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Abstract
For a decade, distance-based methods have been widely employed and constantly improved in spatial economics. These
methods are a very useful tool for accurately evaluating the spatial distribution of economic activity. We introduce a new
distance-based statistical measure for evaluating the spatial concentration of industries. The m function is the first relative
density function to be proposed in economics. This tool supplements the typology of distance-based methods recently drawn
up by Marcon and Puech (2012). By considering several theoretical and empirical examples, we show the advantages and
the limits of the m function for detecting spatial structures in economics.
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Introduction
Industrial agglomerations are doubtless the main feature of
today’s economic geography (Krugman, 1991; Henderson
and Thisse, 2004). Thus, it is not surprising that much recent
research has attempted to improve the measurement of the
spatial concentration of activities.1 Distance-based methods
are the latest statistical measures to be proposed in the field of
spatial economics for detecting spatial structures (geographic
concentration or dispersion). By treating space as continuous,
distance-based methods provide a detailed analysis with ro-
bust results.2 Consequently, many authors consider them to
be very promising techniques (Combes and Overman, 2004;
Combes et al., 2008; Duranton, 2008) and that they open
the way for new explanations of the spatial concentration of
activities (Ellison et al., 2010; Alfaro and Chen, 2014; Kerr
and Kominers, 2015). Today, the Duranton and Overman’s
Kd function (Duranton and Overman, 2005) is the most used
distance-based method in economics. It is a density func-
tion that evaluates absolute concentration (Marcon and Puech,
2012, 2015). In this article for the first time we shall introduce
a relative density function in spatial economics, in a similar
vein to the well-known location quotient (Florence, 1972). We
have developed this for two main reasons. First, this new func-
tion, called m, supplements the typology of distance-based
methods recently drawn up by Marcon and Puech (2012).
Second, as Brülhart and Traeger (2005) have stressed, the

1See Duranton and Overman (2005); Marcon and Puech (2003, 2010);
Arbia et al. (2012); Mori and Smith (2013); Jensen and Michel (2011);
Howard et al. (forthcoming), among others.

2Duranton and Overman (2008) provide many concrete examples of the
problems such functions can solve.

nature of the spatial concentration (absolute, relative) matters.
We shall prove that both Kd and m are useful for evaluating
the spatial distribution of activities because of the comple-
mentary results they provide. For this, we shall give various
comparisons of Kd and m results obtained with theoretical
and empirical examples to understand the advantages and the
limits of both distance-based measures.

There is growing evidence that distance-based measures
are now preferred in spatial economics since Duranton and
Overman’s seminal paper (Duranton and Overman, 2005).
One of the main reasons for this is that they preserve the
richness of individual data. Unlike the Gini (1912) or the
Ellison and Glaeser (1997) indices, distance-based methods
do not rely on any predefined zoning (regions, counties. . . ).
Distance-based methods are implemented directly using the
position of entities (stores, plants. . . ). The analysis of the
spatial distribution of entities is based on the distance between
them. In contrast, it has been proven that indices which aggre-
gate data at a zonal level are sensitive to the zoning chosen
(Arbia, 2001; Briant et al., 2010) as described by the Modi-
fiable Areal Unit Problem – MAUP (Openshaw and Taylor,
1979; Arbia, 1989). One way of solving MAUP issues is to
treat space as “continuous” as suggested by Duranton (2008).3

This is the main feature of distance-based measures. Conse-
quently, MAUP issues vanish. These techniques therefore
allow an exact and unbiased analysis of the spatial structure

3Gilles Duranton wrote in the article on “Spatial Economics” in The
New Palgrave Dictionary of Economics: “On the empirical front, a first key
challenge is to develop new tools for spatial analysis. With very detailed data
becoming available, new tools are needed. Ideally, all the data work should
be done in continuous space to avoid border biases and arbitrary spatial
units.”
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of the distribution at all scales simultaneously (and not at only
one level of observation as is the case with spatial zoning).
Multiple patterns can be detected: for example aggregation
or repulsion between entities according to the distance con-
sidered. These distance-based measures are now deemed to
be very powerful and we can easily understand why many
studies now employ them to evaluate spatial patterns (Arbia
and Espa, 1996; Sweeney and Feser, 1998; Ó hUallacháin
and Leslie, 2007; Bonneu, 2007; Arbia et al., 2008; Nakajima
et al., 2012; Barlet et al., 2013; Behrens and Bougna, 2015;
Koh and Riedel, 2014; Giuliani et al., 2014). Alternative
approaches exist: Billings and Johnson (2012) for instance
developed a test to detect and localize concentration based on
the local density of a chosen sector, compared to that of the
whole economic activity. We will rather focus in this paper on
the distance-based methods, which rely on the second-order
property of the distribution of points, i.e. the excess or lack
of neighbors, because they belong to a common, coherent
framework (Marcon and Puech, 2012).

