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Abstract
For a decade, distance-based methods have been widely employed and constantly improved in the field of spatial economics.
These methods are a very useful tool for accurately evaluating the spatial distribution of plants or retail stores, for example
(Duranton and Overman, 2008). In this paper, we introduce a new distance-based statistical measure for evaluating the
spatial concentration of economic activities. To our knowledge, the m function is the first relative density function to be
proposed in the economics literature. This tool supplements the typology of distance-based methods recently drawn up by
Marcon and Puech (2012). By considering several theoretical and empirical examples, we show the advantages and the
limits of the m function for detecting spatial structures in economics.

JEL Classification: C10, C60, R12

Keywords
Spatial concentration, Aggregation, Point patterns, Agglomeration, Economic geography

aAgroParisTech, UMR 518 Mia, 19 avenue du Maine, F-75732 Paris Cedex 15, France.
bAgroParisTech, UMR EcoFoG, BP 709, F-97310 Kourou, French Guiana.
cUniversité de Paris-Sud, RITM, 54 Boulevard Desgranges, F-92330 Sceaux, France
*Corresponding author: Florence.Puech@u-psud.fr

Contents

Introduction 1

1 Background 2

2 Presentation of the m function 3
2.1 An intuitive presentation . . . . . . . . . . . . . . . . . . . . 3
2.2 Definition of the m function . . . . . . . . . . . . . . . . . . 3
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Theoretical examples 4
3.1 Random distribution . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Aggregate distribution . . . . . . . . . . . . . . . . . . . . . 5
3.3 Regular distribution . . . . . . . . . . . . . . . . . . . . . . . 5

4 Discussion 8
4.1 Comparisons of Kd and m results on the previous three

theoretical cases . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Comparisons between the results from the Kd and m

functions on a more complex example . . . . . . . . . . 8

5 Conclusion 12

Introduction
Industrial agglomerations are doubtless the main feature of
today’s economic geography (Krugman, 1991; Henderson
and Thisse, 2004). Thus, it is not surprising that much recent
research has attempted to improve the measurement of the
spatial concentration of activities.1 Distance-based methods

1See Duranton and Overman (2005); Marcon and Puech (2003, 2010);
Arbia et al. (2012); Mori and Smith (2013); Jensen and Michel (2011), among
others.

are the latest statistical measures to be proposed in the field of
spatial economics for detecting spatial structures (geographic
concentration or dispersion). By treating space as continuous,
distance-based methods provide a very detailed analysis with
robust results.2 Consequently, many authors consider them to
be very promising techniques (Combes and Overman, 2004;
Combes et al., 2008; Duranton, 2008) and that they open
the way for new explanations of the spatial concentration of
activities (Ellison et al., 2010; Alfaro and Chen, 2014). To-
day, the Duranton and Overman’s Kd function (Duranton and
Overman, 2005) is the most used distance-based method in
economics. It is a density function that evaluates absolute con-
centration (Marcon and Puech, 2012, 2015). In this article for
the first time we shall introduce a relative density function in
spatial economics, in a similar vein to the well-known location
quotient (Florence, 1972). We have developed this for two
main reasons. First, this new function, called m, supplements
the typology of distance-based methods recently drawn up by
Marcon and Puech (2012). Second, as Brülhart and Traeger
(2005) have stressed, the nature of the spatial concentration
(absolute, relative) matters. In this paper we shall show that
this still applies in a continuous-space framework by provid-
ing various comparisons between the results for Kd and m
obtained with theoretical and empirical examples.

There is growing evidence that distance-based measures
are now preferred in spatial economics since Duranton and
Overman’s seminal paper (Duranton and Overman, 2005).
One of the main reasons for this is that they preserve the rich-

