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dynamical systems [18].

For the `-Euclid algorithm, it is natural to choose, as the
length of the input, the sum of the length of its components.
Changing the input length yields a different probabilistic be-
havior, even when ` = 2. We show the following: in the case
` = 2, the mean number of iterations remains linear with re-
spect to the (new) length but the distribution of number of
iterations is now asymptotically uniform. In the case ` ≥ 3,
our analysis exhibits a strong difference between the first
phase and the following phases. In the first phase, the num-
ber of iterations has a linear mean and follows a beta law (the
same as the law followed by the minimum of `−1 reals i.i.d.
in the unit interval). In the following phases, the number of
iterations is constant on the average and follows a geometric
law. These results can be expected, as Knuth wrote“In most
cases, the length of the partial gcd decreases rapidly during
the first few phases of the calculation, and this will make the
remainder of the computation quite fast” [14]. Our analy-
sis shows that, in most cases, “almost all the calculation”
is done during the first phase. This will make possible to
compare (in the extended version of this paper) the `-Euclid
algorithm to another strategy proposed in [3].

Plan of the paper. Sections 2, 3, 4 are devoted to the
polynomial case, and Section 5 to the integer case. Section
2 describes the algorithm and states the main results, then,
Sections 3 and 4 are devoted to the proofs, mainly based
on analytical combinatorics: we use generating functions,
built in Section 3, and used in Section 4. Section 5 explains
the strong similarity between the two cases (polynomial and
integer); it presents the useful generating functions (here of
Dirichlet type), states the main results (only for the average-
case) and briefly describes the main steps of the proof. We
also explain why distributional results may be expected.

2. MAIN RESULTS FOR POLYNOMIALS.
We consider the ring Fq[X] of polynomials over the finite

field Fq with q elements, and the degree of a non zero poly-
nomial x is denoted by d(x).

The plain `-Euclid algorithm on Fq[X] deals with a se-
quence of ` nonzero polynomials and computes their greatest
common divisor y via a sequence of `− 1 gcd computations
between two polynomials, as we previously explained.

Each phase is a 2–Euclid Algorithm which performs a gcd
computation between two polynomials, with a sequence of
Euclidean divisions, as recalled as follows:

The Euclid Algorithm on (a1, a2) with d(a1) > d(a2)

a1 = m1a2 + a3 0 < d(a3) < d(a2)
a2 = m2a3 + a4 0 < d(a4) < d(a3)
. . . = . . . +
ap−1 = mp−1ap + ap+1 0 < d(ap+1) < d(ap)
ap = mpap+1 + 0

Then, gcd(a1, a2) is the last non-zero remainder ap+1. It
can be chosen monic. The number of steps (here equal to p)
is one of the main parameters of interest.

This paper aims at precisely understanding the random
behavior of the plain algorithm. Since the algorithm is a
succession of phases, it is important to describe each phase
of index k (k ∈ [1..`− 1]), with the following parameters:

(i) the number Lk of divisions performed during the k-th
phase,

(ii) the degree Dk of the gcd yk at the beginning of the
k-th phase.

We are also interested in the analysis of global parameters.
(iii) The algorithm may be interrupted as soon as Dk = 0,

and Π is the number of useful phases. Namely:
Π = 0 if D1 = 0 and Π := max{k|Dk > 0} if D1 > 0.

(iv) The total number of divisions of the interrupted al-
gorithm is defined as

L = 0 if Π = 0 and L = L1 + L2 + . . .+ LΠ if Π > 0.

The possible inputs are all the sequences x formed of `
polynomials, and we limit ourselves to monic polynomials,
without loss of generality. Then the set of inputs is Ω = U`,
where U is the set of monic polynomials. Here, the size of
the input x is the total degree of the sequence (and not the
maximum, as it is often the case), and we let

d(x) = d(x1, x2, . . . , x`) := d(x1) + d(x2) + . . .+ d(x`).

The subset Ωn formed with the inputs of size n is a finite
set, and it is endowed with the uniform probability. Now,
the parameters of interest become random variables and we
are interested in their probabilistic features.

With analytic combinatorics methodology, we prove the
following two results. The first one deals with the expected
values, whereas the second one describes asymptotic limit
laws.

2.1 Average-case analysis.
Theorem 1 below exhibits a strong difference between the

first phase and the following ones. It shows that, on average,
the first phase performs a linear number of iterations which
involves the entropy 2q/(q− 1) of the Euclid dynamical sys-
tem; then, even if the degree of the first gcd is linear with
respect to the input size, the degree of the gcd is proven
to be of constant order after the first phase on the average.
Then, the number of divisions Lk which will be performed
in the following phases, together with the degrees Dk of the
following gcd’s will be of constant order.

Theorem 1. [Expectations]. When the set Ωn is endowed
with the uniform distribution, the following holds:

(a) The expectation of the number of iterations L1 during
the first phase is linear with respect to the size n and satisfies

En[L1] =
q − 1

2q

n

`
+

3q + 1

4q
+O

(
1

n

)
.

(b) For any k ∈ [2..` − 1], the expectation of the number
of iterations Lk during the k-th phase is asymptotic to a
constant, and satisfies

En[Lk] =
qk − 1

qk − q

[
1 +O

(
1

n

)]
.

(c) The expectation of the degree of the first polynomial x1

is linear with respect to the size n and satisfies

En[D1] =
n

`
.

