dynamical systems [START_REF] Vallée | Euclidean dynamics[END_REF].

For the -Euclid algorithm, it is natural to choose, as the length of the input, the sum of the length of its components. Changing the input length yields a different probabilistic behavior, even when = 2. We show the following: in the case = 2, the mean number of iterations remains linear with respect to the (new) length but the distribution of number of iterations is now asymptotically uniform. In the case ≥ 3, our analysis exhibits a strong difference between the first phase and the following phases. In the first phase, the number of iterations has a linear mean and follows a beta law (the same as the law followed by the minimum of -1 reals i.i.d. in the unit interval). In the following phases, the number of iterations is constant on the average and follows a geometric law. These results can be expected, as Knuth wrote "In most cases, the length of the partial gcd decreases rapidly during the first few phases of the calculation, and this will make the remainder of the computation quite fast" [START_REF] Knuth | of The Art of Computer Programming[END_REF]. Our analysis shows that, in most cases, "almost all the calculation" is done during the first phase. This will make possible to compare (in the extended version of this paper) the -Euclid algorithm to another strategy proposed in [START_REF] Cooperman | Gcd of many integers[END_REF].

Plan of the paper. Sections 2, 3, 4 are devoted to the polynomial case, and Section 5 to the integer case. Section 2 describes the algorithm and states the main results, then, Sections 3 and 4 are devoted to the proofs, mainly based on analytical combinatorics: we use generating functions, built in Section 3, and used in Section 4. Section 5 explains the strong similarity between the two cases (polynomial and integer); it presents the useful generating functions (here of Dirichlet type), states the main results (only for the averagecase) and briefly describes the main steps of the proof. We also explain why distributional results may be expected.

MAIN RESULTS FOR POLYNOMIALS.

We consider the ring Fq[X] of polynomials over the finite field Fq with q elements, and the degree of a non zero polynomial x is denoted by d(x).

The plain -Euclid algorithm on Fq[X] deals with a sequence of nonzero polynomials and computes their greatest common divisor y via a sequence of -1 gcd computations between two polynomials, as we previously explained.

Each phase is a 2-Euclid Algorithm which performs a gcd computation between two polynomials, with a sequence of Euclidean divisions, as recalled as follows:

The Euclid Algorithm on (a1, a2) with d(a1) > d(a2)

a1 = m1a2 + a3 0 < d(a3) < d(a2) a2 = m2a3 + a4 0 < d(a4) < d(a3) . . . = . . . + ap-1 = mp-1ap + ap+1 0 < d(ap+1) < d(ap) ap = mpap+1 + 0
Then, gcd(a1, a2) is the last non-zero remainder ap+1. It can be chosen monic. The number of steps (here equal to p) is one of the main parameters of interest.

This paper aims at precisely understanding the random behavior of the plain algorithm. Since the algorithm is a succession of phases, it is important to describe each phase of index k (k ∈ [1.. -1]), with the following parameters:

(i) the number L k of divisions performed during the k-th phase, (ii) the degree D k of the gcd y k at the beginning of the k-th phase. We are also interested in the analysis of global parameters.

(iii) The algorithm may be interrupted as soon as D k = 0, and Π is the number of useful phases. Namely: Π = 0 if D1 = 0 and Π := max{k|D k > 0} if D1 > 0. (iv) The total number of divisions of the interrupted algorithm is defined as

L = 0 if Π = 0 and L = L1 + L2 + . . . + LΠ if Π > 0.
The possible inputs are all the sequences x formed of polynomials, and we limit ourselves to monic polynomials, without loss of generality. Then the set of inputs is Ω = U , where U is the set of monic polynomials. Here, the size of the input x is the total degree of the sequence (and not the maximum, as it is often the case), and we let

d(x) = d(x1, x2, . . . , x ) := d(x1) + d(x2) + . . . + d(x ).
The subset Ωn formed with the inputs of size n is a finite set, and it is endowed with the uniform probability. Now, the parameters of interest become random variables and we are interested in their probabilistic features.

With analytic combinatorics methodology, we prove the following two results. The first one deals with the expected values, whereas the second one describes asymptotic limit laws.

Average-case analysis.

Theorem 1 below exhibits a strong difference between the first phase and the following ones. It shows that, on average, the first phase performs a linear number of iterations which involves the entropy 2q/(q -1) of the Euclid dynamical system; then, even if the degree of the first gcd is linear with respect to the input size, the degree of the gcd is proven to be of constant order after the first phase on the average. Then, the number of divisions L k which will be performed in the following phases, together with the degrees D k of the following gcd's will be of constant order. Theorem 1. [Expectations]. When the set Ωn is endowed with the uniform distribution, the following holds:

(a) The expectation of the number of iterations L1 during the first phase is linear with respect to the size n and satisfies

En[L1] = q -1 2q n + 3q + 1 4q + O 1 n . (b) For any k ∈ [2.. -1]
, the expectation of the number of iterations L k during the k-th phase is asymptotic to a constant, and satisfies

En[L k ] = q k -1 q k -q 1 + O 1 n .
(c) The expectation of the degree of the first polynomial x1 is linear with respect to the size n and satisfies

En[D1] = n . (d) For any k ∈ [2.. -1]
, the expectation of the degree D k of the gcd y k at the beginning of the k-th phase is asymptotic to a constant, and satisfies

En[D k ] = 1 q k-1 -1 1 + O 1 n .

