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Introduction

In 1988, H. Fujimoto ([4]) proved Nirenberg's conjecture that if M is a complete non-flat minimal surface in R 3 , then its Gauss map can omit at most 4 points, and the bound is sharp. After that, he also extended that result for minimal surfaces in R m . He proved that the Gauss map of a non-flat complete minimal surface can omit at most m(m + 1)/2 hyperplanes in P m-1 (C) located in general position ( [START_REF] Fujimoto | Modified defect relations for the Gauss map of minimal surfaces II[END_REF]). He also gave an example to show that the number m(m + 1)/2 is the best possible when m is odd ( [START_REF] Fujimoto | Value Distribution Theory of the Gauss map of Minimal Surfaces in R m[END_REF]).

In 1993, M. Ru ([14]) refined these results by studying the Gauss maps of minimal surfaces in R m with ramification. Using the notations which will be introduced in §3, the result of Ru can be stated as follows.

Theorem A. Let M be a non-flat complete minimal surface in R m . Assume that the (generalized) Gauss map g of M is k-non-degenerate (that is g(M ) is contained in a k-dimensional linear subspace in P m-1 (C), but none of lower dimension), 1 ≤ k ≤ m -1. Let {H j } q j=1 be hyperplanes in general position in P m-1 (C) such that g is ramified over H j with multiplicity at least m j for each j, then

q j=1 (1 - k m j ) ≤ (k + 1)(m - k 2 -1) + m .
In particular if there are q (q > m(m + 1)/2) hyperplanes {H j } q j=1 in general position in P m-1 (C) such that g is ramified over H j with multiplicity at least m j for each j, then q j=1

(1 -m -1 m j ) ≤ m(m + 1) 2 .

On the other hand, in 1991, S. J. Kao ([10]) used the ideas of Fujimoto ( [START_REF] Fujimoto | On the number of exceptional values of the Gauss maps of minimal surfaces[END_REF]) to show that the Gauss map of an end of a non-flat complete minimal surface in R 3 that is conformally an annulus {z : 0 < 1/r < |z| < r} must also assume every value, with at most 4 exceptions. In 2007, L. Jin and M. Ru ([9]) extended Kao's result to minimal surfaces in R m . They proved : Theorem B. Let M be a non-flat complete minimal surface in R m and let A be an annular end of M which is conformal to {z : 0 < 1/r < |z| < r}, where z is a conformal coordinate. Then the restriction to A of the (generalized) Gauss map of M can not omit more than m(m + 1)/2 hyperplanes in general position in P m-1 (C).

Recently, the two first named authors ( [START_REF] Dethloff | Ramification of the Gauss map of complete minimal surfaces in R 3 and R 4 on annular ends[END_REF]) gave an improvement of the Theorem of Kao. Moreover they also gave an analogue result for the case m = 4. In this paper we will consider the corresponding problem for the (generalized) Gauss map for non-flat complete minimal surfaces in R m for all m ≥ 3. In this general situation we obtain the following : Main Theorem. Let M be a non-flat complete minimal surface in R m and let A be an annular end of M which is conformal to {z : 0 < 1/r < |z| < r}, where z is a conformal coordinate. Assume that the generalized Gauss map g of M is k-non-degenerate on A (that is g(A) is contained in a k-dimensional linear subspace in P m-1 (C), but none of lower dimension), 1 ≤ k ≤ m -1. If there are q hyperplanes {H j } q j=1 in N -subgeneral position in P m-1 (C) (N ≥ m -1) such that g is ramified over H j with multiplicity at least m j on A for each j, then

q j=1 (1 - k m j ) ≤ (k + 1)(N - k 2 ) + (N + 1). (1.1) 
Moreover, (1.1) still holds if we replace, for all j = 1, ..., q, m j by the limit inferior of the orders of the zeros of the function (g,

H j ) := c j0 g 1 + • • • + c jm-1 g m-1 on A (where g = (g 0 : • • • : g m-1
) is a reduced representation and, for all 1 ≤ j ≤ q, the hyperplane H j in P m-1 (C) is given by H j :

c j0 ω 0 + • • • + c jm-1 ω m-1 = 0, where we assume that m-1 i=0 |c ji | 2 = 1)
or by ∞ if g intersects H j only a finite number of times on A.

Corollary 1. Let M be a non-flat complete minimal surface in R m and let A be an annular end of M which is conformal to {z : 0 < 1/r < |z| < r}, where z is a conformal coordinate. If there are q hyperplanes {H j } q j=1 in N -subgeneral position in P m-1 (C) (N ≥ m -1) such that the generalized Gauss map g of M is ramified over H j with multiplicity at least m j on A for each j, then

q j=1 (1 - m -1 m j ) ≤ m(N - m -1 2 ) + (N + 1). (1.2)
In particular if the hyperplanes {H j } q j=1 are in general position in P m-1 (C) we have

q j=1 (1 - m -1 m j ) ≤ m(m + 1) 2 . (1.3)
Moreover, (1.2) and (1.3) still hold if we replace, for all j = 1, ..., q, m j by the limit inferior of the orders of the zeros of the function

(g, H j ) := c j0 g 1 + • • • + c jm-1 g m-1 on A (where g = (g 0 : • • • : g m-1
) is a reduced representation and, for all 1 ≤ j ≤ q, the hyperplane H j in

P m-1 (C) is given by H j : c j0 ω 0 + • • • + c jm-1 ω m-1 = 0, where we assume that m-1 i=0 |c ji | 2 = 1)
or by ∞ if g intersects H j only a finite number of times on A.

Our Corollary 1 gives the following improvement of Theorem B of Jin-Ru :

Corollary 2. If the (generalized) Gauss map g on an annular end of a non-flat complete minimal surface in R m assumes m(m + 1)/2 hyperplanes in general position only finitely often, it takes any other hyperplane in general position (with respect to the previous hyperplanes) infinitely often with ramification at most m -1.

