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2d Grushin-type equations: minimal time and
null controllable data.

K. Beauchard ∗, L. Miller †, M. Morancey ‡§

Abstract

We study internal null controllability for degenerate parabolic equa-
tions of Grushin-type Gγ = ∂2

xx + |x|2γ∂2
yy, (γ > 0), in the rectangle

(x, y) ∈ Ω = (−1, 1)× (0, 1).
Previous works proved that null controllability holds for weak degen-

eracies (γ small), and fails for strong degeneracies (γ large). Moreover, in
the transition regime and with strip shaped control domains, a positive
minimal time is required.

In this paper, we work with controls acting on two strips, symmetric
with respect to the degeneracy. We give the explicit value of the minimal
time and we characterize the initial data that can be steered to zero in
time T (when the system is not null controllable): their regularity depends
on the control domain and the time T .

We also prove that, with a control that acts on one strip, touching the
degeneracy line {x = 0}, then Grushin-type equations are null controllable
in any time T > 0 and for any degeneracy γ > 0.

Our approach is based on a precise study of the observability property
for the one-dimensional heat equations satisfied by the Fourier coefficients
in variable y. This precise study is done, through a transmutation process,
on the resulting one-dimensional wave equations, by lateral propagation
of energy method.
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1 Introduction

1.1 Main results
We consider Grushin-type equations

∂tf − ∂2
xxf − |x|2γ∂2

yyf = u(t, x, y)1ω(x, y), (t, x, y) ∈ (0, T )× Ω,
f(t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂Ω,
f(0, x, y) = f0(x, y), (x, y) ∈ Ω,

(1.1)
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where Ω := (−1, 1)× (0, 1), γ > 0 and 1ω denotes the characteristic function of
the subset ω. It is a degenerate parabolic equation, since the coefficient of ∂2

yyf
vanishes on the line {x = 0}. System (1.1) is a linear control system in which
the state is f and the control is the locally distributed source term u. We are
interested in its null controllability, in the following sense.

Definition 1.1 (Null controllability). Let T > 0 and ω ⊂ Ω. System (1.1) is
null controllable from ω in time T if, for every f0 ∈ L2(Ω,R), there exists u ∈
L2((0, T )×Ω,R) such that the associated solution of (1.1) satisfies f(T, ., .) = 0.

System (1.1) is null controllable from ω if there exists T > 0 such that system
(1.1) is null controllable from ω in time T .

In [6], Beauchard, Cannarsa and Guglielmi proved the following result.

Theorem 1.1. Let ω be an open subset of (−1, 1)× (0, 1) such that ω ⊂ (0, 1)×
(0, 1).

1. If γ ∈ (0, 1), then system (1.1) is null controllable from ω in any time
T > 0.

2. If γ = 1 and ω = (a, b) × (0, 1) where 0 < a < b 6 1, then a positive
minimal time is required for null controllability from ω; moreover

Tmin := inf{T > 0; system (1.1) is null controllable from ω in time T},
(1.2)

satisfies Tmin > a2

2 .

3. If γ > 1, then system (1.1) is not null controllable from ω.

In particular, null controllability holds for weak degeneracies (0 < γ < 1),
fails for strong degeneracies (γ > 1) and, in the transition regime (γ = 1), a
positive minimal time is required.

The goal of the present article is to go further in this direction, and to give

• the explicit value of the minimal time Tmin,

• a characterization of the initial conditions that can be steered to zero,
when the system is not null controllable.

Our first result is the null controllability in any positive time (null minimal
time) and with any degeneracy γ > 0, when the control acts on a strip touching
the degeneracy line {x = 0}.

Theorem 1.2. Let b ∈ (0, 1) and γ > 1. System (1.1) is null controllable from
(0, b)× (0, 1) in any time T > 0.

Remark 1.1. The null controllability from (0, b)× (0, 1) in any time was already
known for γ ∈ (0, 1) from Theorem 1.1.
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Our second result is the computation of the minimal time, when the control
acts on two strips symmetric with respect to the degeneracy. Let

ωa,b := (−b,−a) ∪ (a, b) (1.3)

Theorem 1.3. Let 0 < a < b 6 1, ω := ωa,b × (0, 1) and γ = 1. The minimal
time required for the null controllability of system (1.1) from ω is Tmin = a2

2 .
More precisely,

i) for every T > a2

2 , system (1.1) is null controllable from ω in time T ,

ii) for every T 6 a2

2 , system (1.1) is not null controllable from ω in time T .

The quantity a2

2 appears in our proof as the Agmon distance, associated
to potential q(x) = x2, between ωa,b (related to the control support) and {0}
(related to the degeneracy location). We recall that, for a given potential q ∈
C1(R,R+), the associated Agmon distance between two points z, c ∈ R, with
z < c is

dAg(z, c) :=

∫ c

z

√
q(s)ds.

When system (1.1) is not null controllable, we characterize the initial data
that can be steered to zero by L2-controls

FT := {f0 ∈ L2(Ω); ∃u ∈ L2((0, T )× Ω,R) such that
the solution of (1.1) satisfies f(T, ., .) = 0}.

Their analyticity regularity takes part in this characterization: elements of FT
need to be sufficiently analytic in variable y.

Definition 1.2 (Space Aα). For α ∈ R+, Aα is the space of functions that are
analytic in variable y with values in L2((−1, 1),R) in variable x, defined by

Aα :=

{
f(x, y) =

∑
n∈N∗

fn(x) sin(nπy);
∑
n∈N∗

e2αn‖fn‖2L2(−1,1) <∞

}
.

Theorem 1.4. Let 0 < a < 1, ω := ωa,1× (0, 1), γ > 1 and T > 0. We assume
that either [γ > 1] or [γ = 1 and T < a2

2 ]. Then

inf{α ∈ R+;Aα ⊂ FT } =

{
π a

γ+1

γ+1 , if γ > 1,

π
(
a2

2 − T
)
, if γ = 1 and T < a2

2 .

The quantity aγ+1

γ+1 appears in our proof as the Agmon distance, associated
to potential q(x) = |x|2γ , between ωa,1 and {0}.