In what follows, we shall introduce a new distance-based
method: the m function. We will devote a great deal of at-
tention to defining it in order to respect a maximum number
of the good criteria for measuring spatial concentration in
economics (Combes and Overman, 2004). In particular, the
m function satisfies Duranton and Overman’s five important
criteria (Duranton and Overman, 2005): (1) the results are
comparable across industries, (2) it controls for the overall
agglomeration of manufacturing, (3) it controls for industrial
concentration in the sense of Ellison and Glaeser (1997), (4)
it is unbiased across geographic scales (this is related to the
MAUP issues) and lastly (5) it gives an indication of the signif-
icance of the results. There are several ways to control for the
overall agglomeration. Duranton and Overman’s widely used
Kd function ignores it (this is why it is classified as an absolute
measure) but its value is compared to a confidence interval
of its possible values under a counterfactual null hypothesis.
The m function relies on the local share of employment (or
whatever measure of size, including the number of establish-
ments) of the sector under study to directly control for the
distribution of the whole activity: it is a relative measure. As
Kd , it considers neighbors at a given distance rather than up
to it: both are density functions. No relative density function
has yet been proposed to gauge the spatial concentration in
continuous space, as Marcon and Puech (2012) pointed out.

Various theoretical and empirical examples are provided
to show that the results provided by the m function are com-
plementary to those of Kd : their results do not converge sys-
tematically, so we recommend that the nature of the spatial
concentration analyzed should be studied carefully to avoid
any erroneous conclusions. Moreover, relative measures of
concentration are formally location quotients: the m function
can be interpreted as the location quotient of a sector of activ-
ity in the neighborhood of a reference sector. This property
opens the way for the development of locational choice mod-
els following Guimarães et al. (2009) where the strength of

externalities or natural advantages can be directly linked to the
value of the function. As a result, we believe the m function is
an appropriate statistical tool for detecting spatial structures
in economics.

In the following sections, first of all, the background is
explained (Section 1). Then, the m function is presented
(Section 2) and some simple illustrative examples are given
(Section 3). In the last section of the paper (Section 4) we
propose some comparisons with the Kd function. We also
provide a simple theoretical example and an analysis of the
spatial distribution of pharmacies in the Lyon area (France) to
illustrate the advantages and limits of the use of the m function
in our field.

1. Background
As we have already mentioned, distance-based methods are
particularly attractive for economists because they provide
a complete and unbiased analysis of the location patterns of
industries. The basic idea of distance-based methods is simple.
Let us consider the case of the textile industry. Evaluating
the spatial distribution of plants in this sector depends on
an assessment of the surroundings of textile plants for all
the distances that are considered. On average, if there are
locally more textile plants around textile plants than in the
whole of the area under investigation, concentration is de-
tected (“textile plants attract textile plants”). On the other
hand, if there are fewer textile plants in the surroundings of
the textile plants than there are in the area as a whole, we talk
of a phenomenon of dispersion (in which case “textile plants
repel textile plants”). Alternatively, if there is no relation-
ship between the entities, independence is identified (“textile
plants are randomly and independently distributed”). The sig-
nificance of the results is provided by the confidence interval
of the null hypothesis. More technically, all distance-based
methods explore the spatial structure of point patterns. Their
mathematical framework is that of point processes (Møller
and Waagepetersen, 2004). Two concepts require additional
explanations: the definition of the surroundings of plants and
the nature of the spatial concentration (topographic, relative
or absolute). Let us now examine these two important factors
in depth.

Firstly, the notion of the surroundings of plants is central
because it defines the type of function applied i.e. a cumula-
tive or a density function. In practice, the evaluation of the
neighboring plants is done for all distances, for example every
100 meters up to the median distance between all pairs of
plants. The spatial distribution can be estimated up to a given
distance or at a given distance. If the first option is chosen,
it calls for a cumulative function. If the second option is se-
lected, a density function is appropriate. The choice between
one type of function and the other depends on the issue under
study (Marcon and Puech, 2010).