Limit Laws.

The following result makes more precise the results obtained in Theorem 1, and explains more deeply the difference between the first phase (k = 1) and the following phases. For k = 1, the expected degrees of the first two polynomials x1 and x2 are linear, and the number of divisions is closely related to min(d(x1), d(x2)). Then, it is natural to expect beta laws for the first phase, more precisely a beta law of parameter (1, -1), since it is the law of the minimum Y of -1 random variables i.i.d. on the unit interval, which satisfies P[Y ≥ x] = (1 -x) -1 . Such a law has a density equal to ( -1)(1 -x) -2 . For = 2, this is the uniform law. For the following phases, geometric laws are expected, since the means of the gcd degrees are of constant order.

The next result describes the asymptotic distribution of L k [Assertion (a)] and D k [Assertion (b)]. At first glance, the results do not seem to heavily depend on the index k of the phase. However, it is not true, since the two ratios p k := (q -1)/(q k -1) (in case L), r k := q 1-k (in case D), are equal to 1 for k = 1 and strictly less than 1 for k ≥ 2.

Theorem 2. [Limit laws.] When the set Ωn is endowed with the uniform distribution, the following holds: (a) The number of iterations L1 during the first phase asymptotically follows a beta law of parameter (1, -1) on the interval [0, (q -1)/(2q)] whereas, the number of iterations L k during each following phase asymptotically follows a geometric law with ratio p k := (q -1)/(q k -1). One has:

Pn [L k > n/(k + 1)] = 0, for any k. For any k, the distribution of L k satisfies when n → ∞, Pn[L k > m] = q -1 q k -1 m 1 + O m n for m = o(n),
and for m/n → c with c ∈]0,

1 k+1 q k -1 q k [ Pn[L k > m] = q -1 q k -1 m 1 - (k + 1)q k q k -1 c -1 1 + O 1 n .
(b) The degree D1 of the first polynomial x1 asymptotically follows a beta law of parameter (1, -1) on the interval [0, 1], whereas the degree D k of the gcd y k at the beginning of each following phase asymptotically follows a geometric law with ratio r k := q 1-k . One has : Pn [D k > n/k] = 0 for any k. For any k, the distribution of D k satisfies when n → ∞,

Pn[D k ≥ m] = q (1-k)m 1 + O m n for m = o(n),
and for m/n → c with c ∈]0,

1/k[ Pn[D k ≥ m] = q (1-k)m (1 -kc) -1 1 + O 1 n .

Global parameters.

The interrupted algorithm stops as soon as the gcd y k is of degree 0. Let Π(x1, . . . , x ) be the number of useful phases. Since the event [Π ≥ k] coincides with the event [D k ≥ 1] for k ∈ [1.. -1], Theorem 2 leads to the following: Theorem 3. When the set Ωn is endowed with the uniform distribution, the distribution of the number Π of useful phases satisfies Pn

[Π ≥ 0] = 1, Pn[Π ≥ ] = 0, Pn[Π ≥ k] = q 1-k 1 + O 1 n for k ∈ [1.. -1].
The following result studies the total number L of divisions performed by the interrupted version (see the proof in the appendix). With Theorems 1 and 3, the mean is easy to study. Moreover, Theorems 1 and 2 prove that the variance of L1 is quadratic whereas the variance of L k (for k ≥ 2) is of constant order. Then, the linearity of the mean with the Markov inequality entail that L has the same asymptotic distribution as L1.

Theorem 4. When the set Ωn is endowed with the uniform distribution, the total number of divisions L performed by the interrupted version of the -Euclid algorithm has an expected value En[L] equal to

q -1 2q n + 3q + 1 4q + -1 k=2 q q k + q -1 q k -1 + O 2 n .
Moreover, the number L asymptotically follows a beta distribution of parameter (1, -1) on the interval [0, (q -1)/(2q)].

GENERATING FUNCTIONS

General setting

We use the analytic combinatorics methodology, and deal with its main tool, the generating functions. We use a variable zi to mark the degree of the i-th polynomial xi, and the generating function F (z1, z2, . . . z ) of the set Ω = U , relative to the size d, is defined as

F (z1, z2, . . . z ) := x∈U z d(x 1 ) 1 z d(x 2 ) 2 . . . z d(x ) .
It is equal to the product U (z1) U (z2) . . . U (z ), where U (z) is the generating function of the set U of the monic polynomials relative to the size d, namely

U (z) = x∈U z d(x) = n≥0 q n z n = 1 1 -qz .
Most of the time, we limit ourselves to the case when all the variables zi are equal, and we write F (z) instead of

F (z, • • • , z).
For studying a parameter (or a cost C) on Ω = U d , a main tool is the bivariate generating function relative to some cost C, obtained by introducing a further variable u to mark the cost, and defined as

F (z, u) := x∈U d z d(x) u C(x) .
We are first interested in the mean value of parameter C, and we deal with the cumulative generating function

F (z) := ∂F ∂u (z, u)|u=1, and 
En[C] = [z n ] F (z) [z n ]F (z) . (1) 
The probability distribution of the cost C can be studied with the generating function F (z, u), via the relation

Pn[C = i] = [z n u i ]F (z, u) [z n ]F (z) .
Then, the probabilities Pn[C ≥ m] are expressed with the "cumulative bivariate generating functions" defined as

F [m] (z) := i≥m [u i ]F (z, u), and Pn[C ≥ m] = [z n ] F [m] (z) [z n ]F (z) .
(2)

Another expression for the generating function

We first obtain an alternative expression for the generating function F (z) with a product of -1 factors, each of them describing a phase of the algorithm.