(d) For any k ∈ [2..`−1], the expectation of the degree Dk
of the gcd yk at the beginning of the k-th phase is asymptotic
to a constant, and satisfies

En[Dk] =
1

qk−1 − 1

[
1 +O

(
1

n

)]
.



2.2 Limit Laws.
The following result makes more precise the results ob-

tained in Theorem 1, and explains more deeply the difference
between the first phase (k = 1) and the following phases.
For k = 1, the expected degrees of the first two polynomials
x1 and x2 are linear, and the number of divisions is closely
related to min(d(x1), d(x2)). Then, it is natural to expect
beta laws for the first phase, more precisely a beta law of
parameter (1, ` − 1), since it is the law of the minimum Y
of ` − 1 random variables i.i.d. on the unit interval, which
satisfies P[Y ≥ x] = (1 − x)`−1. Such a law has a density
equal to (` − 1)(1 − x)`−2. For ` = 2, this is the uniform
law. For the following phases, geometric laws are expected,
since the means of the gcd degrees are of constant order.

The next result describes the asymptotic distribution of
Lk [Assertion (a)] and Dk [Assertion (b)]. At first glance,
the results do not seem to heavily depend on the index k of
the phase. However, it is not true, since the two ratios
pk := (q − 1)/(qk − 1) (in case L), rk := q1−k (in case D),
are equal to 1 for k = 1 and strictly less than 1 for k ≥ 2.

Theorem 2. [Limit laws.] When the set Ωn is endowed
with the uniform distribution, the following holds:

(a) The number of iterations L1 during the first phase asymp-
totically follows a beta law of parameter (1, `− 1) on the in-
terval [0, (q − 1)/(2q)] whereas, the number of iterations Lk
during each following phase asymptotically follows a geomet-
ric law with ratio pk := (q − 1)/(qk − 1). One has:

Pn [Lk > n/(k + 1)] = 0, for any k.

For any k, the distribution of Lk satisfies when n→∞,

Pn[Lk > m] =

(
q − 1

qk − 1

)m [
1 +O

(m
n

)]
for m = o(n),

and for m/n→ c with c ∈]0, 1
k+1

qk−1

qk
[

Pn[Lk > m] =

(
q − 1

qk − 1

)m(
1− (k + 1)qk

qk − 1
c

)̀−1[
1 +O

(
1

n

)]
.

(b) The degree D1 of the first polynomial x1 asymptotically
follows a beta law of parameter (1, `−1) on the interval [0, 1],
whereas the degree Dk of the gcd yk at the beginning of each
following phase asymptotically follows a geometric law with
ratio rk := q1−k. One has : Pn [Dk > n/k] = 0 for any k.
For any k, the distribution of Dk satisfies when n→∞,

Pn[Dk ≥ m] = q(1−k)m
[
1 +O

(m
n

)]
for m = o(n),

and for m/n→ c with c ∈]0, 1/k[

Pn[Dk ≥ m] = q(1−k)m (1− kc)`−1

[
1 +O

(
1

n

)]
.

2.3 Global parameters.
The interrupted algorithm stops as soon as the gcd yk is of

degree 0. Let Π(x1, . . . , x`) be the number of useful phases.
Since the event [Π ≥ k] coincides with the event [Dk ≥ 1]
for k ∈ [1..`− 1], Theorem 2 leads to the following:

Theorem 3. When the set Ωn is endowed with the uni-
form distribution, the distribution of the number Π of useful
phases satisfies Pn[Π ≥ 0] = 1, Pn[Π ≥ `] = 0,

Pn[Π ≥ k] = q1−k
[
1 +O

(
1

n

)]
for k ∈ [1..`− 1].

The following result studies the total number L of divi-
sions performed by the interrupted version (see the proof in
the appendix). With Theorems 1 and 3, the mean is easy to
study. Moreover, Theorems 1 and 2 prove that the variance
of L1 is quadratic whereas the variance of Lk (for k ≥ 2) is
of constant order. Then, the linearity of the mean with the
Markov inequality entail that L has the same asymptotic
distribution as L1.

Theorem 4. When the set Ωn is endowed with the uni-
form distribution, the total number of divisions L performed
by the interrupted version of the `-Euclid algorithm has an
expected value En[L] equal to

q − 1

2q

n

`
+

3q + 1

4q
+

`−1∑
k=2

[
q

qk
+

q − 1

qk − 1

]
+O

(
`2

n

)
.

Moreover, the number L asymptotically follows a beta distri-
bution of parameter (1, `−1) on the interval [0, (q−1)/(2q)].

3. GENERATING FUNCTIONS

3.1 General setting
We use the analytic combinatorics methodology, and deal

with its main tool, the generating functions. We use a vari-
able zi to mark the degree of the i–th polynomial xi, and
the generating function F (z1, z2, . . . z`) of the set Ω = U`,
relative to the size d, is defined as

F (z1, z2, . . . z`) :=
∑
x∈U`

z
d(x1)
1 z

d(x2)
2 . . . z

d(x`)
` .

It is equal to the product U(z1)U(z2) . . . U(z`), where U(z)
is the generating function of the set U of the monic polyno-
mials relative to the size d, namely

U(z) =
∑
x∈U

zd(x) =
∑
n≥0

qnzn =
1

1− qz .

Most of the time, we limit ourselves to the case when all
the variables zi are equal, and we write F (z) instead of
F (z, · · · , z). For studying a parameter (or a cost C) on
Ω = Ud, a main tool is the bivariate generating function
relative to some cost C, obtained by introducing a further
variable u to mark the cost, and defined as

F (z, u) :=
∑
x∈Ud

zd(x)uC(x).