The second clarification concerns the nature of the spa-
tial concentration. In order to evaluate the spatial concen-
tration of economic activities, it is necessary to choose a
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benchmark value with which to compare the observed distri-
bution of activities (see Brülhart and Traeger, 2005, among
others):

• The first possibility is to use a topographic reference.
In this case, physical space is chosen as the benchmark.
One possible example is the number of neighboring
plants per unit of space (that is on a disk of radius r
for a cumulative function or on the ring at distance r
for a density function). Space may be homogeneous
or not. The homogeneity of space implies a constant
density all over the study area (in our previous case this
means that all the plants in the distribution have the
same probability of being located anywhere in the study
area). Some authors (Duranton and Overman, 2005;
Marcon and Puech, 2003) consider this hypothesis to be
generally irrelevant in the field of spatial economics and
that a non-homogeneous space framework is needed.

• The second possibility is a relative reference. In this
case, another variable is taken as a benchmark. Any
variable can be used except space (if it is, the concen-
tration is topographic). For instance, if we evaluate the
spatial distribution of textile plants, we can detect in the
plant’s near environment the deviations of this distribu-
tion of plants from another distribution. The benchmark
plants can be all plants at the aggregate industrial level.

• The last possibility is to have no reference. In this
case, an absolute measure is defined. For example, the
number of neighboring textile plants located at a given
distance from a textile plant.

The growing number of measures in continuous space re-
cently prompted Marcon and Puech (2012) to provide a typol-
ogy of such functions. A classification of statistical measures
can be drawn up by considering the nature of the geographic
concentration and the definition of the type of function. Ta-
ble 1 gives an overview of all the distance-based measures that
have been used to evaluate the spatial distribution of economic
activities:

• the K function of Ripley (1976, 1977),

• the g function of Ripley (1976, 1977),

• the Kmm function introduced by Penttinen (2006) and
Penttinen et al. (1992),

• the D function of Diggle and Chetwynd (1991),

• the Kinhom function of Baddeley et al. (2000),

• the ginhom function of Baddeley et al. (2000),

• the Kd function of Duranton and Overman (2005),

• the M function of Marcon and Puech (2010),

• the (unnamed) cumulative function of Kd proposed by
Behrens and Bougna (2015).

One cell in the table is empty: no relative density function
has yet been proposed for the field of spatial economics (the
Kd function does not control explicitly for the distribution of
the economic activity). The present paper fills this gap. In
the next section we shall complete Table 1 by proposing a
new density function, named the m function, which expresses
relative spatial concentration.

Finally, it should be noted that the application of distance-
based methods is not confined to spatial economics. They
were first developed and applied in other disciplines. Much
empirical research has thus been conducted in the fields of
ecology (Law et al., 2009) and epidemiology (Waller, 2010),
for example.

2. Presentation of the m function
2.1 An intuitive presentation
The idea of the m function is as follows. Consider an area in
which various plants belonging to several industrial sectors are
located. The m function is a relative measure that compares
the proportion of plants of interest in the neighborhood of the
reference plants to the proportion of neighbors of interest in
the area as a whole. If plants are agglomerated, the proportion
of neighbors of interest in the neighborhood of reference
plants is greater than in the area as a whole. On the contrary,
if plants are dispersed then the proportion of plants of interest
in the neighborhood of the reference plants is lower than in
the area as a whole. These proportions (ratios) are estimated
from observed data. If the neighbors of interest belong to the
same sector as the reference plants, the m function helps to
detect agglomeration phenomena. If the neighbors of interest
do not belong to the same sector as the reference plants, the
m function identifies co-agglomeration.

2.2 Definition of the m function
Let us now turn to the mathematical definition of the m func-
tion. Plants are defined as points. All points belong to a point
pattern denoted by X . Two subsets are considered: that of
the reference points R (e.g. a given sector of activity) and that
of the neighboring points of interest N .

