. A key question lies in whether
the incoming directions of the UHECR are uniform or not. Several hypotheses are made about the
underlying probability of the incoming directions. A uniform density would suggest that the UHECR
are generated by cosmological effects. On the contrary, if these UHECR are generated by astrophysical
phenomena, then we should observe a density function which is highly non-uniform. The answer to
this question would provide important information about the sources of those cosmic rays. But of
course, measurements of the incoming directions are always made with a certain uncertainty due to the
instruments. The noise in the instruments can be modelled through small random rotations hence the
considered model (1).

There is a large literature concerning deconvolution for both the Euclidean and non-Euclidean cases.
Among the many papers we cite the works which are closest to our approach. For the density esti-
mation setting, among others they are Fan (1991), Pensky and Vidakovic (1999), Kalifa et al. (2003),
Meister (2009), Huckemann et al. (2010), Healy et al. (1998), Kim and Koo (2002), Kim et al. (2004),
Kerkyacharian et al. (2011), Comte and Lacour (2013). As for the literature concerning nonparametric
goodness-of-fit testing with indirect observations one can consult the papers of Butucea (2007) and
Butucea et al. (2009) where the authors dealt with convolution model on the real line. In Euclidean
density deconvolution estimation, it is known that the smoother the error density, the slower the rate of
convergence (see Comte et al. (2006), Comte and Lacour (2013)). For instance, if the unknown density
belongs to Hölder or Sobolev classes the optimal rate of convergence is logarithmic when the error is
supersmooth. Pensky and Vidakovic (1999) in the wavelets frame, Butucea and Tsybakov (2007), Comte
et al. (2006) with kernel machinery however have shown that when considering analytic classes, the rate
of convergence can be improved to near polynomial rates.

In our paper, we shall demonstrate that the same phenomenon is observed when testing uniformity
from noisy directional data. Lacour and Pham Ngoc (2014) has recently treated the same model and
problem as ours. But in their work, the authors deal with alternatives over Sobolev classes and when
considering the supersmooth noise situation, they obtain logarithmic separation rates. To date, analytic
classes for the present testing problem from a spherical convolution model have not been considered.
It is the subject of the present work. Analytic classes are of high interest as they include the most
popular families of spherical densities, the so-called von Mises Fisher distributions which has the form
f(x) = C(κ)eκµ

>x with κ a concentration parameter and µ a mean direction. Indeed, we propose
a fully data driven testing procedure in the sense that no knowledge of the unknown regularity of
the underlying density is required. Furthermore, we point out that similar to deconvolution density
estimation, novel separation rates faster than any logarithmic power can be achieved. We identify three
principal regions: the bias dominated case in which the variance is negligible with respect to the bias;
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the variance dominated case; and, the equal case with the usual bias and variance trade-off. For each of
these scenarios, the optimal separation rates are significantly different that exhibit lower bounds which
as far as we are aware are unavailable. In addition, we prove that our test procedure achieves up to a
logarithmic factor the optimal testing rates.

We now summarize our paper. In Section 2, we provide some basic background to harmonic analysis
in SO(3) and S2. In Section 3, we describe the model and give assumptions about the density and the
noise distribution. We also explain the construction of the test procedure. In Section 4, we provide
asymptotic results for analytic classes namely lower and upper bounds for the separation rates in the
different regimes. In section 5, we give a numerical study to illustrate our theoretical results. Proofs of
the theorems are gathered in Section 6 and all the technical lemmas are proved in the Appendix.

2 Some preliminaries

This section provides the basic tools of harmonic analysis on the group SO(3) and the unit sphere S2.
Most of the material can be found in expanded form in Vilenkin (1968), Talman (1968), Terras (1985),
Healy et al. (1998) and Kim and Koo (2002).

Let L2(SO(3)) denote the space of square integrable functions on SO(3), that is, the set of measurable
functions f on SO(3) for which

‖f‖2 =

(∫
SO(3)

|f(x)|2dx

) 1
2

<∞,

where dx is the Haar measure on SO(3).

Let

u(ϕ) =

 cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 , v(θ) =

 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 ,

where , ϕ ∈ [0, 2π), θ ∈ [0, π). It is well-known that any rotation matrix can be decomposed as a product
of three elemental rotations, one around the z-axis first with angle ψ, followed by a rotation around
the x-axis with angle θ, and finally another rotation again around the z-axis with angle ϕ. Indeed, the
Euler angle decomposition says that any g ∈ SO(3) can almost surely be uniquely represented by three
angles (ϕ, θ, ψ), with the following formula (see Talman (1968) chapter 9):

g = u(ϕ)v(θ)u(ψ), (2)

where ϕ ∈ [0, 2π), θ ∈ [0, π), ψ ∈ [0, 2π).

Now consider the rotational harmonics

Dc
klm(w) = Dc

klm(ϕ, θ, ψ) = e−ilϕdklm(cos θ)e−imψ for w ∈ SO(3),

where (ϕ, θ, ψ) are the Euler angles for w and dklm are related to the Jacobi polynomials:

dklm(cos θ) = il−m
sinm−l θ(1 + cos θb)l

2k[(k + l)!(k − l)!]
1
2

[
(k −m)

(k +m)

] 1
2

× dk+m

d(cos θ)k+m
(cos θ − 1)k+l(cos θ + 1)k−l,

for −k ≤ l,m ≤ k, k ∈ N0 := {0, 1, 2, . . .}.

Superscript “c” indicates that the rotational harmonics are complex. In addition, if we define a
dk × dk matrix Dc

k by
Dc
k(w) = [Dc

klm(w)] for w ∈ SO(3), (3)
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where dk = 2k + 1, −k ≤ l,m ≤ k, k ∈ N0, these constitute the collection of inequivalent irreducible
representations of SO(3).

Let h ∈ L2(SO(3)). We define the rotational Fourier transform on SO(3)

ĥcklm =

∫
SO(3)

h(w)Dc
klm(w)dw, (4)

with dw the probability Haar measure on SO(3). We think of (4) as the matrix entry at line l and
column m of the dk × dk matrix ĥck =

[
ĥcklm

]
where dk = 2k + 1, −k ≤ l,m ≤ k, k ∈ N0.

We shall do an analogue analysis for S2. Any point x ∈ S2 can be represented by its spherical
coordinates

x = (cosϕ sin θ, sinϕ sin θ, cos θ)>,

where θ ∈ [0, π), ϕ ∈ [0, 2π) and superscript “>” denotes transpose.

The well-known spherical harmonics constitute an orthonormal basis of L2(S2). They have the
following form

φckl(x) = φckl(θ, ϕ) = (−1)l

√
(2k + 1)(k − l)!

4π(k + l)!
P kl (cos θ)eilϕ for x ∈ S2, (5)

where θ ∈ [0, π), ϕ ∈ [0, 2π), −k ≤ l ≤ k, k ∈ N0 and P kl are the Legendre functions. Again, the
superscript “c” indicates that the rotational harmonics are complex. We can think of (5) as the vector
entry at position l to the dk vector φck(x) = [φckl(x)], k ∈ N0.

Here is a representation in spherical coordinates of a spherical harmonic

0

0.5

1

1.5

2

2.5

3

3.5

0

1

2

3

4

5

6

7

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

THETA
PHI

Figure 1: a/ Representation of a spherical harmonic of degree k=8.

Let L2(S2) denote the space of square integrable functions on S2, that is, the set of measurable
functions f on S2 for which

‖f‖2 =

(∫
S2
|f(x)|2dx

) 1
2

<∞,

where dx is the Lebesgue measure on the sphere S2.

Let f ∈ L2(S2). We define the spherical Fourier transform on S2 by

f̂ ckl =

∫
S2
f(x)φckl(x)dx, (6)
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where dx is the spherical measure on S2 and the overbar denotes complex conjugation. Again we think
of (6) as the vector entry at position l of the dk vector f̂ ck =

[
f̂ ckl

]
, −k ≤ l ≤ k, k ∈ N0. The spherical

inversion can be obtained by

f(x) =
∑
k≥0

(f̂ ck)>φck(x) for x ∈ S2. (7)

Strictly speaking, (7) should be interpreted in the L2-sense although with additional smoothness condi-
tions, it can hold pointwise.

