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ABSTRACT 

For a decade, distance-based methods have been largely employed and improved in the field of 

spatial economics. Such tools are very powerful to evaluate accurately the spatial distribution of 

plants or retail stores for example (Duranton and Overman, 2008; Jensen and Michel, 2011). In 

the present paper, we introduce a new statistic measure based on distances to evaluate the spatial 

concentration of economic activities. As far as we know, the m function is the first relative density 

function proposed in the economic literature. This tool completes the typology of distance-based 

methods recently drawn up by Marcon and Puech (2014). By working on several theoretical and 

empirical examples, we prove the advantages and the limits of the m function to gauge the spatial 

structures in spatial economics. 
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1. INTRODUCTION 

“On the empirical front, a first key challenge is to develop new tools for spatial analysis. With very detailed data 

becoming available, new tools are needed. Ideally, all the data work should be done in continuous space to avoid 

border biases and arbitrary spatial units.” (Duranton, 2008). 

This sentence of Gilles Duranton in the “Spatial Economics” article of The New Palgrave Dictionary 

of Economics underlines all the importance for proposing new statistic tools that allow an 

accurate description of the spatial distribution of economic activities. Industrial agglomerations are 

certainly the main feature of the present economic geography (Krugman, 1991; Henderson and 

Thisse, 2004). Thus, it is not surprising that a lot of research has been recently devoted to improve 

the measurement of the spatial concentration of activities (see Duranton and Overman, 2005; 

Marcon and Puech, 2003, 2010; Arbia et al., 2012; Mori and Smith, in press, among others).  

In the present paper we propose a new tool for evaluating the spatial structures in economics: a 

relative density function called m. This new measure belongs to the distance-based methods that 

are the latest statistical measures proposed in the field of spatial economics (Combes et al., 2008). 

Such measures are now privileged in our field because they do not rely on any zoning contrarily to 

the Gini or Ellison and Glaeser (1997) indices for example. It has been proved (Arbia, 2001; 

Briant et al., 2011) that such indices are sensitive to the zoning chosen as described by the 

Modifiable Areal Unit Problem – MAUP (Openshaw and Taylor, 1979; Arbia, 1989). Thus it 

should be better to treat space as “continuous”. Working directly on the position of entities 

(shops, plants…) allows an exact and unbiased analysis of the spatial structure of the distribution 

at all scales simultaneously (and not at only one level of observation as the zoning-space approach 

does). Multiple patterns can be detected: for example aggregation or repulsion between entities 

according to the distance considered. These functions are thus very powerful and a lot of studies 

now use distance-based methods to evaluate spatial patterns (Arbia and Espa, 1996; Sweeney and 

Feser, 1998; Ó hUallacháin and Leslie, 2007; Bonneu, 2007; Arbia et al., 2008; Nakajima et al., 

2012; Barlet et al., 2013; Behrens and Bougna, 2013; Koh and Riedel, 2014, Giuliani et al., in 

press).4 

The introduction of the m function is important for at least two reasons. First, our paper fills a gap 

in the economic literature because as far as we know no relative density function was yet proposed 
                                                 

4 Marcon and Puech (2014) provide a survey of studies employing a distance-based method for evaluating spatial 

patterns. 
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to gauge the spatial concentration in continuous space as Marcon and Puech (2014) noticed. A 

great attention was devoted in defining the proposed m function to respect a maximum of the 

good criteria for the measurement of spatial concentration in economics (Duranton and Overman, 

2005; Combes and Overman, 2004). Second, various theoretical and empirical examples are 

provided to show that the results brought by the m function are complementary to the widely used 

Duranton and Overman’s Kd function. The latter distance-based method is also a density function 

but not a relative one. As a result, the m function is a relevant statistic tool to detect spatial 

structures in economics. 

In the following sections, at first our motivation is explained (II). Then, the m function is 

presented (III) and some simple illustrative examples are given (IV). In the last section of our 

paper (V) comparisons with the Kd function are proposed. We provide simple theoretical 

examples and also an analysis of the spatial distribution of pharmacies in the Lyon area is done to 

illustrate the advantages and the limits of the use of the m function in our field  

2. MOTIVATION 

As we underlined in the introduction, a lot of efforts have been devoted during the last decade to 

introduce or improve distance-based methods in the field of economics (see Duranton and 

Overman, 2005; Arbia et al., 2009; Marcon and Puech, 2010; Arbia et al., 2012). These methods are 

particularly attractive because they provide a complete analysis of the location patterns of 

industries. 