The estimator of m is:

m̂(r) =
∑xi∈R

∑x j 6=xi ,x j∈N k(‖xi−x j‖,r)w(x j)

∑x j 6=xi ,x j∈X k(‖xi−x j‖,r)w(x j)

∑xi∈R
WN −w(xi)
W−w(xi)

(1)

where xi denotes the reference points, and x j the neigh-
bors. w(xi) is the weight of point xi. WN is the total weight
of the neighboring points of interest and W is the total weight
of all the points. If points represent industrial establishments
or shops, the weight can be the number of employees work-
ing in those entities. k(·) is a kernel estimator whose sum
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Table 1. Choice of the appropriate function to describe a point pattern structure

Function choice Topographic,
homogeneous

Topographic,
inhomogeneous

Absolute Relative

Probability density
functions

g ginhom Kd

Kemp

Cumulative functions
K Kinhom Cumulative of Kd M

Kmm Di Cumulative of Kemp Case-control Kinhom

can be used to estimate the number of neighbors of point
xi at distance r. We have followed Duranton and Overman
(2005) and used a Gaussian kernel of optimal bandwidth as de-
scribed by Silverman (1986). The kernel estimator considers
the neighbors of the reference point and gives them a maxi-
mum weighting if they are exactly r apart. Their weighting
decreases according to a Gaussian distribution with standard
deviation h. The choice of the bandwidth h is arbitrary but
important (Illian et al., 2008). The wider it is, the smoother
the estimator. In this paper, we shall only analyze the spatial
distribution of one sector, so we shall focus on the intratype
(or univariate) m function taking R = N . But we can ex-
tend the m function for the analysis of inter-industrial spatial
distributions (co-agglomeration): the intertype (or bivariate)
function can be defined in the same way, choosing different
point types as the reference and neighbors.4

The equation of the m function reads as follows. The
numerator is the sum of the local ratios i.e. the relative weight
of the neighbors of interest at distance r from all the reference
points. This is averaged over all the reference points (actually,
it is simply summed because the number of reference points
is simplified with the denominator). The denominator is the
same ratio over the whole data set, i.e. the global ratio. It is not
just WN /W because the reference points are never counted as
neighbors. An unbiased estimator of the global ratio is thus
the average local ratio considering all points are neighbors
to each other. For this reason, the denominator is slightly
different in the intertype function: ∑xi∈R

WN
W−w(xi)

.
The benchmark value of the m function is 1 for any dis-

tance r. This value is obtained when points are independent.
m values greater than 1 indicate the spatial concentration of
points while m values lower than 1 express dispersion. m val-
ues can be interpreted. For example, if the m function is 1.5,

4 To give an example, if the aim is to evaluate the spatial distribution of
the textile industry, the analysis of the distribution of textile plants around
textile plants is relevant. In that case of intra-industrial analysis, the intratype
function should be used. If the focus is now on the co-agglomeration of
the textile and clothing sectors, the intertype functions will deal with the
distribution of textile plants around clothing plants or the distribution of
clothing plants around textile plants.

at distance r, the proportion of the neighbor points of interest
at this distance is 50% higher than in the area as a whole.

The significance of the estimates of m is given by the
confidence interval of the null hypothesis (Monte-Carlo sim-
ulations). This technique is widely employed in the case of
distance-based methods. In practice, random distributions of
points are generated by permuting the marks (type and weight-
ing pairs) of the actual points on the actual spatial positions
of points (coordinates). We generate only a global confidence
interval, following Duranton and Overman (2005).

2.3 Discussion
The m function fulfills all of Duranton and Overman’s criteria
mentioned in the introduction: (i) it compares the geographic
concentration results across industries, (ii) it controls for in-
dustrial concentration (indirectly, comparing its values to the
confidence envelope of the appropriate null hypothesis), (iii)
it controls for the overall aggregation patterns of industries,
(iv) it enables the significance of the results to be tested (using
the confidence interval) and, (v) it keeps the empirical results
unbiased across geographic scales. Only a few continuous-
space based methods respect all of these criteria (Marcon and
Puech, 2012).

In continuous space, the definition of m is similar to that of
the cumulative M function (Marcon and Puech, 2010) except
that the local ratio is defined at distance r and not up to it. In
contrast with the topographic functions g and K, the cumula-
tive function is not the integral of the density function over r
(Ripley, 1977) because relative functions are not derived from
a measure of space.

The m function can be interpreted as an extension to con-
tinuous space of the location quotient (Florence, 1972). It is
not a smoothed Ellison and Glaeser’s index: the latter relies
on the squared difference between the local share of the sector
of interest and that of the whole activity, not on their ratio.

