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1 Introduction

Kronecker coefficients are the structure constants for the tensor products of irreducible represen-
tations of symmetric groups. Their computation is thus an old and important problem in finite
group theory. Through Schur-Weyl duality, they can be interpreted as multiplicities in Schur
powers of tensor products and their computation becomes a problem in invariant theory. Ap-
plying the Borel-Weil theorem we can see Schur powers of tensor products as spaces of sections
of equivariant line bundles on flag varieties, and the problem can be interpreted as a question
about Hamiltonian actions on symplectic manifolds. It can also be considered in relation with
marginal problems in quantum information theory. Each of these perspectives gives access to
interesting pieces of information about Kronecker coefficients, which can be very hard to obtain,
or even to guess, from a different perspective. But although we have these several points of
views on the Kronecker coefficients, each revealing some part of their properties, they remain
quite mysterious, and very basic problems seem completely out of reach at this moment. Let us
mention a few important ones.

1. No combinatorial formula is known. We would like the Kronecker coefficients to count
some combinatorial objects. Or points in polytopes.

2. A few linear conditions for Kronecker coefficients to be non zero are known. We would
like to know all of them. In the terminology of this paper, we would like to know the faces
of the Kronecker polyhedra.

3. These polyhedra being described, we would like to know how far we are from being able to
decide whether a Kronecker coefficient is zero or not. This is a saturation type problem,
related to Mulmuley’s conjecture that this decision problem is in P.

4. We would like to understand stretched Kronecker coefficients. They are given by certain
quasipolynomials, which we would like to be able to compute efficiently.

The analogue problems for Littlewood-Richardson coefficients have been solved. The Littlewood-
Richardson rule gives a combinatorial recipe for their computation, which can be interpreted
as a count of integral points in polytopes, once translated in terms of hives or honeycombs, for
example. The full list of linear inequalities is known and gives a solution to the famous Horn
problem (see eg [7] for a survey). They are enough to decide whether a Littlewood-Richardson
coefficients is zero or not, a decision problem which is definitely in P. Finally the stretched
versions have been studied and are in fact given by polynomials, not just quasipolynomials [22].
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This gives some hope for the seemingly similar Kronecker coefficients. There are two dif-
ferent ways to appreciate the connections between these two families of numbers. Littlewood-
Richardson coefficients are multiplicities in Schur powers of direct sums rather than tensor prod-
ucts. They are also special Kronecker coefficients: in fact, quite remarkably there is a special
facet of the Kronecker polyhedron which is exactly a Littlewood-Richardson polyhedron. The
latter is known to be generated by the triple of partitions for which the Littlewood-Richardson
coefficient is exactly one, and there is a remarquable equivalence

cνλ,µ = 1 ⇐⇒ ckνkλ,kµ = 1 ∀k ≥ 1.

Such a property will certainly not hold for Kronecker coefficients, but it suggests to introduce
the following definition:

Definition. A triple of partitions (α, β, γ) is weakly stable if the Kronecker coefficients

g(kα, kβ, kγ) = 1 ∀k ≥ 1.

It is stable if g(α, β, γ) 6= 0 and for any triple (λ, µ, ν), the sequence of Kronecker coefficients
g(λ+ kα, µ + kβ, ν + kγ) is bounded (or equivalently, eventually constant).

Stability was introduced in [24] by Stembridge, who proved that it implies weak stability
and conjectured that the two notions are in fact equivalent. From the Kronecker polyhedron
perspective, stable or weakly stable triples will correspond to very special boundary points.

One of the main objectives of the present paper is to explain how to construct large families
of stable triples. Moreover we will be able to describe the Kronecker polyhedron locally around
these special points, including by giving explicit equations of the facets they belong to.

Our main tool for studying the Kronecker coefficients will be Taylor expansion. This might
look strange at first sight, but recall that using Schur-Weyl duality and the Borel-Weil theorem
we can interpret them in terms of spaces of sections of line bundles on flag manifolds. In this
context it is very natural to use some basic analytic tools, like Taylor expansion, in order to
analyze such sections. We will use these Taylor expansions around certain flag subvarieties,
and the fact that these subvarieties allow us to control the Kronecker coefficients will depend on
certain combinatorial properties of standard tableaux. The key concept here is that of additivity,
studied in detail by Vallejo [25, 27]. In fact this concept already appears in [12], where very
similar ideas are introduced and used to understand certain asymptotic properties of plethysms.
Section 3 of [12] is in fact already devoted to Kronecker coefficients: we explained how the
method could be used in this context, what was the role of the additivity property, how we
could deduce infinite families of stable triples, and much more. In the present paper we explain
our approach in greater detail in the specific context of Kronecker coefficients, and go a bit
further than in [12]. Our results are the following:

1. We show that in a very general setting, stable triples can be obtained through equivariant
embeddings of flag manifolds. The asymptotics of the Kronecker coefficients are then
governed by the properties of the normal bundle of the embedding, whose weights must be
contained in an open half space. When this occurs, a very general stability phenomenon
can be observed, and the limit multiplicities can be computed. In particular the local
structure of the Kronecker polyhedron can be described (Theorem 2).

2. The simplest example is a Segre embedding of a product of projective spaces. This takes
care of the very first instance of stability, discovered by Murnaghan a very long time ago [19,
20], which corresponds to the simplest stable triple (1, 1, 1). This immediately leads to an
expression of the limit multiplicities, traditionnally called reduced Kronecker coefficients.
Moreover this can readily be generalized: considering the product of a projective space

2



by a Grassmannian we recover a stability property called k-stability by Pak and Panova
[21], and we are able to compute the limit mutiplicities (Proposition 3). Of course this
further generalizes to a general product of Grassmannians, which yields a new stability
property. In fact, what we show is that (1ab, ab, ba) is always a stable triple (Proposition
4). Moreover we can in principle compute the limit multiplicities.

3. Turning to products of flag varieties we explain why the convexity property of the normal
bundle of an embedding defined by a standard tableau is in fact equivalent to the property
that the tableau is additive (Proposition 6). In fact this is already contained in [12], even in
its version generalized to multitableaux. What we explain in the present paper is how the
additive tableaux define minimal regular faces of the Kronecker polyhedron (Proposition
9). Moreover, we describe all the facets containing these minimal faces in terms of special
tableaux that we call maximal relaxations (Proposition 10). The corresponding inequalities
are completely explicit (Propositions 11 and 12).

4. Each of these special facets consists in stable triples, that we therefore obtain in abundance.
Moreover, for each of these triples there is a corresponding notion of reduced Kronecker
coefficients. When the stable triple is regular, which is the generic case, we compute
this reduced Kronecker coefficient as a number of integral points in an explicit polytope
(Proposition 8). As we mentionned above, this is something we would very much like to
be able to do for general Kronecker coefficients.

5. The last section of the paper is devoted to certain Kronecker coefficients for partitions of
rectangular shape. There are some nice connections with the beautiful theory of θ-groups
of Vinberg and Kac (Proposition 13). In particular we prove an identity suggested by
Stembridge in [24] by relating it to the affine Dynkin diagram of type E6 (see Proposition
14, which also contains an interesting identity coming from affine D4).

Acknowledgements. This paper was begun in Berkeley during the semester on Algorithms and
Complexity in Algebraic Geometry organized at the Simons Institute for Computing, and com-
pleted in Montréal at the Centre de Recherches Mathématiques (Université de Montréal) and the
CIRGET (UQAM). The author warmly thanks these institutions for their generous hospitality.