One of the most useful tools of Fourier analysis is the fact that convolution of two functions in
the Fourier domain turns out to be ordinary matrix multiplication. Indeed, let h ∈ L2(SO(3)) and
f ∈ L2(S2). Defining the convolution as

h ∗ f(y) =

∫
SO(3)

h(w)f(w−1y)dw for y ∈ S2, (8)

we have the following convolution property

(ĥ ∗ f)ck = ĥckf̂
c
k for k ∈ N0, (9)

for the proof see Lemma 2.1 in Healy et al. (1998). This convolution property will be very useful in the
sequel (section 3.2) to construct our test procedure.

The way the rotational and spherical harmonics are presented in (3) and (5), respectively, uses
complex bases. We can convert the problem into a real basis by defining the dk × dk complex matrix

Ak =
1√
2



i 0 · · · 0 · · · 0 −i(−1)k

0 i · · · 0 · · · −i(−1)k−1 0
...

...
. . .

...
. . .

...
...

0 0 · · ·
√

2 · · · 0 0
...

...
. . .

...
. . .

...
...

0 1 · · · 0 · · · (−1)k−1 0

1 0 · · · 0 · · · 0 (−1)k


for k ∈ N0. (10)

Notice that (10) is a unitary matrix, AkA?k = A?kAk = Idk , where superscript “?” denotes conjugate
transpose. Define

φk := Akφ
c
k and Dk := AkD

c
kA

?
k for k ∈ N0. (11)

One can see that the dk-vector φk is real and that the dk × dk matrix Dk is also real, and because they
are derived from a unitary transformation, they form real orthogonal bases for L2(S2) and L2(SO(3)),
respectively. Hence contrary to Lacour and Pham Ngoc (2014), we will use a real basis which will lighten
the proofs.

The supremum norm for functions on S2 is denoted as

‖f‖∞ = sup
x∈S2
|f(x)|.

For u, v ∈ Rdk , let 〈u, v〉 = u>v and ‖v‖ =
√
〈v, v〉.
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3 Testing uniformity on the sphere

3.1 Model and assumptions

3.1.1 Statistical model

The uniform density f0 on S2 is given by

f0 = C01S2 for C0 =
1

area(S2)
=

1

4π
.

Define a separation measure between f0 and f by

∆f :=
∥∥f − f0∥∥

2
. (12)

The uniform testing problem is

H0 : f = f0 versus Ha : f ∈ Ha(F ,M, ε)

based on the random sample Y1, . . . , YN from the distribution having the density g, where the alternative
is

Ha(F ,M, ε) = {f : f ∈ F and ∆f ≥Mε}

for a class F of densities, a testing rate ε and a constant M .

For any test T , the maximal misclassification error rate (or the risk for the zero-one loss) is defined
by

RN (T,F ,M, ε) = Pf0(T = 1) + sup
{
Pf (T = 0) : f ∈ Ha(F ,M, ε)

}
(13)

where Pf denotes the probability measure with respect to the joint distribution of Y1, . . . , YN .

3.1.2 Analytic class for alternatives

We shall present more formally analytic densities. On the space C∞(S2) of infinitely continuous differ-
entiable function on S2, consider the analytic norm ‖·‖Ap,r defined as

‖f‖2Ap,r =
∑
k≥0

exp (2pkr)
∥∥∥f̂k∥∥∥2.

Let the eigenvalues of the Laplace-Beltrami operator on S2 be λk = k(k+ 1) for k ∈ N0. One can
show that there exist positive constants c1 and c2 such that

c1‖f‖2Ap,r ≤
∑
k≥0

exp
(

2pλ
r/2
k

)∥∥∥f̂k∥∥∥2 ≤ c2‖f‖2Ap,r .
An analytic class of densities is

Ap,r(Q) =

{
f : S2 → R+,

∫
S2
f = 1 and ‖f‖2Ap,r ≤ C0 +Q2

}
.

where p > 0, r > 0, Q > 0 are finite constants and R+ = {t ∈ R : t ≥ 0}.

The smoothness classes described above are classically considered both in deconvolution and in direct
density estimation. They have been studied in many papers in the Euclidean cases (see for instance
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Belitser and Levit (2001), Comte et al. (2006), Butucea and Tsybakov (2007)). Note that all such
densities are infinitely many times differentiable on S2.

This class of functions are of great interest as they include the most widely referenced distribution
in directional data (see Kim and Koo (2002)), the von Mises Fisher distribution which has the following
form on S2:

fVMF (x|µ, κ) = c3(κ)eκµ
>x,

where ‖µ‖ = 1, κ ≥ 0 and the normalizing constant is equal to c3(κ) = κ
2π(eκ−e−κ) . The parameter κ

is the concentration parameter and µ the mean direction. The bigger κ is, the more concentrated the
observations are around the direction µ. This distribution is unimodal and for κ = 0, one retrieves the
uniform distribution.

3.1.3 Noise assumptions

As in Euclidean case, the difficulty of the deconvolution turns out to depend on the spectral properties
of the error distribution. Following Fan (1991), Fan and Koo (2002), Healy et al. (1998), Kim and
Koo (2002), Lacour and Pham Ngoc (2014), we will appropriately define the smoothness of the error
spectrally but with a modification due to the fact that the error W belongs to SO(3). This can be done
by considering convolution as an operator (see Kim and Koo (2002)).

Indeed let Ek be the dk-dimensional vector space spanned by {φkl : −k ≤ l ≤ k} for each k ∈ N0.
Now according to (9), ĥk and ĥ−1k are also understood as maps ĥk : Ek → Ek and ĥ−1k : Ek → Ek defined
by

ĥkv = (ĥkv̂k)
>φk and ĥ−1k v = (ĥ−1k v̂k)

>φk for v = v̂>k φk ∈ Ek.

Again by Parseval’s identity, ‖ĥkv‖22 = ‖ĥkv̂k‖ for all k ≥ 0. Consequently, we have the operator
inequality:

∥∥∥ĥkv∥∥∥
2
≤
∥∥∥ĥk∥∥∥

op
‖v‖2 where

∥∥∥ĥk∥∥∥
op

= sup
v 6=0,v∈Ek

∥∥∥ĥkv∥∥∥
2

‖v‖2
and

∥∥∥ĥ−1k ∥∥∥
op

= sup
v 6=0,v∈Ek

∥∥∥ĥ−1k v
∥∥∥
2

‖v‖2
. (14)

Assumption 1. For all k ∈ N0, the matrix ĥk is invertible and there exist constants q > 0, s > 0,
b0 > 0, b1 > 0, ν0, ν1 ∈ R such that ∥∥∥ĥ−1k ∥∥∥

op
≤ b0kν0 exp (qks) (15)

and ∥∥∥ĥk∥∥∥
op
≤ b1k−ν1 exp (−qks) . (16)

The error density h is referred to as supersmooth.

A typical supersmooth noise distribution is the Gaussian distribution (see Kim and Koo (2002)).
This latter can be solved on general Riemanian manifold by solving the appropriate heat equation. Its
expression in the basis of rotational harmonics is:

hG =
∑
k

k∑
l=−k

exp(−σ2l(l + 1)/2)(2l + 1)Dkl. (17)

Consequently, its rotational Fourier transform is given by:

ĥG,klm = exp(−σ2l(l + 1)/2)δmn,

with δmn the Kronecker delta. Hence, Gaussian distribution is supersmooth with parameters b0 =

1, b1 = 1, ν0 = 0, ν1 = 0, s = 2 and q = σ2

2 in (15) and (16).
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3.2 Test procedure

The test procedure relies on the construction of an estimator of the separation measure ∆f .

Through (1), the relation among the densities can be described by convolution,

g = h ∗ f

as seen by following the familiar corresponding Euclidean result. By (9) we can write,

f̂k = ĥ−1k ĝk,

provided Assumption 1.

Since f is unknown, g is also unknown, hence ĝk is unknown. Nevertheless, we assume that a random
sample Y1, . . . , YN is available. This will allow us to construct an empirical version ĝNk as:

ĝNk =
1

N

N∑
j=1

φk(Yj).

An estimator for f̂k is therefore

f̂Nk = ĥ−1k ĝNk =
1

N

N∑
j=1

Φk(Yj) for k ∈ N0, (18)

where
Φk = ĥ−1k φk.

Define

G(y1, y2) :=
K∑
k=1

〈Φk(y1),Φk(y2)〉 for y1, y2 ∈ S2 (19)

and
UK :=

1

N(N − 1)

∑
1≤i1 6=i2≤N

G(Yi1, Yi2) for K ≥ 1.