2Duranton and Overman (2008) provide many concrete examples of the
problems such functions can solve.
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ness of individual data. The explanation for this is simple and
as follows. In contrast to the Gini (1912) or the Ellison and
Glaeser (1997) indices, distance-based methods do not rely on
any predefined zoning (regions, counties. . . ). Distance-based
methods are implemented directly using the position of enti-
ties (stores, plants. . . ). The analysis of the spatial distribution
of entities is based on the distance between them. This is very
important because it has been proved that the Gini or Ellison
and Glaeser indices for example which aggregate data at a
zonal level are sensitive to the zoning chosen (Arbia, 2001;
Briant et al., 2010) as described by the Modifiable Areal Unit
Problem – MAUP (Openshaw and Taylor, 1979; Arbia, 1989).
One way of solving MAUP issues is to treat space as “con-
tinuous” as suggested by Duranton (2008).3 This is the main
feature of distance-based measures. Consequently, MAUP
issues vanish. These techniques therefore allow an exact and
unbiased analysis of the spatial structure of the distribution at
all scales simultaneously (and not at only one level of observa-
tion as is the case with spatial zoning). Multiple patterns can
be detected: for example aggregation or repulsion between
entities according to the distance considered. These distance-
based measures are now deemed to be very powerful and we
can easily understand why many studies now employ them to
evaluate spatial patterns (Arbia and Espa, 1996; Sweeney and
Feser, 1998; Ó hUallacháin and Leslie, 2007; Bonneu, 2007;
Arbia et al., 2008; Nakajima et al., 2012; Barlet et al., 2013;
Behrens and Bougna, 2015; Koh and Riedel, 2014; Giuliani
et al., 2014).

In what follows, we shall introduce a new distance-based
method: the m function. Our motivation is twofold. First, as
far as we know no relative density function has yet been pro-
posed to gauge the spatial concentration in continuous space,
as Marcon and Puech (2012) pointed out. We shall devote a
great deal of attention to defining our proposed m function
in order to respect a maximum number of the good criteria
for measuring spatial concentration in economics (Combes
and Overman, 2004). In particular, the m function satisfies
Duranton and Overman’s five important criteria (Duranton
and Overman, 2005): (1) the results are comparable across
industries, (2) it controls for the overall agglomeration of man-
ufacturing, (3) it controls for industrial concentration in the
sense of Ellison and Glaeser (1997), (4) it is unbiased across
geographic scales (this is related to the MAUP issues) and
lastly (5) it gives an indication of the significance of the re-
sults. Second, various theoretical and empirical examples are
provided to show that the results provided by the m function
are complementary to Duranton and Overman’s widely used
Kd function. The latter is also a density function but not a rela-
tive one. As a result, the m function is an appropriate statistical
tool for detecting spatial structures in economics. However

3More precisely, Gilles Duranton wrote the following in the article on
“Spatial Economics” in The New Palgrave Dictionary of Economics: “On
the empirical front, a first key challenge is to develop new tools for spatial
analysis. With very detailed data becoming available, new tools are needed.
Ideally, all the data work should be done in continuous space to avoid border
biases and arbitrary spatial units.”

the results from m and Kd do not converge systematically, so
we recommend that the nature of the spatial concentration
analyzed should be studied carefully to avoid any erroneous
conclusions.

In the following sections, first of all, the background is
explained (Section 1). Then, the m function is presented
(Section 2) and some simple illustrative examples are given
(Section 3). In the last section of the paper (Section 4) we
propose some comparisons with the Kd function. We also
provide a simple theoretical example and an analysis of the
spatial distribution of pharmacies in the Lyon area (France) to
illustrate the advantages and limits of the use of the m function
in our field.

1. Background
As we have already mentioned, distance-based methods are
particularly attractive for economists because they provide
a complete and unbiased analysis of the location patterns of
industries. The basic idea of distance-based methods is simple.
Let us consider the case of the textile industry. Evaluating
the spatial distribution of plants in this sector depends on an
assessment of the surroundings of textile plants for all the
distances that are considered. If there are locally more textile
plants around textile plants than is generally the case in the
whole of the area under investigation, a phenomenon of con-
centration is detected (“textile plants attract textile plants”).
On the other hand, if there are fewer textile plants in the sur-
roundings of the textile plants than there are in the area as a
whole, we talk of a phenomenon of dispersion (in which case
“textile plants repel textile plants”). Finally, if there is no rela-
tionship between the entities, independence is identified (“tex-
tile plants are randomly and independently distributed”). The
significance of the results is provided by the confidence inter-
val of the null hypothesis. More technically, all distance-based
methods explore the spatial structure of point patterns. Their
mathematical framework is that of point processes (Møller
and Waagepetersen, 2004). Two concepts require additional
explanations: the definition of the surroundings of plants and
the nature of the spatial concentration (topographic, relative
or absolute). Let us now examine these two important factors
in greater depth.

Firstly, the notion of the surroundings of plants is central
because it defines the type of function applied i.e. a cumula-
tive or a density function. In practice, the evaluation of the
neighboring plants is done for all distances, for example every
100 meters up to the median distance between all pairs of
plants. The spatial distribution can be estimated up to a given
distance or at a given distance. If the first option is chosen, it
calls for a cumulative function. On the other hand, if the sec-
ond option is selected, a density function is appropriate. The
choice between one type of function and the other depends on
the issue under study (Marcon and Puech, 2010).