2 From Kronecker to Borel-Weil

2.1 Schur-Weyl duality

For any integer n, the irreducible complex representations of the symmetric group Sn are nat-
urally parametrized by partitions of n [13]. We denote by [λ] the representation defined by the
partition λ of n (we use the notation λ ⊢ n to express that λ is a partition of n, in which case we
also say that λ has size n). The Kronecker coefficients can be defined as dimensions of spaces
of Sn-invariants inside triple tensor products:

g(λ, µ, ν) = dim([λ]⊗ [µ]⊗ [ν])Sn .

Since the irreducible representations of Sn are defined over the reals, they are self-dual and
therefore, we can also interprete the Kronecker coefficients as multiplicities in tensor products:

[λ]⊗ [µ] =
⊕

ν⊢n

g(λ, µ, ν)[ν].

Schur-Weyl duality allows to switch from representations of symmetric groups to representa-
tions of general linear groups. Recall that irreducible polynomial representations of GL(V ) are
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parametrized by partitions with at most d = dimV non zero parts. We denote by SλV the
representation defined by the partition λ. Schur-Weyl duality can be stated as an isomorphism

V ⊗n =
⊕

λ⊢n

[λ]⊗ SλV

between Sn × GL(V )-modules. Here the summation is over all partitions λ of n with at most
d non zero parts (the number of non zero parts will be called the length and denoted ℓ(λ)). A
straightforward consequence is that

g(λ, µ, ν) = mult(SλV⊗ SµW,Sν(V ⊗W)),

as soon as the dimensions of V andW are large enough; more precisely, as soons as dim(V ) ≥ ℓ(λ)
and dim(W ) ≥ ℓ(µ). Note that consequently, we get the classical result that

g(λ, µ, ν) = 0 if ℓ(ν) > ℓ(λ)ℓ(µ).

2.2 The Borel-Weil theorem and its consequences

The GL(U)-representation SλU is called a Schur module. It is defined more generally for λ
an arbitrary non increasing sequence of integers of length equal to the dimension of U . The
Borel-Weil theorem asserts that such a Schur module can be realized as a space of sections of a
linearized line bundle Lλ on the complete flag variety Fl(U). We can therefore understand the
Kronecker coefficients as the mutiplicities in the decomposition of

Sν(V ⊗W ) = H0(Fl(V ⊗W ), Lν)

into irreducible GL(V )×GL(W )-modules.
A direct (well-known) consequence of the Borel-Weil theorem is that the direct sum of all the

Schur powers of a given vector space U has a natural algebra structure. This algebra is finitely
generated, and therefore if we let U = V ⊗W , the subalgebra of GL(V )×GL(W )-covariants is
also finitely generated (this is a consequence of the fact that the unipotent radical of a reductive
algebraic group is a Grosshans subgroup). This implies the following result. Consider

Krona,b,c := {(λ, µ, ν), ℓ(λ) ≤ a, ℓ(µ) ≤ b, ℓ(ν) ≤ c, g(λ, µ, ν) 6= 0}.

Proposition 1 (Semigroup property) Krona,b,c is a finitely generated semigroup.

(The semigroup property is Conjecture 7.1.4 in [10], where finite generation is also a con-
jecture.) Moreover, since the covariant algebra is described in terms of saces of sections of line
bundles, it has no zero divisor. This implies the following monotonicity property:

Proposition 2 (Monotonicity) If g(λ, µ, ν) 6= 0, then for any triple (α, β, γ),

g(α+ λ, β + µ, γ + ν) ≥ g(α, β, γ).

Remark. In fact a stronger property is true: there exists a natural map

([λ]⊗ [µ]⊗ [ν])Sn ⊗ ([α] ⊗ [β]⊗ [γ])Sp −→ ([λ+ α]⊗ [µ + β]⊗ [ν + γ])Sn+p

which is non zero on decomposable tensors. It could be interesting to understand this map
better.
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2.3 The Kronecker polyhedron

The semigroup Krona,b,c lives inside Z
a+b+c, more precisely inside a codimension two sublattice

because of the obvious condition |λ| = |µ| = |ν| for a Kronecker coefficient g(λ, µ, ν) to be non
zero. Consider the cone generated by Krona,b,c. The finite generation of the latter implies that
this is a rational polyhedral cone PKrona,b,c, defined by some finite list of linear inequalities.

The interpretation in terms of sections of line bundles on flag manifolds allows to understand
this polytope as a moment polytope, and to use the powerful results that has been obtained in
this context using the tools of Geometric Invariant Theory, or in an even broader, not necessarily
algebraic context, those of Symplectic Geometry.

On the GIT side, there exist general statements that allow, in principle, to determine moment
polytopes and in particular the Kronecker polyhedron PKrona,b,c. For example Klyachko in
[10] suggested to use the results of Berenstein and Sjamaar, and applied them in small cases.
This method has recently been improved in [29]. This approach has two important limitations.
First, it describes the moment polytope by a collection of inequalities which is in general far
from being minimal: this means that even if one was able to list these inequalities, many of
them would in fact not correspond to any facet of the polytope and would be redundant with
the other ones. Second, even if far from being satisfactory, the effective production of this
collection of inequalities would require the computation of certain Schubert constants in some
complicated homogeneous spaces, which seems combinatorially an extremely hard challenge.
More precisely, one would need to decide whether certain Schubert constants are zero or not,
which is certainly more accessible than computing them but is certainly far beyond our current
level of undertanding.

The first issue has been essentially solved by Ressayre [23], who devised a way to produce, in
principle, a minimal list of inequalities of certain moment polytopes: that is, a list of its facets, or
codimension one faces. This approach has been remarkably successful for Littlewood-Richardson
coefficients. However, applying them concretely to the Kronecker polyhedron PKrona,b,c seems
completely untractable at the moment.

At least do we know the Kronecker polyhedron PKrona,b,c for small values of a, b, c. For
example ([10, 6]) PKron3,3,3 is defined by the following seven inequallities, and those obtained
by permuting the partitions λ, µ, ν:

λ1 + λ2 ≤ µ1 + µ2 + ν1 + ν2,
λ1 + λ3 ≤ µ1 + µ2 + ν1 + ν3,
λ2 + λ3 ≤ µ1 + µ2 + ν2 + ν3,

λ1 + 2λ2 ≤ µ1 + 2µ2 + ν1 + 2ν2,
λ2 + 2λ1 ≤ µ1 + 2µ2 + ν2 + 2ν1,
λ3 + 2λ2 ≤ µ1 + 2µ2 + ν3 + 2ν2,
λ3 + 2λ2 ≤ µ2 + 2µ1 + ν2 + 2ν3.

Klyachko made extensive computations showing an overwhelming growth of complexity when
the parameters increase. For example he claims that PKron2,3,6 is defined by 41 inequalities,
PKron2,4,8 by 234 inequalities and PKron3,3,9 by no less than 387 inequalities!

2.4 The quasipolynomiality property

The problem of understanding multiplicities in spaces of sections of line bundles is at the core
of the study of Hamiltonian actions on symplectic manifolds. The Quantization commutes with

Reduction type results have very strong consequences in the context we are interested in. In the
algebraic setting, one starts with a smooth projective complex variety M with an action of a
reductive group G, and an ample G-linearized line bundle L on M . In this context one considers
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the virtual G-module
RR(M,L) = ⊕q≥0(−1)qHq(M,L),

whose dimension is given by the Grothendieck-Riemann-Roch formula. It is then a very general
statement, due to Meinrenken and Sjamaar [17] (see also [28]), that for any dominant weight α,
the multiplicity of the irreducible G-module of highest weight kα inside the virtual G-module
RR(M,Lk) is given by a quasipolynomial function of k.