Remark. It is well known that the image of the (generalized) Gauss map g : ) which only treat the cases m = 3 and m = 4 are better than a result which holds for any m ≥ 3 can be if restricted to the special cases m = 3, 4. The easiest way to see the difference is to observe that 6 lines in P 2 in general position may have only 4 points of intersection with the quadric

M → P m-1 is contained in the hyperquadric Q m-2 ⊂ P m-1 , and that Q 1 (C) is biholomorphic to P 1 (C) and that Q 2 (C) is biholo- morphic to P 1 (C) × P 1 (C). So the results in
Q 1 ⊂ P 2 .
The main idea to prove the Main Theorem is to construct and to compare explicit singular flat and negatively curved complete metrics with ramification on these annular ends. This generalizes previous work of ) (which itself was a refinement of ideas of Ru ([14])) to targets of higher dimensions, which needs among others to combine these explicit singular metrics with the use of technics from hyperplanes in subgeneral position and with the use of intermediate contact functions. After that we use arguments similar to those used by Kao ([10]) and Fujimoto ([4] - [START_REF] Fujimoto | Value Distribution Theory of the Gauss map of Minimal Surfaces in R m[END_REF]) to finish the proofs.

Preliminaries

Let f be a linearly non-degenerate holomorphic map of ∆ R := {z ∈ C : |z| < R} into P k (C), where 0 < R ≤ +∞. Take a reduced representation f = (f 0 :

• • • : f k ). Then F := (f 0 , • • • , f k ) : ∆ R → C k+1 \ {0} is a holomorphic map with P(F ) = f. Consider the holomorphic map F p = (F p ) z := F (0) ∧ F (1) ∧ • • • ∧ F (p) : ∆ R -→ ∧ p+1 C k+1 for 0 ≤ p ≤ k, where F (0) := F = (f 0 , • • • , f k ) and F (l) = (F (l) ) z := (f (l) 0 , • • • , f (l)
k ) for each l = 0, 1, • • • , k, and where the l-th derivatives f

(l) i = (f (l)
i ) z , i = 0, ..., k, are taken with respect to z. (Here and for the rest of this paper the index | z means that the corresponding term is defined by using differentiation with respect to the variable z, and in order to keep notations simple, we usually drop this index if no confusion is possible.) The norm of F p is given by

|F p | := 0≤i 0 <•••<ip≤k W (f i 0 , • • • , f ip ) 2 1 2 , where W (f i 0 , • • • , f ip ) = W z (f i 0 , • • • , f ip ) denotes the Wronskian of f i 0 , • • • , f ip with respect to z. Proposition 1. ([7, Proposition 2.1.6]).
For two holomorphic local coordinates z and ξ and a holomorphic function h : ∆ R → C, the following holds :

a) W ξ (f 0 , • • • , f p ) = W z (f 0 , • • • , f p ) • ( dz dξ ) p(p+1)/2 . b) W z (hf 0 , • • • , hf p ) = W z (f 0 , • • • , f p ) • (h) p+1 . Proposition 2. ([7, Proposition 2.1.7]). For holomorphic functions f 0 , • • • , f p : ∆ R → C the following condi- tions are equivalent: (i) f 0 , • • • , f p are linearly dependent over C. (ii) W z (f 0 , • • • , f p ) ≡ 0 for some (or all) holomorphic local coordinate z.
We now take a hyperplane H in P k (C) given by

H : c 0 ω 0 + • • • + c k ω k = 0 , with k i=0 |c i | 2 = 1. We set F 0 (H) := F (H) := c 0 f 0 + • • • + c k f k and |F p (H)| = |(F p ) z (H)| := 0≤i 1 <•••<ip≤k l =i 1 ,...,ip c l W (f l , f i 1 , • • • , f ip ) 2 1 2
, for 1 ≤ p ≤ k. We note that by using Proposition 

|F p (H)| 2 |F p | 2 = |(F p ) z (H)| 2 |(F p ) z | 2 .
We next consider q hyperplanes H 1 , • • • , H q in P k (C) given by

H j : ω, A j ≡ c j0 ω 0 + • • • + c jk ω k (1 ≤ j ≤ q)
where

A j := (c j0 , • • • , c jk ) with k i=0 |c ji | 2 = 1. Assume now N ≥ k and q ≥ N + 1. For R ⊆ Q := {1, 2, • • • , q} , denote by d(R) the dimension of the vector subspace of C k+1 generated by {A j ; j ∈ R}.
The hyperplanes

H 1 , • • • , H q are said to be in N -subgeneral position if d(R) = k + 1 for all R ⊆ Q with ♯(R) ≥ N + 1
, where ♯(A) means the number of elements of a set A. In the particular case N = k, these are said to be in general position.

Theorem 3. ([7, Theorem 2.4.11]) For given hyperplanes H 1 , • • • , H q (q > 2N -k + 1) in P k (C) located in N -subgeneral
position, there are some rational numbers ω(1), • • • , ω(q) and θ satisfying the following conditions:

(i)

0 < ω(j) ≤ θ ≤ 1 (1 ≤ j ≤ q), (ii) q j=1 ω(j) = k + 1 + θ(q -2N + k -1), (iii) k+1 2N -k+1 ≤ θ ≤ k+1 N +1 , (iv) If R ⊂ Q and 0 < ♯(R) ≤ n + 1, then j∈R ω(j) ≤ d(R).
Constants ω(j) (1 ≤ j ≤ q) and θ with the properties of Theorem 3 are called Nochka weights and a Nochka constant for H 1 , • • • , H q respectively. Related to Nochka weights, we have the following.