Since ĝk = ĥkf̂k, we obtain

EfΦk(Y ) =

∫
S2
gĥ−1k φk = ĥ−1k

∫
S2
gφk = ĥ−1k ĝk = f̂k

and

EfUK = EfG(Y1, Y2) =
K∑
k=1

〈EfΦk(Y1),EfΦk(Y2)〉 =
K∑
k=1

〈
f̂k, f̂k

〉
=

K∑
k=1

∥∥∥f̂k∥∥∥2.
Hence, UK is a natural estimator of

∆2
f :=

∑
k≥1

∥∥∥f̂k∥∥∥2. (20)

Given the estimator UK of ∆2
f , we can define a hard thresholding test procedure TK by

TK = 1
(
|UK | > τK

)
=

{
1 if |UK | > τK
0 if |UK | ≤ τK ,

(21)

for a threshold τK to be made precise later. The way to choose K is important and will be highlighted
in section 4.2.

In what follows we denote by C constants with values in R which may differ on various occurences.
Suppose aN and bN are positive real sequences. If aN = O(bN ), we write aN � bN . The notation
aN � bN means that aN = bN

(
1 + o(1)

)
.
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4 Asymptotic results for Analytic classes

In the same framework, Lacour and Pham Ngoc (2014) showed that considering supersmooth noise
and Sobolev class alternatives leads to only logarithmic separation rates. Let us see how introducing
analytic classes change notably that conclusion. Indeed, the following theorems show that it is possible
to achieve polynomial testing rates. Furthermore, the asymptotic results on minimax misclassification
error rate differ for three regions: the variance dominated case (r > s), the equivalent case (r = s) and
the bias dominated case (r < s). In the sequel, we will focus more specifically on the cases r < s

2 , r = s

and s < r
2 for which we have specific minimax rates. Accordingly, we define three regions :

Θs< r
2

:=
{

(p, r,Q) : p > 0, 0 < s <
r

2
and Q > 0

}
,

Θs=r :=
{

(p, r,Q) : p > 0, 0 < s = r and Q > 0
}
,

Θr< s
2

:=
{

(p, r,Q) : p > 0, 0 < r <
s

2
and Q > 0

}
.

4.1 Lower bounds for separation rates

We will denote in the sequel

C(p, r,Q) := (C0 +Q2)
1
2

√∑
k≥0

dk exp (−2pkr) with dk = 2k + 1. (22)

Theorem 1. Let (p, r,Q) ∈ Θs< r
2
and 0 < η < 1. Let

εL = exp

[
−1

2
logN + q

(
logN

2p

)s/r
+

2ν0 + 1− s
2

2r
log

logN

2p

]
.

Suppose (15) and (16) hold and ν1 > ν0 + (2− s)/4. If M < min(Q, C0
QC(r,p,Q)) then

lim inf
N→∞

inf
T
RN (T,Ap,r(Q),M, εL) ≥ η, (23)

If ν0 = ν1, then we require s > 2 to guarantee (23).

For the case 0 < s < r
2 , Theorem 1 shows that we cannot test with a faster rate than εL =

exp

[
−1

2 logN + q
(
logN
2p

)s/r
+

2ν0+1− s
2

2r log logN
2p

]
otherwise the maximal misclassification error would

be close to 1.

If s = r, then we can trade-off the bias and the variance.

Theorem 2. Let (p, r,Q) ∈ Θs=r and 0 < η < 1. Let

εL = exp

(
− p

2(p+ q)
logN +

2ν̄1
2(p+ q)r

log
logN

2(p+ q)

)
,

for ν̄1 < ν1. Under assumptions (15) and (16), as soon as M < min(Q, C0
QC(r,p,Q)) we have

lim inf
N→∞

inf
T
RN (T,Ap,r(Q),M, εL) ≥ η. (24)
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When s > r, we have the bias dominated case.

Theorem 3. Let (p, r,Q) ∈ Θr< s
2
and 0 < η < 1. Let

εL = exp

[
−p
(

logN

2q

)r/s] (
1 + o(1)

)
.

Under (15), (16) and ν1 > ν0 + (2− s)/4, if M < min(Q, C0
QC(r,p,Q)) then

lim inf
N→∞

inf
T
RN (T,Ap,r(Q),M, εL) ≥ η, (25)

If ν0 = ν1, then we require s > 2 to guarantee (25).

To the best of our knowledge, these testing rates have never been showed before. Nonetheless, one
may make some parallels with the results obtained by Butucea and Tsybakov (2007) in the context
of estimating a density in a convolution model on the real line. Considering analytic densities and
supersmooth noise, the authors also obtained different convergence rate regimes according to the ratio
between the regularity of the density and the noise.

4.2 Upper bounds

Before defining our test procedure, let us start with an exponential inequality which will be useful to
define our test.

Lemma 1. Let ξ′ = α(1(0 ≤ s ≤ 1)K1−s/2 + 1(s > 1)Ks/2), α > 0. Under the null hypothesis, there
exist positive constants M1 and M2 such that

Pf0
(
|UK | ≥ ξ′

V0K
N

)
≤M1 exp

(
−M2ξ

′2) ,
if KaN−1/3 = o(1), a > 0, with V0K = K2ν0+1−s/2 exp (2qKs) .

Remark 1. The proof of Lemma 1 is given in the Appendix.

Now consider the test statistic given by

TA := 1

(
max
K∈K

|UK |/τK > 1/
√
M2

)
, (26)

with

τK = ξ
V0K
N

, V0K := K2ν0+1−s/2 exp(2qKs) and ξ :=
(
1(0≤s≤1)K

(2−s)/2 + 1(s>1)K
s/2
)
, (27)

where K =
{
K : L ≤ K ≤ U

}
is an index family that will be chosen appropriately depending on the

ratio r
s .

First, consider the case when s < r
2 which is included in the variance dominated case. We denote

dxe the smaller integer larger than or equal to x and bxc the largest integer smaller than or equal to x.

Theorem 4. Suppose (15) holds. For p ≥ p0 > 0, 0 < s < r
2 and Q > 0 let the test TA be defined in

(26) with

L =


(

log logN

s

)
1(0≤s≤1) 1

2−s+1(s>1)
1
s

 and U =

⌈(
logN

2p0

) 1
s

⌉
.

10



Let

εU = exp

[
−1

2
logN + q

(
logN

2p

)s/r
+

2ν0 + 1 + (1− s)1(0≤s≤1)
2r

log
logN

2p

]
.

Then if M > (Q2 + 2)
1
2 ,

lim
N→∞

RN (TA,Ap,r(Q),M, εU) = 0.

Let us consider the case r = s.

Theorem 5. Suppose (15) holds. For (p,Q) ∈ Θs=r let the test TA be defined in (26) with

L =


(

log logN

s

)
1(0≤s≤1)

1
2−s+1(s>1)

1
s

 and U =

⌈(
logN

2q

) 1
s

⌉
.

Let

εU = exp

[
− p

2(p+ q)
logN +

2ν0 + 1 + (1− s)1(0≤s≤1)
2(p+ q)r

log
logN

2(p+ q)

]
.

Then if M > (Q2 + 2)
1
2 ,

lim
N→∞

RN (TA,Ap,r(Q),M, εU) = 0.

Finally, for the bias dominated case s > r, we have the following result :

Theorem 6. Suppose (15) holds. For (p, r,Q) ∈ Θr<s/2 let the test TA defined in (26) with

L =


(

log logN

s

)
1(0≤s≤1)

1
2−s+1(s>1)

1
s

 and U =

⌈(
logN

2q

) 1
s

⌉
.

Let

εU = Q exp

[
−p
(

logN

2q

)r/s]
(1 + o(1)).

Then if M > (Q2 + 2)
1
2 ,

lim
N→∞

RN (TA,Ap,r(Q),M, εU) = 0.

We remark that the test TA constructed does not require any knowledge of smoothness parameters
(p, r) of the analytic class Ap,r(Q) which are not known in practice. Hence we have a fully data driven
procedure.

The upper bound results show that our test procedure TA achieves the optimal rates up to a loga-
rithmic factor. In addition, one notes that the limiting distribution of the asymptotically minimax test
statistic is degenerate in all regimes.