Of course we will apply this result to G = GL(U) × GL(V ) × GL(W ) acting on M =
P(U ⊗ V ⊗ W ), and L the hyperplane line bundle on this projective space. Since ample line
bundles on projective spaces have no higher cohomology, we are in the favorable situation where
RR(M,Lk) is just the actual G-module H0(M,Lk) = Sk(U ⊗ V ⊗ W )∗, whose multiplicities
are precisely the Kronecker coefficients. Applying the full force of Meinrenken and Sjamaar’s
results, we deduce the following statement:

Theorem 1 The stretched Kronecker coefficient g(kλ, kµ, kν) is a piecewise quasi-polynomial

function of (k, λ, µ, ν). More precisely, there is a finite decomposition of the Kronecker poly-

hedron PKrona,b,c into closed polyhedral subcones called chambers, and for each chamber C a

quasi-polynomial pC(k, λ, µ, ν), such that

g(kλ, kµ, kν) = pC(k, λ, µ, ν)

whenever (λ, µ, ν) belongs to C.

Corollary 1 For any triple (λ, µ, ν), the stretched Kronecker coefficient g(kλ, kµ, kν) is a quasi-

polynomial function of k ≥ 0.

The monotonicity property of Kronecker coefficients easily implies that whenever (λ, µ, ν)
is in the interior of the Kronecker polyhedron, the stretched Kronecker coefficient g(kλ, kµ, kν)
grows as fast as possible, in the sense that if g(λ, µ, ν) 6= 0, then

g(kλ, kµ, kν) ≃ C(λ, µ, ν)kngen .

Here we denoted by ngen the generic order of growth, which is also the generic dimension of the
GIT-quotient M//G. For PKrona,b,c we get the value

ngen = abc− a2 − b2 − c2 + 2.

Moreover the coefficient C(λ, µ, ν) can be expressed as the volume of the so-called reduced space
M(λ,µ,ν) (see [28], page 21). This volume function is given by the Duistermaat-Heckman measure,
which is piecewise polynomial, and not just quasipolynomial.

Conversely, if g(λ, µ, ν) 6= 0 and g(kλ, kµ, kν) grows like kn for some n < ngen, then the
triple (λ, µ, ν) must belong to the boundary of PKrona,b,c. The extreme case is when n = 0. As
observed in [24], this can happen only if g(kλ, kµ, kν) = 1 for all k ≥ 1. Otherwise said, (λ, µ, ν)
is a weakly stable triple.

The quasi-polynomiality property has attracted the attention of several authors. Most of
them realized that general arguments based on finite generation of covariant rings implied the
eventual quasipolynomiality of the stretched Kronecker coefficients, that is, g(kλ, kµ, kν) is given
by some quasipolynomial for large enough k. The much stronger property that the stretched
Kronecker coefficients are quasipolynomial right from the beginning seem to be much less ac-
cessible using algebraic methods only. It was asked as a question in [24]. It is also discussed in
[18] and some explicit computations appear in [1].
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Remark 1. One interesting implication of the quasipolynomiality property is that, knowing the
Kronecker coefficients asymptotically, in fact we know them completely. Could this be useful to
find triples (λ, µ, ν) in the Kronecker polyhedron, such that g(λ, µ, ν) = 0? The study of such
holes seems extremely challenging, but is of the greatest importance for Geometric Complexity
Theory [4].

Remark 2. We have noticed that although the stretched Kronecker coefficient g(kλ, kµ, kν) is a
quasi-polynomial function of k ≥ 0, its highest order term is really polynomial. More generally,
examples show that the period of the coefficients seem to increase when one consider terms of
lower degrees. It would be interesting to prove an explicit statement of this type.

3 Kronecker coefficients and Taylor expansions

3.1 The general setup

In [12] we suggested a method which easily produces lots of stable triples, and yields much more
informations about Kronecker coefficients. The idea is very general: we can study a space of
sections of any line bundle L on any smooth irreducible variety X by taking the Taylor expansion
of these sections along a smooth subvariety Y . To be more precise, we can define a filtration of
H0(X,L) by the order of vanishing along Y ; more formally, we let

Fi = H0(X, IiY ⊗ L) ⊂ H0(X,L),

where IY is the ideal sheaf of Y . Let ι : Y →֒ X denote the inclusion map. The quotients
IiY /I

i+1
Y = ι∗S

iN∗, for N = ι∗TX/TY the normal vector bundle of Y in X. Therefore there are
natural injective maps

Fi/Fi+1 →֒ H0(Y, ι∗L⊗ SiN∗).

In words, this map takes a section of L vanishing to order i on Y , to the degree i part of its
Taylor expansion in the directions normal to Y . The injectivity is clear: if the degree i part of
the Taylor expansion is zero, then the section vanishes on Y at order i+ 1.

In general, it will be quite difficult to determine the image of these maps. But the situation
improves dramatically if we suppose that L is a sufficiently large tensor power of some given
ample line bundle M on X. Indeed, it follows from the general properties of ample line bundles
that for any fixed integer i, the map

Fi/Fi+1 →֒ H0(Y, ι∗Mk ⊗ SiN∗)

must be surjective for k large enough. (This is a straightforward and very classical consequence
of Serre’s vanishing theorems for ample sheaves.)

Let us suppose moreover that the whole setting is preserved by the action of some reductive
group G. Then our filtration splits as a filtration by G-submodules, and a splitting yields an
injection of G-modules

H0(X,Mk) →֒ H0(Y, ι∗Mk ⊗ S∗N∗).

In fact this statement certainly holds true without any ampleness assumption: it simply asserts
that an algebraic section of a line bundle is completely determined by its full Taylor expansion.
In case M is ample, we have a very important extra information: we know that the right hand
side is generated by the left hand side up to any given degree, if k is sufficiently large.
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3.2 Application to Kronecker coefficients

We want to apply the previous ideas in the following situation. The variety X will be a flag
manifold of a tensor product V ⊗ W , not necessarily a complete flag; its type (by which we
mean the sequence of dimensions of the subspaces in the flag) will be allowed to vary, so we will
just denote it by Fl∗(V ⊗W ). The line bundle M will be some Lλ. If we need it to be ample
the jumps in the partition λ will have to be given exactly by the type of the flag manifold, in
which case we will say that λ is strict (one should add: relatively to the flag manifold under
consideration). The subvariety Y of X will be a product Fl∗(U) × Fl∗(V ) of flag manifolds of
certain types, and we will need to construct the embedding ι. Of course our reductive group
will be G = GL(V )×GL(W ).

We have Y = G/P for some parabolic subgroup P of G. It is well known that the category
of G-equivariant vector bundles on Y is equivalent to the category of finite dimensional P -
modules. Such modules can be quite complicated since P is not reductive. Let us consider a
Levi decomposition P = LUP , where UP denotes the unipotent radical of P and L is a Levi
factor, in particular a reductive subgroup of P . We can consider L-modules as P -modules with
trivial action of UP , and conversely. In general, any P -module has a canonical filtration by
P -modules, such that the associated graded P -module has a trivial action of UP . We can then
consider it as an L-module and decompose it as a sum of irreducible modules, as in the usual
theory of representations of reductive groups. Equivalentely, any G-homogeneous vector bundle
E as an associated graded homogeneous bundle gr(E), which is a direct sum of irreducible ones.
Cohomologically speaking, and even at the level of global sections, E and gr(E) can be quite
different. In fact E can in principle be reconstructed from gr(E) through a series of extensions
than can mix up the cohomology groups in a complicated fashion. Note however that H0(Y,E)
is always a G-submodule of H0(Y, gr(E)).