3. Theoretical examples
We shall now provide simple examples for three theoretical
cases. In every example we have considered a 1-by-1 window
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and a maximum distance for the m function equal to one-third
of the diagonal of the window (≈ 0.471). We have systemat-
ically used 512 regular intervals to calculate the m function.
In all theoretical examples, we simulate two distributions of
points: the cases and the controls.5 The cases are the points
of interest. The controls are the points that constitute the
benchmark. For simplicity, all points have a weighting of 1.
A global confidence interval (CI) at the 1% risk level was
generated after 10,000 simulations. All simulations are made
with the help of the R package (R Development Core Team,
2014). spatstat (Baddeley and Turner, 2005) was used to
realize the point processes and the dbmss package (Marcon
et al., 2014) was used to compute the m function.

3.1 Random distribution
Figure 1a shows two distributions: one for the cases (dia-
monds) and the other for the controls (crosses). The cases
and controls were simulated under the hypothesis of complete
spatial randomness (CSR), under which points are distributed
randomly and independently from each other. To achieve this,
we generated two distributions from a homogeneous Poisson
process with a parameter respectively equal to 25 and 100.
The parameter of the Poisson process is the expectation of
the number of points for each distribution.6 In figure 1a, 29
points were simulated for the cases and 103 for the controls.

Figure 1b depicts the m function results for this case. No
significant result is observed: m fluctuates for all distance
ranges but stays inside the confidence interval of the null
hypothesis. As expected for random distributions of cases and
controls, figure 1b provides no evidence of any attraction or
repulsion between cases. Two additional minor comments
should be made. First, the global confidence interval is quite
large at small radii: there is a small number of neighbors at
very small radii. Second, the m function is not defined for
very small distances: this indicates that cases are separated by
gaps of more than 0.01.

3.2 Aggregate distribution
Figure 2a shows a multiple pattern: an aggregate distribution
of cases (diamonds) and a completely random distribution of
controls (crosses). For the clusters of cases, we generated
simulations from a Matérn process with the following param-
eters: 2 for the density of the Poisson process that generates
cluster centers, 0.05 for the radius of clusters and 50 for the
average number of points per cluster. Controls were simu-
lated from a homogeneous Poisson process with a density of
100. 203 points were plotted on figure 2a: 102 cases shared

5 The vocabulary “cases” and “controls” is well established in the litera-
ture of point processes (Diggle, 1983; Arbia et al., 2012) but some authors as
Billings and Johnson (2012) prefer employing respectively “samples” and
“counterfactuals”.

6 The Poisson process is commonly used for simulating CSR distributions.
As Diggle (1983) wrote the Poisson process “is the cornerstone on which the
theory of spatial point processes is built. It represents the simplest possible
stochastic mechanism for the generation of spatial point patterns, and in
applications is used as an idealized standard of complete spatial randomness
(. . . )” (p.50).

between two clusters and 101 controls were randomly dis-
tributed over the entire domain. Figure 2b shows the results
for the m function.

On figure 2b, two significant concentration peaks are ap-
parent. They occur at distances for which the relative local
density of cases is the greatest. The first distance at which
a peak is observed corresponds approximately to the radius
of the clusters (around 0.05). This is due to the presence of
controls in the ring at this distance, the peak is not reached ex-
actly at a distance of 0.05 but only approximately. The second
peak identifies the distance between clusters (approximately
0.5) and has a lower value. The local relative density of cases
over controls is greater for the first peak because the presence
of controls in the cluster is possible but rare.

Three additional comments have to be made. First, by
construction there are no cases between the aggregates. For
these distances, the maximum dispersion is detected: between
the clusters the m function attains its lowest possible value
(zero). The rapid decrease in the gradient of m is a feature
of density functions. In contrast to cumulative functions,
the values are very sensitive and large ranges of results may
be observed over small intervals of distance. Second, one
can observe that the m plot takes on its highest values in the
case of small distances (first concentration peak) and then
decreases. The explanation for this is simple. In the first radii,
the local relative density is the greatest because the maximum
number of cases is observed around these distances. Around a
distance of 0.3, the m function detects the first cases located at
the periphery of the (other) cluster: as a result, the m function
raises. Then the local relative density continues to increase
rapidly because of the large number of cases inside the cluster.
Third and last, it is interesting to note that the confidence
interval of the null hypothesis is narrower in the inter-distance
clusters, because more points are observed at these distances.

3.3 Regular distribution
Figure 3a shows another multiple pattern. A regular distribu-
tion of cases (diamonds) is clearly visible. 100 cases are posi-
tioned on a square grid measuring 0.1×0.1. The completely
random distribution of controls (crosses) is a realization of a
homogeneous Poisson process whose parameter is equal to
200. Figure 3a shows 209 controls. The m function estimates
are given in figure 3b.