5 Numerical illustration

In this section, we will provide a simulation study to illustrate our theoretical results. We focus on
the von Mises Fisher and Watson distributions which provide examples of analytic densities on the
sphere. Concerning the noise, we will naturally deal with the Gaussian distribution. We compare the
performances of our test with those of the Beran Giné test.
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5.1 Test statistics

For the Gaussian distribution, s = 2, ν0 = 0 and q = σ2

2 where σ2 is the variance, hence the expression
of our test TA described in (26) has the following expression :

TA = 1

(
max
K∈K

|UK |/τK >
1√
M2

)
, (28)

with

τK = K
exp(σ2K2)

N
and K =

{
K :

⌈√
log log(N)

⌉
≤ K ≤

⌈√
log(N)

σ2

⌉}
. (29)

We compute the 5% quantile M2 of the statistic maxK∈K |UK |/τ̃K by 1000 Monte Carlo simulations
of N observations under the null hypothesis. We point out that our procedure does not require any
tuning parameter.

The second procedure was introduced by Beran (1968) and Giné (1975). The test statistic is

FN =
3N

2
− 4

Nπ

N−1∑
i=1

N∑
j=i+1

d(Zi, Zj) + sin(d(Zi, Zj))

where d(Zi, Zj) = arccos〈Zi, Zj〉 is the spherical distance between Zi and Zj , and the quantiles are
computed via simulations under H0. This test was designed for non-noisy data.

5.2 Alternatives

We will deal with two alternatives. For the first alternative hypothesis, we have chosen the von Mises
Fisher distribution with several cases of concentration parameters κ and the same mean direction µ =

(−1, 0, 0). For instance, for κ = 3, the density has the expression in spherical coordinates : fVMF (θ, ϕ) =

0.0238 × e−3 sin θ cosϕ. We recall that for κ = 0, the von Mises Fisher density turns to be the uniform
density. So the smaller the concentration parameter κ is, the "flatter" is the density and the more severe
the alternative is.

For the second alternative, we focus on the Watson distribution which provides a way to model
axially symmetric data i.e for which ±x ∈ S2 are equivalent. Its general form is

fW (x) = c(κ)eκ(µ
>x)2 , x ∈ S2,

where κ ∈ R is a concentration parameter, µ a mean direction and c(κ) a normalizing constant such as∫ 2π
0

∫ π
0 fW (θ, ϕ) sin(θ)dθdϕ = 1. For our simulations, we will consider µ = (0, 0, 1) and κ < 0, hence

fW (θ, ϕ) = c(κ)eκ cos
2 θ. For negative κ, the data are concentrated around the great circle orthogonal to

µ which amounts in our case to be concentrated around the equator.

Figure 2 b. shows 300 random draws Xi from the von Mises Fisher distribution with κ = 3 and
µ = (−1, 0, 0) and Figure 2 c. the Yi (obtained by corrupting the Xi by a Gaussian noise with variance
0.4). One can notice that for the choice κ = 3, original observations are clearly concentrated in a zone,
so obviously far from the uniform distribution. But once perturbated, the observations tend to be spread
all over (Figure 3 c.), making the separation between the uniform hypothesis H0 and the alternative
hypothesis Ha difficult.

The same phenomenon appears with the Watson distribution (see Figure 3) but one can notice that
the effect of the noise seems to be more severe in the case of the Watson distribution.
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Figure 2: a/ Representation of the fVMF density with κ = 3, µ = (−1, 0, 0). b/ 300 random draws from
the fVMF density with κ = 3, µ = (−1, 0, 0). c/ These 300 observations perturbated by a Gaussian
noise with σ2 = 0.4.
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Figure 3: a/ Representation of the fW density with κ = −3, µ = (0, 0, 1). a/ 300 random draws from
the fW density with κ = −3, µ = (0, 0, 1). b/ These 300 observations perturbated by a Gaussian noise
with σ2 = 0.4.

5.3 Gaussian noise perturbation

The genuine observations are perturbated by a Gaussian noise which has been defined analytically in
(17). Let us make a brief remark on how to generate random rotation matrices following a Gaussian
distribution on SO(3). After rewriting carefully the density expression (17) in terms of rotational
harmonics, it turned out that hG only depends on the angle of the rotation say γ. Then the simulation
of a rotation following hG amounts to pick at random an axis and perform a rotation around this axis
by an angle following the law hG(γ)1−cos(γ)π .

5.4 Numerical results

We generate N random variables Xi following the alternative density and we perturbate each of them
with a random rotation following a Gaussian distribution to get the Yi. Then we implement the two
test procedures TA and the Beran Giné test defined above and assess their performances by computing
their power.

For a prescribed 5% level, we compute the power (in percentages) for different values of von Mises
Fisher and Watson concentration parameters κ, noise variances and number of observations.
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concentration Gaussian variance
parameter κ 0.1 0.2 0.4

1 99.5 90 40.50
2 100 100 94
3 100 100 100

concentration Gaussian variance
parameter κ 0.1 0.2 0.4

1 99.5 91 62
2 100 100 98
3 100 100 100

Table 1: Test powers for the fVMF alternative, N = 100: on the left the test TA, on the right the Beran
Giné test.

concentration Gaussian variance
parameter κ 0.1 0.2 0.4

1 100 100 81
2 100 100 100
3 100 100 100

concentration Gaussian variance
parameter κ 0.1 0.2 0.4

1 100 100 90
2 100 100 100
3 100 100 100

Table 2: Test powers for the fVMF alternative, N = 300: on the left the test TA, on the right the Beran
Giné test.

concentration Gaussian variance
parameter κ 0.1 0.2 0.4

-1 24.75 9 6
-2 49.50 11.25 6.25
-3 79.25 19 6

concentration Gaussian variance
parameter κ 0.1 0.2 0.4

-1 6.25 10 7.75
-2 19 5.75 6.50
-3 27.50 8.50 3.25

Table 3: Test powers for the fW alternative, N = 100: on the left the test TA, on the right the Beran
Giné test.

concentration Gaussian variance
parameter κ 0.1 0.2 0.4

- 1 85.50 18.50 5.25
-2 98.50 40.25 5.50
-3 100 64.50 5.75

concentration Gaussian variance
parameter κ 0.1 0.2 0.4

-1 42 12 4.75
-2 81.50 17.50 6.50
-3 96.75 20.50 7.75

Table 4: Test powers for the fW alternative, N = 300: on the left the test TA, on the right the Beran
Giné test.

Generally, the performances are much better with the von Mises Fisher distribution which is a
less severe alternative than the Watson distribution. Visually, a clue can be found when comparing
Figure 2 and Figure 3. Indeed, in Figure 3 c. it is hard to detect a signal any more. As expected,
for both alternatives and the two tests, the bigger the concentration parameter |κ| is, the better the
performances are since the data tend to be more concentrated in a zone. On the contrary, the bigger the
noise variances are, the worse the test powers are as the data get closer to the uniform distribution. And
of course, increasing the number of observations improves the performances. When compared the two
test procedures, for the von Mises Fisher alternative, one remarks that the Beran Giné test has slightly
better performances but when considering the Watson distribution, the performances of our test, except
for σ2 = 0.4 for which both procedures are very poor, TA behaves much better.
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6 Proofs

Proof of Theorem 1

Proof. We shall follow the usual scheme to prove lower bounds rates (see for example Ingster (1997) or
Tsybakov (2009)). Let us consider

KL =

⌊
logN

2p
− q

p

(
logN

2p

) s
r

−
2ν0 + 1− s

2

2pr
log

logN

2p

⌋ 1
r

and the following function
f1 := f0 + C1Ψ,

with Ψ = δφKL0, δ = exp(−pKr
L) and C1 = min(Q, C0

C(p,r,Q)). We remind that φKL0 denotes the spherical
harmonic indexed by (KL, 0). If we prove the four following conditions

• f1 belongs to Ap,r(Q),

• f1 is a density function,

• ‖f1 − f0‖2 ≥Mε,

• Nχ2(g0, g1) ≤ (1− η)2,

then,

inf
T
RN (T,Ap,r(Q),M, ε) = inf

T

[
Pf0(T = 1) + sup

{
Pf (T = 0) : f ∈ Ha(Ap,r(Q),M, ε)

}]
≥ inf

T

[
Pf0(T = 1) + Pf1(T = 0)

]
≥

∫
min(dPf0 , dPf1)

≥ 1−
√
Nχ2(g0, g1)

≥ η.

Now let us turn to the proof of the theorem.