The basic idea of the distance-based methods is simple. Consider the case of the textile industry. 

The evaluation of the spatial distribution of plants in this sector rests on an assessment of the 

surroundings of textile plants for all distances considered. If there are locally more textile plants 

around textile plants than in general on the whole territory analyzed then a phenomenon of 

concentration is detected (textile plants attract textile plants). On the opposite if in the surroundings 

of the textile plants there are less textile plants than we find on average on the whole territory, 

then a phenomenon of dispersion will be observed (in that case textile plants repulse textile plants). 

At last, if there is no relation between entities, a phenomenon of independence is identified (textile 

plants are randomly and independently distributed). The significance of the results is provided by 

the generation of the confidence interval of the null hypothesis. More technically, all distance-

based methods explore the spatial structure of point patterns. Their mathematical framework is 

that of point processes (Møller and Waagepetersen, 2004).  
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Two notions require additional explanations: the definition of the surroundings of plants and the 

nature of the spatial concentration (topographic, relative or absolute). Let us develop these two 

important features. 

Firstly, the notion of the surroundings of plants is central because it defines the type of the 

function retained i.e. cumulative or density functions. Practically, the evaluation of the neighboring 

plants is done for all distances for example every 100 meters up to the median distance between all 

pairs of plants. The spatial distribution can be estimated up to a given distance of at a given 

distance. If the first option is chosen, it calls for a cumulative function. On the opposite, if the 

second one is retained, a density function is appropriate. The choice between the one or the other 

type of functions depends on question under study (Marcon and Puech, 2010). 

The second clarification concerns the nature of the spatial concentration. The evaluation of the 

spatial concentration of economic activities implies to choose a reference value to which the 

observed distribution of activities will be compared to (Brülhart and Traeger, 2005). 

 The first possibility is to retain a topographic reference. Here, the physical space is chosen as a 

benchmark (space may be homogenous or not). To give an example, it is the case of the 

number of neighboring plants located per unit of space (that is on a disk of radius r for a 

cumulative function or on the ring for a density function). 

 The second possibility is a relative reference. In that case, another variable is taken as a 

benchmark. For instance, if we evaluate the spatial distribution of textile plants, we can detect 

in the close environment of the plant the deviations of this distribution of plants to another 

distribution. The benchmark plants could be all plants at the aggregate industrial level. 

 The last possibility is an absolute reference. In that case, there is no reference value. For example, 

the absolute number of neighboring textile plants located at a given distance from a textile 

plant. 

The growing number of measures in continuous space has incited us to recently provide a 

typology of those functions (Marcon and Puech, 2014). We proved that a classification of 

statistical measures can be drawn by considering only the nature of the concentration and the 

definition of the type of the function. Table 1 gives an overview of all the distance-based measures 

that have been used to gauge the spatial distribution of the economic activities: 

 the K function of Ripley (1976, 1977), 

 the g function of Ripley (1976, 1977), 

 the Kmm function introduced by Penttinen (2006) and Penttinen et al. (1992), 
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 the D function of Diggle and Chetwynd (1991), 

 the Kinhom function of Baddeley et al. (2000), 

 the ginhom function of Baddeley et al. (2000), 

 the Kd function of Duranton and Overman (2005), 

 the M function of Marcon and Puech (2010), 

 the (unamed) cumulative function of Kd proposed by Berhens and Bougna (2013). 

We can easily see in table 1 that one cell is empty: no relative density function has yet been 

proposed in the field of spatial economics. The present paper fills this gap. In the next section we 

will complete the table 1 by proposing a new density function, named the m function, which 

detects the relative spatial concentration. 

Table 1: Typology of distance-based measures (Marcon and Puech, 2014) 

Function 
choice 

Topographic, 
homogenous 

Topographic, 
inhomogenous 

Absolute Relative 

Density 
functions 

g ginhom Kd  

Cumulative 
functions 

K 

Kmm 

Kinhom 

D 
Cumulative Kd M 

Finally, it is important to note that the field of applications of distance-based methods is not 

confined to spatial economics. They have been developed and applied at first in other sciences. 

For example numerous empirical researches have been made with these tools in ecology (Law et 

al., 2009) or in epidemiology (Waller, 2010). 