Up to the size of the square grid (0.1), the cases have
no case neighbor: for small distances there is a significant
amount of dispersion. Then, a large number of peaks can
be observed but results are not significant. The reason is
simple. In this example as we previously said we retained
the optimal bandwidth as described by Silverman (1986). A
thinner bandwidth would have shown significant positive and
negative peaks. The choice of the bandwidth is important,
unfortunately “in general, however, no simple recipe for the
choice of the bandwidth exists”(Illian et al., 2008, p.115). Let
us take half of the previous bandwidth to better explain the
spatial structure under study. Results of the m function are
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(a) Regular distribution of cases, complete spatial randomness for
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given in figure 3c. Up to the size of the square grid (0.1),
m plots are the same whatever the definition of the bandwidth.
At a distance equal to the size of the grid, the cases have four
neighbors: a significant positive peak is observed in figure 3c,
indicating the spatial concentration of cases at this distance.
At this distance, a positive peak is also detected in figure 3b
but the m plot stays within the confidence interval. Due to
smoothing, significant values of m can also be observed just
below the grid size (0.1). The m plot then plummets when
the radius increases: no cases are located in the close envi-
ronment of cases, the m value returns rapidly to below the
confidence interval, indicating dispersion. On figure 3c, the
irregularity in the gradient of m between a distance of 0.10
and 0.15 is interesting. At a distance equal to the diagonal
of the grid (around 0.141) new neighbors are present. The
irregularity in the gradient of m shows the existence of these
new neighboring points. However, there is no positive peak
because the smoothing we applied was too strong, but weaker
smoothing would have generated positive m values. The origi-
nal bandwidth appears too weak in that case: the irregularity
in the gradient of m is not visible between a distance of 0.10
and 0.15 in figure 3b. Note at larger distances, the observed
positive peaks appear at around twice the grid size (0.2), three
times the grid size (0.3) etc. Between these peaks, m indicates
the absence of neighboring cases: depending on the distance,
significant dispersion may (as in the case for a distance of
0.25) or may not (as in the case for a distance around 0.35) be
observed.

4. Discussion
This section provides some comparisons with the most used
density function in spatial economics, Duranton and Over-
man’s Kd function (Duranton and Overman, 2005). Keeping
the notations previously used in equation 1 and using n to
denote the total number of points, the Kd function is defined
by:

K̂d (r) =
1

n(n−1) ∑
xi∈R

∑
x j 6=xi,x j∈N

k
(∥∥xi− x j

∥∥ ,r) (2)

The weighted version of the Kd function, called the Kemp

function (Duranton and Overman, 2005), is given by:

K̂emp (r) =
∑xi∈R ∑x j 6=xi,x j∈N w(xi)w(x j)k

(∥∥xi− x j
∥∥ ,r)

∑xi∈R ∑x j 6=xi,x j∈N w(xi)w(x j)

(3)

The Kd function is very popular in spatial economics (see
Marcon and Puech, 2012, for a review). It is therefore inter-
esting to compare their properties in order to understand the
main differences between the two statistical measures. In what
follows, we have used the R package dbmss to estimate the
Kd and m functions. As suggested by Duranton and Overman

(2005), we use the reflection technique to estimate density
close to the lowest distance for the Kd function. As a result,
Kd plots start systematically for r = 0.

4.1 Comparisons of Kd and m results on the three
previous theoretical cases

The Kd function was estimated for the three theoretical cases
considered above. Kd plots are shown on figure 4a for the
random distribution of cases, on figure 4b for the aggregate dis-
tribution and on figures 4c and 4d for the regular distribution.
For all the cases, we have used the same maximum distance,
i.e. one-third of the diagonal of the window (≈ 0.471).

For the random distributions of cases and controls (fig-
ure 4a), m and Kd give identical results. No significant level
of dispersion or concentration was detected. The value of
m is 1 for all distances, subject only to stochastic fluctuations.
Relative distance-based measures do not suffer edge-effects:
points close to the domain borders have less neighbors but this
issue cancels out when the ratio of their numbers is calculated.
In contrast, Kd increases with distance for geometrical reasons.
Kd evaluates the probability of finding a case neighbor at a
given distance, i.e. on the circle of radius r around each point
of interest: it first increases linearly with respect to r, then
increases less because of edge effects (parts of the circles lay
outside the domain when r is large enough) and finally drops
to 0 when r gets larger than the diameter of the domain (not
shown on the figure). Finally note a very minor difference in
the results provided by Kd and m: the Kd plot is defined for
r = 0 contrarily to the m plot (figure 1b). This is due to the
reflection method used for the Kd function as we previously
explained. No case-neighbor is located at a distance less than
0.01 thus m is not defined.