Example. On a complete flag variety, the irreducible bundles are exactly the line bundles. On
a variety of incomplete flags Fl∗(U) this is no longer true, but we can obtain them as follows.
Denote by p : Fl(U) → Fl∗(U) the natural projection map (which takes a complete flag and
simply forgets some of the subspaces in it). Consider a line bundle Lλ on Fl(U). Then the
pushforward Eλ = p∗Lλ is an irreducible homogeneous vector bundle on Fl∗(U) and they are
all obtained in this way. (In particular, if λ is strict then Eλ is exactly the line bundle Lλ on
Fl∗(U), for which we use the same notation.) Note that the Borel-Weil theorem extends to all
the irreducible bundles:

H0(Fl∗(U), Eλ) = H0(Fl(U), Lλ) = SλU.

Definition. The embedding ι is stabilizing if the normal bundle has the following convexity
property: the highest weights of the positive degree part of the symmetric algebra S∗(gr(N∗)),
considered as an L-module, are contained in some open half space of the weight lattice of L.

The line bundle ι∗Lλ will be of the form La(λ) ⊗ Lb(λ) for some weights a(λ) and b(λ)
depending linearly on λ. More generally, given an irreducible homogeneous vector bundle Eα on
Fl∗(V ⊗W ), we will need to understand its pull-back by ι. The resulting homogeneous bundle
will scarcely be completely reducible. The associated graded bundle is of the form

gr(ι∗Eα) =
⊕

(ρ,σ)∈T (α)

Eρ ⊗Eσ

for some multiset T (α).
Our main result is the following.

Theorem 2 Suppose that the embedding ι is stabilizing. Let λ be any strict partition. Then
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1. The Kronecker coefficient g(kλ, ka(λ), kb(λ)) = 1 for any k ≥ 0.

2. For any triple (α, β, γ) the Kronecker coefficient g(α + kλ, β + ka(λ), γ + kb(λ)) is a

non decreasing, bounded function of k, hence eventually constant. Otherwise said, the

triple(λ, a(λ), b(λ)) is stable.

3. If moreover λ is ample, then the limit Kronecker coefficient is given by the multiplicity of

the weight (β, γ) inside gr(ι∗Eα)⊗ S∗(gr(N∗)).

4. In particular, if α is strict, this is the multiplicty of (β−a(α), γ−b(α)) inside S∗(gr(N∗)).

Proof. The Kronecker coefficients g(kλ, ka(λ), kb(λ)) are positive since the restriction map

Skλ(V ⊗W ) = H0(Fl∗(U), Lk
λ) −→ H0(Fl∗(V )× Fl∗(W ), ι∗Lk

λ) = Ska(λ)V ⊗ Skb(λ)W

is surjective. Indeed this map is non zero since the line bundle Lλ is generated by global sections,
which means that it has a section that does not vanish at any given point. The surjectivity then
follows from Schur’s lemma since the right hand side is irreducible. Moreover, we have seen that
Taylor expansions induces a G-embedding

Skλ(V ⊗W ) →֒ H0(Fl∗(V )× Fl∗(W ), ι∗Lk
λ ⊗ S∗(N∗)).

As we also noticed, replacing N∗ by gr(N∗) can only result in making the right hand side larger,
so we even have an inclusion

Skλ(V ⊗W ) →֒ H0(Fl∗(V )× Fl∗(W ), ι∗Lk
λ ⊗ S∗(gr(N∗))).

By the Borel-Weil theorem, the right hand side is now a sum of irreducible GL(V ) × GL(W )-
modules whose highest weights are of the form (ka(λ), kb(λ)) plus a highest weight of S∗(gr(N∗)).
But since these weights are supposed to belong to a strictly convex cone, none can give a positive
contribution of highest weight (ka(λ), kb(λ)) except the weight zero in degree zero. This proves
that g(kλ, ka(λ), kb(λ)) = 1 for any k ≥ 0.

Now consider an arbitrary triple (α, β, γ). By the Borel-Weil theorem again, we have

Sα+kλ(V ⊗W ) = H0(Fl∗(U), Eα ⊗ Lk
λ).

This immediately implies that g(α+ kλ, β + ka(λ), γ + kb(λ)) is a non decreasing function of k,
by considering the map

H0(Fl∗(U), Eα ⊗ Lk
λ)⊗H0(Fl∗(U), Lλ) −→ H0(Fl∗(U), Eα ⊗ Lk+1

λ )

and its restriction through ι. Moreover, the same approach using Taylor expansions can then
be used without much change, in particular we get an injection

Sα+kλ(V ⊗W ) →֒ H0(Fl∗(V )× Fl∗(W ), gr(ι∗Eα)⊗ ι∗Lk
λ ⊗ S∗(gr(N∗))).

The same argument as before then implies that g(α+kλ, β+ka(λ)) is bounded by the multiplicity
of the representation of highest weight (β, γ) inside gr(ι∗Eα) ⊗ S∗(gr(N∗)), which is finite by
the convexity hypothesis.

What remains to check is that for k large enough, we have in fact equality. But being finite,
the multiplicity (β, γ) inside gr(ι∗Eα) ⊗ S∗(gr(N∗)) only comes from some finite part of the
symmetric algebra of the conormal bundle. Then it follows formally from the properties of
ample line bundles that if k is large enough, all the maps involved in the Taylor expansions
are surjective in boundeed degrees, and it makes no difference to replace all the homogeneous
bundles involved by the associated graded bundles. This concludes the proof. 2
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Corollary 2 The set of triples (λ, a(λ), b(λ)) is a face of the Kronecker polyhedron. Moreover

the local structure of the polyhedron around this face is given by the cone generated by the weights

of S∗(gr(N∗)).

Corollary 3 Limit Kronecker coefficients have the monotonicity property.

In particular, if they are non zero, then they remain nonzero after stretching. Kirillov [9] and
Klyachko [10] conjectured in certain special cases that the converse property, that is saturation,
should hold. We could ask more generally if our limit (or reduced) Kronecker coefficients should
have the saturation property, but we actually have only very limited evidence for that.

Remarks.

1. We have not tried to bound the minimal value of k starting from which the Kronecker
coefficient g(α+kλ, β+ka(λ), γ+kb(λ)) does stabilize, but it would in principle be possible
to give an effective version of the previous theorem. Indeed an irreducible homogeneous
bundle which has non zero sections has no higher cohomology by Bott’s theorem, and
this would be sufficient to ensure for example that replacing the conormal bundle by its
graded associated bundle makes no difference at the level of global sections. Nevertheless
the resulting statements would probably be rather heavy, and presumably not even close
to be sharp.

2. We have expressed the limit multiplicities in a rather compact form, but we will see
that these expressions are in fact very complicated. Moreover they usually involve other
Kronecker coefficients, as well as Littlewood-Richardson coefficients and other interesting
variants. It seems we are playing with Russian dolls, but with growing complexity when
we open a doll to find a smaller, more mysterious one...

3.3 Tangent and normal bundles

In order to apply the previous theorem, we need to be able to understand the normal bundle of
our embedding ι and the associated graded bundle. The starting point for that is of course to
understand the tangent bundle to a flag variety; this is classical and goes as follows.