3. PRESENTATION OF THE m FUNCTION 

As a relative measure of concentration of dispersion, m considers the ratio between the number of 

neighbors of interest in the neighborhood of reference points and the number of all neighbors. 

This ratio is estimated from the observed data, and normalized by the same ratio measured on the 

whole data set. 
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The estimator of m is: 
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ix  designates reference points, jx  neighbors.  rxxk ji ,  is a kernel estimator function whose 

sum returns the density of neighbors of point ix  at distance r. Following Illian et al. (2008, 
chapter 4.3.3), we used the simple and efficient box kernel with bandwidth parameter h: 
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Loosely speaking, the kernel estimator counts the number of points in a ring of width 2h at 
distance r apart from the reference point ix  and returns a number of points per unit of ring width. 

)( jxw  is the weight of point jx . )( c

jxw  is the weight of neighbors of interest, i.e. it equals 0 if 

point jx  does not belong to the chosen point type. Wc is the total weight of the points c

jx  and W 

the total weight of all points.  

We focus on the intratype m function in this paper, but the intertype function is defined the same 

way, taking reference points ix  and neighbor points c

jx  in different point types. 

The equation reads as follows. The numerator is the local ratio: the relative weight of neighbors of 

interest at distance r from all reference points. It is summed over all reference points (actually, it is 

summed because the number of reference points simplifies with the denominator). The 

denominator is the same ratio over the whole data set, the global ratio. It is not just Wc/W because 

the reference points are never counted as neighbors: an unbiased estimator of the global ratio is 

thus the average local ratio considering all points are neighbor to each other. For this reason, the 

denominator is slightly different in the intertype function:  i
i

c

xwW

W

)(
. 

The choice of the bandwidth h is arbitrary. The wider it is, the smoother the estimator is. 

The reference value is 1 for any distance r. This value is reached in case of independence of points. 

m values greater than 1 indicate spatial concentration of points while m values lower than 1 detect 

dispersion.  m values can be interpreted. For example if at a distance r, the m function reaches 1.5, 

it means that the proportion of the neighbor points of interest at this distance is 50% higher than 

on the whole territory. 

The significance of the m estimates is given by the generation of a confidence interval of the null 

hypothesis (Monte Carlo simulations). This technique is widely developed for distance-based 
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methods (see Marcon and Puech, 2014). Practically, random distributions of points are generated 

by permuting the marks (type and weight couples) of the actual points on the actual spatial 

positions of points (coordinates). We only retain a global confidence interval, following Duranton 

and Overman (2005). 

The definition of m is similar to that of the cumulative M function (Marcon and Puech, 2010) 

except that the local ratio is defined at distance r and not up to it. In contrast with topographic 

functions g and K, the cumulative function is not the integral of the density function over r (Ripley, 

1977) because relative functions are not derived from a measure of space. 

The m function fulfills the criteria of Duranton and Overman mentioned in the introduction: 

(i) it compares the geographic concentration results across industries, (ii) controls for industrial 

concentration (indirectly, comparing its values to the confidence envelope of the appropriate null 

hypothesis), (iii) controls for the overall aggregation patterns of industries, (iv) tests the 

significance of the results (thanks to the confidence interval)  and, (v) keeps the empirical results 

unbiased across geographic scales. 

4. THEORETICAL EXAMPLES 

Simple examples are now provided on three theoretical cases. In every example we retain a 1-by-1 

window and a maximal distance for the m function equal to the half of the diagonal of the window 

(~0.707). We systematically use 64 regular intervals to calculate the m function. All point weights 

equal 1. A global confidence interval (CI) at the 1% risk level is generated with 10,000 simulations. 

All simulations are made with the help of the R (R Development Core Team, 2014) package 

spatstat (Baddeley et Turner, 2005) for the realizations of the point processes and the R 

package dbmss (Marcon et al., 2014) for the calculation of the m function. 

a) Random distribution 

Figure 1 shows two distributions: one for the cases (black points) and the other for the controls 

(grey points). Cases and controls are simulated from a homogeneous Poisson process of parameter 

respectively equal to 25 and 100. 29 points are simulated for cases and 103 for the controls. 

Figure 2 depicts the m function results associated to this case. 
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Figure 1: Complete spatial random 
distributions for cases and controls 

Figure 2: m function results 
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No significant result is observed: for all distance ranges m fluctuates but stays inside the 

confidence interval of the null hypothesis. As expected for random distributions of cases and 

controls, there is no evidence of any attraction or repulsion between cases on Figure 2. 