Proposition 4. ([7, Proposition 2.4.15]) Let H 1 , • • • , H q be hyper- planes in P k (C) located in N -subgeneral position and let ω(1), • • • , ω(q) be Nochka weights for them, where q > 2N -k + 1. For each R ⊆ Q := {1, 2, • • • , q} with 0 < ♯(R) ≤ N + 1 and real constants E 1 , • • • , E q with E j ≥ 1, there is some R ′ ⊆ R such that ♯(R ′ ) = d(R) = d(R ′ ) and j∈R E ω(j) j ≤ j∈R ′ E j .
We need the three following results of Fujimoto combining the previously introduced concept of contact functions with Nochka weights:

Theorem 5. ([7, Theorem 2.5.3]) Let H 1 , • • • , H q be hyperplanes in P k (C) located in N -subgeneral position and let ω(j) (1 ≤ j ≤ q)
and θ be Nochka weights and a Nochka constant for these hyperplanes. For every ǫ > 0 there exist some positive numbers δ(> 1) and C, depending only on ǫ and H j , 1 ≤ j ≤ q, such that

dd c log Π k-1 p=0 |F p | 2ǫ Π 1≤j≤q,0≤p≤k-1 log 2ω(j) (δ/φ p (H j )) ≥ C |F 0 | 2θ(q-2N +k-1) |F k | 2 Π q j=1 (|F (H j )| 2 Π k-1 p=0 log 2 (δ/φ p (H j ))) ω(j) 2 k(k+1) dd c |z| 2 . (2.4) Proposition 6. ([7, Proposition 2.5.7]) Set σ p = p(p + 1)/2 for 0 ≤ p ≤ k and τ k = k p=0 σ p . Then, dd c log(|F 0 | 2 |F 1 | 2 • • • |F k-1 | 2 ) ≥ τ k σ k |F 0 | 2 |F 1 | 2 • • • |F k | 2 |F 0 | 2σ k+1 1/τ k dd c |z| 2 .
(2.5)

Proposition 7. ([7, Lemma 3.2.13]) Let f be a non-degenerate holo- morphic map of a domain in C into P k (C) with reduced representation f = (f 0 : • • • : f k ) and let H 1 , • • • , H q be hyperplanes located in N - subgeneral position (q > 2N -k+1) with Nochka weights ω(1), • • • , ω(q)
respectively. Then,

ν φ + q j=1 ω(j) • min(ν (f,H j ) , k) ≥ 0, where φ = |F k | Π q j=1 | F (H j ) | ω(j) .
Lemma 8. (Generalized Schwarz's Lemma [START_REF] Ahlfors | An extension of Schwarz's lemma[END_REF]). Let v be a non-negative real-valued continuous subharmonic function on ∆ R . If v satisfies the inequality ∆ log v ≥ v 2 in the sense of distribution, then

v(z) ≤ 2R R 2 -|z| 2 . Lemma 9. Let f = (f 0 : • • • : f k ) : ∆ R → P k (C)
be a non-degenerate holomorphic map, H 1 , ..., H q be hyperplanes in P k (C) in N -subgeneral position (N ≥ k and q > 2N -k +1), and ω(j) be their Nochka weights. If

γ := q j=1 ω(j)(1 - k m j ) -(k + 1) > 0
and f is ramified over H j with multiplicity at least m j ≥ k for each j, (1 ≤ j ≤ q), then for any positive ǫ with γ > ǫσ k+1 there exists a positive constant C, depending only on ǫ, H j , m j , ω(j)(1 ≤ j ≤ q), such that

|F | γ-ǫσ k+1 |F k | 1+ǫ q j=1 k-1 p=0 |F p (H j )| ǫ/q q j=1 |F (H j )| ω(j)(1-k m j ) C( 2R R 2 -|z| 2 ) σ k +ǫτ k .
Proof. For an arbitrary holomorphic local coordinate z and δ(> 1) chosen as in Theorem 5 we set

η z := |F | γ-ǫσ k+1 .|F k |. k p=0 |F p | ǫ q j=1 (|F (H j )| (1-k m j ) Π k-1 p=0 log(δ/φ p (H j ))) ω(j) 1 σ k +ǫτ k ,
and define the pseudometric

dτ 2 z := η 2 z |dz| 2 .
Using Proposition 1 we can see that

dτ ξ := |F | γ-ǫσ k+1 .|(F k ) ξ |. k p=0 |(F p ) ξ | ǫ q j=1 (|F (H j )| (1-k m j ) Π k-1 p=0 log(δ/φ p (H j ))) ω(j) 1 σ k +ǫτ k |dξ| = |F | γ-ǫσ k+1 .|(F k ) z || dz dξ | σ k . k p=0 |(F p ) z | ǫ .| dz dξ | k j=0 ǫ j(j+1) 2 q j=1 (|F (H j )| (1-k m j ) Π k-1 p=0 log(δ/φ p (H j ))) ω(j) 1 σ k +ǫτ k | dξ dz |.|dz| = |F | γ-ǫσ k+1 .|(F k ) z |. k p=0 |(F p ) z | ǫ .| dz dξ | σ k +ǫτ k q j=1 (|F (H j )| (1-k m j ) Π k-1 p=0 log(δ/φ p (H j ))) ω(j) 1 σ k +ǫτ k | dξ dz |.|dz| = dτ z .
Thus dτ 2 z is independent of the choice of the local coordinate z. We will denote dτ 2 z by dτ 2 for convenience. We now show that dτ is continuous on ∆ R . Indeed, it is easy to see that dτ is continuous at every point z 0 with Π q j=1 F (H j )(z 0 ) = 0. Now we take a point z 0 such that Π q j=1 F (H j )(z 0 ) = 0. We have