Suppose we consider a variety Fl∗(V ) of flags (0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr−1 ⊂ Vr = V ) where
Vi has dimension di. Each of these spaces defines a homogeneous vector bundle on Fl∗(V ), but
not irreducible in general. The irreducible homogeneous bundles are obtained by considering
the quotient bundles Qi = Vi/Vi−1, for 1 ≤ i ≤ r. Each of these bundles is irreducible, as well
as each of their Schur powers. More generally, each irreducible vector bundle on Fl∗(V ) is of
the form

Eλ = Sα1
Q1 ⊗ · · · ⊗ SαrQr

for some non increasing sequences (α1, . . . , αr) of relative integers. Each homogeneous vector
bundle F can then be constructed from such irreducible bundles by means of suitable extensions;
the set of irreducible bundles involved does not depends on the process and their sum is gr(F ).
For example we have non trivial exact sequences 0 → Vi−1 → Vi → Qi → 0, and by induction
we deduce that

gr(Vi) = Q1 ⊕ · · · ⊕Qi.

The tangent bundle to Fl∗(V ) at the flag V• = (0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr−1 ⊂ Vr = V ) can be
naturally identified with the quotient of End(V ) by the subspace of endomorphisms preserving
V•. Taking the orthogonal with respect to the Killing form we get a natural identification of the
cotangent bundle:

T ∗
F l∗(V ) ≃ {X ∈ End(V ), X(Vi) ⊂ Vi−1, 1 ≤ i ≤ r}.

From this we can easily deduce the following statement:
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Lemma 1 The associated bundle of the tangent bundle of Fl∗(V ) is

gr(TF l∗(V )) = ⊕1≤i<j≤rHom(Qi, Qj).

In order to describe the normal bundle of an embedding ι : Fl∗(V )×Fl∗(W ) →֒ FL∗(V ⊗W ),
we will have to take the quotients of two such bundles and it is clear that the result will be
quite complicated in general. Rather than writing down general formulas, we will compute
these quotients in certain specific situations; mainly, when there are only few terms (typically
for Grassmannians, whose tangent bundles are irreducible) or for complete flag varieties (whose
irreducible bundles are line bundles, hence much easier to handle).

4 First examples

We now have all the necessary ingredients in hand in order to apply Theorem 2. What remains
to be done is to construct suitable embeddings between flag varieties and determine whether
they are stabilizing. We begin with a few simple examples.

4.1 Murnaghan’s stability

As an appetizer we begin with a well-known instance of stability, first discovered by Murnaghan
[19, 20]. This is the statement that for any triple of partitions (α, β, γ), the Kronecker coefficient
g(α+(k), β +(k), γ+(k)) is eventually constant for large k (a sharp bound on k has been given
in [3]). The limit value is called a reduced Kronecker coefficient and is denoted ḡ(α′, β′, γ′),
where α′ is deduced from α by suppressing the first part.

To interpret this in our setting, consider the Segre embedding

ι : P(V )×P(W ) →֒ P(V ⊗W ).

If L denotes the tautological line bundle on projective space, then with some abuse of notations,
ι∗L = L⊗ L. From Lemma 1 we easily derive that

N = Hom(L, V/L)⊗Hom(L,W/L).

In particular this embedding is clearly stabilizing since any component of S∗N will have negative
degree on both copies of L. This implies Murnaghan’s stability right away.

Moreover, if Q is the quotient bundle on P(V ⊗W ), then the associated bundle of ι∗Q is

gr(ι∗Q) = L⊗W/L⊕ V/L⊗ L⊕ V/L⊗W/L.

Applying Theorem 2, we deduce that ḡ(α′, β′, γ′) is the multiplicity of Sβ′A⊗ Sγ′B inside

Sα′(A⊗B ⊕A⊕B)⊗ S∗(A⊗B).

This is equivalent to Lemma 2.1 in [3]. The monotonicity property that is a special case of
Corollary 3 has been observed in [5].

4.2 k-stability

A generalisation of Murnaghan’s stability has been considered recently by Vallejo [26] and Pak
and Panova [21] This k-stability, as coined by the latter authors, corresponds to the generalized
Segre embedding

ι : P(V )×Gr(k,W ) →֒ Gr(k, V ⊗W ),
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sending a pair (L,M) made of a one dimensional subspace L ⊂ V and a k dimensional subspace
M ⊂ W , to the k dimensional subspace L ⊗ M of V ⊗ W . If L denotes the tautological line
bundle on the Grassmann variety, then ι∗L = Lk ⊗L. Extending the computation we made for
projective spaces we get that

grN = Hom(L, V/L) ⊗ End0(M)⊕Hom(L, V/L) ⊗Hom(M,W/M).

For essentially the same reasons as in the previous case, this embedding is manifestly stabilizing.
This implies Theorem 1.1 in [21] without further ado. Theorem 10.2 in [26] gives an effective
version.

Moreover we have access to the limit multiplicities, called the k-reduced Kronecker coeffi-
cients. For this we need to consider a vector bundle Eλ on Gr(k, V ⊗W ) and pull it back by ι.
Since Eλ is a Schur power of a the quotient bundle Q and

gr(ι∗Q) = L⊗W/M ⊕ V/L⊗W ⊕ V/L⊗W/M,

we get the following result.

Proposition 3 The k-reduced Kronecker coefficient ḡk(λ, µ, ν) is equal to the multiplicity of the

product A
µ−

− ⊗ Sµ+
A+ ⊗ Sν−B− ⊗ Sν+B+ inside

Sλ(A−⊗B+⊕A+⊗B−⊕A+⊗B+)⊗Sym(A∗
−⊗A+⊗End0(B−))⊗Sym(A∗

−⊗A+⊗B∗
−⊗B+).

For Geometric Complexity Theory the most relevant Kronecker coefficients are those indexed
by two partitions with equal rectangular shapes [4]. This corresponds to taking λ and ν equal
to the empty partition. To get a contribution from the previous formula we must avoid all the
terms contributing positively to B+, which kills the second symmetric algebra. The first will
contribute through SµA+ ⊗ Sµ(End0(B−)) (because of the Cauchy formula), and extracting
the term with ν− = 0 means that we take the GL(B−)-invariants inside Sµ(End0(B−)). Since
End0(B−) is just slk, we get:

Corollary 4 The k-reduced Kronecker coefficient ḡk(0, µ, 0) is equal to the dimension of the

GLk-invariant subspace of Sµ(slk).

An effective version of this result was derived in [15] using a completely different method.

It seems interesting to notice that Schur powers of sl(V ) = End0(V ) are often involved
in the stable Kronecker coefficients, along with the Kronecker coefficients themselves and the
Littlewood-Richardson coefficients. These multiplicities are also of interest for themselves; more
generally, many interesting phenomena appear when one considers Schur powers of the adjoint
representation of a simple complex Lie algebra, see eg [11]. Our methods can be applied to the
study of the asymptotics of these coefficients; we hope to come back to this question in a future
paper.

4.3 Grassmannian stability

We can obviously generalize the Segre embedding to any product of Grassmann varieties. For
any positive integers a, b consider the natural embedding

ι : Gr(a, V )×Gr(b,W ) →֒ Gr(ab, V ⊗W ).

If L denotes the tautological line bundle on the Grassmann variety, then ι∗L = Lb ⊗ La. Ex-
tending the computation we made for projective spaces we get that

grN = End0(A)⊗Hom(B,W/B)⊕Hom(A,V/A)⊗End0(B)⊕Hom(A,V/A)⊗Hom(B,W/B).

This embedding is again stabilizing and we get right away the following generalization of k-
stability.
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Proposition 4 Let a, b be positive integers. For any triple (λ, µ, ν), the Kronecker coefficient

g(λ+ (t)ab, µ+ (at)b, ν + (bt)a)

is a non decreasing, eventually constant, function of t.

We could call the limits (a, b)-reduced Kronecker coefficients, and provide an expression
generalizing Theorem 3. We leave this to the interested reader. Note that in this statement
(λ, µ, ν) are not just partitions but integer sequences for which the arguments of the Kronecker
coefficient are partitions, at least for large enought t. For example λ = (λ+, λ−) where λ+ is a
non decreasing sequence of length ab (with possibly negative entries), and λ− is a partition (of
arbitrary length).