Proposition 1. The generating function of the set Ω = U with the size equal to the total degree decomposes as

F (z) = U (z) = U (z ) • -1 k=1 T (z, z k )
and involves the phase-function T defined as

T (z, t) = U (z) + U (t) -1 1 -G(zt) , (3) 
the generating function U (z) of monic polynomials, and the generating function G(z) of general polynomials with strictly positive degree, i.e.,

U (z) = 1 1 -qz , G(z) = (q -1)qz 1 -qz .
Proof. The Euclid algorithm first compares the degrees of x1 and x2. There are three cases:

d(x1) = d(x2), d(x1) > d(x2), d(x1) < d(x2
). In the first case, there is an extra subtraction, which can be viewed as a division with a quotient equal to 1.

In all the cases, the gcd y := gcd(x1, x2) together with the sequence of quotients (m1, m2, . . . mp) completely determines the input pair (x1, x2). More precisely, one writes (x1, x2) = (y x1, y x2) with a coprime pair ( x1, x2) and the execution of the Euclid algorithm on the pair ( x1, x2) produces the same sequence (m1, m2, . . . mp) as the pair (x1, x2). The first quotient m1 is monic (this is due to the fact that x1 and x2 are monic) and the remainder of the sequence Σ = (m2, . . . mp) is formed with general polynomials mi (no longer monic) with d(mi) ≥ 1. As previously, the total degree of Σ is d(Σ) = d(m2) + . . . + d(mp).

We now focus on the first quotient m1, and we consider the three following possible cases:

(a) If d(x1) = d(x2), then m1 = 1. (b) If d(x1) > d(x2) then d(m1) ≥ 1, d( x2) = d(Σ), d( x1) = d(m1) + d(Σ). (c) If d(x1) < d(x2) then d(m1) ≥ 1, d( x1) = d(Σ), d( x2) = d(m1) + d(Σ)
. All these remarks provide an alternative expression of the product U (z1) U (z2). Indeed, we use the two relations z

d(x 1 ) 1 z d(x 2 ) 2 = (z1z2) d(y) • z d( x 1 ) 1 z d( x 2 ) 2 , x 1 , x 2 z d( x 1 ) 1 z d( x 2 ) 2 = 1 + m 1 z d(m 1 ) 1 + z d(m 1 ) 2 Σ (z1z2) d(Σ) ,
together with the conditions previously described on the first quotient m1, the sequence Σ and the gcd y. The first factor gives rise to the generating function

1 + (U (z1) -1) + (U (z2) -1) = U (z1) + U (z2) -1
which involves the generating function U (z) of monic polynomials, whereas the second factor is expressed with the generating function G(z) of general polynomials with a strictly positive degree, under the form 1/(1 -G(z1z2)). We have then proven the following alternative form for the product

U (z1) U (z2) = U (z1z2) • T (z1, z2
). When we replace this expression into the total product U (z1) U (z2) . . . U (z ) = F (z1, z2, . . . , z ) and iterate the transformation, we obtain an alternative expression for the generating function F (z1, z2, . . . , z ) with a product of -1 factors, each of them involving the phasefunction T at points z k and t

k = z1 . . . z k F (z1, z2, . . . z ) = U (t ) • -1 k=1 T (z k+1 , t k ).
It can be useful in some studies to keep all the variables zi, but here, we let z1 = z2 = . . . = z , and we obtain an expression of the generating function F (z).

Generating functions for parameters of interest

When studying the parameter L k (number of steps in the k-th phase), we use an extra variable u which marks each step of the k-th iteration, and we deal with the generating function

T (z, t, u) = u U (z) + U (t) -1 1 -uG(zt) with t = z k , which replaces T (z, z k ) inside F (z).
When studying the parameter D k (degree of the gcd at the beginning of the k-th phase), we use an extra variable u which marks the degree of the gcd y k , and we deal with the generating function

U (t, u) = 1 1 -qut with t = z k , which replaces U (z k ) inside F (z). Finally: Proposition 2. For any k ∈ [1.. -1]
, the bivariate generating function L k (z, u) relative to the number of divisions during the k-th phase satisfies

L k (z, u) = U (z) • T (z, z k , u) T (z, z k ) .
For any k ∈ [1.. -1], the bivariate generating function D k (z, u) relative to the degree of the k-th gcd y k at the beginning of the k-th phase satisfies

D k (z, u) = U (z) • U (z k , u) U (z k ) .
With Proposition 1, the functions T (z, z k , u) and U (z k , u) admit precise expressions, and Proposition 2 leads to the expression of the bivariate generating functions L k (z, u) and

D k (z, u) L k (z, u) U (z) = u 1 -G(z k+1 ) 1 -uG(z k+1 ) , D k (z, u) U (z) = 1 -qz k 1 -quz k . (4)
Finally, taking the derivative with respect to u, we obtain the cumulative generating functions

L k (z) U (z) = 1 -qz k+1 1 -q 2 z k+1 , D k (z) U (z) = qz k 1 -qz k . ( 5 
)
Extracting in (4) the coefficient of [u i ] in the bivariate generating functions and taking the sum over i ≥ m gives

L [m] k (z) U (z) = G(z k+1 ) m-1 , D [m] k (z) U (z) = (qz k ) m . ( 6 
)
4. FINAL STEPS FOR THE PROOFS.