We are first interested in the mean value of parameter C,
and we deal with the cumulative generating function

F̂ (z) :=
∂F

∂u
(z, u)|u=1, and En[C] =

[zn]F̂ (z)

[zn]F (z)
. (1)

The probability distribution of the cost C can be studied
with the generating function F (z, u), via the relation

Pn[C = i] =
[zn ui]F (z, u)

[zn]F (z)
.

Then, the probabilities Pn[C ≥ m] are expressed with the
“cumulative bivariate generating functions” defined as

F̂ [m](z) :=
∑
i≥m

[ui]F (z, u), and Pn[C ≥ m] =
[zn]F̂ [m](z)

[zn]F (z)
.

(2)



3.2 Another expression for the generating func-
tion

We first obtain an alternative expression for the generat-
ing function F (z) with a product of ` − 1 factors, each of
them describing a phase of the algorithm.

Proposition 1. The generating function of the set Ω =
U` with the size equal to the total degree decomposes as

F (z) = U(z)` = U(z`) ·
`−1∏
k=1

T (z, zk)

and involves the phase-function T defined as

T (z, t) =
U(z) + U(t)− 1

1−G(zt)
, (3)

the generating function U(z) of monic polynomials, and the
generating function G(z) of general polynomials with strictly
positive degree, i.e.,

U(z) =
1

1− qz , G(z) =
(q − 1)qz

1− qz .

Proof. The Euclid algorithm first compares the degrees
of x1 and x2. There are three cases:

d(x1) = d(x2), d(x1) > d(x2), d(x1) < d(x2).
In the first case, there is an extra subtraction, which can be
viewed as a division with a quotient equal to 1.

In all the cases, the gcd y := gcd(x1, x2) together with
the sequence of quotients (m1,m2, . . .mp) completely deter-
mines the input pair (x1, x2). More precisely, one writes
(x1, x2) = (y x̂1, y x̂2) with a coprime pair (x̂1, x̂2) and the
execution of the Euclid algorithm on the pair (x̂1, x̂2) pro-
duces the same sequence (m1,m2, . . .mp) as the pair (x1, x2).
The first quotient m1 is monic (this is due to the fact that
x1 and x2 are monic) and the remainder of the sequence
Σ = (m2, . . .mp) is formed with general polynomials mi (no
longer monic) with d(mi) ≥ 1. As previously, the total de-
gree of Σ is d(Σ) = d(m2) + . . .+ d(mp).

We now focus on the first quotient m1, and we consider
the three following possible cases:

(a) If d(x1) = d(x2), then m1 = 1.

(b) If d(x1) > d(x2) then
d(m1) ≥ 1, d(x̂2) = d(Σ), d(x̂1) = d(m1) + d(Σ).

(c) If d(x1) < d(x2) then
d(m1) ≥ 1, d(x̂1) = d(Σ), d(x̂2) = d(m1) + d(Σ).

All these remarks provide an alternative expression of
the product U(z1)U(z2). Indeed, we use the two relations

z
d(x1)
1 z

d(x2)
2 = (z1z2)d(y) · zd(x̂1)

1 z
d(x̂2)
2 ,∑

x̂1,x̂2

z
d(x̂1)
1 z

d(x̂2)
2 =

[
1 +

∑
m1

z
d(m1)
1 + z

d(m1)
2

][∑
Σ

(z1z2)d(Σ)

]
,

together with the conditions previously described on the first
quotient m1, the sequence Σ and the gcd y. The first factor
gives rise to the generating function

1 + (U(z1)− 1) + (U(z2)− 1) = U(z1) + U(z2)− 1

which involves the generating function U(z) of monic poly-
nomials, whereas the second factor is expressed with the gen-
erating function G(z) of general polynomials with a strictly
positive degree, under the form 1/(1 − G(z1z2)). We have
then proven the following alternative form for the product

U(z1)U(z2) = U(z1z2) · T (z1, z2).
When we replace this expression into the total product

U(z1)U(z2) . . . U(z`) = F (z1, z2, . . . , z`)
and iterate the transformation, we obtain an alternative ex-
pression for the generating function F (z1, z2, . . . , z`) with a
product of ` − 1 factors, each of them involving the phase-
function T at points zk and tk = z1 . . . zk

F (z1, z2, . . . z`) = U(t`) ·
`−1∏
k=1

T (zk+1, tk).

It can be useful in some studies to keep all the variables
zi, but here, we let z1 = z2 = . . . = z`, and we obtain an
expression of the generating function F (z).

3.3 Generating functions for parameters of in-
terest

When studying the parameter Lk (number of steps in the
k-th phase), we use an extra variable u which marks each
step of the k-th iteration, and we deal with the generating
function

T (z, t, u) = u
U(z) + U(t)− 1

1− uG(zt)
with t = zk,

which replaces T (z, zk) inside F (z).
When studying the parameter Dk (degree of the gcd at the
beginning of the k-th phase), we use an extra variable u
which marks the degree of the gcd yk, and we deal with the
generating function

U(t, u) =
1

1− qut with t = zk,

which replaces U(zk) inside F (z). Finally:

Proposition 2. For any k ∈ [1..`−1], the bivariate gen-
erating function Lk(z, u) relative to the number of divisions
during the k-th phase satisfies

Lk(z, u) = U(z)` · T (z, zk, u)

T (z, zk)
.