Theorem 1.4 emphasizes an influence of the control domain ω and the time
T , on the set of null controllable initial conditions FT . It is then natural to
state the following conjecture: for γ > 0, ω ⊂ Ω and T > 0 given, the regularity
of the initial conditions f0 that are null controllable in time T for system (1.1)
depends on (γ, ω, T ). But this characterization remains an open problem, for
an arbitrary control support ω.
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1.2 Sketch of the proof, structure of the article
The proof of the above results rely on

• Hilbert Uniqueness Method, which proves the equivalence between the
null controllability of the 2d system (1.1) and the observability of its 2d
adjoint system,

• a Fourier expansion of the solution of (1.1) (or its adjoint system) in
variable y,

f(t, x, y) =
∑
n∈N∗

fn(t, x) sin(nπy).

These tools are explained in Section 2.

The proof of the positive controllability results (Theorems 1.2 and 1.3 i)),
uses the equivalence between the observability of the 2d adjoint system and the
observability of the 1d heat equations solved by the Fourier modes, uniformly
with respect to the Fourier frequency n ∈ N∗.

For Theorem 1.2, this uniform 1d observability is proved thanks to a global
Carleman estimate. Observing until {x = 0} gives more latitude in the con-
struction of the weight functions than in the proof of Theorem 1.1 in [6]. This is
the key point to conclude for any γ > 0. The proof of Theorem 1.2 is performed
in Section 3.

For Theorem 1.3i), we use transmutation method from 1d heat equations to
1d wave equations. By lateral propagation of energy method on the resulting
1d wave equations, we get observability constants which are exponential in the
Fourier frequency, in an optimal way. These observability constants are sharper
in the present article than the one proved in [6] by Carleman estimates. These
constants can be compensated by dissipation of the 1d heat equations if T > a2

2 .
The proof of Theorem 1.3 is performed in Section 4.

The proof of Theorem 1.4 also takes advantage of the optimality of the 1d
observability constants obtained above. The exponential dependance of the 1d
observability constant is compensated by the analyticity regularity of the initial
data. The proof of Theorem 1.4 is performed in Section 5.

1.3 Comments and conjectures
The presence of a second strip in the control region is related to the techniques
used (the 1d wave equation propagates in both directions). If the control acts
only on one strip (a, b)× (0, 1), then the proof developped in the present article
would lead to null controllability of (1.1) from (a, b)×(0, 1) in any time T > 1+a2

2 .
However, we conjecture that the minimal time is still a

2

2 in this configuration.

When the degeneracy function x2 in Grushin’s operator is replaced by a
potential q(x), which vanishes at a non degenerate minimum and the two control
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strips are at the same Agmon distance defined by q from this minimum, then
the critical control time is this Agmon distance.

More precisely, when

• the degeneracy function x2 is replaced by an absolutely continuous func-
tion q(x) which is twice differentiable at 0 and satisfies q′′(0) > 0, q(x) >
0 = q(0) for x 6= 0,

• the strips of the control set ω = [(−1,−b)∪ (a, 1)]× (0, 1) are at the same
Agmon distance dq(ω) =

∫ a
0

√
q(s)ds =

∫ 0

−b

√
q(s)ds from the degeneracy

set {x = 0}

then null-controllability from ω in time T of ∂t−∂2
x−q(x)∂2

y holds for T >
dq(ω)
θ

and does not hold for T <
dq(ω)
θ , where θ =

√
q′′(0)

2 .
The positive result may be proved by a refinement of Haraux’s sideways

energy method and the negative result may be proved by Agmon estimates, as
in Allibert’s paper [2] for the boundary control of the wave equation on the
cylindrical surface of a barrel.

1.4 Bibliographical comments
1.4.1 Null controllability of the heat equation

The null controllability of the heat equation is a well understood subject. In
particular, the heat equation on a smooth bounded domain Ω of Rd (d ∈ N∗),
with a source term located on an open subset ω of Ω is null controllable in
arbitrary time T > 0 and with an arbitrary control support ω. This result is
due, for the case d = 1, to Fattorini and Russell [19], and, for d > 2, to Fursikov
and Imanuvilov [21] and Lebeau and Robbiano [25]. The literature contains
many further developments.

1.4.2 Boundary-degenerate parabolic equations

The null controllability of 1d parabolic equations degenerating on the boundary
of the space domain is well-understood. In particular, null controllability still
holds for weak degeneracies and fails for too strong ones, see [12, 13, 11, 1, 29, 10,
9, 8, 20, 34]. Fewer results are available for multidimensional problems, mainly
in the case of two dimensional parabolic operators which simply degenerate in
the normal direction to the boundary of the space domain, see [14].

1.4.3 Parabolic equations degenerating inside the domain

In [28], the authors study linearized Crocco type equations{
∂tf + ∂xf − ∂2

vvf = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0, T )× T× (0, 1),
f(t, x, 0) = f(t, x, 1) = 0, (t, x) ∈ (0, T )× T.
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For a given strict open subset ω of T× (0, 1), they prove that null controllability
does not hold: the optimal result is regional null controllability.

Then, the literature contains results about Grushin-type equations recalled
in Theorems 1.1 (see [6]). Approximate controllability for a Grushin operator
with singular coefficients is obtained by Morancey in [31].

Similar results are known for Kolmogorov-type equations{
∂tf − ∂2

vvf + vγ∂xf = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0, T )× Ω(K),
f(t, x,±1) = 0, (t, x) ∈ (0, T )× T,

with γ ∈ N∗ and Ω(K) := T× (−1, 1), T being the 1d torus. (see [5, 7]).

1.4.4 Other occurences of minimal times in a parabolic context

Even though it does not seem natural at first sight to have a minimal time
for controllability of parabolic equations this phenomena has already been en-
lightened in previous works such as [15] by Dolecki in the case of a pointwise
control. Recently, for null controllability of systems of parabolic equations, the
existence and the characterization of the minimal time has been obtained by
Ammar Khodja, Benabdallah, Gonzalez-Burgos, and De Teresa [3, 4].