We have obtained in ( 5) and ( 6) the expressions of useful generating functions, that are always here fractional functions. It is then possible to use (1) and ( 2) to obtain an exact expression of the expectation and probability distribution of the parameters D k and L k . However, we are mainly interested in the asymptotic behaviour (as n → ∞) of these probabilistic features. Singularity analysis describes the possible transfer between the behavior of a generating function, viewed as an analytic function, near its dominant singularity (the singularity closest to 0) and the asymptotic behavior of its coefficients. More precisely, the position and the nature of the dominant singularity play a fundamental role.

Average-case analysis.

Here, the main tools are the cumulative generating functions [START_REF] Delange | Généralisation du théorème d'ikehara[END_REF]. They both admit a dominant pole in z = 1/q but the order of the pole is different according to the phase. For the first phase (k = 1), the pole z = 1/q is of order + 1 whereas for the other phases (k ≥ 2), this pole remains of order .

We now use the following result, here quite trivial since we deal with rational fractions.

Lemma 1. Consider a function f (z) = g(z)/(1-qz) j with j ≥ 2 which involves a function g(z) which is analytic in the disk |z| > 1/q and satisfies g(1/q) = 0. Then,

[z n ]f (z) = g 1 q n + j -1 j -1 q n -g 1 q n + j -2 j -2 q n-1 ,
with a remainder term in O n j-3 q n . The previous estimate also holds if g admits simple isolated poles on the punctured circle {|z| = 1/q, z = 1/q}, as soon as j ≥ 3.

We first consider the case when the phase index k is at least equal to 2. In this case, with the expressions of the cumulative generating functions D k (z) and L k (z) given in [START_REF] Delange | Généralisation du théorème d'ikehara[END_REF], the lemma applies with j = and g(z) = 1 -qz k+1 1 -q 2 z k+1 , g

1 q = q k -1 q k -q (case L), g(z) = qz k 1 -qz k g 1 q = 1 q k-1 -1 (case D).
Consider now the case when the phase index k equals 1. In this case, the integer j equals + 1, and

g(z) = qz (case D), g(z) = 1 -qz 2 1 + qz (case L).
In both cases L and D, the lemma applies. In case D, we obtain:

[z n ] D1(z) = q n n + -1 .
We remark that, in case L, the function g admits z = -1/q as a simple pole and we obtain [

z n ] L1(z) = = q -1 2q q n n + + q + 3 4 q n-1 n + -1 -1 +O n -2 q n .
In all the cases, the normalization by card(Ωn) = n+ -1 -1

q n proves Theorem 1.

4.2 A general framework for limit laws.

The "cumulative bivariate generating functions" which are useful for the study of the distributions at the k-th phase are, due to (6), of the form

U (z) • A k (z) m ,
where the function A k (z) depends on the index of the phase, and the type of parameter. One has

A k (z) = qz k (type D), (7) 
A k (z) = (q -1)qz k+1 1 -qz k+1 = G(z k+1 ) (type L). (8) 
In all the cases, the generating functions are expressed as a product of the function U (z) which has a pole of order at z = 1/q, with a "large power" of a function A(z). The term "large power" is used since the exponent m may depend on the size n. As the following proposition shows it, there are two main cases, according as the value of A at z = 1/q is equal to 1 or not. The first case happens for k = 1 and leads to beta distribution, whereas the second case happens for k ≥ 2 and leads to geometric distributions.

The following result is proven in the appendix.

Proposition 3. Consider the function Then, the coefficient of z n in F [m] (z) satisfies the following:

F [m] (z) = 1 (1 -z) • A(z) m ,
(a) When m/n → 0, then [z n ]F [m] (z) = n -1 ( -1)! • a m 1 + O m n .
(b) When m/n → c for some c ∈]0, a/b[ then

[z n ]F [m] (z) = n -1 ( -1)! a m 1 - b a c -1 1 + O 1 n .

End of the proof of Theorem 2.

The probabilities Pn[L k > m], Pn[D k > m] are related to the coefficient of z n in the generating functions described in [START_REF] Dixon | The number of steps in the Euclidean algorithm[END_REF], and the functions A k (z) of interest are given in [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF] and [START_REF] Flajolet | Analytic Combinatorics[END_REF]. Since, in case D, A k (z) is multiple of z k , and, in case L, A k (z) is multiple of z k+1 , we first deduce the equalities

Pn [D k > n/k] = 0,
Pn [L k > n/(k + 1)] = 0. After a change of variable z → z/q, the hypotheses of Proposition 3 are fulfilled for z → A k (z/q), and one has,

a k = q 1-k , b k a k = k (case D), a k = q -1 q k -1 , b k a k = (k + 1) q k q k -1 , (case L).
For k = 1, the constants a k are equal to 1, whereas they are strictly less than 1 for k ≥ 2. Finally, the normalization by card(Ωn),

card(Ωn) = n -1 ( -1)! q n 1 + O 1 n ,
proves Assertions (a) and (b) of Theorem 2.