• First let us prove that f1 belongs to Ap,r(Q). We have∥∥f1∥∥Ap,r =
∑
k≥0

exp(2pkr)‖f̂1k‖2

= C0 +
∑
k>0

exp(2pkr)‖f̂1k‖2

= C0 + C2
1δ

2 exp (2pKr)

= C0 + C2
1 .

Since C1 ≤ Q, this ensures that f1 belongs to Ap,r(Q).

• Secondly, let us prove that f1 is a density. We have∫
S2
f1 = 1 + C1δ

∫
S2
φK0 = 1,

since
∫
S2 φK0 = 0.
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Because ‖Ψ‖Ap,r = δ2 exp (2pKr) = 1, we get that Ψ ∈ Ap,r(Q) and using Lemma 2, we get
‖Ψ‖∞ ≤ C(p, r,Q) and thus f1 ≥ C0 − C1‖Ψ‖∞ ≥ C0 − C1 × C(p, r,Q). Since C1 ≤ C0

C(p,r,Q) we obtain
that f1 ≥ 0.

• Thirdly, let us assess the separation distance between f1 and f0. We have

∆f1 = C1δ = C1 exp (−pKr
L) ≥MεL for 0 < M < C1,

and thus f1 ∈ Ha(Ap,r(Q),M, ε).

• χ2 distance

Using (16), observe

Nχ2(g0, g1) = N

∫ (
g1 − g0

)2
g0

=
N

C0

∥∥g1 − g0∥∥2
2

=
Nδ2C2

1

C0

∥∥∥ĥKLe0

∥∥∥2
≤ Nb21

C0
δ2C2

1K
−2ν1
L exp (−2qKs

L) =
b21C

2
1

C0
exp (logN − 2pKr

L − 2qKs
L − 2ν1 logKL)

where e0 = (0, . . . , 0, 1, 0, . . . , 0) ∈ RdKL , is a 2KL + 1 vector with zeros at KL first positions, 1 at the
KL + 1 position, then zeros at KL last positions. But

2pKr
L + 2qKs

L

= logN − 2q

(
logN

2p

)s/r
−

2ν0 + 1− s
2

r
log

logN

2p
+ 2q

[(
logN

2p

)s/r
+ o(1)

]

= logN − (2ν0 + 1− s/2) log

(
logN

2p

)1/r

+ o(1)

= logN − (2ν0 + 1− s/2) logKL + o(1),

we obtain

Nχ2(g0, g1) � exp (logN − 2pKr
L − 2qKs

L − 2ν1 logKL)

� exp [− (2ν1 − 2ν0 − 1 + s/2) logKL] = o(1).

Therefore as soon as 2ν1 − 2ν0 − 1 + s/2 > 0

inf
T
RN (T,Ap,r(Q),M, ε) = inf

T

[
Pf0(T = 1) + sup

{
Pf (T = 0) : f ∈ Ha(Ap,r(Q),M, ε)

}]
≥ inf

T

[
Pf0(T = 1) + Pf1(T = 0)

]
≥

∫
min(dPf0 , dPf1)

≥ 1−
√
Nχ2(g0, g1)

≥ η.

The proof is complete.

Proof of Theorem 2

Proof. The proof is similar to Theorem 1.
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Let

KL =

⌊
logN

2(p+ q)
− 2ν̄1

2(p+ q)r
log

logN

2(p+ q)

⌋1/r
for ν̄1 < ν1

Define f1 as in Theorem 1:

f1 := f0 + C1Ψ,

with Ψ = δφKL0, δ = exp(−pKr
L) and C1 = min(Q, C0

C(p,r,Q)).

To prove that f1 belongs to the space Ap,r(Q), the density condition and the separation distance
criteria, the arguments are identical to those of Theorem 1.

It remains to check the χ2 distance condition between the two models.

We have

Nχ2(g0, g1) =
b21C

2
1

C0
exp (logN − 2pKr

L − 2qKs
L − 2ν1 logKL)

� exp (logN − 2(p+ q)Kr
L − 2ν1 logKL)

� exp (logN − logN − 2(ν1 − ν̄1) logKL)

= o(1),

as soon as ν1 − ν̄1 > 0, which concludes the proof.

Proof of Theorem 3

Proof. We again follow the lines of the proof of Theorem 1. This time, let

KL =

⌊
logN

2q
− 2ν0 + 1− s/2

2qs
log

logN

2q
− p

q

(
logN

2q

)r/s⌋1/s
and

εL = exp(−pKr
L).

Observe

Kr
L ≤

(
logN

2q

)r/s
+ C (logN)2r/s−1

(
1 + o(1)

)
+ C (logN)r/s−1 log logN

(
1 + o(1)

)
.

Hence

εL = exp(−pKr
L) = exp

[
−p
(

logN

2q

)r/s] (
1 + o(1)

)
.

Define f1 as in Theorem 1:

f1 := f0 + C1Ψ,

with Ψ = δφKL0, δ = exp(−pKr
L) and C1 = min(Q, C0

C(p,r,Q)).

To prove that f1 belongs to the space Ap,r(Q), the density condition and the separation distance
criteria, the arguments are identical to those of Theorem 1.
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Concerning the χ2 distance between the two models we have:

2pKr
L + 2qKs

L

= 2p

(
logN

2q

)r/s
+ o(1) + logN − 2ν0 + 1− s/2

s
log

logN

2q
− 2p

(
logN

2q

)r/s
= logN − (2ν0 + 1− s/2) log

(
logN

2q

)1/s

+ o(1)

= logN − (2ν0 + 1− s/2) logKL + o(1).

Then we obtain

Nχ2(g0, g1)� exp (logN − 2pKr
L − 2qKs

L − 2ν1 logKL)� exp [− (2ν1 − 2ν0 − 1 + s/2) logKL] = o(1)

as soon as ν1 > ν0 + (2− s)/4 which completes the proof.

Proof of Theorem 4

Proof. • Suppose s > 1. We have

L =

⌈(
log logN

s

)1/s
⌉
,

and note that |K| ≤ C(logN)1/s.

Let us control the risk of first kind. Using Lemma 1 implies

Pf0 (TA = 1) ≤
∑
K

Pf0
(
|UK | >

τK√
M2

)
=
∑
K

Pf0
(
|UK | > ξ

V0K√
M2N

)
≤

∑
K
M1 exp

(
−M2ξ

2/M2

)
=
∑
K
M1 exp (−Ks)

≤ M1 exp (−Ls) |K| � (logN)−1/s = o(1).

We shall control the risk of second kind. Let the optimal cutoff point be

K? :=

⌊
logN

2p
− 2ν0 + 1

pr
log

logN

2p
− q

p

(
logN

2p

)s/r⌋1/r
.

When N is sufficiently large,

(
log logN

s

)1
s
≤ K? ≤

(
logN

2p0

)1/s

,

so that K? ∈ K.

Define BK = Q2 exp (−2pKr). Observe

BK? = Q2 exp(−2pKr
?) ≤ Q2 exp

[
− logN +

2ν0 + 1

r
log

logN

2p
+ 2q

(
logN

2p

)s/r]
= Q2ε2U

18



and

τK? =
exp(2qKs

?)K
2ν0+1−s/2
? K

s/2
?

N
=

exp(2qKs
?)K2ν0+1

?

N

≤ exp

[
− logN + 2q

(
logN

2p

)s/r
+

2ν0 + 1

r
log

(
logN

2p

)]
× exp

[
C1 (logN)2s/r−1

(
1 + o(1)

)
+ C2 (logN)s/r−1 log logN

(
1 + o(1)

)]
� ε2U.

Let
EK := ∆2

f −BK − τK .

Hence we have for EK? using that ∆f ≥MεU

EK? = ∆2
f −BK? − τK? ≥ ∆2

f −Q2ε2U − ε2U(1 + o(1))

≥ ∆2
f

(
1− Q2 + 1 + o(1)

M2

)
.

We want 1 − Q2+1+o(1)
M2 > 0. Hence we choose M > M?

1,U := (Q2 + 2)
1
2 . We can now apply Lemma 8.

We get

Pf (TK? = 0) ≤ MV(
M?

1,U

)2
N−1V0K?

∆2
f

+
N−1V1K?

∆f
+

(
N−1V0K?

∆2
f

)2

+

(
N−1V1K?

∆f

)2

+
1

N

 , for MV > 0,

where
V0K? = K

2ν0+1−s/2
? exp (2qKs

?) and V1K? = K2ν0+2−s
? exp (2qKs

?) .

Moreover,
N−1V0K?