The second clarification concerns the nature of the spa-
tial concentration. In order to evaluate the spatial concen-
tration of economic activities, it is necessary to choose a
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reference value with which to compare the observed distri-
bution of activities (see Brülhart and Traeger, 2005, among
others):

• The first possibility is to use a topographic reference.
In this case, physical space is chosen as the benchmark.
One possible example is the number of neighboring
plants per unit of space (that is on a disk of radius r
for a cumulative function or on the ring at distance r
for a density function). Space may be homogeneous
or not. The homogeneity of space implies a constant
density all over the study area (in our previous case this
means that all the plants in the distribution have the
same probability of being located anywhere in the study
area). Some authors (Duranton and Overman, 2005;
Marcon and Puech, 2003) consider this hypothesis to
be too strong in the field of spatial economics and that
a non-homogeneous space framework is better.

• The second possibility is a relative reference. In this
case, another variable is taken as a benchmark. Any
variable can be used except space (if it is, the concen-
tration is topographic). For instance, if we evaluate the
spatial distribution of textile plants, we can detect in the
plant’s near environment the deviations of this distribu-
tion of plants from another distribution. The benchmark
plants can be all plants at the aggregate industrial level.

• The last possibility is to have no reference. In this
case, an absolute measure is defined. For example, the
number of neighboring textile plants located at a given
distance from a textile plant.

The growing number of measures in continuous space
recently prompted us to provide a typology of such functions
(Marcon and Puech, 2012). They proved that a classification
of statistical measures can be drawn up by considering only
the nature of the geographic concentration and the definition
of the type of function. Table 1 gives an overview of all the
distance-based measures that have been used to evaluate the
spatial distribution of economic activities:

• the K function of Ripley (1976, 1977),

• the g function of Ripley (1976, 1977),

• the Kmm function introduced by Penttinen (2006) and
Penttinen et al. (1992),

• the D function of Diggle and Chetwynd (1991),

• the Kinhom function of Baddeley et al. (2000),

• the ginhom function of Baddeley et al. (2000),

• the Kd function of Duranton and Overman (2005),

• the M function of Marcon and Puech (2010),

• the (unnamed) cumulative function of Kd proposed by
Behrens and Bougna (2015).

We can easily see that one cell in the table is empty: no
relative density function has yet been proposed for the field
of spatial economics. The present paper fills this gap. In
the next section we shall complete Table 1 by proposing a
new density function, named the m function, which expresses
relative spatial concentration.

Finally, it should be noted that the application of distance-
based methods is not confined to spatial economics. They
were first developed and applied in other disciplines. Much
empirical research has thus been conducted in the fields of
ecology (Law et al., 2009) and epidemiology (Waller, 2010),
for example.

2. Presentation of the m function
2.1 An intuitive presentation
The idea of the m function is as follows. Consider an area in
which various plants belonging to several industrial sectors are
located. The m function is a relative measure that compares
the proportion of plants of interest in the neighborhood of the
reference plants to the proportion of neighbors of interest in
the area as a whole. If plants are agglomerated the proportion
of neighbors of interest in the neighborhood of reference
plants is greater than in the area as a whole. On the contrary,
if plants are dispersed then the proportion of plants of interest
in the neighborhood of the reference plants is lower than in
the area as a whole. These proportions (ratios) are estimated
from observed data. If the neighbors of interest are in the
same sector as the reference plants, the m function helps to
detect agglomeration phenomena. If the neighbors of interest
do not belong to the same sector as the reference plants, the
m function identifies co-agglomeration.

2.2 Definition of the m function
Let us now turn to the mathematical definition of the m func-
tion. Plants are defined as points. All points belong to a point
pattern denoted by X . Two subsets are considered: that of
the reference points R (e.g. a sector of activity) and that of
the neighboring points of interest N (belonging to the same
or another sector of activity).