THE INTEGER CASE.

We now briefly explain how a similar study can be performed in the case of the Euclid algorithm on integers. As usual (see for instance [START_REF] Lhote | Gaussian laws for the main parameters of the Euclid algorithms[END_REF][START_REF] Vallée | Euclidean dynamics[END_REF]), the polynomial study shows the road, and similar results are expected in the integer study, even if they are often more difficult to obtain and less precise.

The plain algorithm on integers.

In the integer case, the -plain Euclid algorithm has exactly the same structure as in the polynomial case. It is composed with -1 phases, each of them being the Euclid algorithm which performs the gcd computation between two integers. Its execution is described as in Figure of Section 2, and the degree is just replaced by the integers themselves. The main parameters of interest are the same, and D k is now the length of the gcd y k , namely its logarithm.

The possible inputs are all the sequences x formed of integers, and we limit ourselves to positive integers, without loss of generality. Then the set of inputs is Ω = N , where N is the set of positive integers. Here, the size of the input x equals the product of its components x1 • x2 • . . . • x , and the length of the input is the sum of the lengths of its components.

Here again, the subset ΩN formed with the inputs of size at most N is a finite set, and it is endowed with the uniform probability.

Dirichlet generating functions.

The generating functions are now of Dirichlet type, and the basic one is the generating function of the set N . We deal with -uples x of integers x = (x1, x2, . . . x ) and consider the generating function

F (s1, s2, . . . s ) = x∈N 1 x s 1 1 1 x s 2 2 . . . 1 x s = ζ(s1) . . . ζ(s ),
where the ζ function is the generating function of N,

ζ(s) := n≥1 1 n s .
The main case of interest s1 = s2 = . . . s = s gives rise to F (s) := F (s, . . . , s) = ζ(s) . However, we begin with the generic case when the -uple s = (s1, . . . , s ) is general.

The first step derives, as previously, a decomposition for the product ζ(s1) ζ(s2), of the form

ζ(s1) ζ(s2) = ζ(s1 + s2) • T (s1, s2),
where T (s1, s2) is the phase generating function which describes the Euclid algorithm on two integers. In the integer case, the 2-Euclid algorithm is described with the transfer operator, related to the underlying dynamical system, and introduced by Ruelle in [START_REF] Ruelle | Thermodynamic Formalism[END_REF] in a general setting. This operator deals here with the Gauss map S defined by S(x) := 1/x -[1/x], and the set G of its inverse branches, namely

G := hm(t) : t → 1 m + t ; m ≥ 1 .
It depends on a complex parameter s, and acts for s > 1 on functions defined on the unit interval as

Gs[f ](t) = h∈G |h (t)| s/2 f • h(t). (9) 
The following result provides an analog of Proposition 1.

Proposition 4. The generating function of Ω = N with the size "product of inputs" can be written as

F (s) = ζ(s) = ζ( s) • -1 k=1 T (s, ks),
and involves the phase-function T defined as

T (s, t) = 1 2 (I -Gs+t) -1 • (Gs + Gt)[1](0) , ( 10 
)
where Gs is the transfer operator relative to the Euclid dynamical system, defined in [START_REF] Flajolet | Continued fraction algorithms, functional operators, and structure constants[END_REF]. 

x2 x1 = h • g(0), x3 x2 = g(0).
Here, h := hm 1 is related to the first quotient and g = hm 2 • hm 3 • . . . • hm p is related to the sequence (m2, m3, . . . , mp).

Since the two pairs ( x1, x2) and ( x2, x3) are coprime, the denominators of each rational are expressed with derivatives,

1 x 2 1 = |(h • g) (0)| = |h (g(0))| • |g (0)|, 1 x 2 2 = |g (0)|.
Then, in the case when x1 ≥ x2, the sum

x 1 ≥ x 2 1 x s 1 1 1 x s 2 2 = 1 + h,g |h (g(0))| s 1 /2 • |g (0)| (s 1 +s 2 )/2 ,
can be expressed with the transfer operator Gs as2 

1 2 (I -Gs 1 +s 2 ) -1 • Gs 1 [1](0) + 1 .
The case x2 ≥ x1 can be dealt with exchanging the roles of x1 and x2. Finally, the relations

x 1 ,x 2 1 x s 1 1 1 x s 2 2 = v 1 y s 1 +s 2 x 1 , x 2 1 x s 1 1 1 x s 2 2 entail the equality ζ(s1)ζ(s2) = ζ(s1 + s2) • T (s1, s2),
where T is defined in [START_REF] Friesen | The statistics of continued fractions for polynomials over a finite field[END_REF]. When we replace this expression into the total product ζ(s1) ζ(s2) . . . ζ(s ) = F (s1, s2, . . . , s ), and iterate the transformation, we obtain an alternative expression for the generating function F (s1, s2, . . . , s ) with a product of -1 factors, each of them involving the phasefunction T at points s k and

t k = s1 + . . . + s k , F (s1, s2, . . . s ) = ζ(t ) • -1 k=1 T (s k+1 , t k ).
It may be useful in some studies to keep all the variables si, but, here again, we let s1 = s2 = . . . = s = s, and we obtain the expression of the generating function F (s).