1.4.5 Transmutation method

The proof developed in the present article uses the transmutation strategy and
precise estimates on the resulting wave equations with respect to the potential.
Due to technical difficulties, we do not use the transmutation strategy from the
point of view of controllability as in [32, 30] by Phung and Miller but from
the observability point of view as done in [18] by Ervedoza and Zuazua. This
strategy has already been used by Gueye [22] for boundary control of a boundary
degenerate operator in divergence form.

The estimates on the resulting wave equations rely on a lateral (or ’sideways’)
propagation of energy (that is where the role of the time and space variables
are exchanged) as used by Haraux [23] and Zuazua [35] or more recently by
Haraux, Liard and Privat [24]. The use of both a transmutation method and
lateral propagation of energy was already suggested in [17] by Duyckaerts, Zhang
and Zuazua.

1.4.6 Agmon distance, analytic control

In [26], Lebeau study the boundary control of the wave equation, when unique
continuation holds, but the geometric control condition does not hold. He proves
a quantification of the analyticity regularity required for the initial conditions
to be null controllable.

In [2], Allibert study the same question over surfaces of revolution. His
strategy relies on Fourier series expansion (with respect to the angle variable),
as in the present paper. Moreover, his work emphasizes the role Agmon distance
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plays in the observabilty constants for wave equations. However, his context is
quite different from ours. Indeed, Allibert focuses on boundary control for wave
equations, whereas we focus on interior control of Grushin-type equations. As
a consequence, our intermediary results on wave equations are different from
Allibert’s.

2 Well posedness, Fourier decomposition, dissi-
pation speed

In this section, we recall well-posedness results for the Grushin equation (1.1)
in Section 2.1 and Hilbert Uniqueness Method in Section 2.2. In Section 2.3, we
justify the expansion in Fourier series of the solutions of the 2d system and we
reduce the 2d observability problem to the observability of 1d heat equations,
uniformly with respect to the Fourier parameter. Finally, in Section 2.4, we
recall results concerning the decay rate of these 1d heat equations.

2.1 Well posedness
Here, we recall well posedness result for (1.1) proved in [6, Section 2]. For
f, g ∈ C∞0 (Ω), we introduce

(f, g) :=

∫
Ω

(
fxgx + |x|2γfygy

)
dxdy.

Let | · |V := (·, ·)1/2 and V := C∞0 (Ω)
|·|V , which is a dense subspace of L2(Ω).

The operator Gγ , defined by

D(Gγ) := {f ∈ V ; ∃c > 0 such that |(f, h)| ≤ c‖h‖L2 , ∀h ∈ V } ,
〈Gγf, h〉 := −(f, h), ∀h ∈ V,

is self-adjoint on L2(Ω), generates an analytic semigroup and satisfies

Gγf = ∂2
xxf + |x|2γ∂2

yyf, a.e. on Ω.

This implies the following result.

Proposition 2.1. For any γ > 0, f0 ∈ L2(Ω), T > 0 and u ∈ L2((0, T ), L2(Ω))
there exists a unique solution f in C0([0, T ], L2(Ω)) ∩ L2((0, T ), V ) of problem{

f ′(t) = Gγf(t) + u(t), t ∈ [0, T ],

f(0) = f0.

It satisfies f(t) ∈ D(Gγ) and f ′(t) ∈ L2(Ω) for a.e. t ∈ (0, T ) and

‖f(t)‖L2 ≤ ‖f0‖L2 +
√
T‖u‖L2((0,T )×Ω), ∀t ∈ [0, T ].
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2.2 Null controllability and observability
By duality, we consider the adjoint system of (1.1)

∂tg − ∂2
xxg − |x|2γ∂2

yyg = 0, (t, x, y) ∈ (0, T )× Ω,
g(t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂Ω,
g(0, x, y) = g0(x, y), (x, y) ∈ Ω.

(2.1)

Definition 2.1 (Observability). Let T > 0. System (2.1) is observable from ω
in time T if there exists C > 0 such that, for every g0 ∈ L2(Ω), the solution of
(2.1) satisfies ∫

Ω

g(T, x, y)2dxdy 6 C

∫ T

0

∫
ω

g(t, x, y)2dxdydt.

System (2.1) is observable from ω if there exists T > 0 such that it is
observable from ω in time T .

By Hilbert uniqueness method, system (1.1) is null controllable from ω in
time T if and only if system (2.1) is observable from ω in time T . In this article,
our strategy relies on this equivalence.

2.3 Fourier expansion and uniform observability
Let us consider the solution of (1.1). Since f belongs to C([0, T ], L2(Ω)), the
function y 7→ f(t, x, y) belongs to L2(0, 1) for a.e. (t, x) ∈ (0, T )× (−1, 1), thus
it can be developed in Fourier series with respect to y as follows

f(t, x, y) =
∑
n∈N∗

fn(t, x)ϕn(y), (2.2)

where
ϕn(y) :=

√
2 sin(nπy), ∀n ∈ N∗,

and

fn(t, x) :=

∫ 1

0

f(t, x, y)ϕn(y)dy, ∀n ∈ N∗. (2.3)

We also develop u ∈ L2((0, T )× Ω) in Fourier series in the variable y as

u(t, x, y) =
∑
n∈N∗

un(t, x)ϕn(y).

We consider strip shaped control domains ω := ωx× (0, 1). The following result
follows from [6, Proposition 2]

Proposition 2.2. For every n ≥ 1, fn is the unique weak solution of
∂tfn − ∂2

xxfn + (nπ)2|x|2γfn = un(t, x)1ωx(x), (t, x) ∈ (0, T )× (−1, 1),

fn(t,±1) = 0, t ∈ (0, T ),

fn(0, x) = f0
n(x), x ∈ (−1, 1),

(2.4)
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where f0
n ∈ L2(−1, 1) is given by f0

n(x) :=

∫ 1

0

f0(x, y)ϕn(y)dy.

Using Parseval identity, it comes that (2.1) is observable from ω = ωx×(0, 1)
in time T if and only if the adjoint system of (2.4) ∂tgn − ∂2

xxgn + (nπ)2|x|2γgn = 0, (t, x) ∈ (0, T )× (−1, 1),
gn(t,±1) = 0, t ∈ (0, T ),
gn(0, x) = g0

n(x), x ∈ (−1, 1),
(2.5)

is uniformly observable from ωx in time T in the following sense.