ν dτ (z 0 ) ≥ 1 σ k + ǫτ k ν F k (z 0 ) - q j=1 ω(j)ν F (H j ) (z 0 )(1 - k m j ) = 1 σ k + ǫτ k ν F k (z 0 ) - q j=1 ω(j)ν F (H j ) (z 0 ) + q j=1 ω(j) k m j ν F (H j ) (z 0 ) .
Combining this with Proposition 7 we get

ν dτ (z 0 ) ≥ 1 σ k + ǫτ k - q j=1 ω(j) min{ν F (H j ) (z 0 ), k} + q j=1 ω(j) k m j ν F (H j ) (z 0 ) .
By assumption, it holds that ν F (H j ) (z 0 ) ≥ m j ≥ k or ν F (H j ) (z 0 ) = 0, so ν dτ (z 0 ) ≥ 0. This concludes the proof that dτ is continuous on ∆ R .

Using Proposition 6, Theorem 5 and noting that dd c log |F k | = 0, we have

dd c log η z = γ -ǫσ k+1 σ k + ǫτ k dd c log |F | + ǫ 4(σ k + ǫτ k ) dd c log(|F 0 | 2 • • • |F k-1 | 2 ) + 1 2(σ k + ǫτ k ) dd c log k-1 p=0 |F p | 2( ǫ 2 ) q j=1 Π k-1 p=0 log 2ω(j) (δ/φ p (H j )) ≥ ǫ 4(σ k + ǫτ k ) τ k σ k |F 0 | 2 |F 1 | 2 • • • |F k | 2 |F 0 | 2σ k+1 1/τ k dd c |z| 2 + C 0 |F 0 | 2θ(q-2N +k-1) |F k | 2 Π q j=1 (|F (H j )| 2 Π k-1 p=0 log 2 (δ/φ p (H j ))) ω(j) 2 k(k+1) dd c |z| 2 ≥ min{ 1 4σ k (σ k + ǫτ k ) , C 0 σ k } ǫτ k |F 0 | 2 |F 1 | 2 • • • |F k | 2 |F 0 | 2σ k+1 1/τ k + σ k |F 0 | 2θ(q-2N +k-1) |F k | 2 Π q j=1 (|F (H j )| 2 Π k-1 p=0 log 2 (δ/φ p (H j ))) ω(j) 1 σ k dd c |z| 2
where C 0 is the positive constant. So, by using the basic inequality

αA + βB ≥ (α + β)A α α+β B β α+β for all α, β, A, B > 0,
we can find a positive constant C 1 satisfing the following

dd c log η z ≥ C 1 |F | θ(q-2N +k-1)-ǫσ k+1 .|F k |. k p=0 |F p | ǫ q j=1 (|F (H j )| • Π k-1 p=0 log(δ/φ p (H j ))) ω(j) 2 σ k +ǫτ k dd c |z| 2 = C 1 |F | q j=1 ω(j)-k-1-ǫσ k+1 .|F k |. k p=0 |F p | ǫ q j=1 (|F (H j )| • Π k-1 p=0 log(δ/φ p (H j ))) ω(j) 2 σ k +ǫτ k dd c |z| 2 (by Theorem 3) = C 1 |F | γ-ǫσ k+1 .|F k |. k p=0 |F p | ǫ q j=1 |F | |F (H j )| k m j ω(j) q j=1 (|F (H j )| (1-k m j ) • Π k-1 p=0 log(δ/φ p (H j ))) ω(j) 2 σ k +ǫτ k dd c |z| 2 .
On the other hand,

|F (H j )| |F | k m j ω(j)
≤ 1 for all j = 1, 2, ..., q, so we get

dd c log η z ≥ C 1 |F | γ-ǫσ k+1 .|F k |. k p=0 |F p | ǫ q j=1 (|F (H j )| (1-k m j ) • Π k-1 p=0 log(δ/φ p (H j ))) ω(j) 2 σ k +ǫτ k dd c |z| 2 = C 1 η 2 z dd c |z| 2 .
We now use Lemma 8 to show the following

|F | γ-ǫσ k+1 .|F k |. k p=0 |F p | ǫ q j=1 (|F (H j )| (1-k m j ) • Π k-1 p=0 log(δ/φ p (H j ))) ω(j) 1 σ k +ǫτ k ≤ C 2 2R R 2 -|z| 2 .
We then have

|F | γ-ǫσ k+1 .|F k | 1+ǫ . q j=1 k-1 p=0 |F p (H j )| ǫ/q q j=1 |F (H j )| (1-k m j )ω(j) • q j=1 k-1 p=0 ( |F p (H j )| |F p | ) ǫ/q log ω(j) (δ/φ p (H j )) 1 σ k +ǫτ k ≤ C 2 2R R 2 -|z| 2 .
Moreover, combining with sup 0<x≤1 x ǫ q log ω(j) δ x 2 < +∞, then we get

|F | γ-ǫσ k+1 .|F k | 1+ǫ . q j=1 k-1 p=0 |F p (H j )| ǫ/q q j=1 |F (H j )| (1-k m j
)ω(j)

1 σ k +ǫτ k ≤ C 2R R 2 -|z| 2
where C is the positive constant depending, by Theorem 5 and by our construction, only on ǫ, H j , m j , ω(j)(1 ≤ j ≤ q). This implies Lemma 9.

We finally will need the following result on completeness of open Riemann surfaces with conformally flat metrics due to Fujimoto : 

L a 0 : w := a 0 • s (0 ≤ s < R 0 )
is divergent in M (i.e. for any compact set K ⊂ M , there exists an s 0 < R 0 such that the Φ-image of the curve L a 0 : w := a 0 • s (s 0 ≤ s < R 0 ) does not intersect K).