∆2
f

� K
−s/2
? ε2U
ε2U

� K
−s/2
? = o(1)

and
N−1V1K?

∆f
≤ N−1V0KK

1−s/2
?

MεU
� ε2UK

1−s/2
?

εU
= εUK

1−s/2
? = o(1).

The desired result follows from

Pf (TA = 0) = Pf (|UK | ≤ τK , ∀K ∈ K) ≤ Pf (|UK? | ≤ τK?) = Pf (TK? = 0) = o(1).

• Suppose 0 ≤ s ≤ 1. Then

L =

⌈(
log logN

s

)1/(2−s)
⌉
,

and |K| ≤ C(logN)1/s. Lemma 1 implies

Pf0 (T = 1) ≤
∑
K

Pf0
(
|UK | >

τK√
M2

)
≤
∑
K
M1 exp

(
−M2ξ

2/M2

)
=
∑
K
M1 exp

(
−K2−s)

≤ M1 exp
(
−L2−s) |K| � (logN)−1/s = o(1).

Now, we control the risk of second kind. Let the optimal cutoff point be

K? :=

⌊
logN

2p
− 2ν0 + 1

pr
log

logN

2p
− q

p

(
logN

2p

)s/r⌋1/r
.
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When N is sufficiently large,

(
log logN

s

) 1
2−s
≤ K? ≤

(
logN

2p0

)1/s

,

so that K? ∈ K.

Observe

BK? = Q2 exp(−2pKr
?)

= Q2 exp

[
− logN +

2ν0 + 1

r
log

logN

2p
+ 2q

(
logN

2p

)s/r]

= Q2 exp

(
s− 1

r
log

logN

2p

)
ε2U

= aNε
2
U,

with limN→∞ aN = 0. Besides we have

τK? =
exp(2qKs

?)K
2ν0+1−s/2
? K

1−s/2
?

N
=

exp(2qKs
?)K2ν0+2−s

?

N

≤ exp

[
− logN + 2q

(
logN

2p

)s/r
+

2ν0 + 2− s
r

log

(
logN

2p

)]

× exp

[
C

(
logN

2p

)s/r−1
log

logN

2p

(
1 + o(1)

)]
� ε2U.

Hence we have for EK? using that ∆f ≥MεU

EK? = ∆2
f −BK? − τK? ≥ ∆2

f − aNε2U − ε2U(1 + o(1))

≥ ∆2
f

(
1− 2

M2

)
.

We want 1− 2
M2 > 0. Hence we choose M >

√
2. We now apply Lemma 8. We get

Pf (TK? = 0) ≤ MV

2

N−1V0K?

∆2
f

+
N−1V1K?

∆f
+

(
N−1V0K?

∆2
f

)2

+

(
N−1V1K?

∆f

)2

+
1

N

 .
Moreover,

N−1V0K?
∆2
f

� K
−(1−s/2)
? ε2U
ε2U

= K
−(1−s/2)
? = o(1)

and
N−1V1K?

∆f
≤ N−1V0KK

1−s/2
?

MεU
� ε2UK

1−s/2
?

εU
= εUK

1−s/2
? = o(1).

And consequently similarly to the case s > 1

Pf (TA = 0) = o(1).

Proof of Theorem 5
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Proof. We recall that we are in the case r = s.

• Suppose r > 1. We have

L =

⌈(
log logN

r

)1/r
⌉
,

and |K| ≤ C(logN)1/r. Lemma 1 implies

Pf0 (TA = 1) ≤
∑
K

Pf0
(
|UK | >

τK√
M2

)
≤
∑
K
M1 exp

(
−ξ2

)
=
∑
K
M1 exp (−Kr)

≤ M1 exp (−Lr) |K| � (logN)−1/r = o(1).

Let us focus on the second kind risk error. Let the optimal cutoff point be

K? =

⌊
logN

2(p+ q)
−

2ν0 + 1− s
2

2(p+ q)r
log

logN

2(p+ q)

⌋1/r
.

When N is sufficiently large,

(
log logN

s

)1
r
≤ K? ≤

(
logN

2q

)1/r

,

so that K? ∈ K.

Observe

BK? = Q2 exp(−2pKr
?) ≤ Q2 exp

[
− p

p+ q

(
logN − 2ν0 + 1

r
log

logN

2(p+ q)

)]
= Q2ε2U,

and

τK? =
exp(2qKr

?)K
2ν0+1−r/2
? K

r/2
?

N
=

exp(2qKr
?)K2ν0+1

?

N

≤ exp

[
− logN +

2ν0 + 1

r
log

logN

2(p+ q)
+ o(1) + 2q

(
logN

2(p+ q)
− 2ν0 + 1

2(p+ q)r
log

logN

2(p+ q)

)]
≤ exp

[
−
(

1− q

p+ q

)
logN +

(
1− q

p+ q

)
2ν0 + 1

r
log

logN

2(p+ q)
+ o(1)

]
≤ exp

[
− p

p+ q

(
logN − 2ν0 + 1

r
log

logN

2(p+ q)

)] (
1 + o(1)

)
� ε2U.

Hence we have for EK? using that ∆f ≥MεU

EK? = ∆2
f −BK? − τK? ≥ ∆2

f −Q2ε2U − ε2U(1 + o(1))

≥ ∆2
f

(
1− Q2 + 1 + o(1)

M2

)
.

We want 1− Q2+1+o(1)
M2 > 0. Hence we choose again M > M?

1,U. We can now apply Lemma 8. We get

Pf (TK? = 0) ≤ MV(
M?

1,U

)2
N−1V0K?

∆2
f

+
N−1V1K?

∆f
+

(
N−1V0K?

∆2
f

)2

+

(
N−1V1K?

∆f

)2

+
1

N

 .
Moreover,

N−1V0K?
∆2
f

� K
−r/2
? ε2U
ε2U

≤ K−r/2? = o(1)
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and
N−1V1K?

∆f
≤ N−1V0KK

1−r/2
?

MεU
� ε2UK

1−r/2
?

εU
= εUK

1−r/2
? = o(1).

The desired result follows from

Pf (TA = 0) = Pf (|UK | ≤ τK , ∀K ∈ K) ≤ Pf (|UK? | ≤ τK?) = Pf (TK? = 0) = o(1).

• Suppose 0 ≤ r ≤ 1. Then

L =

⌈(
log logN

r

)1/(2−r)
⌉
,

and |K| ≤ C(logN)1/r.

Lemma 1 implies

Pf0 (TA = 1) ≤
∑
K

Pf0
(
|UK | >

τK√
M2

)
≤
∑
K
M1 exp

(
−ξ2

)
=
∑
K
M1 exp

(
−K2−r)

≤ M1 exp
(
−L2−r) |K| � (logN)−1/s = o(1).

We shall deal with the error of second kind. Let the optimal cutoff point be

K? =

⌊
logN

2(p+ q)
−

2ν0 + 1− s
2

2(p+ q)r
log

logN

2(p+ q)

⌋1/r
.

When N is sufficiently large, (
log logN

s

) 1
2−r
≤ K? ≤

(
logN

2q

)1/r

,

so that K? ∈ K.

We still have

BK? ≤ Q2 exp

[
− p

p+ q

(
logN − 2ν0 + 1

r
log

logN

2(p+ q)

)]
= Q2ε2U.

Observe

τK? =
exp(2qKs

?)K
2ν0+1−r/2
? K

1−r/2
?

N
=

exp(2qKr
?)K2ν0+2−s

?

N

≤ exp

[
− logN +

2ν0 + 2− s
r

log
logN

2(p+ q)
+ o(1) + 2q

(
logN

2(p+ q)
− 2ν0 + 2− s

(p+ q)r
log

logN

2(p+ q)

)]
≤ exp

[
−
(

1− q

p+ q

)
logN +

(
1− q

p+ q

)
2ν0 + 2− s

r
log

logN

2(p+ q)
+ o(1)

]
≤ exp

[
− p

p+ q

(
logN − 2ν0 + 2− s

r
log

logN

2(p+ q)

)] (
1 + o(1)

)
� ε2U.

Choosing M > M?
1,U, we again apply Lemma 8. Since

N−1V0K?
∆2
f

� K
−(1−s/2)
? ε2U
ε2U

= K
−(1−s/2)
? = o(1)

and
N−1V1K?

∆f
≤ N−1V0KK

1−s/2
?

MεU
� ε2UK

1−s/2
?