For any k ∈ [1..` − 1], the bivariate generating function
Dk(z, u) relative to the degree of the k-th gcd yk at the be-
ginning of the k-th phase satisfies

Dk(z, u) = U(z)` · U(zk, u)

U(zk)
.

With Proposition 1, the functions T (z, zk, u) and U(zk, u)
admit precise expressions, and Proposition 2 leads to the
expression of the bivariate generating functions Lk(z, u) and
Dk(z, u)

Lk(z, u)

U(z)`
= u

1−G(zk+1)

1− uG(zk+1)
,

Dk(z, u)

U(z)`
=

1− qzk

1− quzk . (4)

Finally, taking the derivative with respect to u, we obtain
the cumulative generating functions

L̂k(z)

U(z)`
=

1− qzk+1

1− q2zk+1
,

D̂k(z)

U(z)`
=

qzk

1− qzk . (5)

Extracting in (4) the coefficient of [ui] in the bivariate gen-
erating functions and taking the sum over i ≥ m gives

L̂
[m]
k (z)

U(z)`
= G(zk+1)m−1,

D̂
[m]
k (z)

U(z)`
= (qzk)m. (6)



4. FINAL STEPS FOR THE PROOFS.
We have obtained in (5) and (6) the expressions of useful

generating functions, that are always here fractional func-
tions. It is then possible to use (1) and (2) to obtain an
exact expression of the expectation and probability distribu-
tion of the parameters Dk and Lk. However, we are mainly
interested in the asymptotic behaviour (as n→∞) of these
probabilistic features. Singularity analysis describes the pos-
sible transfer between the behavior of a generating function,
viewed as an analytic function, near its dominant singularity
(the singularity closest to 0) and the asymptotic behavior of
its coefficients. More precisely, the position and the nature
of the dominant singularity play a fundamental role.

4.1 Average-case analysis.
Here, the main tools are the cumulative generating func-

tions (5). They both admit a dominant pole in z = 1/q but
the order of the pole is different according to the phase. For
the first phase (k = 1), the pole z = 1/q is of order ` + 1
whereas for the other phases (k ≥ 2), this pole remains of
order `.

We now use the following result, here quite trivial since
we deal with rational fractions.

Lemma 1. Consider a function f(z) = g(z)/(1−qz)j with
j ≥ 2 which involves a function g(z) which is analytic in the
disk |z| > 1/q and satisfies g(1/q) 6= 0. Then,

[zn]f(z) = g

(
1

q

)(
n+ j − 1

j − 1

)
qn−g′

(
1

q

)(
n+ j − 2

j − 2

)
qn−1,

with a remainder term in O
(
nj−3qn

)
. The previous esti-

mate also holds if g admits simple isolated poles on the punc-
tured circle {|z| = 1/q, z 6= 1/q}, as soon as j ≥ 3.

We first consider the case when the phase index k is at
least equal to 2. In this case, with the expressions of the

cumulative generating functions D̂k(z) and L̂k(z) given in
(5), the lemma applies with j = ` and

g(z) =
1− qzk+1

1− q2zk+1
, g

(
1

q

)
=
qk − 1

qk − q (case L),

g(z) =
qzk

1− qzk g

(
1

q

)
=

1

qk−1 − 1
(case D).

Consider now the case when the phase index k equals 1.
In this case, the integer j equals `+ 1, and

g(z) = qz (case D), g(z) =
1− qz2

1 + qz
(case L).

In both cases L and D, the lemma applies. In case D, we
obtain:

[zn]D̂1(z) = qn
(
n+ `− 1

`

)
.

We remark that, in case L, the function g admits z = −1/q

as a simple pole and we obtain [zn]L̂1(z) =

=
q − 1

2q
qn
(
n+ `

`

)
+
q + 3

4
qn−1

(
n+ `− 1

`− 1

)
+O

(
n`−2qn

)
.

In all the cases, the normalization by card(Ωn) =
(
n+`−1
`−1

)
qn

proves Theorem 1.

4.2 A general framework for limit laws.
The “cumulative bivariate generating functions”which are

useful for the study of the distributions at the k-th phase are,
due to (6), of the form

U(z)` ·Ak(z)m,

where the function Ak(z) depends on the index of the phase,
and the type of parameter. One has

Ak(z) = qzk (type D), (7)

Ak(z) =
(q − 1)qzk+1

1− qzk+1
= G(zk+1) (type L). (8)

In all the cases, the generating functions are expressed as a
product of the function U(z)` which has a pole of order ` at
z = 1/q, with a “large power” of a function A(z). The term
“large power” is used since the exponent m may depend on
the size n. As the following proposition shows it, there are
two main cases, according as the value of A at z = 1/q is
equal to 1 or not. The first case happens for k = 1 and leads
to beta distribution, whereas the second case happens for
k ≥ 2 and leads to geometric distributions.

The following result is proven in the appendix.

Proposition 3. Consider the function

F [m](z) =
1

(1− z)` ·A(z)m,

where A(z) is analytic on the disk |z| ≤ ρ with ρ > 1 and
satisfies a := A(1) 6= 0, b := A′(1) > 0 and for |z| close
enough to 1, |A(z)| ≤ A(|z|).

Then, the coefficient of zn in F [m](z) satisfies the following:

(a) When m/n→ 0, then

[zn]F [m](z) =
n`−1

(`− 1)!
· am

[
1 +O

(m
n

)]
.

(b) When m/n→ c for some c ∈]0, a/b[ then

[zn]F [m](z) =
n`−1

(`− 1)!
am
(

1− b

a
c

)̀−1[
1 +O

(
1

n

)]
.