Dirichlet generating functions for parameters of interest

When studying the parameter L k (number of steps in the k-th phase), we use an extra variable u which marks each step of the k-th iteration, and we deal with the generating function 2T (s, t, u) = u(1 -uGs+t) -1 • (Gs + Gt) [START_REF] Baladi | Euclidean algorithms are gaussian[END_REF](0), with t = ks, which replaces 2T (s, ks) inside F (s). When studying the parameter D k (length of the gcd at the beginning of the k-th phase), we use an extra variable u which marks the length of the gcd y k , and we deal with the generating function

ζ(t, u) = n≥1 u log n n t = ζ(t -log u) with t = ks,
which replaces ζ(ks) inside F (s). Finally, we obtain an analog of Proposition 2.

Proposition 5. For any k ∈ [1.. -1], the bivariate generating function L k (s, u) relative to the number of divisions during the k-th phase satisfies

L k (s, u) = ζ(s) • T (s, ks, u) T (s, ks) .
For any k ∈ [1.. -1], the bivariate generating function D k (z, u) relative to the size of the k-th gcd y k at the beginning of the k-th phase satisfies

D k (s, u) = ζ(s) • ζ(ks -log u) ζ (ks) . 
With Proposition 4, the function T (s, ks, u) admits a precise expression. Using Proposition 5, and taking the derivative with respect to u, we obtain the cumulative generating functions

D k (s) ζ(s) = ζ (ks) ζ(ks) , L k (s) ζ(s) = T (s, ks) T (s, ks) . (11) 
Remark that the Dirichlet series T (s, ks) := ∂T ∂u (s, ks, u)|u=1

involves two occurrences of the quasi-inverse (I-G (k+1)s ) -1 .

Average-case analysis results.

The following result is an exact analog of Theorem 1. In particular, in Assertion (a), the entropy π 2 /(6 log 2) of the integer Euclidean system replaces its polynomial analog (2q)/(q -1) on Fq[X]. Theorem 5. [Expectations]. When the set ΩN is endowed with the uniform distribution, the following holds:

(a) The expectation of the number of iterations L1 during the first phase is linear with respect to the length log N and satisfies

EN [L1] = 6 log 2 π 2 1 log N 1 + O 1 log N . (b) For any k ∈ [2.. -1]
, the expectation of the number of iterations L k during the k-th phase is asymptotic to a constant a k which is expressed with the operator Gs at s

= k + 1, EN [L k ] = a k 1 + O 1 log N .
(c) The expectation of the length of the first integer u1 is linear with respect to the length log N and satisfies

EN [D1] = 1 log N . (d) For any k ∈ [2.. -1]
, the expectation of the length of the gcd y k at the beginning of the k-th phase is asymptotic to a constant, and satisfies

EN [D k ] = ζ (k) ζ(k) 1 + O 1 log N .
5.5 Main principles for the analysis.

We have obtained in [START_REF] Heilbronn | On the average length of a class of continued fractions[END_REF] the expressions of the cumulative generating functions. It is now possible to "extract" coefficients of these Dirichlet series, with an analog of (1).

However, for Dirichlet generating functions, it is (very often) only possible to study the sum of the coefficients for n ≤ N , and this is why we deal with the set ΩN of inputs with size at most N . Then the mean value of cost C on ΩN is obtained from the cumulative generating function as

EN [C] = n≤N [n -s ] F (s) n≤N [n -s ]F (s)
.

As previously, singularity analysis performs a transfer between the behavior of a Dirichlet generating function, viewed as an analytic function, near its dominant singularity (here, the singularity with the largest real part) and the asymptotic behavior of its coefficients. The position and the nature of the dominant singularity play a fundamental role. However, this transfer is more difficult for Dirichlet series. As previously, the basic tool is the Cauchy formula, but, here, the circles centered at 0 are replaced by vertical lines, which are not compact. For this short version, we use here the following Tauberian theorem, due to Delange [START_REF] Delange | Généralisation du théorème d'ikehara[END_REF][START_REF] Tenenbaum | Introduction à la théorie analytique des nombres[END_REF], which deals with Dirichlet series with positive coefficients, but does not provide any remainder term. This is why we only prove here, in this short version, a weak version of Theorem 5, without remainder terms. Theorem 6. Let F (s) = n≥1 ann -s be a Dirichlet series with non negative coefficients such that F (s) converges for (s) > σ > 0. Assume the following:

(i) F (s) is analytic on (s) = σ, s = σ, (ii) for some γ ≥ 0, one has

F (s) = A(s)(s -σ) -γ-1 + C(s), where A, C are analytic at σ, with A(σ) = 0. Then, as N → ∞, n≤N an = A(σ) σΓ(γ + 1) N σ log γ N [1 + (N ) ], (N ) → 0.
5.6 Sketch of proof for Theorem 5.