Definition 2.2 (Cost of observability). Let T > 0, ωx ⊂ (−1, 1) and d > 0.
System (2.5) is observable from ωx in time T with exponential cost d if there
exists C = C(d) > 0 such that, for every n ∈ N∗ and g0

n ∈ L2(−1, 1), the
solution of (2.5) satisfies

(∫ 1

−1

gn(T, x)2dx

)1/2

6 Cedn

(∫ T

0

∫
ωx

gn(t, x)2dxdt

)1/2

.

System (2.5) is uniformly observable from ωx in time T if it is observable from
ωx in time T with exponential cost d = 0.

In all what follows, null controllability of 2d systems will be studied through
uniform observability of the associated sequence of 1d problems.

The following proposition links the null controllability of analytic initial condi-
tions of (1.1) and the cost of observability (when not uniform) of (2.5).

Proposition 2.3. Let γ > 1, T > 0 and ωx be an open subset of (0, 1). Assume
that

d∗ := inf{d > 0; system (2.5) is observable from ωx in time T
with exponential cost d} (2.6)

is positive. Then inf{α > 0;Aα ⊂ FT } = d∗.

Proof of Proposition 2.3. Using a classical duality argument (see [16, 27] by
Dolecki, Russell and Lions for pioneer works and [33] by Tucsnak and Weiss for
a complete overview), if (2.5) is observable from ωx in time T with exponential
cost α, then the linear map

UT,n : f0
n ∈ L2((−1, 1),R) 7→ un ∈ L2((0, T )× ωx,R),

where un is the control of minimal L2 norm steering the solution of (2.4) from
f0
n to 0, is well defined and its norm is the smallest observability constant for
(2.5). In particular

‖UT,n‖L[L2(−1,1),L2((0,T )×(−1,1))] 6 C(α)enα,
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where C(α) is as in Definition 2.2.
Step 1: We prove that Aα ⊂ FT for every α > d∗. Let α > d∗ and f0 ∈ Aα,

i.e. ∑
n∈N∗

e2αn‖f0
n‖2L2(−1,1) <∞.

Let u(t, x, y) :=
∑
n∈N∗ un(t, x)ϕn(y) where un := UT,n(f0

n). Then u is sup-
ported on ωx × (0, 1), steers the solution of (1.1) from f0 to 0 and belongs to
L2((0, T )× Ω,R) because∫ T

0

∫
Ω
u(t, x, y)2dxdydt =

∑
n∈N∗

∫ T
0

∫ 1

−1
un(t, x)2dxdt

6
∑
n∈N∗

C(α)2e2αn‖f0
n‖2L2(−1,1) <∞.

Step 2: We prove that, for every α < d∗, Aα is not contained in FT . Let
α ∈ (0, d∗). By assumption, there exists an extraction (nk)k∈N∗ such that
‖UT,nk‖ > keαnk for every k ∈ N∗. Thus, there exists f̃0

nk
∈ L2((−1, 1),R) such

that ‖f̃0
nk
‖L2 = 1 and∥∥∥UT,nk (f̃0

nk

)∥∥∥
L2((0,T )×(−1,1))

> keαnk .

Let f0 ∈ Aα be defined by

f0(x, y) :=
∑
k∈N∗

f̃0
nk

(x)
e−αnk

k
ϕnk(y).

Assume that there exists u ∈ L2((0, T )× Ω,R) that steers the solution of (1.1)
from f0 to 0. Then, unk(t, x) :=

∫ 1

0
u(t, x, y)ϕnk(y)dy steers the solution of

(2.4) from f̃0
nk

e−αnk
k to 0. Thus,

‖unk‖L2((0,T )×(−1,1)) >
∥∥∥UT,nk (f̃0

nk
e−αnk
k

)∥∥∥
L2((0,T )×(−1,1))

> keαnk e
−αnk

k = 1.

This is in contradiction with the fact that u belongs to L2((0, T )× Ω,R).

2.4 Dissipation speed
Let us introduce, for every n ∈ N∗, γ > 0, the operator Gn,γ defined on L2(−1, 1)
by

D(Gn,γ) := H2 ∩H1
0 (−1, 1), Gn,γϕ := −ϕ′′ + (nπ)2|x|2γϕ. (2.7)

The smallest eigenvalue of Gn,γ is given by

λn,γ = min

{∫ 1

−1

[
v′(x)2 + (nπ)2|x|2γv(x)2

]
dx∫ 1

−1
v(x)2dx

; v ∈ H1
0 (−1, 1), v 6= 0

}
.

(2.8)
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We are interested in the asymptotic behavior (as n → +∞) of λn,γ , which
quantifies the dissipation speed of the solution of (2.5). The following result is
proved in [6, Lemma 2, Lemma 4 and Proposition 4].

Proposition 2.4. For every γ > 0, there are constants c∗, c∗ > 0 such that

c∗n
2

1+γ 6 λn,γ 6 c∗n
2

1+γ , ∀n ∈ N∗.

There exists a unique positive solution with L2(−1, 1) norm one of problem{
− v′′n,γ(x) + (nπ)2|x|2γvn,γ(x) = λn,γvn,γ(x), x ∈ (−1, 1),

vn,γ(±1) = 0.

This solution vn,γ is even. Moreover, there exists C > 0 such that

nπ 6 λn,1 6 nπ + C, ∀n ∈ N∗. (2.9)

3 Observability on a strip touching the degener-
acy line

The goal of this section is the proof of Theorem 1.2. In Sect. 3.1, we reduce the
problem to that of controllability from (0, 1)× (0, 1). Then, it suffices to prove
observability from (0, 1)× (0, 1) which relies on a global Carleman estimate for
solutions of (2.5), stated in Sect. 3.2 and proved in Appendix.

3.1 Towards the study of controllability from the half do-
main

The following proposition states that it is sufficient to consider the case b = 1.