εU
= εUK

1−s/2
? = o(1),
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hence
Pf (TA = 0) = o(1),

which completes the proof.

Proof of Theorem 6

Proof. • Suppose s > 1. Then

L =

⌈(
log logN

s

)1/s
⌉
,

and |K| ≤ C(logN)1/s. For the risk of first kind, Lemma 1 implies

Pf0 (TA = 1) ≤
∑
K

Pf0
(
|UK | >

τK√
M2

)
≤
∑
K
M1 exp

(
−ξ2

)
=
∑
K
M1 exp (−Ks)

≤ M1 exp (−Ls) |K| � (logN)−1/s = o(1).

Let us deal with the risk of second kind. Let the optimal cutoff point be

K? =

⌊
logN

2q
−

2ν0 + 1− s
2

2qs
log

logN

2q
− p

q

(
logN

2q

)r/s⌋1/s
.

When N is sufficiently large,

(
log logN

s

)1
s
≤ K? ≤

(
logN

2q

)1/s

,

so that K? ∈ K.

Observe

BK? � Q2 exp

[
−2p

(
logN

2q

)r/s]
= Q2ε2U

and

τK? =
exp(2qKs

?)K
2ν0+1−s/2
? K

s/2
?

N
=

exp(2qKs
?)K2ν0+1

?

N

≤ exp

[
− logN +

2ν0 + 1

s
log

logN

2q

(
1 + o(1)

)
+ logN − 2ν0 + 1

s
log

logN

2p
− 2p

(
logN

2q

)r/s]
× exp

[
C1 (logN)2s/r−1

(
1 + o(1)

)
+ C2 (logN)s/r−1 log logN

(
1 + o(1)

)]
≤ exp

[
−2p

(
logN

2q

)r/s] (
1 + o(1)

)
� ε2U.

Hence we have for EK? using that ∆f ≥MεU

EK? = ∆2
f −BK? − τK? ≥ ∆2

f −Q2ε2U(1 + o(1))− ε2U(1 + o(1))

≥ ∆2
f

(
1− Q2 + 1 + o(1)

M2

)
.

We want 1− Q2+1+o(1)
M2 > 0. Hence we choose M > M?

1,U. We apply Lemma 8. Since
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N−1V0K?
∆2
f

� K
−s/2
? ε2U
ε2U

≤ K−s/2? = o(1)

and
N−1V1K?

∆f
≤ N−1V0KK

1−s/2
?

MεU
� ε2UK

1−s/2
?

εU
= εUK

1−s/2
? = o(1).

The desired result follows from

Pf (TA = 0) = Pf (|UK | ≤ τK , ∀K ∈ K) ≤ Pf (|UK? | ≤ τK?) = o(1).

• Suppose 0 ≤ s ≤ 1. Then

L =

⌈(
log logN

s

)1/(2−s)
⌉
,

and |K| ≤ C(logN)1/s.

For the risk of first kind, Lemma 1 implies

Pf0 (T = 1) ≤
∑
K

Pf0
(
|UK | >

τK√
M2

)
≤
∑
K
M1 exp

(
−ξ2

)
=
∑
K
M1 exp

(
−K2−s)

≤ M1 exp
(
−L2−s) |K| � (logN)−1/s = o(1).

Let the optimal cutoff point be again

K? =

⌊
logN

2q
− µ0
qs

log
logN

2q
− p

q

(
logN

2q

)r/s⌋1/s
.

When N is sufficiently large, (
log logN

s

) 1
2−s
≤ K? ≤

(
logN

2q

)1/s

,

so that K? ∈ K and |K| ≤ C(logN)1/s.

Observe

BK? � Q2 exp

[
−2p

(
logN

2q

)r/s]
= Q2ε2U

and

τK? =
exp(2qKs

?)K
2ν0+1−s/2
? K

1−s/2
?

N
=

exp(2qKs
?)K2ν0+2−s

?

N
� ε2U.

Similarly to the case s > 1, we take M > M?
1,U.

Moreover we apply Lemma 8,

N−1V0K?
∆2
f

� K
−(1−s/2)
? ε2U
ε2U

= K
−(1−s/2)
? = o(1)

and
N−1V1K?

∆f
≤ N−1V0KK

1−s/2
?

MεU
� ε2UK

1−s/2
?

εU
= εUK

1−s/2
? = o(1).

The desired result follows from
Pf (TA = 0) = o(1).
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7 Appendix

Lemma 2. For p > 0, r > 0 and Q > 0,

sup
f∈Ap,r(Q)

‖f‖∞ ≤ C(p, r,Q),

C(p, r,Q) = (C0 +Q2)
1
2

√∑
k≥0

dk exp (−2pkr), (30)

with dk = 2k + 1.

Proof. Choose y ∈ S2. The addition formula says

‖φk(y)‖2 =
dk
4π
. (31)

Cauchy-Schwarz inequality implies

|f(y)| ≤
√∑

k

exp (2pkr)
∥∥∥f̂k∥∥∥2√∑

k

exp (−2pkr) ‖φk(y)‖2 ≤ C(p, r,Q).

Note that
∑

k≥0 dk exp (−2pkr) is convergent.

Lemma 3. Under Assumption 1. we have the following inequalities :

K∑
k=1

dk

∥∥∥ĥ−1k ∥∥∥2
op
� K2ν0+2−s exp (2qKs) ,

K∑
k=1

d
3/2
k

∥∥∥ĥ−1k ∥∥∥4
op
� K4ν0+5/2−s exp (4qKs) ,

K∑
k=1

dk

∥∥∥ĥ−1k ∥∥∥4
op
� K4ν0+2−s exp (4qKs) ,

K∑
k=1

∥∥∥ĥ−1k ∥∥∥2
op
� K2ν0+1−s exp (2qKs) .

Proof. Using Assumption 1, we have

K∑
k=1

dk

∥∥∥ĥ−1k ∥∥∥2
op
≤

K∑
k=1

(2k + 1)b20k
2ν0 exp(2qks).

But standard integrals evaluation yields for any real α

K∑
k=1

kα exp(kβ/δ) ≤ CKα+1−β exp(Kβ/δ).

Consequently

K∑
k=1

dk

∥∥∥ĥ−1k ∥∥∥2
op
� K2ν0+2−s exp (2qKs) .

The proof of the other inequalities are similar.

The following Lemma controls the bias of UK .
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Lemma 4. Suppose f ∈ Ap,r(Q). Then the bias of UK which is an estimate of ∆2
f satisfies

∆2
f − EfUK ≤ BK for K ≥ 1,

where BK = Q2 exp (−2pKr).

Proof. Observe

∆2
f − EfUK =

∞∑
k=1

∥∥∥f̂k∥∥∥2 − K∑
k=1

∥∥∥f̂k∥∥∥2
=

∞∑
k>K

∥∥∥f̂k∥∥∥2 ≤ exp (−2pKr)

∞∑
k>K

exp (2pkr)
∥∥∥f̂k∥∥∥2

≤ Q2 exp (−2pKr) = BK .

The next result gives a bound for the variance of UK .

Lemma 5. Suppose (15) holds. For arbitrary density f , the variance of UK satisfies

Varf (UK) ≤MV

[
1

N

(
∆4
f + ∆2

fV0K + ∆3
fV1K

)
+

1

N2

(
V 2
0K + ∆2

fV
2
1K

)]
for MV > 0,

with
V0K = K2ν0+1−s/2 exp (2qKs) and V1K = K2ν0+2−s exp (2qKs) .

Proof. The proof of this lemma is identical to the proof of Lemma 4 in Lacour and Pham Ngoc (2014).
Note that we deal with real valued quantities and do not need complex conjugaison. Using equation
(18) in Lacour and Pham Ngoc (2014) which gives the expression of the variance of UK we get

Varf (UK)

=

[
(N − 2)(N − 3)

N(N − 1)
− 1

]( K∑
k=1

∥∥∥f̂k∥∥∥2
)2

+
2

N(N − 1)

∑
1≤k1,k2≤K

Ef 〈Φk1(Y1),Φk1(Y2)〉〈Φk2(Y1),Φk2(Y2)〉

+
4(N − 2)

N(N − 1)

∑
1≤k1,k2≤K

Ef
〈

Φk1(Y ), f̂k1

〉〈
Φk2(Y ), f̂k2

〉
.