We apply Theorem 6 with σ = 1 to the cumulative functions defined in [START_REF] Heilbronn | On the average length of a class of continued fractions[END_REF]. We then study the series ζ(s) , ζ (s), T (s, ks), T (s, ks). All is known about the first two, and this entails a easy application of Theorem 6 in case D.

We focus now on case L, where we use precise results on the operator Gs, when it acts on a convenient Banach space B (not described here). First, the function ζs = Gs [START_REF] Baladi | Euclidean algorithms are gaussian[END_REF](0) has a pole of order 1 at s = 1, and near s = 1, one has ζs ∼ C/(s -1), where C belongs to B. Then, near s = 1, 2 δ(k,1) T (s, ks) ∼ 1/(s -1)(I -G (k+1)s ) -1 [C](0), for any k, (δ(i, j) is the Kronecker symbol). Now, the following is known: for t > 2, the operator Gt has a spectral radius strictly less than 1, and the quasiinverse (I -Gt) -1 is analytic there. On the line t = 2, the quasi-inverse (I -Gt) -1 is analytic except at t = 2 where it admits a simple pole with a residue which involves the entropy. As T (s, ks) (resp. T (s, ks)) contains one (resp. two) occurrence(s) of the quasi-inverse, the following holds: -for k ≥ 2, the series T (s, ks) and T (s, ks) have a simple pole at s = 1, -for k = 1, the series T (s, s) has a pole of order 2 at s = 1, and the series T (s, s) has a pole of order 3 at s = 1. Finally, the function L k (s) satisfies the hypotheses of Theorem 6, with σ = 1; the exponent γ equals for k ≥ 2 and + 1 for k = 1. This concludes the "proof" in case L.

And now?

We can also study the number of useful phases, and recover the classical result PN [D k = 0] ∼ 1/ζ(k). If we wish to obtain remainder terms in Theorem 5, and an analog of distributional results obtained in Theorem 2, we need the analog of Proposition 3. For this purpose, we have to deal with the Perron Formula, as for previous distributional analyses performed in integer case.

The Perron Formula provides remainder terms as soon as the Dirichlet series of interest possess a "tameness" region on the left of the vertical line s = 1, where s = 1 is their only pole and they are of polynomial growth for | s| → ∞. Classical results [START_REF] Tenenbaum | Introduction à la théorie analytique des nombres[END_REF] entail such tameness properties for the zeta function and its derivatives, and results due to Dolgopyat-Baladi-Vallée [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF][START_REF] Baladi | Euclidean algorithms are gaussian[END_REF] prove that they also hold for the transfer operator G2s. Then, it would be possible to obtain the analog of Theorem 2 where n, m are replaced by log N, log M and the ratios p k , r k which respectively appear in Assertions 

Some experiments

The figure shows the experimental densities of L1 for = 2 (left) and = 4 (right) and clearly exhibits the uniform limit law (left) and the beta limit law (right). These experiments are obtained with 5•10 5 executions on random integer inputs (x1, . . . , x ) whose (total) length satisfies log 10 N = 10 4 .

APPENDIX 7.1 Proof of Proposition 3

The residue theorem entails

[z n ]fm(z) = -Res fm(z) z n+1 , z = 1 + 1 2iπ Cr fm(z) z n+1 dz
where Cr is the circle with radius r > 1 with r close enough to 1. Then, with hypotheses on A, the following upper bound holds when m is of the form m = cn,

1 2iπ Cr fm(z) z n+1 dz ≤ A(r) c r n 1 r(r -1)
.

The function r → (1/r)A(r) c equals a c at r = 1 and the conditions on c, a = A(1) and b = A (1) prove that it is strictly decreasing when r is close to 1. Hence, for r > 1 close enough to 1, we let ρ = A(r) c /r = θa c with θ < 1 and

1 2iπ Cr fm(z) z n+1 dz = a m O(θ n ).
Furthermore, the residue at z = 1 equals

Res

fm(z) z n+1 , z = 1 = (-1) ( -1)! d -1 dz -1 A(z) m z n+1 z=1
The successive derivatives of 1/z n+1 satisfy

d i dz i 1 z n+1 z=1 = (-1) i • n i 1 + O 1 n .
There are two cases for the derivatives of A(z) m . Case m/n → c with c > 0. Then 

d j dz j A(z) m z=1 = b j • m j • a m-j 1 + O 1 m , and 

Proof of Theorem 4

The variable L equals L := L1 + . . . + LΠ if Π ≥ 1 and equals 0 if Π = 0. Then

L = 0 • 1 [Π=0] + L • 1 [Π≥1] = L • 1 [Π≥1]
When Π ≥ 1, the variable L is defined as

L = Π k=1 L k = -1 k=1 L k • 1 [k≤Π] ,
so that L • 1 [Π≥1] = L and then finally L = L. We then study the variables

L k = L k • 1 [k≤Π] .
In particular, the difference L k -L k satisfies Then Theorem 3 applies and we obtain for k ≥ 2,

L k -L k = L k • 1 [k>Π] ,
En[ L k ] = q -1 q k -1 + q q k + O 1 n ,
and for k = 1,

En[ L1] = En[L1] + O 1 n .
We conclude with the linearity of the mean.