For the aggregate distribution (figure 4b), like the m func-
tion, Kd detects the first peak of concentration occurring at a
distance of approximately 0.05. The main difference relates to
the shape of the concentration peak. At very small distances
the Kd values increase up to a distance of 0.05 which corre-
sponds to the radius of the cluster. After this, the value of Kd
starts to fall. The increase in Kd contrasts with the shape of the
m function at short distances. The explanation is geometric
again: at short distances this probability increases proportion-
ally to the perimeter of the circle around reference points until
r is too large and the circle partly leaves the cluster. Then, it
progressively decreases.

Let us now turn to the regular theoretical example. With
the same original smoothing of Silverman (1986) also chosen
by Duranton and Overman (2005), the results for this spatial
pattern with the m (figure 3b) or the Kd (figure 4c) function
are totally in accordance. If we modify the smoothing by
choosing a narrower bandwidth, that is half of the original
bandwidth of Silverman (1986), the results for the Kd function
are given in figure 4d and should be compared with the m
results given in figure 3c. As one would expect, there are
a large number of positive and negative significant peaks of
the Kd plot in comparison to weaker smoothing of the results.
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(a) Kd results for completely random distributions of cases and controls
(map on figure 1a)
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(b) Kd results for aggregate distribution of cases (map on figure 2a)
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(c) Kd results for regular distribution of cases (map on figure 3a) with the
original Duranton and Overman’s smoothing
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(d) Kd results for regular distribution of cases (map on figure 3a) with a
more detailed smoothing

Figure 4. Kd results for the three theoretical cases
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The m results and the Kd results are, again in that example,
totally in accordance.

4.2 Comparisons between the results from the Kd
and m functions on a more complex example

In the three above theoretical cases, there is not a great deal
of difference between the results with the Kd and m functions.
However, this is not always the case. In the real world, the
distribution of activities is more complex. In this sub-section,
we shall draw attention to the type of concentration that the
m function can identify. To make things clearer, if we re-
turn to table 1 we can see that the m function evaluates the
relative concentration while Kd appraises the absolute concen-
tration. This distinction may be crucial for a comprehensive
understanding of spatial structures.

4.2.1 Divergence in the Kd and m results on a theoretical
case

Consider the following theoretical example. A city is delim-
ited by a 1-by-1 window. For the sake of simplicity “cases”
and “controls” are the only two types of shops located in the
city. Figure 5 shows the distribution of cases (diamonds) and
controls (crosses). A multiple pattern is observed: a com-
pletely random distribution of controls (crosses) and cases
(diamonds) and also an aggregate distribution of controls
(crosses). More technically, for the cluster of controls we
generated simulations from a Matérn process with the follow-
ing parameters: 1 for the density of the Poisson process that
generates cluster centers, 0.1 for the radius of clusters and 75
for the average number of points per cluster. Controls were
also simulated from a homogeneous Poisson process with a
density of 50. Cases were simulated from a homogeneous
Poisson process with a density of 25. 134 points were plot-
ted on figure 5. The cluster is composed of 66 controls, 42
controls are randomly distributed on the area and 26 cases are
randomly distributed over the entire domain.

Figures 6a and 6b show the results for the Kd function
and the m function. In line with our previous examples, all
points have a weighting of 1. The maximum distance for
the m function equals one-third of the diagonal of the win-
dow (≈ 0.471). A global confidence interval (CI) at the 1%
risk level was generated after 10,000 simulations. All sim-
ulations were conducted with the help of the R package the
dbmss package for computing the Kd and m functions. The
divergence in the results between Kd and m plots show all
the importance of the definition of the nature of the spatial
concentration studied.