The estimator of m is:

(1)m̂(r) =
∑xi∈R

∑x j 6=xi ,x j∈N k(‖xi−x j‖,r)w(x j)

∑x j 6=xi ,x j∈X k(‖xi−x j‖,r)w(x j)

∑xi∈R
WN −w(xi)
W−w(xi)

where xi denotes the reference points, and x j the neigh-
bors. w(xi) is the weight of point xi. WN is the total weight
of the neighboring points of interest and W is the total weight
of all the points. If points represent industrial establishments
or shops, the weight can be the number of employees work-
ing in those entities. k(·) is a kernel estimator whose sum
can be used to estimate the number of neighbors of point
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Table 1. Choice of the appropriate function to describe a point pattern structure

Function choice Topographic,
homogeneous

Topographic,
inhomogeneous

Absolute Relative

Probability density
functions

g ginhom Kd

Kemp

Cumulative functions
K Kinhom Cumulative of Kd M

Kmm Di Cumulative of Kemp Case-control Kinhom

xi at distance r. We have followed Duranton and Overman
(2005) and used a Gaussian kernel of optimal bandwidth as de-
scribed by Silverman (1986). The kernel estimator considers
the neighbors of the reference point and gives them a maxi-
mum weighting if they are exactly r apart. Their weighting
decreases according to a Gaussian distribution of the standard
deviation h. The choice of the bandwidth h is arbitrary but
important (Illian et al., 2008). The wider it is, the smoother
the estimator. In this paper, we shall only analyze the spatial
distribution of one sector, so we shall focus on the intratype
(or univariate) m function taking R = N . But we can ex-
tend the m function for the analysis of inter-industrial spatial
distributions (co-agglomeration): the intertype (or bivariate)
function can be defined in the same way, choosing different
point types as the reference and neighbors.4

The equation of the m function reads as follows. The
numerator is the local ratio i.e. the relative weight of the
neighbors of interest at distance r from all the reference points.
This is averaged over all the reference points (actually, it is
simply summed because the number of reference points is
simplified with the denominator). The denominator is the
same ratio over the whole data set, i.e. the global ratio. It
is not just WN /W because the reference points are never
counted as neighbors. An unbiased estimator of the global
ratio is thus the average local ratio considering all points are
neighbors to each other. For this reason, the denominator is
slightly different in the intertype function: ∑xi∈R

WN
W−w(xi)

.
The reference value of the m function is 1 for any dis-

tance r. This value is obtained when the points are indepen-
dent. m values greater than 1 indicate the spatial concentra-
tion of points while m values lower than 1 express dispersion.
m values can be interpreted. For example, if the m function
is 1.5, at distance r, the proportion of the neighbor points of
interest at this distance is 50% higher than in the area as a

4To give an example, if the aim is to evaluate the spatial distribution of
the textile industry, the analysis of the distribution of textile plants around
textile plants is relevant. In the case of intra-industrial analysis, the intratype
function should be used. If, on the other hand, the focus is on for instance the
co-agglomeration of the textile and clothing sectors, analysis will deal with
the distribution of textile plants around clothing plants or the distribution of
clothing plants around textile plants. Only the intertype function is relevant
in the second case.

whole.
The significance of the estimates of m is given by the

confidence interval of the null hypothesis (Monte-Carlo sim-
ulations). This technique is widely employed in the case of
distance-based methods. In practice, random distributions
of points are generated by permuting the marks (type and
weighting pairs) of the actual points on the actual spatial posi-
tions of points (coordinates). We have generated only a global
confidence interval, following Duranton and Overman (2005).

2.3 Discussion
Like the location quotient (Florence, 1972), the m function
is a continuous space function that exists in a discrete space
approach (with predefined zoning). In continuous space, the
definition of m is similar to that of the cumulative M function
(Marcon and Puech, 2010) except that the local ratio is defined
at distance r and not up to it. In contrast with the topographic
functions g and K, the cumulative function is not the integral
of the density function over r (Ripley, 1977) because relative
functions are not derived from a measure of space.

The m function fulfills all of Duranton and Overman’s
criteria mentioned in the introduction: (i) it compares the geo-
graphic concentration results across industries, (ii) it controls
for industrial concentration (indirectly, comparing its values
to the confidence envelope of the appropriate null hypothesis),
(iii) it controls for the overall aggregation patterns of indus-
tries, (iv) it enables the significance of the results to be tested
(using the confidence interval) and, (v) it keeps the empirical
results unbiased across geographic scales. This is very im-
portant because only a few continuous-space based methods
respect all of these criteria (Marcon and Puech, 2012).

3. Theoretical examples
We shall now provide simple examples for three theoretical
cases. In every example we have considered a 1-by-1 window
and a maximum distance for the m function equal to one-third
of the diagonal of the window (≈ 0.471). We have systemat-
ically used 512 regular intervals to calculate the m function.
All points have a weighting of 1. A global confidence interval
(CI) at the 1% risk level was generated after 10,000 simula-
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tions. All simulations are made with the help of the R package
(R Development Core Team, 2014). spatstat (Baddeley and
Turner, 2005) was used to realize the point processes and the
dbmss package (Marcon et al., 2014) was used to compute
the m function.