We control each of the three terms of the previous equality by following the lines of Lemma 4 in Lacour

and Pham Ngoc (2014). In the sequel we denote S0K =

√∑K
k=1 dk

∥∥∥ĥ−1k ∥∥∥4
op

and S1K =
∑K

k=1 dk

∥∥∥ĥ−1k ∥∥∥2
op
,

we recall that dk = 2k + 1.

For the first term we get

[
(N − 2)(N − 3)

N(N − 1)
− 1

]( K∑
k=1

∥∥∥f̂k∥∥∥2
)2

≤ C
∆4
f

N
.

For the second term we have

∑
1≤k1,k2≤K

Ef 〈Φk1(Y1),Φk1(Y2)〉〈Φk2(Y1),Φk2(Y2)〉 =
∑

1≤k1,k2≤K

k1∑
l1=−k1

k2∑
l2=−k2

|EfΦk1l1(Y )Φk2l2(Y )|2

26



|EfΦk1l1(Y )Φk2l2(Y )|2 =
∣∣Ef0Φk1l1(Y )Φk2l2(Y )

∣∣2 + ‖Φk1l1Φk2l2‖
2
2 ‖fY − f

0‖.

We have

∑
1≤k1,k2≤K

‖Φk1l1Φk2l2‖
2
2 ‖fY − f

0‖ ≤ ∆2
f

(∑
k

dk

∥∥∥ĥ−1k ∥∥∥2
op

)2

.

And using Lemma 3 in Lacour and Pham Ngoc (2014)∑
1≤k1,k2≤K

∣∣Ef0Φk1l1(Y )Φk1l1(Y )
∣∣2 ≤ ∑

1≤k≤K

∥∥∥ĥ−1k ∥∥∥4
op
dk

So we get

2

N(N − 1)

∑
1≤k1,k2≤K

Ef 〈Φk1(Y1),Φk1(Y2)〉〈Φk2(Y1),Φk2(Y2)〉 ≤
C

N2

[
S2
0K + ∆2

fS
2
1K

]
.

It remains to bound the third term. We have

4(N − 2)

N(N − 1)

∑
1≤k1,k2≤K

Ef
〈

Φk1(Y ), f̂k1

〉〈
Φk2(Y ), f̂k2

〉
=

∑
1≤k1,k2≤K

∑
l1,l2

Ef (Φk1l1(Y )Φk1l1(Y ))f̂k1l1 f̂k2l2

≤ C

N
∆2
f (S0K + ∆fS1K);

Finally we get

Varf (UK) � 1

N

[
∆4
f + ∆2

fS0K + ∆3
fS1K

]
+

1

N2

[
S2
0K + ∆2

fS
2
1K

]
.

Now using Lemma 3 which gives upperbounds for S0K and S1K conclude the proofs of Lemma 5.

In the next lemma, we recall the exponential inequality for U -statistics due to Giné et al. (2000)

Lemma 6. Let G denote a bounded canonical kernel, completely degenerate of the i.i.d variables Y1, . . . , YN .
There exist universal constants C̃1, C̃2 > 0 such that, for all x > 0,

P

∣∣∣∣∣∣
∑

1≤i1 6=i2≤N
G(Yi1, Yi2)

∣∣∣∣∣∣ ≥ x
 ≤ C̃1 exp

[
−C̃2 min

(
x1/2

A
1/2
G

,
x2/3

B
2/3
G

,
x2

C2
G

,
x

DG

)]

where AG, BG, CG, DG are defined as

AG := ‖G‖∞, B2
G := 2N

∥∥∥E(|G|2(Y, · )
∥∥∥
∞

), C2
G := N2E(|G|2(Y1, Y2))

and
DG := N sup

{
E(G(Y1, Y2)u1(Y1)u2(Y2)) : Eu21(Y ) ≤ 1 and Eu22(Y ) ≤ 1

}
.

We apply this lemma to the kernel G defined in (19):

G(y1, y2) =

K∑
k=1

〈Φk(y1),Φk(y2)〉 for y1, y2 ∈ S2

with Φk = ĥ−1k φk. The kernel G is degenerate for the Yi under H0.

Lemma 7. Suppose (15) holds. Then,

AG � K2ν0+2−s exp (2qKs) , B2
G � NK4ν0+5/2−s exp (4qKs) ,

C2
G � N2K4ν0+2−s exp (4qKs) and DG � N

[
(1(0≤s≤1)K

2ν0 + 1(s>1)K
2ν0+1−s) exp (2qKs)

]
.
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Proof. Applying the arguments used to prove the case of ordinary smooth error in Lacour and Pham Ngoc
(2014) (Lemma 2) to the case for super smooth error and using Lemma 3, we obtain bounds on AG, B2

G

and C2
G. Indeed we have

AG �
K∑
k=1

dk

∥∥∥ĥ−1k ∥∥∥2
op
� K2ν0+2−s exp (2qKs) .

Moreover

B2
G � N

K∑
k=1

d
3/2
k

∥∥∥ĥ−1k ∥∥∥4
op
� NK4ν0+5/2−s exp (4qKs) ,

and

C2
G �

K∑
k=1

dk

∥∥∥ĥ−1k ∥∥∥4
op
� NK4ν0+5/2−s exp (4qKs) .

For DG, observe

Ef0G(Y1, Y2)u1(Y1)u2(Y2) ≤ αK :=

K∑
k=1

∥∥∥ĥ−1k ∥∥∥
op
‖û1k‖

∥∥∥ĥ−1k ∥∥∥
op
‖û2k‖.

When 0 ≤ s ≤ 1, we bound αK as

αK �
∥∥∥ĥ−1K ∥∥∥2

op

K∑
k=1

‖û1k‖‖û2k‖ �
∥∥∥ĥ−1K ∥∥∥2

op

√
Ef0u21(Y )Ef0u22(Y )�

∥∥∥ĥ−1K ∥∥∥2
op
≤ b20K2ν0 exp(2qKs),

using Assumption 1. When s > 1, we bound αK as

αK �
√

Ef0u1(Y )2Ef0u2(Y )2
K∑
k=1

∥∥∥ĥ−1k ∥∥∥2
op
�

K∑
k=1

∥∥∥ĥ−1k ∥∥∥2
op
.,

now using the last point of Lemma 3 proves the result.

Proof of Lemma 1

Proof. By Lemma 6, we obtain

P (|UK | ≥ x) ≤ C̃1 exp

[
−C̃2 min

(
x2

C2
G

,
x

DG
,
x1/2

A
1/2
G

,
x2/3

B
2/3
G

)]

where τ = x/N(N − 1) and x = τN(N − 1). Now let

τ = ξ
V0K
N

= ξ
K2ν0+1−s/2 exp (2qKs)

N
.

From Lemma 3 and Lemma 7, we have

C̃2 min

(
x2

C2
G

,
x

DG
,
x1/2

A
1/2
G

,
x2/3

B
2/3
G

)
≥ M2 min

(
ξ2, ξ2, ξ1/2N1/2K(s−2)/4, ξ2/3N1/3K−1/6

)
≥ M2ξ

2,

provided that KaN−1/3 = o(1), for any constant a > 0.
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Lemma 8. Let the density f ∈ Ha(Ap,r(Q),M, ε). Consider the test TK defined in (21). If there exists
M?

U > 0 such that
EK := ∆2

f −BK − τK ≥M?
U∆2

f , (32)

with BK = Q2 exp (−2pKr) then

Pf (TK = 0) ≤ MV

(M?
U )2

N−1V0K
∆2
f

+
N−1V1K

∆f
+

(
N−1V0K

∆2
f

)2

+

(
N−1V1K

∆f

)2

+
1

N

 .
Proof. Suppose

EK := ∆2
f −BK − τK ≥M?

U∆2
f for M?

U > 0, (33)

then Lemma 4 entails
Ef (UK)− τK ≥ ∆2

f −BK − τK ≥M?
U∆2

f .

Using Chebyshev’s inequality and Lemma 5, we obtain

Pf (TK = 0) = Pf
(
|UK | ≤ τK

)
≤ P

(
|UK − Ef (UK)| ≥ Ef

(
UK
)
− τK

)
≤ P

(
|UK − Ef (UK)| ≥M?

U∆2
f

)
≤

Varf (UK)

(M?
U )2 ∆4

f

≤ MV

(M?
U )2

N−1V0K
∆2
f

+
N−1V1K

∆f
+

(
N−1V0K

∆2
f

)2

+

(
N−1V1K

∆f

)2

+
1

N

 .
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