Note that when λ− is the empty partition, drastic simplifications occur. This follows from
the usual formula Sα+(t)dV = SαV ⊗ (detV )t when d is the dimension of V . Since det(A⊗B) =

(detA)dimB ⊗ (detB)dimA, we deduce that

g(λ + (t)ab, µ+ (at)b, ν + (bt)a) = g(λ, µ, ν).

This is Theorem 3.1 in [25].

5 Stability and standard tableaux

5.1 Classification of embeddings

In this section we focus on the equivariant embeddings of complete flag varieties

ι : Fl(A) × Fl(B) →֒ Fl(A⊗B),

the combinatorics being more transparent in that case. Denote by a and b the respective
dimensions of A and B. The following two statements appear in [12]:

Proposition 5 The equivariant embeddings ι : Fl(A) × Fl(B) →֒ Fl(A ⊗ B) are classified by

standard tableaux of rectangular shape a× b.

Let T be such a standard tableau of rectangular shape a× b. The corresponding embedding
ιT is defined as follows. Let A• and B• be two complete flags in A and B respectively. Choose
adapted basis u1, . . . , ua of A and v1, . . . , vb of B, that is, such that Ai = 〈u1, . . . , ui〉 and
Bj = 〈v1, . . . , vj〉. Then define the complete flag C• in A⊗B by

Ck = 〈ui ⊗ vj , T (i, j) ≤ k〉.

Here T (i, j) denotes the entry of T in the box (i, j). Clearly this flag does not depend on the
adapted basis but only on the flags, and we can let ιT (A•, B•) = C•.

Proposition 6 The embedding ιT : Fl(A) × Fl(B) →֒ Fl(A ⊗ B) is stabilizing if and only if

the standard tableau T is additive.

Here we use the terminology of Vallejo, the additivity condition being used in [27]. In our
paper [12] no special terminology was introduced for this additivity property, which means the
following: there exist increasing sequences x1 < · · · < xa and y1 < · · · < yb such that

T (i, j) < T (k, l) ⇐⇒ xi + yj < xk + yl.
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Remark. There is a huge number of embeddings ιT : recall that by the hook length formula,
the number of standard tableaux of shape a × b is ST (a, b) = (ab)!/h(a, b), where h(a, b) =
(a+ b− 1)!!/(a− 1)!!(b− 1)!!. This grows at least exponentially with a and b. Among these, the
proportion of additive tableaux probably tends to zero when a and b grow, but their number
should still grow exponentially. Note that each of this additive tableau corresponds to a certain
chamber in the complement of the arrangement of hyperplanes Hijkl defined by the equalities
xi + yj = xk + yl in Ra+b−2

+ (we may suppose that x1 = y1 = 0). This looks very much like the
hyperplance arrangement associated to a root system.

The partitions aT (λ) and bT (λ) such that ι∗TLλ = LaT (λ) ⊗ LbT (λ) are easily described; one
just needs to read the entries in each line or column of T and sum the corresponding parts of λ:

aT (λ)i =
b∑

j=1

λT (i,j), bT (λ)j =
a∑

i=1

λT (i,j).

5.2 (T, λ)-reduced Kronecker coefficients

Applying our general statements of Theorem 2, we get:

Proposition 7 Let T be any additive tableau. For any partition λ, the triple (λ, aT (λ), bT (λ))
is stable.

Although this statement does not appear explicitely in [12], it is discussed p.735, in the
paragraph just before the Example. It was recently rediscovered by Vallejo [27], inspired by the
work of Stembridge [24], and following a completely different approach. (As a matter of fact
there is a slight difference between our definition of additivity and that of Vallejo. When the
tableau T is additive, as we intend it, then for any partition λ of length at most ab, the matrix
A with entries aij = λT (i,j) is additive in the sense of Vallejo, and all such matrices are obtained
that way. As we just stated it, this implies that the triple (λ, aT (λ), bT (λ)) is stable. If moreover
λ is strict, then we will get more information, in particular we will be able to compute the stable
Kronecker coefficients. )

Note that the additivity property is introduced in section 3.1.2 of [12] and explained to be
equivalent to the convexity property of the normal bundle that implies stability. At that time
we were mainly interested in plethysm and we treated the case of Kronecker coefficients rather
quickly, giving details only for a sample of the results that were amplified in the strongly similar
case of plethysm. Also we treated directly the multiKronecker coefficients

g(µ1, . . . , µr) = dim([µ1]⊗ · · · ⊗ [µr])
Sn ,

for which the method applies with essentially no difference.

The fact that additivity is equivalent to stability is easy to understand. Recall, as a special
case of Lemma 1, that the tangent bundle of a complete flag manifold Fl(U) has associated
graded bundle

gr(TF l(U)) = ⊕i<jHom(Qi, Qj),

where the quotient bundles are now line bundles. Applying this to U = V ⊗W and pulling-back
by ιT we will get a formula in terms of the quotient line bundles on Fl(V ) and Fl(W ), that we
will denote by Ei and Fj . The formula reads

gr(ι∗TTF l(V⊗W )) = ⊕T (i,j)<T (k,l)Hom(Ei ⊗ Fj , Ek ⊗ Fl).

Let us denote by e1, . . . , ea and f1, . . . , fb natural basis of the weight lattices of GL(V ) and
GL(W ), respectively. The formula shows that the weights of the restricted tangent bundle
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ι∗T (TF l(V⊗W )) are the ek + fl − ei − fj for T (i, j) < T (k, l). We claim that the weights of the
normal bundle are exactly the same. Indeed, since the tableau T is increasing on rows and
columns, the weights ek − ei and fl − fj appear for k > i and l > j with multiplicity b and a
respectively, in particular greater than one. Since they are the weights of the tangent bundles
of Fl(V ) and Fl(W ), we see that when we go from the restricted tangent bundle to the normal
bundle the list of weights will not change, only certain multiplicities will decrease, but remaining
positive. In particular the generated cone will not be affected.

Finally, recall that the additivity property asks for the existence of sequences x1 < · · · < xa
and y1 < · · · < yb such that T (i, j) < T (k, l) if and only if xi + yj < xk + yl, otherwise written
as xk − xi + yl − yj > 0. This precisely means that the corresponding linear form is positive on
each of the weights ek − ei + fl − fj with T (i, j) < T (k, l).

Remark. Of course it is not necessary, in order to determine the cone generated by the weights
of gr(N∗), to compile the full list of M = (a − 1)(b − 1)(ab + a + b)/2 weights. The ab − 1 of
them obtained by reading the successive entries of the tableau T from 1 to ab will suffice, since
all the other weights will obviously be sums of these.

Note that from Proposition 7, we can deduce right away the following special case, which is
a generalization of Proposition 4.

Corollary 5 For any partition µ of size m, the triple (1m, µ, µ∗) is stable.