Proposition 3.1. Let γ > 1, b ∈ (0, 1) and T > 0. If system (1.1) with
Ω = (−1, b) × (0, 1) is null controllable from ω = (0, b) × (0, 1) in time T then
system (1.1) with Ω = (−1, 1)× (0, 1) is null controllable from ω = (0, b)× (0, 1)
in time T .

The property given in assumption can be proved with the strategy developed
in this article : the fact that the interval x ∈ (−1, b) is non-symmetric plays no
role; the only important thing is that we control up to the boundary.

Proof of Proposition 3.1. The proof relies on a cut-off argument. Let δ ∈ (0, b2 ),
χ1 ∈ C∞([−1, 1], [0, 1]) such that

χ1 = 1, on (b− δ, 1),

χ1 = 0, on (−1, δ)

12



and χ2 := 1− χ1. We introduce the domains

Ω1 := (b− δ, 1)× (0, 1), ω1 := (b− δ, b)× (0, 1),

Ω2 := (−1, b− δ)× (0, 1), ω2 := (0, b− δ)× (0, 1).

Let f0 ∈ L2(Ω) and T > 0. By uniform parabolicity in the case j = 1 (see for
example [21]) and by assumption and rescalling in the case j = 2, there exist
uj ∈ L2((0, T )× Ωj) such that the solutions of

∂tfj − ∂2
xxfj − |x|2γ∂2

yyfj = uj(t, x, y)1ωj (x, y), (t, x, y) ∈ (0, T )× Ωj ,

fj(t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂Ωj ,

fj(0, x, y) = f0(x, y), (x, y) ∈ Ωj ,

satisfy fj(T, ., .) = 0 on Ωj for j = 1, 2. Then f(t, x, y) :=
∑
j=1,2

χj(x)fj(t, x, y)

solves (1.1) with

u(t, x, y) :=
∑
j=1,2

(
uj(t, x, y)1ωj (x, y)− χ′′j (x)fj(t, x, y)− 2χ′j(x)∂xfj(t, x, y)

)
which belongs to L2((0, T )×Ω) by Proposition 2.1 and is supported on (0, T )×
(0, b)× (0, 1).

3.2 A global Carleman estimate
For n ∈ N∗ and γ > 0, we introduce the operator

Pn,γg := ∂tg − ∂2
xxg + (nπ)2|x|2γg.

Proposition 3.2. Let γ > 1. There exist a weight function β ∈ C1([−1, 1], [1,+∞))
and a positive constant C1 such that for every T > 0, M > M∗ = M∗(T, β),
n ∈ N∗ and g ∈ C0([0, T ], L2(−1, 1)) ∩ L2((0, T ), H1

0 (−1, 1)) the following in-
equality holds

C1
∫ T

0

∫ 1

−1

M3

(t(T − t))3

∣∣g(t, x)
∣∣2e−Mβ(x)

t(T−t) dxdt 6
∫ T

0

∫ 1

−1

|Pn,γg|2e−
Mβ(x)
t(T−t) dxdt

+

∫ T

0

∫ 1

0

(
M3

(t(T − t))3
+

Mn2

t(T − t)

)
|g(t, x)|2e−

Mβ(x)
t(T−t) dxdt. (3.1)

We refer to the Appendix for a complete proof, which follows the usual
strategy. Note thatM does not need to depend on n, contrarily to what happens
in reference [6], where the observability region ω does not touch the degeneracy
line {x = 0}. Our weight β is inspired by the classical one (see (7.1), (7.2),
(7.3) and (7.4)), but it is an appropriate adaptation to our situation (see (7.5),
(7.6)).
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3.3 Uniform observability
The Carleman estimate of Proposition 3.2 allows to prove the following result,
which implies Theorem 1.2.

Proposition 3.3. Let γ ∈ [1,+∞) and T > 0. System (2.5) is uniformly
observable from (0, 1) in time T .

Proof of Proposition 3.3. For t ∈ (T/3, 2T/3), we have

4

T 2
6

1

t(T − t)
6

9

2T 2

and ∫ 1

−1

g(T, x)2dx 6
∫ 1

−1

g(t, x)2dxe−λn,γ
T
3 .

Thus, by Proposition 3.2.

C1
64M3

T 6
e−

9Mβ∗

2T2
T

3
eλn,γ

T
3

∫ 1

−1

g(T, x)2dx 6 C3(1 + n2)

∫ T

0

∫ 1

0

g(t, x)2dxdt

where β∗ := max{β(x);x ∈ [−1, 1]}, β∗ := min{β(x);x ∈ [−1, 1]} and C3 :=
max{(x+ x3)e−β∗x;x > 0}. By Proposition 2.4, we get∫ 1

−1

g(T, x)2dx 6 C4T 5ec1
M
T2−c2n

2
1+γ T (1 + n2)

∫ T

0

∫ 1

0

g(t, x)2dxdt (3.2)

for some constants c1, c2, C4 > 0 (independent of n, T and g). This gives the
conclusion.

4 Minimal time
The goal of this section is the proof of Theorem 1.3 through the study of uniform
observability of (2.5). Thus, in the whole section, we take γ = 1.

In Section 4.1, through transmutation method, we associate 1d wave equa-
tions to the 1d heat equations (2.5). We then study an observability-like esti-
mate for these wave equations. In Sections 4.2, using a lateral propagation of
energy method, we give a precise estimate of the exponential cost appearing in
this observability-like inequality. We prove Theorem 1.3 i) in Section 4.3 getting
back to the 2d equation and using the dissipation of Fourier modes. Finally, we
prove Theorem 1.3 ii) in Section 4.4.

4.1 Strategy and transmutation method
We state in Proposition 4.1 that it is sufficient to study null controllability from
ωa,1 × (0, 1).
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Proposition 4.1. Assume that 0 < a < b 6 1 and T > 0. If system (1.1)
is null controllable in time T > 0 from ωa,1 × (0, 1) then system (1.1) is null
controllable in time T from ωa,b × (0, 1) .

The proof of this proposition is very similar to that of Proposition 3.1 (except
that there is here two strips in the control domain) and is left to the reader.
Then, Theorem 1.3 i) is a consequence of the following result.

Proposition 4.2. Let a ∈ (0, 1) and T > a2

2 . System (2.5) is uniformly ob-
servable on ωa,1 in time T .