3.1 Random distribution
Figure 1a shows two distributions: one for the cases (dia-
monds) and the other for the controls (crosses). The cases
and controls were simulated under the hypothesis of complete
spatial randomness (CSR), under which points are distributed
randomly and independently from each other. To achieve this,
we generated two distributions from a homogeneous Poisson
process with a parameter respectively equal to 25 and 100.
The parameter of the Poisson process is the expectation of
the number of points for each distribution 5. In figure 1a, 29
points were simulated for the cases and 103 for the controls.
Figure 1b depicts the m function results for this case.

No significant result was observed: m fluctuates for all
distance ranges but stays inside the confidence interval of the
null hypothesis. As expected for random distributions of cases
and controls, figure 1b provides no evidence of any attraction
or repulsion between cases. Two additional minor comments
should be made. First, the global confidence interval is quite
large at small radii: there is a small number of neighbors at
very small radii. Second, the m function is not defined for
very small distances: this indicates that cases are separated by
gaps of more than 0.01.

3.2 Aggregate distribution
Figure 2a shows a multiple pattern: an aggregate distribution
of cases (diamonds) and a completely random distribution of
controls (crosses). For the clusters of cases, we generated
simulations from a Matérn process with the following param-
eters: 2 for the density of the Poisson process that generates
cluster centers, 0.05 for the radius of clusters and 50 for the
average number of points per cluster. Controls were simu-
lated from a homogeneous Poisson process with a density of
100. 203 points were plotted on figure 2a: 102 cases shared
between two clusters and 101 controls were randomly dis-
tributed over the entire domain. Figure 2b shows the results
for the m function.

On figure 2b, two significant concentration peaks are ap-
parent. They occur at distances for which the relative local
density of cases is the greatest. The first distance at which
a peak is observed corresponds approximately to the radius
of the clusters (around 0.05). This is due to the presence of
controls in the ring at this distance, the peak is not reached ex-
actly at a distance of 0.05 but only approximately. The second
peak identifies the distance between clusters (approximately

5 The Poisson process is commonly used for simulating CSR distributions.
As Diggle (1983) wrote the Poisson process “is the cornerstone on which the
theory of spatial point processes is built. It represents the simplest possible
stochastic mechanism for the generation of spatial point patterns, and in
applications is used as an idealized standard of complete spatial randomness
(. . . )” (p.50).

0.5) and has a lower value. The local relative density of cases
over controls is greater for the first peak because the presence
of controls in the cluster is possible but rare.

Three additional comments have to be made. First, by
construction there are no cases between the aggregates. For
these distances, the maximum dispersion is detected: between
the clusters the m function attains its lowest possible value
(zero). The rapid decrease in the gradient of m is a feature
of density functions. In contrast to cumulative functions, the
values are very sensitive and large ranges of results may be
observed over small intervals of distance. Second, one can
observe that the m plot takes on its highest values in the
case of small distances (first concentration peak) and then
decreases. The explanation for this is simple. In the first radii,
the local relative density is the greatest because the maximum
number of cases is observed around these distances. Around a
distance of 0.3, the m function detects the first cases located at
the periphery of the (other) cluster: as a result, the m function
rises. Then the local relative density continues to increase
rapidly because of the large number of cases inside the cluster.
Third and last, it is interesting to note that the confidence
interval of the null hypothesis is narrower in the inter-distance
clusters, because more points are observed at these distances.

3.3 Regular distribution
Figure 3a shows another multiple pattern. A regular distribu-
tion of cases (diamonds) is clearly visible. 100 cases are posi-
tioned on a square grid measuring 0.1×0.1. The completely
random distribution of controls (crosses) is a realization of a
homogeneous Poisson process whose parameter is equal to
200. Figure 3a shows 209 controls. The m function estimates
are given in figure 3b.