4.3 End of the proof of Theorem 2.
The probabilities Pn[Lk > m], Pn[Dk > m] are related to

the coefficient of zn in the generating functions described in
(6), and the functions Ak(z) of interest are given in (7) and
(8). Since, in case D, Ak(z) is multiple of zk, and, in case
L, Ak(z) is multiple of zk+1, we first deduce the equalities

Pn [Dk > n/k] = 0, Pn [Lk > n/(k + 1)] = 0.

After a change of variable z → z/q, the hypotheses of Propo-
sition 3 are fulfilled for z 7→ Ak(z/q), and one has,

ak = q1−k,
bk
ak

= k (case D),

ak =
q − 1

qk − 1
,

bk
ak

= (k + 1)
qk

qk − 1
, (case L).

For k = 1, the constants ak are equal to 1, whereas they are
strictly less than 1 for k ≥ 2. Finally, the normalization by
card(Ωn),

card(Ωn) =
n`−1

(`− 1)!
qn
[
1 +O

(
1

n

)]
,

proves Assertions (a) and (b) of Theorem 2.



5. THE INTEGER CASE.
We now briefly explain how a similar study can be per-

formed in the case of the Euclid algorithm on integers. As
usual (see for instance [15, 18]), the polynomial study shows
the road, and similar results are expected in the integer
study, even if they are often more difficult to obtain and
less precise.

5.1 The plain algorithm on integers.
In the integer case, the `–plain Euclid algorithm has ex-

actly the same structure as in the polynomial case. It is
composed with `− 1 phases, each of them being the Euclid
algorithm which performs the gcd computation between two
integers. Its execution is described as in Figure of Section 2,
and the degree is just replaced by the integers themselves.
The main parameters of interest are the same, and Dk is
now the length of the gcd yk, namely its logarithm.

The possible inputs are all the sequences x formed of `
integers, and we limit ourselves to positive integers, without
loss of generality. Then the set of inputs is Ω = N`, where
N is the set of positive integers. Here, the size of the in-
put x equals the product of its components x1 · x2 · . . . · x`,
and the length of the input is the sum of the lengths of its
components.

Here again, the subset ΩN formed with the inputs of size
at most N is a finite set, and it is endowed with the uniform
probability.

5.2 Dirichlet generating functions.
The generating functions are now of Dirichlet type, and

the basic one is the generating function of the set N`. We
deal with `–uples x of integers x = (x1, x2, . . . x`) and con-
sider the generating function

F (s1, s2, . . . s`) =
∑
x∈N`

1

xs11

1

xs22

. . .
1

x
s`
`

= ζ(s1) . . . ζ(s`),

where the ζ function is the generating function of N,

ζ(s) :=
∑
n≥1

1

ns
.

The main case of interest s1 = s2 = . . . s` = s gives rise to
F (s) := F (s, . . . , s) = ζ(s)`.

However, we begin with the generic case when the `–uple
s = (s1, . . . , s`) is general.

The first step derives, as previously, a decomposition for
the product ζ(s1) ζ(s2), of the form

ζ(s1) ζ(s2) = ζ(s1 + s2) · T (s1, s2),

where T (s1, s2) is the phase generating function which de-
scribes the Euclid algorithm on two integers. In the integer
case, the 2-Euclid algorithm is described with the transfer
operator, related to the underlying dynamical system, and
introduced by Ruelle in [16] in a general setting. This op-
erator deals here with the Gauss map S defined by S(x) :=
1/x− [1/x], and the set G of its inverse branches, namely

G :=

{
hm(t) : t 7→ 1

m+ t
; m ≥ 1

}
.

It depends on a complex parameter s, and acts for <s > 1
on functions defined on the unit interval as

Gs[f ](t) =
∑
h∈G

|h′(t)|s/2f ◦ h(t). (9)

The following result provides an analog of Proposition 1.

Proposition 4. The generating function of Ω = N` with
the size “product of inputs” can be written as

F (s) = ζ(s)` = ζ(`s) ·
`−1∏
k=1

T (s, ks),

and involves the phase-function T defined as

T (s, t) =
1

2

[
(I −Gs+t)

−1 ◦ (Gs + Gt)[1](0)
]
, (10)

where Gs is the transfer operator relative to the Euclid dy-
namical system, defined in (9).

Proof. The Euclid algorithm first compares the two in-
tegers x1 and x2. There are three cases:

x1 = x2, x1 > x2, x1 < x2.
In all the cases, the gcd y := gcd(x1, x2) together with the se-
quence of quotients (m1,m2, . . .mp) completely determines
the input pair (x1, x2). More precisely, one writes (x1, x2) =
(y x̂1, y x̂2) with a coprime pair (x̂1, x̂2) and the execution of
the Euclid algorithm on the pair (x̂1, x̂2) produces the same
sequence (m1,m2, . . .mp) as the pair (x1, x2), with now re-
mainders x̂i which satisfy xi = yx̂i.

The execution of the Euclid algorithm on the pair (x̂1, x̂2)
with x̂1 > x̂2 builds continued fraction expansions

x̂2

x̂1
= h ◦ g(0),

x̂3

x̂2
= g(0).

Here, h := hm1 is related to the first quotient and g = hm2 ◦
hm3 ◦ . . . ◦ hmp is related to the sequence (m2,m3, . . . ,mp).
Since the two pairs (x̂1, x̂2) and (x̂2, x̂3) are coprime, the
denominators of each rational are expressed with derivatives,

1

x̂2
1

= |(h ◦ g)′(0)| = |h′(g(0))| · |g′(0)|, 1

x̂2
2

= |g′(0)|.