This observability property will be studied on a 1d wave equation associated
through transmutation. We here recall the properties needed for the transmuta-
tion strategy. For simplicity of notations, the partial derivatives are sometimes
denoted by subscripts i.e. gx = ∂xg.

Using an integral transformation, the transmutation strategy induces ob-
servability properties of the heat equation (2.5) from the study of the following
wave equation wss − wxx + (nπ)2x2w = 0, (s, x) ∈ (−L,L)× (−1, 1),

w(s,±1) = 0, s ∈ (−L,L),
(w,ws)(0, x) = (w0, w1)(x), x ∈ (−1, 1).

(4.1)

The integral transformation is based on the following kernel which existence
is proved in [18, Proposition 3.1].

Proposition 4.3. Let T > 0 and L > 0. For any ν > 3L2, there exists a
unique solution of

∂tkT (t, s) + ∂2
sskT (t, s) = 0, (t, s) ∈ (0, T )× (−L,L),

kT (0, s) = kT (T, s) = 0, s ∈ (−L,L),
kT (t, 0) = 0, t ∈ (0, T ),

∂skT (t, 0) = exp
(
− νT
t(T−t)

)
, t ∈ (0, T ).

(4.2)

Moreover, for any (t, s) ∈ (0, T )× (−L,L), this solution satisfies

|kT (t, s)| 6 |s|exp
(

2

min(t, T − t)

(
s2 − ν

3

))
,

|∂skT (t, s)| 6 exp

(
2

min(t, T − t)

(
s2 − ν

3

))
.

Once this kernel is defined, the transmutation from a solution of the parabolic
equation (2.5) to a solution of the hyperbolic equation (4.1) is given by the
following proposition (see [18, Theorem 2.1] for the proof).

Proposition 4.4. Let g0 ∈ L2(−1, 1) and g be the associated solution of (2.5).
We define

w(s, x) :=

∫ T

0

kT (t, s)g(t, x)dt, (s, x) ∈ (−L,L)× (−1, 1). (4.3)
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Then, w is the unique solution of (4.1) associated to the initial conditions

w0(x) := 0, w1(x) :=

∫ T

0

exp

(
− νT

t(T − t)

)
g(t, x)dt. (4.4)

4.2 Study of wave equations
For the sake of generality, we consider an abstract potential q ∈ C1([−1, 1],R)
i.e. we study the system wss − wxx + q(x)w = 0, (s, x) ∈ (−L,L)× (−1, 1),

w(s,±1) = 0, s ∈ (−L,L),
(w,ws)(0, x) = (w0, w1)(x), x ∈ (−1, 1).

(4.5)

This subsection is dedicated to the proof of precise estimates of the solution
of (4.5) with respect to the potential q.

Proposition 4.5. Let L > 1 and δ ∈ (0, a) be such that a + 3δ < 1. There
exists C > 0 such that, for every δ̃ > 0, q ∈ C1([−1, 1],R+)\{0}, (w0, w1) ∈
H1

0 × L2(−1, 1), the associated solution of (4.5) satisfies

‖w0‖2H1
0

+ ‖w1‖2L2 6 COW (a, q, δ̃, δ)

∫ L

−L

∫
ωa,1

(
w2
s + w2

)
(s, x)dxds, (4.6)

where

OW (a, q, δ̃, δ) = max
(
e
∫ a+2δ
0

[M(y)+2
√
q̃(y)]dy, e

∫ 0
−a−2δ

[M(y)+2
√
q̃(y)]dy

)
, (4.7)

q̃ : x ∈ (−1, 1) 7→ q(x) + δ̃2||q||L∞(−1,1),

M : x ∈ (−1, 1) 7→ |q̃
′(x)|
q̃(x)

.

Remark 4.1. Note that the Agmon distance associated to the potential q̃ appears
in the observability-like constant OW (a, q, δ̃, δ).

Because of the term in w, the inequality (4.6) is not a classical observability
inequality. However using the definition of w in (4.3) we will be able, in the
next subsection, to relate (4.6) to the observability of (2.5).

Proof of Proposition 4.5. Let ε ∈ (0, L−1) be such that L > a+2δ+ε. We use
lateral propagation of the energy, inspired by Haraux [23, Proposition 1.4]. It is
sufficient to prove (4.6) for q, w0, w1 in C∞c ((−1, 1),R). We will use a modified
energy defined, by

F (x) :=

∫ x+ε

−x−ε

(
w2
s(s, x) + w2

x(s, x) + q̃(x)w2(s, x)
)

ds, ∀x ∈ (0, 1). (4.8)
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First step : Growth of F .
Differentiating F , integrating by parts and using equation (4.5) lead to

F ′(x) =
(
w2
s + w2

x + q̃(x)w2
)
(x+ ε, x) +

(
w2
s + w2

x + q̃(x)w2
)
(−x− ε, x)

+

∫ x+ε

−x−ε
q̃′(x)w2(s, x)ds+ 2

∫ x+ε

−x−ε

(
wswsx + wxwxx + q̃(x)wwx

)
(s, x)ds

> q̃(x)w2(x+ ε, x) + q̃(x)w2(−x− ε, x) +

∫ x+ε

−x−ε
q̃′(x)w2(s, x)ds

+ 2

∫ x+ε

−x−ε

(
q(x)wwx + q̃(x)wwx

)
(s, x)ds.

Then, as q(x) 6 q̃(x), and using the definition of M gives

F ′(x) > −M(x)

∫ x+ε

−x−ε
q̃(x)w2(s, x)ds− 2

√
q̃(x)

∫ x+ε

−x−ε

(
q̃(x)w2 + w2

x

)
(s, x)ds

> −
(
M(x) + 2

√
q̃(x)

)
F (x).

Hence, the map

x ∈ (0, 1) 7→ F (x) exp

(∫ x

0

M(y) + 2
√
q̃(y)dy

)
(4.9)

is non-decreasing.

Second step : Estimates on (0, a+ δ).
From (4.9), it comes that for any j ∈ {0, . . . , baδ c}, for any x ∈ (jδ, (j + 1)δ),

F (x) 6 exp

(∫ x+a−(j−1)δ

x

[M(y) + 2
√
q̃(y)]dy

)
F (x+ a− (j − 1)δ).