Proof. Consider a rectangle a× b in which the diagram of µ can be inscribed. Consider µ and
the conjugate partition µ∗ as integer sequences of lengths a and b respectively, by adding zeroes if
necessary. Consider the increasing sequences α1, . . . , αa and β1, . . . , βb defined by αi = i−µi−1
and βj = j−µ∗

j . Then αi+βj = −hij , the opposite of the hook length of µ for the box (i, j). In
particular αi + βj is negative exactly on the support of µ. Let T be the corresponding additive
tableau, and let λ = 1m. Then aT (λ) = µ and bT (λ) = µ∗. Hence (1m, µ, µ∗) is stable. 2

Let us denote the value of g(α+kλ, β+kaT (λ), γ+kbT (λ)), for k very large, by gT,λ(α, β, γ),
and call it a (T, λ)-reduced Kronecker coefficient. If λ is strictly decreasing of length ab, or
ab − 1, so that the corresponding line bundle on the flag manifold is very ample, we have
seen that this (T, λ)-reduced Kronecker coefficient can be computed as the multiplicity of the
weight (β − aT (α), γ − bT (α)) inside the symmetric algebra S∗(gr(N∗)). The weights of gr(N∗)
can readily be read off the tableau T . Let us denote them by (ui, vi), for 1 ≤ i ≤ M =
(a− 1)(b− 1)(ab+ a+ b)/2. Denote by PT,λ(µ, ν) the polytope defined as the intersection of the
quadrant t1, . . . , tM ≥ 0 in RM with the affine linear space defined by the condition that

N∑

i=1

ti(ui, vi) = (µ, ν).

Proposition 8 The (T, λ)-reduced Kronecker coefficient gT,λ(α, β, γ) is equal to the number of

integral points in the polytope PT,λ(β − aT (α), γ − bT (α)).

Of course we would then be tempted to stretch the triple (α, β, γ). We would then ob-
tain the stretched (T, λ)-reduced Kronecker coefficient gT,λ(kα, kβ, kγ) as given by the Ehrhart
quasi-polynomial of the rational polytope PT,λ(β − aT (α), γ − bT (α)). This suggests interesting
behaviours for multistretched Kronecker coefficients, but we will not pursue on this route.

Let us simply notice an obvious consequence for (T, λ)-reduced Kronecker coefficients, the
following translation invariance property:

gT,λ(α, β, γ) = gT,λ(α+ δ, β + aT (δ), γ + bT (δ))

for any partition δ.
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5.3 Faces of the Kronecker polytope

As we observed, the convexity property of the embeddings defined by additive tableaux has very
interesting consequences for the Kronecker polytope. Let us first reformulate Corollary 2.

Proposition 9 Each additive tableau T defines a regular face fT of the Kronecker polyhedron

PKrona,b,ab, of minimal dimension.

Regular means that the face meets the interior of theWeyl chamber, which is the set of strictly
decreasing partitions. Ressayre proved in [23], in a more general setting, that the maximal
codimension of a regular face is the rank of the group which in our case is GL(V ) × GL(W ).
This exactly matches with the codimension of fT .

Around this minimal face fT , we know that the local structure of PKrona,b,ab is described
by the convex polyhedron generated by the weights of gr(N∗).

A face of our polytope will be defined by a linear function which is non negative on all these
vectors, and vanishes on a subset of them that generate a hyperplane. Such a linear function
will be defined by sequences x1 ≤ · · · ≤ xa and y1 ≤ · · · ≤ yb such that xi + yj ≤ xk + yl when
T (i, j) < T (k, l). The different values of xi + yj define a partition of the rectangle a × b into
disjoint regions, and this partition is a relaxation of T , in the sense that each region is numbered
by consecutive values of T . The hyperplane condition can be interpreted as the fact that the
vectors ek − ei + fl − fj, for (i, j) and (k, l) belonging to the same region, generate a hyperplane
in the weight space. This is also a maximality condition: we cannot relax any further while
keeping the compatibility condition with T . We deduce:

Proposition 10 The facets FR of the Kronecker polyhedral cone Krona,b,ab containing the min-

imal face fT are in bijective correspondence with the maximal relaxations R of the tableau T .

Example. Recall that for a = b = 3 there are 42 standard tableaux fitting in a square of size
three, among which 36 are additive. The total number of maximal relaxations of these additive
tableaux is 17. Up to diagonal symmetry they are as follows, where each square is filled by the
entry xi + yj in box (i, j) for some sequences (x1 = 0, x2, x3) and (y1 = 0, y2, y3).

0 0 0
0 0 0
1 1 1

0 0 0
1 1 1
1 1 1

0 0 1
1 1 2
2 2 3

0 1 1
1 2 2
2 3 3

0 1 2
2 3 4
3 4 5

0 0 1
0 0 1
1 1 2

0 0 1
1 1 2
2 2 3

0 1 1
1 2 2
1 2 2

0 1 2
1 2 3
2 3 4

0 1 2
1 2 3
3 4 5

Consider for example the relaxation R encoded in the tableau

0 1 2
1 2 3
3 4 5

It splits the square into six regions, three of size one and three of size two. There are therefore
eight compatible standard tableaux T , which are all additive. This gives eight minimal faces fT
incident to the facet FR.

Proposition 11 The defining inequalities of the facet FR associated to a maximal relaxation R
defined by sequences (xi, yj) are of the form

a∑

i=1

xiβi +
b∑

j=1

yjγj ≥
a∑

i=1

b∑

j=1

(xi + yj)αT (i,j),
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where T is any standard tableau compatible with R.

We mean that R is a relaxation of T . It is clear then that the inequality does not depend
on T , since taking another compatible tableau T ′ amounts to switching some entries only inside
the regions defined by R, on each of which the sum xi + yj is constant.

5.4 From rectangles to arbitrary tableaux

If we want to restrict to the Kronecker cone Krona,b,c for some c < ab, we just need to intersect
Krona,b,ab with a linear space Lc of codimension ab− c, which meets each of our minimal faces
fT . But this raises two issues. First, two distinct minimal faces can have the same intersection
with Lc. Second, it is not clear whether the intersection of a facet FR of Krona,b,ab with Lc will
still be a facet of Krona,b,c.

The first issue is easy to address: two tableaux T and T ′ will give the same minimal face of
Krona,b,c if and only if they coincide up to c, that is, their entries smaller of equal to c appear
in the same boxes. We thus get minimal faces of Krona,b,c parametrized by standard tableaux
S of size c inside the rectangle a× b, which are additive in the same sense as before.

To address the second issue we can modify our embeddings ιT accordingly. A standard
tableau S of size c inside the rectangle a× b defines an embedding

ιS : FL(V )× Fl(W ) →֒ FLc(V ⊗W ),

where we denote by FLc(U) the partial flag manifold of U parametrizing flags of the form
(0 = U0 ⊂ U1 ⊂ · · · ⊂ Uc ⊂ U), where Ui has dimension i. We will require that S fits exactly in
the rectangle, not in any smaller one. Denote the quotient bundles on Fl(U) byQ1, . . . , Qc, Qc+1,
they are all line bundles except the last one. We have ι∗SQk = Ei ⊗Fj whenever S(i, j) = k ≤ c,
while ι∗SQc+1 is not irreducible, but has associated graded bundle

gr(ι∗SQc+1) = ⊕(i,j)/∈SEi ⊗ Fj .