Then, in the case when x̂1 ≥ x̂2, the sum∑
x̂1≥x̂2

1

x̂s11

1

x̂s22

= 1 +
∑
h,g

|h′(g(0))|s1/2 · |g′(0)|(s1+s2)/2,

can be expressed with the transfer operator Gs as2

1

2

[
(I −Gs1+s2)−1 ◦Gs1 [1](0) + 1

]
.

The case x̂2 ≥ x̂1 can be dealt with exchanging the roles of
x̂1 and x̂2. Finally, the relations∑

x1,x2

1

xs11

1

xs22

=
∑
v

1

ys1+s2

∑
x̂1,x̂2

1

x̂s11

1

x̂s22

entail the equality ζ(s1)ζ(s2) = ζ(s1 + s2) · T (s1, s2),
where T is defined in (10). When we replace this expression
into the total product

ζ(s1) ζ(s2) . . . ζ(s`) = F (s1, s2, . . . , s`),
and iterate the transformation, we obtain an alternative ex-
pression for the generating function F (s1, s2, . . . , s`) with a
product of ` − 1 factors, each of them involving the phase-
function T at points sk and tk = s1 + . . .+ sk,

F (s1, s2, . . . s`) = ζ(t`) ·
`−1∏
k=1

T (sk+1, tk).

2The factor (1/2) is here to take into account the fact that
any rational of ]0, 1] admits two continued fraction expan-
sions: the proper one and the improper one.



It may be useful in some studies to keep all the variables
si, but, here again, we let s1 = s2 = . . . = s` = s, and we
obtain the expression of the generating function F (s).

5.3 Dirichlet generating functions for param-
eters of interest

When studying the parameter Lk (number of steps in the
k-th phase), we use an extra variable u which marks each
step of the k-th iteration, and we deal with the generating
function

2T (s, t, u) = u(1− uGs+t)
−1 ◦ (Gs + Gt)[1](0),

with t = ks, which replaces 2T (s, ks) inside F (s).
When studying the parameter Dk (length of the gcd at the
beginning of the k-th phase), we use an extra variable u
which marks the length of the gcd yk, and we deal with the
generating function

ζ(t, u) =
∑
n≥1

ulogn

nt
= ζ(t− log u) with t = ks,

which replaces ζ(ks) inside F (s). Finally, we obtain an ana-
log of Proposition 2.

Proposition 5. For any k ∈ [1..`−1], the bivariate gen-
erating function Lk(s, u) relative to the number of divisions
during the k-th phase satisfies

Lk(s, u) = ζ(s)` · T (s, ks, u)

T (s, ks)
.

For any k ∈ [1..` − 1], the bivariate generating function
Dk(z, u) relative to the size of the k-th gcd yk at the be-
ginning of the k-th phase satisfies

Dk(s, u) = ζ(s)` · ζ(ks− log u)

ζ(ks)
.

With Proposition 4, the function T (s, ks, u) admits a pre-
cise expression. Using Proposition 5, and taking the deriva-
tive with respect to u, we obtain the cumulative generating
functions

D̂k(s)

ζ(s)`
=
ζ′(ks)

ζ(ks)
,

L̂k(s)

ζ(s)`
=
T̂ (s, ks)

T (s, ks)
. (11)

Remark that the Dirichlet series

T̂ (s, ks) :=
∂T

∂u
(s, ks, u)|u=1

involves two occurrences of the quasi-inverse (I−G(k+1)s)
−1.

5.4 Average-case analysis results.
The following result is an exact analog of Theorem 1.

In particular, in Assertion (a), the entropy π2/(6 log 2) of
the integer Euclidean system replaces its polynomial analog
(2q)/(q − 1) on Fq[X].

Theorem 5. [Expectations]. When the set ΩN is en-
dowed with the uniform distribution, the following holds:

(a) The expectation of the number of iterations L1 during
the first phase is linear with respect to the length logN and
satisfies

EN [L1] =
6 log 2

π2

(
1

`
logN

)[
1 +O

(
1

logN

)]
.

(b) For any k ∈ [2..` − 1], the expectation of the number
of iterations Lk during the k-th phase is asymptotic to a

constant ak which is expressed with the operator Gs at s =
k + 1,

EN [Lk] = ak

[
1 +O

(
1

logN

)]
.

(c) The expectation of the length of the first integer u1 is
linear with respect to the length logN and satisfies

EN [D1] =
1

`
logN.

(d) For any k ∈ [2..`− 1], the expectation of the length of
the gcd yk at the beginning of the k-th phase is asymptotic
to a constant, and satisfies

EN [Dk] =
ζ′(k)

ζ(k)

[
1 +O

(
1

logN

)]
.

5.5 Main principles for the analysis.
We have obtained in (11) the expressions of the cumu-

lative generating functions. It is now possible to “extract”
coefficients of these Dirichlet series, with an analog of (1).

However, for Dirichlet generating functions, it is (very of-
ten) only possible to study the sum of the coefficients for
n ≤ N , and this is why we deal with the set ΩN of inputs
with size at most N . Then the mean value of cost C on ΩN
is obtained from the cumulative generating function as

EN [C] =

∑
n≤N [n−s]F̂ (s)∑
n≤N [n−s]F (s)

.