Two minor comments can be done at small distances. First, there is a little number of neighbors at 

very small radii: the global confidence interval is quite large. Second, the lower band of the 

confidence interval is equal to zero up to 0.15. For more than 0.5% of the simulated distributions, 

cases are separated with gaps larger than 0.15; for these distribution, m is equal to zero up to the 

distance 0.15, so that the lower band of the confidence interval is zero. 

b) Aggregate distribution 

Figure 3 shows a multiple pattern: an aggregate distribution of cases (black points) and a complete 

spatial random distribution of controls (grey points). For the clusters of cases, we generate 

simulations from a Matérn process of parameters 2 for the density of the Poisson process that 

generates cluster centers, 0.05 for the radius of clusters and 50 for the average number of points 

per cluster. Controls are simulated from a homogeneous Poisson process of density equal to 100. 

On Figure 3, 203 points are present: 102 cases shared out among two clusters and 101 controls are 

randomly distributed on the entire domain. Figure 4 depicts the results of the m function. 
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Figure 3: Aggregate distribution of cases, 
complete spatial randomness for controls 

Figure 4: m function results 
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On Figure 4, two significant peaks of concentration are detected. They occur exactly at distances 

at which the relative local density of cases is the greatest. The first distance at which the peak is 

observed corresponds to the radius of the clusters (0.05). The second peak identifies the distance 

between clusters (approximately 0.5). This peak reaches a lower value. This is due to the presence 

of controls in the ring at this distance. The local relative density of cases over controls is greater 

for the first peak because the presence of controls in the cluster is possible but remains anecdotic. 

Three additional comments have to be made. First, by construction there is no case between the 

aggregates. For these distances, the maximal dispersion is detected: between the clusters the m 

function reaches its lowest possible value (zero). The rapid decreasing of the m slope is a feature of 

the density functions. Contrarily to cumulative functions, values are very sensitive and large ranges 

of results may be observed in small intervals of distances. Second, one can observe that the m plot 

is constant for the first peak and then decreases. In the first radii, the local relative density is the 

greatest because around cases at these distances a maximum of cases is observed. This is not 

visible for the second peak: the m plot increases and then decreases. The explanation is simple. 

Around a distance of 0.4, the m function detects the first cases locating at the periphery of the 

(other) cluster: as a result, the m function rises. Then the local relative density continues to grow 

rapidly because cases are numerous inside the cluster. The m function decreases when the ring is 

greater than the inter-distance between both clusters. Third and last, it is interesting to note that 

the confidence interval of the null hypothesis is thinner at the inter-distance clusters: more points 

are observed at theses distances. 
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c) Regular distribution 

Figure 5 shows another multiple patterns. A regular distribution of cases (black points) appears 

clearly. 100 cases are positioned on a square grid of 0.1x0.1. The complete spatial random 

distribution of controls (grey points) is a realization of a homogeneous Poisson process of 

parameter equal to 200. On Figure 6, 209 controls are present. The m function estimates are given 

in Figure 6. 

Figure 5: Regular distribution of cases, 
complete spatial randomness for controls 

Figure 6: m function results 
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Numerous peaks of concentration and dispersion are observable. Up to the size of the square grid 

(0.1), every case has no case-neighbor: the local relative density of case-neighbors is equal to zero. 

Then at a distance equal to the size of the grid, any case has four neighbors: a positive peak is 

observed, detecting a phenomenon of spatial concentration of cases at this distance. Then, the 

m plot plummets when the radius increases: no cases are located in the close environment of cases, 

the m value returns rapidly to its minimum value (zero), detecting dispersion. Then, at a distance 

equal to the diagonal the grid (around 0.141) a second positive peak is observed. Four cases are 

detected: this is assimilated to a relative spatial concentration of cases. After the diagonal of the 

grid, the m plot rapidly falls to zero because the absence of case-neighbors leads to a maximum of 

dispersion. At larger distances, the observed positive and negative peaks have the same 

explanations. It is interesting to note that the m function is very sensitive: numerous peaks are 

detected, large and rapid variations in the results are visible. Two main reasons can explain it. First 

as we previously underlined, the density function results may vary a lot between two steps of 
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computation. Thus they can identify precisely the local pattern and much more precisely as a 

cumulative function can do (Marcon and Puech, 2010). Second, in our example, a box kernel 

estimator is chosen: this also accentuates irregularities of the plot. 