Then integrating for x ∈ (jδ, (j + 1)δ) leads to∫ (j+1)δ

jδ

F (x)dx 6 exp

(∫ a+2δ

0

[M(y) + 2
√
q̃(y)]dy

)∫ a+2δ

a+δ

F (x)dx.

Using the same strategy for x ∈ (baδ cδ, a+δ) and summing the inequalities then
leads to∫ a+δ

0

F (x)dx 6 daδ e exp

(∫ a+2δ

0

[M(y) + 2
√
q̃(y)]dy

)∫ a+2δ

a+δ

F (x)dx. (4.10)

We now estimate the term in wx in the right-hand side of (4.10). Let ζ ∈
C∞c ((−L,L)× (a, a+ 3δ), [0, 1]) be such that

ζ ≡ 1 on [−a− 2δ − ε, a+ 2δ + ε]× [a+ δ, a+ 2δ].
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Multiplying the equation (4.5) by w an using the definition of ζ it comes that∫ a+2δ+ε

−a−2δ−ε

∫ a+2δ

a+δ

w2
x(s, x)dxds 6

∫ L

−L

∫ a+3δ

a

ζ(s, x)w2
x(s, x)dxds

6
∫ L

−L

∫ a+3δ

a

ζ(s, x)
(
w2
s − q(x)w2 + (wwx)x − (wws)s

)
(s, x)dxds.

After integration by parts and using q > 0, we obtain∫ a+2δ+ε

−a−2δ−ε

∫ a+2δ

a+δ

w2
x(s, x)dxds 6 C(ζ)

∫ L

−L

∫ a+3δ

a

(
w2
s + w2

)
(s, x)dxds.

Then, going back to (4.10) and using again q 6 q̃ gives∫ ε

−ε

∫ a+δ

0

(
w2
s + w2

x + q(x)w2)(s, x)dxds 6
∫ a+δ

0

F (x)dx

6 Ce
∫ a+2δ
0

[M(y)+2
√
q̃(y)]dy

∫ L

−L

∫ a+3δ

a

(
w2
s + w2

)
(s, x)dxds. (4.11)

Third step : estimates on (a+ δ, 1).
Let ζ2 ∈ C∞c ((−L,L)× (a, 2), [0, 1]) be such that

ζ2 ≡ 1 on [−ε, ε]× [a+ δ, 1],

The same arguments as previously lead to∫ ε

−ε

∫ 1

a+δ

w2
x(s, x)dxds 6 C(ζ2)

∫ L

−L

∫ 1

a

(
w2
s + w2

)
(s, x)dxds.

Together with (4.11) this leads to∫ ε

−ε

∫ 1

0

(
w2
s + w2

x + q(x)w2)(s, x)dxds

6 Ce
∫ a+2δ
0

M(y)+2
√
q̃(y)dy

∫ L

−L

∫ 1

a

(
w2
s + w2

)
(s, x)dxds. (4.12)

Fourth step : conclusion.
The exact same strategy on (−1, 0) leads to∫ ε

−ε

∫ 0

−1

(
w2
s + w2

x + q(x)w2)(s, x)dxds

6 Ce
∫ 0
−a−2δ

[M(y)+2
√
q̃(y)]dy

∫ L

−L

∫ −a
−1

(
w2
s + w2

)
(s, x)dxds. (4.13)
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Defining the classical energy

E(s) :=

∫ 1

−1

(
w2
s + w2

x + q(x)w2
)
(s, x)dx (4.14)

and using its conservation we get

2εE(0) =

∫ ε

−ε

∫ 1

−1

(
w2
s + w2

x + q(x)w2
)
(s, x)dxds.

Then, summing (4.12) and (4.13) and using the non-negativity of q ends the
proof of Proposition 4.5.

4.3 Upper bound on the minimal time
This subsection is dedicated to the proof of Proposition 4.2 which implies The-
orem 1.3 i).

Proof of Proposition 4.2. Let a ∈ (0, 1) and T > a2

2 . Let L and δ satisfying the
assumptions of Proposition 4.5. Up to a reduction of δ, we set η, δ̃ > 0 such
that

T >
(a+ 2δ)2

2
+ δ̃(a+ 2δ) + η. (4.15)

Let n ∈ N∗ and g0
n ∈ L2(−1, 1). Let gn be the associated solution of (2.5). For

the sake of brevity, we omit the subscript n in the rest of the proof. We consider
kη the transmutation kernel associated to the time η defined in Proposition 4.3,
and w the associated solution of (4.1) given by Proposition 4.4.

Recall that according to Proposition 4.4,

w(s, x) =

∫ η

0

kη(t, s)g(t, x)dt, (s, x) ∈ (−L,L)× (−1, 1),

w0(x) = 0, x ∈ (−1, 1),

w1(x) =

∫ η

0

exp

(
− νη

t(η − t)

)
g(t, x)dt, x ∈ (−1, 1),

where ν > 3L2.

Then, Proposition 4.5 applied to the case q(x) := (nπ)2x2, implies the existence
of C > 0 independent of n and g0 such that

‖w1‖2L2 6 COW (a, q, δ, δ̃)

∫ L

−L

∫
ωa,1

(
w2
s + w2

)
(s, x)dxds. (4.16)

In all what follows, C denotes a positive constant that may vary but which is
always independent of n and g0.
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Using the definitions ofM and q̃ given in Proposition 4.5, it comes thatM does
not depend on n and thus we get

OW (a, q, δ, δ̃) = exp

(∫ a+2δ

0

[M(y) + 2
√
q̃(y)]dy

)

6 C exp

(
2nπ

(
(a+ 2δ)2

2
+ δ̃(a+ 2δ)

))
. (4.17)

We now relate the left and right-hand sides of (4.16) to the function g. Straight-
forward computations imply∫ L

−L

∫
ωa,1

w2(s, x)dxds =

∫ L

−L

∫
ωa,1

(∫ η

0

kη(t, s)g(t, x)dt

)2

dxds

6 ‖kη‖2L2((0,η)×(−L,L))