The proof of the Main Theorem

Proof. For the convenience of the reader, we first recall some notations on the Gauss map of minimal surfaces in R m . Let M be a complete immersed minimal surface in R m . Take an immersion x = (x 0 , ..., x m-1 ) : M → R m . Then M has the structure of a Riemann surface and any local isothermal coordinate (x, y) of M gives a local holomorphic coordinate z = x + √ -1y. The generalized Gauss map of x is defined to be g :

M → P m-1 (C), g = P( ∂x ∂z ) = ( ∂x 0 ∂z : • • • : ∂x m-1 ∂z ). Since x : M → R m is immersed, G = G z := (g 0 , ..., g m-1 ) = ((g 0 ) z , ..., (g m-1 ) z ) = ( ∂x 0 ∂z , • • • , ∂x m-1 ∂z )
is a (local) reduced representation of g, and since for another local holomorphic coordinate ξ on M we have G ξ = G z •( dz dξ ), g is well defined (independently of the (local) holomorphic coordinate). Moreover, if ds 2 is the metric on M induced by the standard metric on R m , we have

ds 2 = 2|G z | 2 |dz| 2 . (3.6)
Finally since M is minimal, g is a holomorphic map.

Since by hypothesis of the Main Theorem, g is k-non-degenerate (1 ≤ k ≤ m -1) without loss of generality, we may assume that g(M ) ⊂ P k (C); then

g : M → P k (C), g = P( ∂x ∂z ) = ( ∂x 0 ∂z : • • • : ∂x k ∂z ).
is linearly non-degenerate in P k (C) (so in particular g is not constant) and the other facts mentioned above still hold.

Let H j (j = 1, ..., q) be q(≥ N + 1) hyperplanes in P m-1 (C) in Nsubgeneral position (N ≥ m-1 ≥ k). Then H j ∩P k (C)(j = 1, ..., q) are q hyperplanes in P k (C) in N -subgeneral position. Let each H j ∩ P k (C) be represented as

H j ∩ P k (C) : c j0 ω 0 + • • • + c jk ω k = 0 with k i=0 |c ji | 2 = 1. Set G(H j ) = G z (H j ) := c j0 g 0 + • • • + c jk g k .
We will now, for each contact function φ p (H j ) for each of our hyperplanes H j , choose one of the components of the numerator |((G z ) p ) z (H j )| which is not identically zero: More precisely, for each j, p (1

≤ j ≤ q, 1 ≤ p ≤ k), we can choose i 1 , • • • , i p with 0 ≤ i 1 < • • • < i p ≤ k such that ψ(G) jp = (ψ(G z ) jp ) z := l =i 1 ,..,ip c jl W z (g l , g i 1 , • • • , g ip ) ≡ 0,
(indeed, otherwise, we have l =i 1 ,..,ip c jl W (g l , g i 1 , • • • , g ip ) ≡ 0 for all i 1 , ..., i p , so W ( l =i 1 ,..,ip c jl g l , g i 1 , • • • , g ip ) ≡ 0 for all i 1 , ..., i p , which contradicts the non-degeneracy of g in P k (C). Alternatively we simply can observe that in our situation none of the contact functions vanishes identically.) We still set ψ(G) j0 = ψ(G z ) j0 := G(H j )( ≡ 0), and we also note that ψ(G) jk = ((G z ) k ) z . Since the ψ(G) jp are holomorphic, so they have only isolated zeros.

Finally we put for later use the transformation formulas for all the terms defined above, which are obtained by using Proposition 1 : For local holomorphic coordinates z and ξ on M we have :

G ξ = G z • ( dz dξ ) , (3.7) G ξ (H) = G z (H) • ( dz dξ ) , (3.8) 
((G ξ ) k ) ξ = ((G z ) k ) z • ( dz dξ ) k+1+ k(k+1) 2 = ((G z ) k ) z ( dz dξ ) σ k+1 , (3.9) (ψ(G ξ ) jp ) ξ = (ψ(G z ) jp ) z •( dz dξ ) p+1+ p(p+1) 2 = (ψ(G z ) jp ) z •( dz dξ ) σ p+1 , (0 ≤ p ≤ k) .
(3.10) Moreover, we also will need the following transformation formulas for mixed variables :

((G ξ ) k ) ξ = ((G ξ ) k ) z • ( dz dξ ) k(k+1) 2 = ((G ξ ) k ) z ( dz dξ ) σ k , (3.11) (ψ(G ξ ) jp ) ξ = (ψ(G ξ ) jp ) z • ( dz dξ ) p(p+1) 2 = (ψ(G ξ ) jp ) z • ( dz dξ ) σp , (0 ≤ p ≤ k) .
(3.12) Now we prove the Main Theorem in four steps:

Step 1: We will fix notations on the annular end A ⊂ M . Moreover, by passing to a sub-annular end of A ⊂ M we simplify the geometry of the Main Theorem.

Let A ⊂ M be an annular end of M, that is, A = {z : 0 < 1/r < |z| < r < ∞}, where z is a (global) conformal coordinate of A. Since M is complete with respect to ds 2 , we may assume that the restriction of ds 2 to A is complete on the set {z : |z| = r}, i.e., the set {z : |z| = r} is at infinite distance from any point of A. Let m j be the limit inferior of the orders of the zeros of the functions G(H j ) on A, or m j = ∞ if G(H j ) has only a finite number of zeros on A.

All the m j are increasing if we only consider the zeros which the functions G(H j ) take on a subset B ⊂ A. So without loss of generality we may prove our theorem only on a sub-annular end, i.e., a subset A t := {z : 0 < t ≤ |z| < r < ∞} ⊂ A with some t such that 1/r < t < r. (We trivially observe that for c := tr > 1, s := r/ √ c,

ξ := z/ √ c, we have A t = {ξ : 0 < 1/s ≤ |ξ| < s < ∞}.)
By passing to such a sub-annular end we will be able to extend the construction of a metric in step 2 below to the set {z : |z| = 1/r}, and, moreover, we may assume that for all j = 1, ..., q : g omitsH j (m j = ∞)ortakesH j infinitely oftenwithramification (3.13) m j < ∞ and is ramified over H j with multiplicity at least m j .