Finally, at very small distances, the large confidence interval of the null hypothesis is due to the 

small number of controls located near cases. 

5. DISCUSSION 

This section provides some comparisons with the density function the most used in spatial 

economics: the Kd function of Duranton and Overman (2005). By keeping the same previous 

notations of equation (1), the Kd function is defined by : 
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The weighted version of the Kd function (Duranton and Overman, 2005), called the Kemp function, 

is given by: 
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The Kd function is very popular in spatial economics (see Marcon and Puech, 2014, for details). 

Thus comparing the results of the m function to those provided by the Kd function is useful to 

understand the main differences between those statistic measures. In what follows, we use the R 

package dbmss to estimate the Kd and m functions. 

a) Comparisons of Kd and m results on the three previous theoretical cases 

The Kd function was estimated for the three previous theoretical cases studied. Kd plot is shown 

on Figure 7 for the random distribution of cases, on the Figure 8 for the aggregated one and on 

the Figure 9 for the regular distribution of cases. The half of the maximum distance between 

points is systematically retained as it is suggested by Duranton and Overman (2005). As a result, 

the maximum value varies from one example to another. 

To begin with, it is striking that the Kd results are less erratic than the m results for all examples. 

The kernel smoothing differs for m and Kd. As we previously underlined a narrow box kernel has 
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been chosen for m while a Gaussian kernel is preferred for Kd (see Duranton and Overman, 2005). 

Future improvements of the m function will allow more smoothing. 

For the random distributions of cases and controls (Figure 7), the results of m and Kd are identical. 

No level of significant dispersion or concentration is detected.  

Figure 7: Kd results for complete spatial 
random distributions for cases and controls 

(map on Figure 1) 

Figure 8: Kd results for aggregate distribution of 
cases (map on Figure 3) 

Figure 9: Kd results for regular distribution 
 of cases (map on Figure 5) with the original Duranton and Overman’s smoothing 

 

For the aggregate distribution (Figure 8), as the m function Kd detects the first peak of 

concentration occurring at a distance approximately equal to 0.05. The main difference relies on 

the shape of the concentration peak. At very small distances Kd values increase up to a distance of 

0.05 which corresponds to the radius of the cluster. Then, the value of Kd is declining. The 

increasing of Kd contrasts with the form m function at short distances. The explanation relies on 

the definition of Kd which evaluates the probability of finding one case-neighbor at a given 

distance. At short distances this probability increases because there are more and more case-

neighbors observed. This probability reaches it maximum at the radius of the circle. Then, it 

progressively decreases since the radius of the circle increases.  



13 

 

The regular theoretical example pattern is more surprising. Kd detects some irregularities in the 

distribution but no significant results are observed on Figure 9. Here, results suffer from a too 

important smoothing of the results if we retain the original Duranton and Overman’s technique. If 

we modify the smoothing by choosing a thinner bandwidth, then positive and negative peaks 

appear and results corroborate the m plot findings. Figure 10 provides such Kd plot with a thinner 

bandwidth (the risk level, the number of simulations, the type of the confidence interval remain 

unchanged). It is shown that the smoothing technique is of great importance for density functions. 

The latest are very sensitive to the type of the kernel estimator used as well as the bandwidth. 

Cumulative functions are undoubtedly less sensitive to the number of intervals on which they are 

computed. Finally, note that the estimates of the Kd function begins at a distance of r = 0.1 while 

m values can be estimated at lower distances. This is explained by the definition of Kd: no case-

neighbor are located at a distance lower than 0.1 thus Kd is not defined. This is not the case for m: 

if there are no case-neighbors but control-neighbors are present, then the m function is defined 

and takes it lowest value (zero) as it is shown on Figure 6. 

Figure 10: Kd results for regular distribution 
 of cases (map on Figure 5) with a more detailed smoothing 

 

b) Comparisons of Kd and m results for a retail sector in the city of Lyon (France) 

In the three previous theoretical cases, Kd and m results do not differ greatly. However, it is not 

always the case. In real life, the distribution of activities could be indeed more complex. In that 

sub-section, we want to draw attention on the type of concentration that the function can identify. 