As previously, singularity analysis performs a transfer be-
tween the behavior of a Dirichlet generating function, viewed
as an analytic function, near its dominant singularity (here,
the singularity with the largest real part) and the asymptotic
behavior of its coefficients. The position and the nature of
the dominant singularity play a fundamental role.

However, this transfer is more difficult for Dirichlet series.
As previously, the basic tool is the Cauchy formula, but,
here, the circles centered at 0 are replaced by vertical lines,
which are not compact. For this short version, we use here
the following Tauberian theorem, due to Delange [5, 17],
which deals with Dirichlet series with positive coefficients,
but does not provide any remainder term. This is why we
only prove here, in this short version, a weak version of
Theorem 5, without remainder terms.

Theorem 6. Let F (s) =
∑
n≥1 ann

−s be a Dirichlet se-

ries with non negative coefficients such that F (s) converges
for <(s) > σ > 0. Assume the following:

(i) F (s) is analytic on <(s) = σ, s 6= σ,
(ii) for some γ ≥ 0, one has

F (s) = A(s)(s− σ)−γ−1 + C(s),

where A,C are analytic at σ, with A(σ) 6= 0.
Then, as N →∞,∑
n≤N

an =
A(σ)

σΓ(γ + 1)
Nσ logγ N [1 + ε(N) ], ε(N)→ 0.

5.6 Sketch of proof for Theorem 5.
We apply Theorem 6 with σ = 1 to the cumulative func-

tions defined in (11). We then study the series ζ(s)`, ζ′(s),

T̂ (s, ks), T (s, ks). All is known about the first two, and this
entails a easy application of Theorem 6 in case D.



We focus now on case L, where we use precise results on
the operator Gs, when it acts on a convenient Banach space

B (not described here). First, the function ζ̂s = Gs[1](0)
has a pole of order 1 at s = 1, and near s = 1, one has

ζ̂s ∼ C/(s− 1), where C belongs to B. Then, near s = 1,

2δ(k,1) T (s, ks) ∼ 1/(s− 1)(I −G(k+1)s)
−1[C](0),

for any k, (δ(i, j) is the Kronecker symbol).

Now, the following is known: for <t > 2, the operator
Gt has a spectral radius strictly less than 1, and the quasi-
inverse (I−Gt)

−1 is analytic there. On the line <t = 2, the
quasi-inverse (I −Gt)

−1 is analytic except at t = 2 where
it admits a simple pole with a residue which involves the

entropy. As T (s, ks) (resp. T̂ (s, ks)) contains one (resp.
two) occurrence(s) of the quasi-inverse, the following holds:

– for k ≥ 2, the series T (s, ks) and T̂ (s, ks) have a simple
pole at s = 1,
– for k = 1, the series T (s, s) has a pole of order 2 at s = 1,

and the series T̂ (s, s) has a pole of order 3 at s = 1.

Finally, the function L̂k(s) satisfies the hypotheses of The-
orem 6, with σ = 1; the exponent γ equals ` for k ≥ 2 and
`+ 1 for k = 1. This concludes the “proof” in case L.

5.7 And now?
We can also study the number of useful phases, and re-

cover the classical result PN [Dk = 0] ∼ 1/ζ(k). If we wish
to obtain remainder terms in Theorem 5, and an analog of
distributional results obtained in Theorem 2, we need the
analog of Proposition 3. For this purpose, we have to deal
with the Perron Formula, as for previous distributional anal-
yses performed in integer case.

The Perron Formula provides remainder terms as soon as
the Dirichlet series of interest possess a“tameness” region on
the left of the vertical line <s = 1, where s = 1 is their only
pole and they are of polynomial growth for |=s| → ∞. Clas-
sical results [17] entail such tameness properties for the zeta
function and its derivatives, and results due to Dolgopyat-
Baladi-Vallée [7, 1] prove that they also hold for the transfer
operator G2s. Then, it would be possible to obtain the ana-
log of Theorem 2 where n,m are replaced by logN, logM
and the ratios pk, rk which respectively appear in Assertions
(a) and Assertions (b) of Theorem 2 are replaced by

p̂k := λ ((k + 1)/2) (case L), r̂k := exp(1−k) (case D).

Here, λ(s) is the dominant eigenvalue of the operator G2s

(when acting on the functional space B), which plays a cen-
tral role in many analyses of Euclidean type. It satisfies
λ(s) = 1, and, for k = 3, we recover the constant λ(2) which
plays a central role in Euclidean dynamics, notably in the
analysis of the Gauss lattice reduction algorithm [4, 9].

5.8 Some experiments

The figure shows the experimental densities of L1 for ` = 2
(left) and ` = 4 (right) and clearly exhibits the uniform limit
law (left) and the beta limit law (right). These experiments

are obtained with 5·105 executions on random integer inputs
(x1, . . . , x`) whose (total) length satisfies log10 N = 104.
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des nombres, volume 13. Institut Élie Cartan, Nancy,
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7. APPENDIX

7.1 Proof of Proposition 3
The residue theorem entails

[zn]fm(z) = −Res

(
fm(z)

zn+1
, z = 1

)
+

1

2iπ

∫
Cr

fm(z)

zn+1
dz

where Cr is the circle with radius r > 1 with r close enough
to 1. Then, with hypotheses on A, the following upper
bound holds when m is of the form m = cn,∣∣∣∣ 1

2iπ

∫
Cr

fm(z)

zn+1
dz

∣∣∣∣ ≤ (A(r)c

r

)n
1

r(r − 1)`
.