We next observe that we may also assume m j > k , j = 1, ..., q .

(3.14)

In fact, if this does not hold for all j = 1, ..., q, we just drop the H j for which it does not hold, and remain with q < q such hyperplanes. If q ≥ N + 1, they are still in N -subgeneral position in P m-1 (C) and we prove our Main Theorem for q instead of q, if q < N + 1, the assertion (1.1) of our Main Theorem trivially holds. In both cases since by passing from q to q again the right hand side of (1.1) does not change, however the left hand side only becomes possibly smaller, the inequality (1.1) still holds if we (re-)consider all the q hyperplanes and we are done.

Step 2: On the annular end A = {z : 0 < 1/r ≤ |z| < r < ∞} minus a discrete subset S ⊂ A we construct a flat metric dτ 2 on A \ S which is complete on the set {z : |z| = r} ∪ S, i.e., the set {z : |z| = r} ∪ S is at infinite distance from any point of A \ S. We may assume that

q j=1 (1 - k m j ) > (k + 1)(N - k 2 ) + (N + 1) , (3.15) 
otherwise our Main Theorem is already proved. By (3.15), we get

( q j=1 (1 - k m j )) -2N + k -1 > (2N -k + 1)k 2 > 0 , (3.16) 
and by (3.14) this implies in particular

q > 2N -k + 1 ≥ N + 1 ≥ k + 1 . (3.17) 
By Theorem 3, (3.17) and (3.16), we have (q

-2N + k -1)θ = ( q j=1 ω(j)) -k -1 , θ ≥ ω(j) > 0 and θ ≥ k + 1 2N -k + 1 , so 2 ( q j=1 ω(j)(1 - k m j )) -k -1 = 2(( q j=1 ω(j)) -k -1)θ θ -2 q j=1 kω(j)θ θm j = 2(q -2N + k -1)θ -2 q j=1 kω(j)θ θm j ≥ 2(q -2N + k -1)θ -2 q j=1 kθ m j = 2θ ( q j=1 (1 - k m j )) -2N + k -1 ≥ 2 (k + 1) ( q j=1 (1 - k m j )) -2N + k -1 2N -k + 1 .
Thus, we now can conclude with (3.16) that 2 (

q j=1 ω(j)(1 - k m j )) -k -1 > k(k + 1) ⇒ ( q j=1 ω(j)(1 - k m j )) -k -1 - k(k + 1) 2 > 0. (3.18) By (3.18), we can choose a number ǫ(> 0) ∈ Q such that q j=1 ω(j)(1 -k m j ) -(k + 1) -k(k+1) 2 τ k+1 > ǫ > > q j=1 ω(j)(1 -k m j ) -(k + 1) -k(k+1) 2 1 q + τ k+1 . So h := ( q j=1 ω(j)(1 - k m j )) -(k + 1) -ǫσ k+1 > k(k + 1) 2 + ǫτ k (3.19) and ǫ q > ( q j=1 ω(j)(1 - k m j )) -(k + 1) - k(k + 1) 2 -ǫτ k+1 . (3.20) 
We now consider the number

ρ := 1 h k(k + 1) 2 + ǫτ k = 1 h σ k + ǫτ k . (3.21) 
Then, by (3.19), we have

0 < ρ < 1. (3.22) Set ρ * := 1 (1 -ρ)h = 1 ( q j=1 ω(j)(1 -k m j )) -(k + 1) -k(k+1) 2 -ǫτ k+1 . (3.23) Using (3.20) we get ǫρ * q > 1. (3.24)
Consider the open subset

A 1 = Int(A) -∪ j=1,q,p=0,k {z|ψ(G) jp = 0} of A.
Using the global holomorphic coordinate z on A ⊃ A 1 we define a new pseudo metric

dτ 2 = Π q j=1 |G z (H j )| ω(j)(1-k m j ) |((G z ) k ) z | 1+ǫ Π k-1 p=0 Π q j=1 |(ψ(G z ) jp ) z | ǫ/q 2ρ * |dz| 2 (3.25)
on A 1 . We note that by the transformation formulas (3.7) to (3.10) for a local holomorphic coordinate ξ we have

Π q j=1 |G z (H j )| ω(j)(1-k m j ) |((G z ) k ) z | 1+ǫ Π k-1 p=0 Π q j=1 |(ψ(G z ) jp ) z | ǫ/q 2ρ * |dz| 2 (3.26) = Π q j=1 |G ξ (H j )| ω(j)(1-k m j ) |((G ξ ) k ) ξ | 1+ǫ Π k-1 p=0 Π q j=1 |(ψ(G ξ ) jp ) ξ | ǫ/q 2ρ * |dξ| 2
so the pseudo metric dτ is in fact defined independently of the choice of the coordinate. Moreover, it is also easy to see that dτ is flat.