The pull-back of the tangent bundle is then given by the same formula as before,

gr(ι∗STF l(V⊗W )) = ⊕S(i,j)<S(k,l)Hom(Ei ⊗ Fj , Ek ⊗ Fl),

except that for this to be correct, we need to consider S as a rectangular tableau of size a × b,
in which the boxes (i, j) that do not belong to S are all numbered by the same arbitrarily large
number, say S(i, j) = ∞. Exactly as before we deduce that the weights of the normal bundle are
the ek − ei + fl − fj with S(i, j) < S(k, l), and the convexity condition translates into the same
additive property, that we can summarize by saying that S must be a piece of a rectangular
additive standard tableau. The discussion above then goes through exactly as in the rectangular
case, except that we don’t need to care about the boxes of the rectangle that are not supported
by S. We get the following slight extension of our previous results:

Proposition 12 Let S by a standard tableau of height a, width b, size c. Suppose that S is

additive. Then the set of stable triples of the form (λ, aS(λ), bS(λ)) defines a minimal regular

face fS of the Kronecker polytope PKrona,b,c. Moreover the facets of the polytope containing

this minimal face fS are in bijection with the minimal relaxations R of S. If R is defined by

non decreasing sequences (xi, yj), the equation of the facet FR is

a∑

i=1

xiβi +
b∑

j=1

yjγj ≥
∑

(i,j)∈S

(xi + yj)αS(i,j).
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Remark. More variants could be explored. Maps Fl∗(V ) × Fl∗(W ) →֒ Fl∗(V ⊗ W ) where
arbitrary types appear at the source are easily constructed in terms of tableaux, and their
stability could be analyze. This will be more complicated in general since the quotient bundles
will have ranks bigger than one. Moreover it will only give access to stable triples on the
boundary of the Weyl chamber.

Of course we could aso readily extend the discussion to an arbitrary number of vector
spaces, describe embeddings of arbitrary products of flag manifolds in terms of multidimen-
sional tableaux, observe that the convexity condition on the weights of the normal bundle is
again an additivity condition, and deduce stability properties for multiKronecker coefficients.
This was partly done in [12].

6 Rectangles: stability and beyond

There exist stable triples which do not come from additive tableaux, and it would be nice to
understand them. Stembridge in [24] observed that (22, 22, 22) is stable, and it is certainly
not additive. (Nevertheless it is highly degenerate, in the sense that it belongs to a very small
face of the dominant Weyl chamber. In particular this example leaves open the question of the
existence of non additive stable triples in the interior of the Weyl chamber.) In this section we
make a connection with Cayley’s hyperdeterminant and the Dynkin diagram D4, and we explain
another observation by Stembridge in terms of affine E6.

6.1 Finite cases

The rectangular Kronecker coefficients, ie those involving partitions of rectangular shape, are of
special interest because of their direct relation with invariant theory. For three factors,

g(pa, qb, rc) = dim(Sk(A⊗B ⊗ C))SL(A)×SL(B)×SL(C)

when k = pa = qb = rc and a, b, c are the dimensions of A,B,C. Of course this connection also
holds for a larger number of factors.

There seems to exist only few results on these quotients. The cases for which there are only
finitely many orbits of GL(A)×GL(B)×GL(C) inside A⊗B⊗C have been completely classified
in connection with Dynkin diagrams(see eg [16] and references therein). One can deduce all the
possible dimensions a, b, c for which there exists a dense orbit, through the combinatorial process
called castling transforms. In this situation there exists one invariant for SL(A)×SL(B)×SL(C)
at most, depending on the codimension of the complement of the dense open orbit, which can
be one (in which case its equation is an invariant) or greater than one (in which case there is no
invariant). The former case gives a weakly stable triple.

In this classification through Dynkim diagrams, the triple tensor products correspond to
triple nodes, so there are only few cases, coming from diagrams of type D or E. The first inter-
esting case is D4, corresponding to a = b = c = 2. The invariant is the famous hyperdeterminant
first discovered by Cayley, which has degree four. This implies that g(n2, n2, n2) = 1 when n
is even and g(n2, n2, n2) = 0 when n is odd. In particular, (22, 22, 22) is a weakly stable triple,
and even a stable triple, as shown by Stembridge [24].

The next two diagrams, D5 and D6, give (a, b, c) = (2, 2, 3) and (2, 2, 4) respectively. The
corresponding invariants have degree 6 and 4. They correspond to the weakly stable triples
(33, 33, 222) and (22, 22, 1111) (which we already met among stable triples). For Dn, n ≥ 7, we
get (a, b, c) = (2, 2, n− 2) but there is no non trivial invariant anymore. Finally the triple nodes
of E6, E7, E8 yield the triples (a, b, c) = (2, 3, 3), (2, 3, 4), (2, 3, 5). There is no invariant for the
latter case, but an invariant of degree 12 in the two previous ones, yielding the weakly stable
triples (66, 444, 444) and (66, 444, 3333). Let us summarize our discussion:
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Proposition 13 The triple nodes of the Dynkin diagrams of types D4, D5, E6, E7 yield the

non additive weakly stable triples (22, 22, 22), (33, 33, 222), (66, 444, 444), (66, 444, 3333).

6.2 Affine cases

This discussion can be upgraded from Dynkin to affine Dynkin diagrams. Indeed it is a theorem
of Kac [8] that when we consider a representation associated to a node of an affine Dynkin
diagram, the invariant algebra is free, or otherwise said, is a polynomial algebra. (If the chosen
node is the one that has been attached to the usual Dynkin diagram, the associated representa-
tion is just the adjoint one, so the theorem generalizes the well-known result that the invariant
algebra of the adjoint representation is free.)

There will be four cases related to Kronecker coefficients, corresponding to the affine Dynkin
diagrams with a unique multiple node. Let us introduce the following notation:

gD̂4
(n) = g(n2, n2, n2, n2),

gÊ6
(n) = g(n3, n3, n3),

gÊ7
(n) = g((2n)2, n4, n4),

gÊ8
(n) = g((3n)2, (2n)3, n6).

Applying Kac’s results we immediately identify the generating series of these rectangular Kro-
necker coefficients.

Proposition 14 The generating series of the rectangular Kronecker coefficients gD̂4
(n), gÊ6

(n),
gÊ7

(n) and gÊ8
(n) are the following:

∑

n≥0

gD̂4
(n)qn =

1

(1− q)(1− q2)2(1− q3)
,

∑

n≥0

gÊ6
(n)qn =

1

(1− q2)(1 − q3)(1− q4)
,

∑

n≥0

gÊ7
(n)qn =

1

(1− q2)(1 − q3)
,

∑

n≥0

gÊ8
(n)qn =

1

1− q
.

The last of these identities simply expresses the fact that (33, 222, 16) is a weakly stable
triple, as we already know. The previous one can be rewritten as

g((2n)2, n4, n4) =
n+ π6(n)

6

where π6 is the 6-periodic function with first 6 values (6,−1, 4, 3, 2, 1). The identity for gÊ6
(n) has

been suggested by Stembridge ([24], Appendix). It can also be rewritten as a quasipolynomial
identity:

g(n3, n3, n3) =
(n+ 1)(n + 2)

48
+

n+ 1

16
π2(n) +

1

48
π12(n),

where π12 is 12-periodic with period (37,−12, 9, 16, 21,−48, 25, 0, 21, 4, 9, 0) and π2 is 2-periodic
with period (3, 1). Finally the quadruple Kronecker coefficient

g(n2, n2, n2, n2) =
n3 + 12n2 + 29n + 18

72
+

n+ 1

72
π2(n) +

1

72
π6(n),
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where π6 is 6-periodic with period (35,−8, 27, 8, 19, 0) and π2 is 2-periodic with period (19, 10).

Remark. Let us mention that there should exist lots of non additive stable triples. For example,
[15] implies that if λ is a partition of size 2n, then (n2, n2, λ) is weakly stable when λ is even
and of length at most four, as well as (n4, (2n)2, 2λ) when λ has length at most three and
λ1 ≤ λ2+λ3. It would be interesting to prove that these weakly stable triples are in fact stable,
and to get more examples, or more general procedures to construct (weakly) stable triples.

Theorem 6.1 in [24] gives a criterion for stability that covers the additive triples, but not
only those. It would be interesting to understand these non additive triples more explicitely,
find a geometric interpretation, compute the stable Kronecker coefficients, and decide to which
extent they could help to describe the Kronecker polyhedra.
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