Up to the size of the square grid (0.1), the cases have
no case neighbor: for small distances there is a significant
amount of dispersion. Then, a large number of peaks can
be observed but results are not significant. The reason is
simple. In this example as we previously said we retained
the optimal bandwidth as described by Silverman (1986). A
thinner bandwidth should have shown significant positive and
negative peaks. The choice of the bandwidth is important,
unfortunately “in general, however, no simple recipe for the
choice of the bandwidth exists"(Illian et al., 2008, p.115).
Let us take for example half of the previous bandwidth to
better explain the spatial structure under study. Results of
the m function are given in figure 3c. Up to the size of the
square grid (0.1), m plots are the same whatever the definition
of the bandwidth. At a distance equal to the size of the grid,
the cases have four neighbors: a significant positive peak
is observed in figure 3c, indicating the spatial concentration
of cases at this distance. At this distance, a positive peak
is also detected in figure 3b but the m plot stays within the
confidence interval. Due to smoothing, significant values of
m can also be observed just below the grid size (0.1). The
m plot then plummets when the radius increases: no cases
are located in the close environment of cases, the m value
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Controls

Cases

(a) Regular distribution of cases, complete spatial randomness for
controls
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Figure 3. Regular distribution
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returns rapidly to below the confidence interval, indicating
dispersion. On figure 3c, the irregularity in the gradient of
m between a distance of 0.10 and 0.15 is interesting. At
a distance equal to the diagonal of the grid (around 0.141)
new neighbors are present. The irregularity in the gradient
of m shows the existence of these new neighboring points.
However, there is no positive peak because the smoothing we
applied was too strong, but weaker smoothing would have
generated positive m values. On the opposite, the original
bandwidth appears too weak in that case: the irregularity in
the gradient of m is not visible between a distance of 0.10
and 0.15 in figure 3b. Note at larger distances, the observed
positive peaks appear at around twice the grid size (0.2), three
times the grid size (0.3) etc. Between these peaks, m indicates
the absence of neighboring cases: depending on the distance,
significant dispersion may (as in the case for a distance of
0.25) or may not (as in the case for a distance around 0.35) be
observed.

4. Discussion
This section provides some comparisons with the most used
density function in spatial economics, Duranton and Over-
man’s Kd function (Duranton and Overman, 2005). Keeping
the notations previously used in equation 1 and using n to
denote the total number of points, the Kd function is defined
by:

(2)K̂d (r) =
1

n(n− 1) ∑
xi∈R

∑
x j 6=xi,x j∈N

k
(∥∥xi − x j

∥∥ ,r)
The weighted version of the Kd function, called the Kemp

function (Duranton and Overman, 2005), is given by:

K̂emp (r) =
∑xi∈R ∑x j 6=xi,x j∈N w(xi)w(x j)k

(∥∥xi − x j
∥∥ ,r)

∑xi∈R ∑x j 6=xi,x j∈N w(xi)w(x j)

(3)

The Kd function is very popular in spatial economics (see
Marcon and Puech, 2012, for details). Thus, it is therefore
interesting to compare the results from the m function with
those provided by the Kd function in order to understand the
main differences between the two statistical measures. In
what follows, we have used the R package dbmss to estimate
the Kd and m functions.

4.1 Comparisons of Kd and m results on the previ-
ous three theoretical cases

The Kd function was estimated for the three theoretical cases
considered above. The Kd plots are shown on figure 4a for the
random distribution of cases, on figure 4b for the aggregate
distribution and on figure 4c for the regular distribution. For
all the cases, we have used the same maximum distance, i.e.
one-third of the diagonal of the window (≈ 0.471).

For the random distributions of cases and controls (fig-
ure 4a), m and Kd give identical results. No significant level
of dispersion or concentration was detected.

For the aggregate distribution (figure 4b), like the m func-
tion, Kd detects the first peak of concentration occurring at a
distance of approximately 0.05. The main difference relates to
the shape of the concentration peak. At very small distances
the Kd values increase up to a distance of 0.05 which corre-
sponds to the radius of the cluster. After this, the value of Kd
starts to fall. The increase in Kd contrasts with the shape of
the m function at short distances. The explanation for this lies
in the definition of Kd which evaluates the probability of find-
ing one case neighbor at a given distance. At short distances
this probability increases because more case-neighbors are
observed. This probability reaches it maximum at the radius
of the circle. Then, it progressively decreases since the radius
of the circle increases.