Next we observe that for any point z ∈ A, we have

(ν G k - q j=1 ω(j)ν G(H j ) (1 - k m j ))(z) ≥ 0 . (3.27)
In fact, put φ := j) . Observing that by (3.14) for all j = 1, ..., q and all z ∈ A we have either ν

|G k | q j=1 |G(H j )| ω(
G(H j ) (z) = 0 or ν G(H j ) (z) ≥ m j ≥ k, we get k m j ν G(H j ) ≥ min{ν G(H j ) , k} .
So by Lemma 7 we have

ν G k - q j=1 ω(j)ν G(H j ) (1 - k m j ) = ν φ + q j=1 ω(j) k m j ν G(H j ) ≥ ν φ + q j=1 ω(j) min{ν G(H j ) , k} ≥ 0 .
Now it is easy to see that dτ is continuous and nowhere vanishing on A 1 . Indeed, for z 0 ∈ A 1 with Π q j=1 G(H j )(z 0 ) = 0, dτ is continuous and not vanishing at z 0 . Now assume that there exists z 0 ∈ A 1 such that G(H i )(z 0 ) = 0 for some i. But by (3.27) and (3.14) we then get that ν G k (z 0 ) > 0 which contradicts to z 0 ∈ A 1 .

The key point is now to prove following claim.

Claim 1. dτ is complete on the set {z : |z| = r} ∪ j=1,q,p=0,k {z : ψ(G) jp (z) = 0}, i.e., set {z : |z| = r} ∪ j=1,q,p=0,k {z : ψ(G) jp (z) = 0} is at infinite distance from any interior point in A 1 .

First, assume that Π k p=0 Π q j=1 |ψ(G) jp |(z 0 ) = 0. Then using (3.27) we get

ν dτ (z 0 ) = -(ν G k (z 0 ) - q j=1 ω(j)ν G(H j ) (z 0 )(1 - k m j )) + (ǫν G k (z 0 ) + ǫ q q j=1 k-1 p=0 ν ψ(G) jp (z 0 )) ρ * ≤ -ǫρ * ν G k (z 0 ) - ǫρ * q q j=1 k-1 p=0 ν ψ(G) jp (z 0 ) ≤ - ǫρ * q .
Thus we can find a positive constant C such that

|dτ | ≥ C |z -z 0 | ǫρ * q
|dz| in a neighborhood of z 0 and then, combining with (3.24), dτ is complete on ∪ j=1,q,p=0,k {z|ψ(G) jp (z) = 0}. Now assume that dτ is not complete on {z : |z| = r}. Then there exists γ : [0, 1) → A 1 , where γ(1) ∈ {z : |z| = r}, so that |γ| < ∞. Furthermore, we may also assume that dist(γ(0); {z : |z| = 1/r}) > 2|γ|. Consider a small disk ∆ with center at γ(0). Since dτ is flat, ∆ is isometric to an ordinary disk in the plane (cf. e.g. Lemma 10). Let Φ : {w : |w| < η} → ∆ be this isometry. Extend Φ, as a local isometry into A 1 , to the largest disk {w : |w| < R} = ∆ R possible. Then R ≤ |γ|. The reason that Φ cannot be extended to a larger disk is that the image goes to the outside boundary {z : |z| = r} of A 1 (it cannot go to points z of A with Π j=1,q,p=0,k ψ(G) jp (z) = 0 since we have shown already the completeness of A 1 with respect to these points). More precisely, there exists a point w 0 with |w 0 | = R so that Φ(0, w 0 ) = Γ 0 is a divergent curve on A.

Since we want to use Lemma 9 to finish up step 2, for the rest of the proof of step 2 we consider G z = ((g 0 ) z , ..., (g k ) z ) as a fixed globally defined reduced representation of g by means of the global coordinate z of A ⊃ A 1 . (We remark that then we loose of course the invariance of dτ 2 under coordinate changes (3.26), but since z is a global coordinate this will be no problem and we will not need this invariance for the application of Lemma 9.) If again Φ : {w : |w| < R} → A 1 is our maximal local isometry, it is in particular holomorphic and locally biholomorphic. So f := g • Φ : {w : |w| < R} → P k (C) is a linearly non-degenerate holomorphic map with fixed global reduced representation

F := G z • Φ = ((g 0 ) z • Φ, ..., (g k ) z • Φ) = (f 0 , ..., f k ) .
Since Φ is locally biholomorphic, the metric on ∆ R induced from ds 2 (cf. (3.6)) through Φ is given by

Φ * ds 2 = 2|G z • Φ| 2 |Φ * dz| 2 = 2|F | 2 | dz dw | 2 |dw| 2 . (3.28)
On the other hand, Φ is locally isometric, so we have

|dw| = |Φ * dτ | = Π q j=1 |G z (H j ) • Φ| ω(j)(1-k m j ) |((G z ) k ) z • Φ| 1+ǫ Π k-1 p=0 Π q j=1 |(ψ(G z ) jp ) z • Φ| ǫ/q ρ * | dz dw ||dw| .
By (3.11) and (3.12) we have

((G z ) k ) z • Φ = ((G z • Φ) k ) w ( dw dz ) σ k = (F k ) w ( dw dz ) σ k , (ψ(G z ) jp ) z •Φ = (ψ(G z •Φ) jp ) w •( dw dz ) σp = (ψ(F ) jp ) w •( dw dz ) σp , (0 ≤ p ≤ k) .
Hence, by definition of ρ in (3.21), we have

| dw dz | = Π q j=1 |G z (H j ) • Φ| ω(j)(1-k m j ) |((G z ) k ) z • Φ| 1+ǫ Π k-1 p=0 Π q j=1 |(ψ(G z ) jp ) z • Φ| ǫ/q ρ * = Π q j=1 |F (H j )| ω(j)(1-k m j ) |(F k ) w | 1+ǫ Π k-1 p=0 Π q j=1 |(ψ(F ) jp ) w | ǫ/q ρ * 1 | dw dz | hρρ * .
So by the definition of ρ * in (3.23), we get