We now prove the beta limit law. We split the random variable L into two random variables:

-the main random variable L1, which admits a beta limit law (Theorem 2), -the remainder random variable R = L -L1 which is "negligible" w.r.t L1; more precisely, Theorem 1 entails the estimate En[|R|] = o(En[L1]).

The next proposition shows that, in this situation, the sum L = L1 + R asymptotically follows the same beta law as L1. This provides an extension of the result obtained in [START_REF] Lhote | Gaussian laws for the main parameters of the Euclid algorithms[END_REF] for gaussian laws. The random variable X + Y asymptotically follows the same law as X.

Proof. Consider a sequence δn which will be made precise later, and define the two events E and F as

E = [X + Y < c • γn], F = [|Y | ≤ δn].
The hypotheses on Y and the Markov inequality lead to

Pn[E ∩ F c ] ≤ Pn[F c ] = O rnγn δn . ( 12 
)
On the other side, the following inclusions hold,

[X ≤ c • γn -δn] ∩ F ⊂ E ∩ F ⊂ [X ≤ c • γn + δn]. ( 13 
)
The rightmost inclusion in [START_REF] Knopfmacher | The exact length of the euclidean algorithm in Fq[X][END_REF] and the Lipschitz condition on f entail the upper bound

Pn[E ∩ F ] ≤ f c + δn γn + O( n) = f (c) + O n + δn γn . (14) 
The leftmost inclusion in [START_REF] Knopfmacher | The exact length of the euclidean algorithm in Fq[X][END_REF], together with [START_REF] Hensley | The number of steps in the Euclidean algorithm[END_REF] and the Lipschitz condition entail the lower bound

Pn[E ∩ F ] ≥ f (c) + O n + rnγn δn + δn γn . (15) 
With relations ( 12), ( 14) and [START_REF] Lhote | Gaussian laws for the main parameters of the Euclid algorithms[END_REF], we obtain

Pn[E] = f (c) + O n + rnγn δn + δn γn .

Then the optimal choice δn = γn √ rn concludes the proof.

To derive the proof of Theorem 4, the previous proposition was applied with n = Θ 1 n , rn = Θ 1 n , γn = n, a = q -1 2q

and

f (c) = 1 -1 - c a -1
.

  where A(z) is analytic on the disk |z| ≤ ρ with ρ > 1 and satisfies a := A(1) = 0, b := A (1) > 0 and for |z| close enough to 1, |A(z)| ≤ A(|z|).

Proof.

  The Euclid algorithm first compares the two integers x1 and x2. There are three cases: x1 = x2, x1 > x2, x1 < x2. In all the cases, the gcd y := gcd(x1, x2) together with the sequence of quotients (m1, m2, . . . mp) completely determines the input pair (x1, x2). More precisely, one writes (x1, x2) = (y x1, y x2) with a coprime pair ( x1, x2) and the execution of the Euclid algorithm on the pair ( x1, x2) produces the same sequence (m1, m2, . . . mp) as the pair (x1, x2), with now remainders xi which satisfy xi = y xi. The execution of the Euclid algorithm on the pair ( x1, x2) with x1 > x2 builds continued fraction expansions

  (a) and Assertions (b) of Theorem 2 are replaced by p k := λ ((k + 1)/2) (case L), r k := exp(1-k) (case D).Here, λ(s) is the dominant eigenvalue of the operator G2s (when acting on the functional space B), which plays a central role in many analyses of Euclidean type. It satisfies λ(s) = 1, and, for k = 3, we recover the constant λ(2) which plays a central role in Euclidean dynamics, notably in the analysis of the Gauss lattice reduction algorithm[START_REF] Daudé | An average-case analysis of the gaussian algorithm for lattice reduction[END_REF][START_REF] Flajolet | Continued fraction algorithms, functional operators, and structure constants[END_REF].

1 ( - 1

 11 , inserting these relations into the Leibnitz formula for the derivative provides the estimate Res fm(z) z n+1 , z = 1 = -a m n -This concludes the proof of Assertion (b).Case m = (n) • n with (n) → 0. Thend j dz j A(z) m z=1 = a m n j b a j O( (n) j )and, inserting these relations into the Leibnitz formula for the derivative provides the estimateRes fm(z) z n+1 , z = 1 = -a m n -1 ( -1)! [1 + O( (n))] 1 + O 1 n .

  and the relations [k> Π] = [D k = 0] ⊂ [L k = 1], entail the equality L k • 1 [k>Π] = 1 [k>Π], and, finallyEn[L k ] -En[ L k ] = En[1 [k>Π] ] = Pn[k > Π] = 1 -Pn[k ≤ Π].

Proposition 6 .

 6 Consider two random variables X and Y defined on Ω. Assume that there exist (i) a function f : [0, a] → [0, 1], strictly increasing, Lipschitz, with f (0) = 0 and f (a) = 1, (ii) three sequences γn → ∞, n → 0, rn → 0, such that, one has, for all c ∈]0, a[, for all n,Pn[X < c • γn] = f (c) + n En[|Y |] = rn • γn.Then the following holds, for all c ∈]0, a[, for all n,:Pn[X + Y < c • γn] = f (c) + O ( n + √ rn) .

The factor (1/2) is here to take into account the fact that any rational of ]0, 1] admits two continued fraction expansions: the proper one and the improper one.
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