Let us now turn to the regular theoretical example. With
the same original smoothing of Silverman (1986) also chosen
by Duranton and Overman (2005), the results for this spatial
pattern with the m (figure 3b) or the Kd (figure 4c) function
are totally in accordance. The only difference appears in the
first radii: estimates of the Kd function begin at a distance of
r = 0.1 while m values can be estimated at lower distances.
This is explained by the definition of Kd : no case-neighbor is
located at a distance of less than than 0.1 thus Kd is not defined.
This is not the case for m: if there are no case neighbors but
there are some control neighbors, the m function is defined and
takes it lowest value (zero) as shown in figure 3b. Finally, it
should be noted that we applied the same smoothing when we
compared the m and Kd functions. This is of great importance,
as shown when we modified the smoothing by choosing a
narrower bandwidth, that is half of the original bandwidth of
Silverman (1986) (while retaining the same risk level, number
of simulations and type of confidence interval). The results for
the Kd function are given in figure 4d and should be compared
with the m results given in figure 3c. As one would expect,
there are a large number of positive and negative significant
peaks in comparison to weaker smoothing of the results.

4.2 Comparisons between the results from the Kd
and m functions on a more complex example

In the three above theoretical cases, there is not a great deal
of difference between the results with the Kd and m functions.
However, this is not always the case. In real life, the distribu-
tion of activities may be more complex. In this sub-section,
we shall draw attention to the type of concentration that the
m function can identify. To make things clearer, if we return
to table 1 we can see that the m function evaluates the relative
concentration while Kd appraises the absolute concentration.
This distinction may be crucial to an understanding of spatial
structures.

4.2.1 Divergence in the Kd and m results on a theoretical
case

Consider the following theoretical example. A city is delim-
ited by a 1-by-1 window. For the sake of simplicity “cases"
and “controls" are the only two types of shops located in the
city. Figure 5 shows the distribution of cases (diamonds) and
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(a) Kd results for completely random distributions of cases and controls
(map on figure 1a)
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(b) Kd results for aggregate distribution of cases (map on figure 2a)
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(c) Kd results for regular distribution of cases (map on figure 3a) with
the original Duranton and Overman’s smoothing

0.0 0.1 0.2 0.3 0.4

0.
4

0.
8

1.
2

1.
6

Kd
α = 1%, global CI
CI center

(d) Kd results for regular distribution of cases (map on figure 3a) with a
more detailed smoothing

Figure 4. Kd results for the three theoretical cases
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Figure 5. A more complex theoretical case
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(a) Kd function results
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(b) m function results

Figure 6. Kd and m results for a more complex theoretical case

controls (crosses). A multiple pattern is observed: a com-
pletely random distribution of controls (crosses) and cases
(diamonds) and also an aggregate distribution of controls
(crosses). More technically, for the cluster of controls we
generated simulations from a Matérn process with the fol-
lowing parameters: 1 for the density of the Poisson process
that generates cluster centers, 0.1 for the radius of clusters
and 75 for the average number of points per cluster. Controls
were also simulated from a homogeneous Poisson process
with a density of 25. 134 points were plotted on figure 5. The
cluster is composed of 66 controls: 42 controls are randomly
distributed on the area and 26 cases are randomly distributed
over the entire domain.

Figures 6a and 6b show the results for the Kd function and
the m function. In line with our previous examples, all points
have a weighting of 1. A maximum distance for the m function
equal to one-third of the diagonal of the window (≈ 0.471).
A global confidence interval (CI) at the 1% risk level was
generated after 10,000 simulations. For both functions, we
used a Gaussian kernel of optimal bandwidth (Silverman,
1986; Duranton and Overman, 2005). All simulations were
conducted with the help of the R package the dbmss package
for computing the Kd and m functions. The divergence in the
results between Kd function and m show all the importance of
the definition of the nature of the spatial concentration studied.

As we underlined, the m function detects the relative spa-
tial concentration. Cases are more regularly distributed that
the controls in the example. As a consequence, around the
cases the presence of cases is relatively more important than
the one of controls: relative concentration is detected by the
m function up to a distance approximately equal to 0.25 (fig-
ure 6b). Now, consider the Kd results (figure 6a). A phe-
nomenon of a dispersion of cases is detected. This result
can be explained in a easy way and there is no contradiction
between the spatial structure detected by the m function. The
Kd function detects the absolute concentration. When we
simulate the null hypothesis, the cases will be more concen-
trated than we can observed in figure 5 because some cases

will probably be located in the cluster. As a conclusion, the
distribution of cases is less concentrated that under the null
hypothesis: absolute concentration is detected in figure 6a (up
to a distance approximately equal to 0.17). This should not be
considered as only a textbook case, a real case of that example
is given in the following section.