As we underlined, the m function detects the relative spa-
tial concentration. Cases are more regularly distributed than
the controls in the example. As a consequence, around the
cases the presence of cases is relatively more important than
the one of controls: relative concentration is detected by the
m function up to a distance approximately equal to 0.23 (fig-
ure 6b). Now, consider the Kd results (figure 6a): dispersion
of cases is detected. By construction of the example, cases
do not take place in the clusters. Under the null hypothesis

of random location of cases among all observed points, some
cases will be located in the cluster: the probability to find
neighbors at short distances is thus higher than in the real
data set: in other words, the points of the dataset are less con-
centrated than under the null hypothesis. The concentration
characterized by Kd is called absolute because it just counts
neighbors without comparing their number to a benchmark.
In the dataset, cases are located in low-density areas so they
are far from each other: a dispersion of cases is detected by
Kd . However, they are relatively abundant and close to each
other (in comparison with controls), cases are agglomerated
in relative terms, as detected by the m function.

4.2.2 Confirmation of the previous results for a retail sec-
tor in the city of Lyon (France)

To give a concrete example of the previous theoretical case,
we shall consider the spatial distribution of the non-food retail
stores in the Lyon area (France). We have exploited a database
provided by the Chamber of Commerce and Industry of Lyon.
This contains the exact geographic position of 3,124 non-food
stores in April 2012. The different types of store have been
classified into 26 sectors from 47.30Z to 47.79Z of the French
NAF rev. 2 classification of activities. We shall focus on
“dispensing chemists in specialized stores” (47.73Z), of which
there are 156 in the Lyon area. We shall refer to these stores
as pharmacies in what follows.

First of all, a comparison of the density of all non-food
stores in Lyon (figure 7a) and the spatial distribution of the
pharmacies over the same area (black points on figure 7b) is
worthwhile. We can see that many of the city’s non-food stores
are located in central Lyon and the left bank of Rhône river (to
the east of central Lyon, figure 7a). However, pharmacies are
undoubtedly more regularly distributed than non-food stores
as a whole. One can easily observe the presence of these
activities over the entire Lyon area (black points on figure 7b).

The impacts on the results for m and Kd will be of interest.
These are given on figures 8a and 8b (distances are reported
in meters on the horizontal axis). Their respective global
confidence intervals (CI) were computed at the 1% risk level
after 10,000 simulations. All the pharmacies were assigned a
weight of 1 and the maximum distance analyzed was around
2,500 meters. The spatial structures detected by Kd and m
differ. Up to a distance of approximately of 2 kilometers,
the plot of Kd indicates that pharmacies are dispersed while
that of m indicates a degree of spatial concentration up to 1.5
kilometers. As we underlined, pharmacies more regularly dis-
tributed than non-food retail activities as a whole. As a result,
pharmacies are more concentrated under the null hypothesis
than in the real distribution: a dispersion of pharmacies is
detected by Kd . Moreover, even though there are pharmacies
in high density business areas (central Lyon, the left bank of
the River Rhône. . . ), they are over-represented in low-density
business areas, relatively to other shops. When we simulate
distributions, pharmacies are located in areas where the num-
ber of non-retail stores is greater so the relative concentration
of these stores will be lower under the null hypothesis. As a
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(a) Kd function results
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(b) m function results

Figure 6. Kd and m results for a more complex theoretical case

(a) Density of the non-food retail stores
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(b) Spatial distribution of pharmacies in Lyon

Figure 7. Non-food retail stores in the area of Lyon (France)
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(a) m results for pharmacies in Lyon
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(b) Kd results for pharmacies in Lyon

Figure 8. Spatial structure of the pharmacies

result, the observed m plot is over the confidence interval of
the null hypothesis and indicates a relative spatial concentra-
tion of pharmacies between approximatively 250 meters and
1,500 meters. This comparison of results emphasizes that the
nature of the spatial concentration should be studied with care.
Our conclusion is in line with Brülhart and Traeger (2005) or
Marcon and Puech (2015) findings.

Conclusion
In this article, we introduced a new distance-based function
called m. The m function is the first relative density function
to be proposed in the field of spatial economics. It respects
all of the good criteria of Duranton and Overman (2005) for
evaluating the spatial distribution of economic activities. So,
m will certainly be useful for economists for detecting the
relative spatial concentration or dispersion of activities. For
example, any density function detects local patterns more
precisely than cumulative functions so m can be preferred
in that case to relative cumulative distance-based measures.
Moreover, we showed on theoretical and empirical data that m
and the leading density function Kd of Duranton and Overman
(2005) may be used conjointly for having a comprehensive
approach of the distribution of activities. The main reason is
that Kd evaluates the spatial absolute concentration in contin-
uous space while m evaluates the relative one. At the end of
the article, the analysis of the distribution of the pharmacies
in Lyon provides a good example of the complementary of
the results of Kd and m.
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