The function r → (1/r)A(r)c equals ac at r = 1 and the
conditions on c, a = A(1) and b = A′(1) prove that it is
strictly decreasing when r is close to 1. Hence, for r > 1
close enough to 1, we let ρ = A(r)c/r = θac with θ < 1 and∣∣∣∣ 1

2iπ

∫
Cr

fm(z)

zn+1
dz

∣∣∣∣ = amO(θn).

Furthermore, the residue at z = 1 equals

Res

(
fm(z)

zn+1
, z = 1

)
=

(−1)`

(`− 1)!

[
d`−1

dz`−1

A(z)m

zn+1

]
z=1

The successive derivatives of 1/zn+1 satisfy[
di

dzi
1

zn+1

]
z=1

= (−1)i · ni
[
1 +O

(
1

n

)]
.

There are two cases for the derivatives of A(z)m.
Case m/n→ c with c > 0. Then[

dj

dzj
A(z)m

]
z=1

= bj ·mj · am−j
[
1 +O

(
1

m

)]
,

and, inserting these relations into the Leibnitz formula for
the derivative provides the estimate

Res

(
fm(z)

zn+1
, z = 1

)
= −am n`−1

(`− 1)!

(
1− b

a
c

)`−1 [
1 +O

(
1

n

)]
.

This concludes the proof of Assertion (b).
Case m = ε(n) · n with ε(n)→ 0. Then[

dj

dzj
A(z)m

]
z=1

= amnj
(
b

a

)j
O(ε(n)j)

and, inserting these relations into the Leibnitz formula for
the derivative provides the estimate

Res

(
fm(z)

zn+1
, z = 1

)
= −am n`−1

(`− 1)!
[1 +O(ε(n))]

[
1 +O

(
1

n

)]
.

7.2 Proof of Theorem 4
The variable L equals L̃ := L1 + . . . + LΠ if Π ≥ 1 and

equals 0 if Π = 0. Then

L = 0 · 1[Π=0] + L̃ · 1[Π≥1] = L̃ · 1[Π≥1]

When Π ≥ 1, the variable L̃ is defined as

L̃ =

Π∑
k=1

Lk =

`−1∑
k=1

Lk · 1[k≤Π],

so that L̃ · 1[Π≥1] = L̃ and then finally L = L̃. We then
study the variables

L̃k = Lk · 1[k≤Π].

In particular, the difference Lk − L̃k satisfies

Lk − L̃k = Lk · 1[k>Π],

and the relations [k > Π] = [Dk = 0] ⊂ [Lk = 1], entail the
equality Lk · 1[k>Π] = 1[k>Π], and, finally

En[Lk]−En[L̃k] = En[1[k>Π]] = Pn[k > Π] = 1−Pn[k ≤ Π].

Then Theorem 3 applies and we obtain for k ≥ 2,

En[L̃k] =
q − 1

qk − 1
+

q

qk
+O

(
1

n

)
,

and for k = 1,

En[L̃1] = En[L1] +O

(
1

n

)
.

We conclude with the linearity of the mean.

We now prove the beta limit law. We split the random
variable L into two random variables:

– the main random variable L1, which admits a beta limit
law (Theorem 2),

– the remainder random variable R = L − L1 which is
“negligible” w.r.t L1; more precisely, Theorem 1 entails the
estimate En[|R|] = o(En[L1]).

The next proposition shows that, in this situation, the
sum L = L1 + R asymptotically follows the same beta law
as L1. This provides an extension of the result obtained
in [15] for gaussian laws.

Proposition 6. Consider two random variables X and
Y defined on Ω. Assume that there exist

(i) a function f : [0, a] → [0, 1], strictly increasing, Lips-
chitz, with f(0) = 0 and f(a) = 1,

(ii) three sequences γn →∞, εn → 0, rn → 0,
such that, one has, for all c ∈]0, a[, for all n,

Pn[X < c · γn] = f(c) + εn En[|Y |] = rn · γn.

Then the following holds, for all c ∈]0, a[, for all n,:

Pn[X + Y < c · γn] = f(c) +O (εn +
√
rn) .

The random variable X+Y asymptotically follows the same
law as X.

Proof. Consider a sequence δn which will be made pre-
cise later, and define the two events E and F as

E = [X + Y < c · γn], F = [|Y | ≤ δn].

The hypotheses on Y and the Markov inequality lead to

Pn[E ∩ F c] ≤ Pn[F c] = O

(
rnγn
δn

)
. (12)

On the other side, the following inclusions hold,

[X ≤ c · γn − δn] ∩ F ⊂ E ∩ F ⊂ [X ≤ c · γn + δn]. (13)

The rightmost inclusion in (13) and the Lipschitz condition
on f entail the upper bound

Pn[E ∩ F ] ≤ f
(
c+

δn
γn

)
+O(εn) = f(c) +O

(
εn +

δn
γn

)
.

(14)



The leftmost inclusion in (13), together with (12) and the
Lipschitz condition entail the lower bound

Pn[E ∩ F ] ≥ f(c) +O

(
εn +

rnγn
δn

+
δn
γn

)
. (15)

With relations (12), (14) and (15), we obtain

Pn[E] = f(c) +O

(
εn +

rnγn
δn

+
δn
γn

)
.

Then the optimal choice δn = γn
√
rn concludes the proof.

To derive the proof of Theorem 4, the previous proposition
was applied with

εn = Θ

(
1

n

)
, rn = Θ

(
1

n

)
, γn = n, a =

q − 1

2q

and

f(c) = 1−
(

1− c

a

)`−1

.