4.2.2 Confirmation of the previous results for a retail sec-
tor in the city of Lyon (France)

To give a concrete example of the previous theoretical case,
we shall consider the spatial distribution of the non-food retail
stores in the Lyon area (France). We have exploited a database
provided by the Chamber of Commerce and Industry of Lyon.
This contains the exact geographic position of 3,124 non-food
stores in April 2012. The different types of store have been
classified into 26 sectors from 47.30Z to 47.79Z of the French
NAF rev. 2 classification of activities. We shall focus on
“dispensing chemists in specialized stores” (47.73Z), of which
there are 156 in the Lyon area. We shall refer to these stores
as pharmacies in what follows.

First of all, a comparison of the density of all non-food
stores in Lyon (figure 7a) and the spatial distribution of the
pharmacies over the same area (black points on figure 7b) is
worthwhile. We can see that many of the city’s non-food stores
are located in central Lyon and the left bank of Rhône river (to
the east of central Lyon, figure 7a). However, pharmacies are
undoubtedly more regularly distributed than non-food stores
as a whole. One can easily observe the presence of these
activities over the entire Lyon area (black points on figure 6a).

The impacts on the results for m and Kd will be of interest.
These are given on figures 8a and 8b. Their respective global
confidence intervals (CI) were computed at the 1% risk level
after 10,000 simulations. All the simulations were conducted
with the help of the R package dbmss for computing the Kd
and m functions. All the pharmacies were assigned a weight-
ing of 1 and the maximum distance analyzed was around 2.5
kilometers. The spatial structures detected by Kd and m differ.
Up to a distance of approximately of 2 kilometers, the plot of
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(a) Density of the non-food retail stores
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(b) Spatial distribution of pharmacies in Lyon

Figure 7. Non-food retail stores in the area of Lyon (France)

0 500 1000 1500 2000 2500

0.
8

1.
0

1.
2

1.
4 m

α = 1%, global CI
CI center

(a) m results for pharmacies in Lyon

0 500 1000 1500 2000 2500

0e
+

00
2e

−
04

4e
−

04

Kd
α = 1%, global CI
CI center

(b) Kd results for pharmacies in Lyon

Figure 8. Spatial structure of the pharmacies
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Kd indicates that pharmacies are dispersed while that of m in-
dicates a degree of spatial concentration up to 1.5 kilometers.
These results are in line with the type of concentration each
function seeks to identify. It should be remembered that Kd
evaluates the absolute concentration: it has no reference value
for assessing the spatial concentration because it evaluates
the probability of finding one case neighbor at a distance r
(in our example we are evaluating the probability of finding
another pharmacy from any pharmacy). What are the impli-
cations for our case study? As we have seen, this activity
is more regularly distributed than non-food retail activities
as a whole in the Lyon area. Thus, under the null hypothe-
sis, pharmacies are more concentrated than in the observed
distribution (points are randomly labeled under the null hy-
pothesis). Consequently, as one would expect, Kd detects an
observed dispersion of these stores in that sector. If we now
turn to the results for m, a level of spatial concentration is
detected. The reason is that m identifies the relative spatial
concentration (and not the absolute one). While there are
pharmacies in high density business areas (central Lyon, the
left bank of the River Rhône. . . ), they are particularly present
in low density business areas. In the latter, pharmacies are
over-represented around other pharmacies than under the null
hypothesis. When we simulate distributions, pharmacies will
be located in areas where the number of non-retail stores is
greater so the relative concentration of these stores will be
lower under the null hypothesis. As a result, the observed m
plot is over the confidence interval of the null hypothesis and
indicates a relative spatial concentration of pharmacies be-
tween approximatively 250 m and 1500 m. This comparison
of results emphasizes that the nature of the spatial concentra-
tion should be studied with care. Our conclusion is in line
with Brülhart and Traeger (2005) or Marcon and Puech (2015)
findings.

5. Conclusion
The first objective of this article was to introduce a new
distance-based function called m, which is a relative den-
sity function. m is the first relative density function to be
proposed in this field. The m function will therefore undoubt-
edly be useful for economists in order to detect the relative
spatial structures of any distribution. Like any density func-
tion, m depicts local patterns more precisely than any existing
cumulative function. The second objective of the paper was to
prove that m is not equivalent to the leading density function
Kd . The reason is that m evaluates the relative concentration
and Kd the absolute one. We took a real example to show the
complementarity of m and Kd . More precisely, we illustrated
this point with the distribution of pharmacies in the Lyon area
in France. Both functions detect irregularities in the spatial
distribution of this activity but Kd identifies the spatial struc-
ture as one of dispersion and m as one of aggregation. In
conclusion, a great deal of attention should be given to the
statistical measure that is used to gauge the spatial structure
of activities.
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