To make the things clearer, if we come back to the Table 1 we can see that the m function 

evaluates the relative concentration while Kd appraises the absolute one. This distinction should be 

crucial to understand spatial structures. 
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To give a concrete example, consider the spatial distribution of the non-eating retail stores in the 

area of Lyon (France). We exploit a database from the Chamber of Commerce and Industry of 

Lyon. It registers the exact geographic position of 3,124 non-eating shops in April 2012. Activities 

are classified in 26 sectors from 47.30Z to 47.79Z of the French NAF rev.2 classification of 

activities. Hereinafter, we focus on the “dispensing chemist in specialised stores” (47.73Z) which is 

composed of 156 stores. Hereinafter, this activity is renamed “pharmacies”. 

First of all, a comparison of the density of all non-eating stores in Lyon (Figure 11) and the spatial 

distribution of the pharmacies over the same area (back points on Figure 12) is worthwhile. We 

can see that the central area of Lyon (downtown) and the left bank of Rhône river (on east of the 

central Lyon) locate a lot of non-eating shops in the city (Figure 11). However, the distribution of 

pharmacies is undoubtedly more regularly located (Figure 12) than the global trend of non eating-

stores. One can easily observe the presence of these activities all over the Lyon area (black points 

on Figure 12). 

Figure 11: Density of the non-eating retail 
stores in the area of Lyon (France) 

Figure 12: Spatial distribution of pharmacies in 
Lyon 

The consequences on the Kd and m results will be of interest. They are given on Figures 13 and 14. 

Their respective global confidence intervals (CI) are computed at the 5% risk level with 10,000 

simulations. All simulations are made with the help of the R package dbmss (R Development 

Core Team, 2014; Marcon et al., 2014) for the calculation of the Kd and m functions. All weight of 

the pharmacies is equal to 1 and the maximum distance analyzed is around 2.5 kilometers. 

The spatial structures detected by Kd and m differ. Up to a distance approximately of 2 kilometers, 

the Kd plot indicates that pharmacies are dispersed while m argues a certain degree of spatial 

concentration. These results are in line with the type of concentration they are looking for. 

Remember that Kd evaluates the absolute concentration: it has no reference value for assessing the 

spatial concentration because it evaluates the probability of finding one case-neighbor at a 

distance r (in our example we are evaluating from any pharmacy the probability to find another 
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pharmacy). What are the implications for our case-study? As we shown, this activity is more 

regularly distributed than global non-eating retail activities in the Lyon area. Thus, under the null 

hypothesis pharmacies are more concentrated than in the observed distribution (points are 

randomly labelled under the null hypothesis). As a consequence, Kd detects logically an observed 

dispersion of these stores in that sector. 

Figure 13: m results for pharmacies in Lyon Figure 14: Kd results for pharmacies in Lyon 
  

If we now turn to the m results, a spatial level of concentration is now detected. The reason is that 

m identifies the relative spatial concentration (and not the absolute one). Pharmacies are located in 

high density business areas (central area of Lyon, the left bank of Rhône river…) but particularly 

in low density business areas. In the latter, pharmacies are over-represented in the surroundings of 

these stores than under the null hypothesis. When we simulate distributions, these activities will be 

located in areas where the number of non-retailed shops is greater so the relative concentration of 

these stores will be lower under the null hypothesis. As a result, the observed m plot is over the 

confidence interval of the null hypothesis and indicates a relative spatial concentration of 

pharmacies around 500m or 750m for example. Note that a negative peak of the m function is 

observed at very short distances. This is explained by administrative constraints of the location of 

pharmacies: they must be regularly distributed at short distances (thus a significant relative 

dispersion is detected by the m function). 

6. CONCLUSION 

The first objective of this article was to introduce a new distance-based function called m which is 

a relative density-function. m is the first relative density function proposed in our field. In that 

sense, the m function will be undoubtedly useful for economists for detecting the relative spatial 

structures of any distribution. As any density function, m depicts local patterns more precisely than 

any existing cumulative function such as the M function of Marcon and Puech (2010). The second 



16 

 

objective of the paper was to prove that m is not equivalent to the leading density function Kd. The 

reason is that m evaluates the relative concentration and Kd the absolute one. We take a real 

example to show the complementarity of m and Kd. More precisely, we illustrate that point with 

the distribution of pharmacies in the Lyon area in France. Both functions detect irregularities in 

the spatial distribution of this activity but Kd assimilate that spatial structure to dispersion and m to 

aggregation. As a conclusion, a great attention should have been given to the statistic measure to 

gauge the spatial structure of activities. 
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