| dz dw | = |(F k ) w | 1+ǫ Π k-1 p=0 Π q j=1 |(ψ(F ) jp ) w | ǫ/q Π q j=1 |F (H j )| ω(j)(1-k m j ) ρ * 1+hρρ * = |(F k ) w | 1+ǫ Π k-1 p=0 Π q j=1 |(ψ(F ) jp ) w | ǫ/q Π q j=1 |F (H j )| ω(j)(1-k m j ) 1 h . Moreover, |(ψ(F ) jp ) w | ≤ |(F p ) w (H j )
| by the definitions, so we obtain 

| dz dw | ≤ |(F k ) w | 1+ǫ Π k-1 p=0 Π q j=1 |(F p ) w (H j )| ǫ/q Π q j=1 |F (H j )| ω(j)(1-k m j ) 1 h . ( 3 
Φ * ds √ 2|F | |(F k ) w | 1+ǫ Π k-1 p=0 Π q j=1 |(F p ) w (H j )| ǫ/q Π q j=1 |F (H j )| ω(j)(1-k m j ) 1 h |dw|.
By (3.17) and (3.19) all the conditions of Lemma 9 are satisfied. So we obtain by Lemma 9 :

Φ * ds C( 2R R 2 -|w| 2 ) ρ |dw| .
Since by (3.22) we have 0 < ρ < 1, it then follows that

d Γ 0 Γ 0 ds = 0,w 0 Φ * ds C • R 0 ( 2R R 2 -|w| 2 ) ρ |dw| < +∞,
where d Γ 0 denotes the length of the divergent curve Γ 0 in M, contradicting the assumption of completeness of M. Claim 1 is proved.

Step 3: We will "symmetrize" the metric dτ 2 constructed in step 2 so that it will become a complete and flat metric on Int(A) \ (S ∪ S) (with S another discrete subset).

We introduce a new coordinate ξ(z) := 1/z on A = {z : 1/r ≤ |z| < r}. By (3.10) we have S = {z : Π

k p=0 Π q j=1 (ψ(G z ) jp ) z (z) = 0} = {z : Π k p=0 Π q j=1 (ψ(G ξ ) jp ) ξ (z) = 0}
(where the zeros are taken with the same multiplicities) and since by (3.26) dτ 2 is independent of the coordinate z, the change of coordinate ξ(z) = 1/z yields an isometry of A \ S onto the set à \ S, where à := {z : 1/r < |z| ≤ r} and S := {z : Π k p=0 Π q j=1 (ψ(G z ) jp ) z (1/z) = 0}. In particular we have

dτ 2 = Π q j=1 |G ξ (H j )(1/z)| ω(j)(1-k m j ) |((G ξ ) k ) ξ (1/z)| 1+ǫ Π k-1 p=0 Π q j=1 |(ψ(G ξ ) jp ) ξ (1/z)| ǫ/q 2ρ * |d(1/z)| 2 = Π q j=1 |G z (H j )(1/z)| ω(j)(1-k m j ) |((G z ) k ) z (1/z)| 1+ǫ Π k-1 p=0 Π q j=1 |(ψ(G z ) jp ) z (1/z)| ǫ/q 2ρ * |dz| 2 .
We now define

dτ 2 = Π q j=1 |G z (H j )(z)G z (H j )(1/z)| ω(j)(1-k m j ) |((G z ) k ) z (z)((G z ) k ) z (1/z)| 1+ǫ Π k-1 p=0 Π q j=1 |(ψ(G z ) jp ) z (z)(ψ(G z ) jp ) z (1/z)| ǫ/q 2ρ * |dz| 2 = λ 2 (z)|dz| 2 ,
on Ã1 := {z : 1/r < |z| < r}\{z : Π k p=0 Π q j=1 (ψ(G z ) jp ) z (z)(ψ(G z ) jp ) z (1/z) = 0}. Then dτ 2 is complete on Ã1 : In fact by what we showed above we have: Towards any point of the boundary ∂ Ã1 := {z : 1/r = |z|} ∪ {z : |z| = r} ∪ {z : Π k p=0 Π q j=1 (ψ(G z ) jp ) z (z)(ψ(G z ) jp ) z (1/z) = 0} of Ã1 , one of the factors of λ 2 (z) is bounded from below away from zero, and the other factor is the one of a complete metric with respect of this part of the boundary. Moreover by the corresponding properties of the two factors of λ 2 (z) it is trivial that dτ 2 is a continuous nowhere vanishing and flat metric on Ã1 .

Step 4 : We produce a contradiction by using Lemma 10 to the open Riemann surface ( Ã1 , dτ 2 ) : In fact, we apply Lemma 10 to any point p ∈ Ã1 . Since dτ 2 is complete, there cannot exist a divergent curve from p to the boundary ∂ Ã1 with finite length with respect to dτ 2 . Since Φ : ∆ R 0 → Ã1 is a local isometry, we necessarily have R 0 = ∞. So Φ : C → Ã1 ⊂ {z : |z| < r} is a non-constant holomorphic map, which contradicts to Liouville's theorem. So our assumption (3.15) was wrong. This proves the Main Theorem.

Proof. (of Corollary 1 and Corollary 2) We first observe that the inequality (1.1) in the Main Theorem is equivalent to the inequality

ℓ(k) := k 2 2 -k • (( q j=1 1 m j ) + N - 1 2 ) ≤ 2N -q + 1 , (3.30) 
where ℓ is a function defined on N ∩ [1, m -1]. Observing that m -1 ≤ N , it is easy to see that the function ℓ is monotonely decreasing, so if (3.30) is satisfied for some 1 ≤ k ≤ m -1, it is also satisfied for k = m -1. This proves Corollary 1. To prove Corollary 2, we apply the inequality (1.3) of Corollary 1 to the q := σ m + 1 hyperplanes H 1 , ..., H q assuming that g meets the first q -1 of these hyperplanes only finitely often. Then we get (1 -m-1 mq ) ≤ 0, which is equivalent to m q ≤ m -1.
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