∫ η

0

∫
ωa,1

g2(t, x)dxdt

6 ‖kη‖2L2((0,η)×(−L,L))

∫ T

0

∫
ωa,1

g2(t, x)dxdt. (4.18)

In the same way, it comes that∫ L

−L

∫
ωa,1

w2
s(s, x)dxds =

∫ L

−L

∫
ωa,1

(∫ η

0

∂sk(t, s)g(t, x)dt

)2

dxds

6 ‖∂skη‖2L2((0,η)×(−L,L))

∫ T

0

∫
ωa,1

g2(t, x)dxdt. (4.19)

Thus, using (4.18) and (4.19) in (4.16) leads to

‖w1‖2L2 6 Ce
2nπ

(
(a+2δ)2

2 +δ̃(a+2δ)

)
(‖kη‖2L2 + ‖∂skη‖2L2)

∫ T

0

∫
ωa,1

g2(t, x)dxdt.

(4.20)
To give a lower estimate on the left side of (4.16) we use a spectral de-

composition. For a fixed n ∈ N∗, we denote by (λ
(n)
j )j∈N∗ and (ϕ

(n)
j )j∈N∗ the

nondecreasing sequence of eigenvalues and the associated sequence of L2 normal-
ized eigenvectors of the operator −∂2

xx + (nπ)2x2 with domain H2 ∩H1
0 (−1, 1)

i.e. {(
− ∂2

xx + (nπ)2x2
)
ϕ

(n)
j = λ

(n)
j ϕ

(n)
j ,

ϕ
(n)
j (−1) = ϕ

(n)
j (1) = 0.

For any g0 ∈ L2(−1, 1), expanded in the basis (ϕ
(n)
j )j∈N∗ as

g0 =

+∞∑
j=1

g0
jϕ

(n)
j ,
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the associated solution g of (2.5) reads as

g(t) =

+∞∑
j=1

e−λ
(n)
j tg0

jϕ
(n)
j . (4.21)

Then, straightforward computations lead to

‖w1‖2L2(−1,1) =

∣∣∣∣∣∣∣∣∫ η

0

exp

(
− νη

t(η − t)

)
g(t, ·)dt

∣∣∣∣∣∣∣∣2
L2(−1,1)

=

+∞∑
j=1

|g0
j |2
∣∣∣∣∫ η

0

exp

(
− νη

t(η − t)

)
e−λ

(n)
j tdt

∣∣∣∣2

>

∣∣∣∣∫ η

0

exp

(
− νη

t(η − t)

)
dt

∣∣∣∣2 +∞∑
j=1

|g0
j |2e−2λ

(n)
j η

=

∣∣∣∣∫ η

0

exp

(
− νη

t(η − t)

)
dt

∣∣∣∣2 ‖g(η)‖2L2(−1,1). (4.22)

Finally, using (4.20) and (4.22) in the observability inequality (4.16) leads
to the existence of C > 0 such that

‖g(η)‖2L2(−1,1) 6 Ce
2nπ

(
(a+2δ)2

2 +δ̃(a+2δ)

) ∫ T

0

∫
ωa,1

g2(t, x)dxdt. (4.23)

We conclude using the dissipation speed given by Proposition 2.4

λ
(n)
1 > πn, ∀n ∈ N∗. (4.24)

Thus,
‖g(T )‖2L2(−1,1) 6 e−2nπ(T−η)‖g(η)‖2L2(−1,1). (4.25)

Together with (4.23) we get the existence of C > 0 such that

‖g(T )‖2L2(−1,1) 6 Ce
2nπ

(
(a+2δ)2

2 +δ̃(a+2δ)+η−T
) ∫ T

0

∫
ωa,1

g2(t, x)dxdt. (4.26)

Thus, the choice of constants δ, δ̃, η in (4.15) implies the uniform observability
of (2.5) and Proposition 4.2.

Remark 4.2. We see in (4.19) that the term in w in the right-hand side of the
observability-like inequality is easily dealt with.

From (4.17) and (4.25) we see that the key point in the proof of Theorem 1.3
is the competition between the cost of observability of the wave equation (4.1)
and the dissipation of the heat equation (2.5). Both are of the same order
of magnitude when γ = 1 and thus the dissipation compensates the cost of
observability only for T > a2

2 .
Remark 4.3. Notice that, by Theorem 1.3 ii), the exponential cost in (4.17) is
optimal with respect to the power of n and with respect to the multiplicative
constant in front of this power of n.
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4.4 Lower bound on the minimal time
The goal of this section is the proof of Theorem 1.3 ii), which is a consequence
of the following result

Proposition 4.6. Let 0 < a < b 6 1 and T 6 a2

2 . System (2.5) is not uniformly
observable on ωa,b in time T .

Proof of Proposition 4.6. This proof follows the one of [6, Lemma 4]. Let γ = 1

and T 6 a2

2 . We design a sequence of solutions of (2.5) such that∫ T
0

∫
ωa,b

gn(t, x)2dxdt∫ 1

−1
gn(T, x)2dx

−→
n→+∞

0. (4.27)

Let vn,1 be the eigenfunction associated to the smallest eigenvalue of Gn,1 in
Proposition 2.4. For any n ∈ N∗, let

gn(t, x) := e−λn,1tvn,1(x), ∀(t, x) ∈ (0,+∞)× (−1, 1). (4.28)

Then gn solves (2.5) and ∫ 1

−1

gn(T, x)2dx = e−2λn,1T ,∫ T

0

∫
ωa,b

gn(t, x)2dxdt =
1− e−2λn,1T

2λn,1

∫
ωa,b

vn,1(x)2dx.

As vn,1 is even, to get (4.27) it suffices to prove that

e2λn,1T

λn,1

∫ b

a

v2
n,1(x)dx −→

n→∞
0. (4.29)

From [6, Lemma 4], it comes that∫ b

a

v2
n,1(x)dx ∼

n→∞

e−a
2nπ

2aπ
√
n
. (4.30)

By (2.9), this implies (4.29).

5 Null controllable initial conditions
The goal of this section is the proof of Theorem 1.4. The observability-like
inequality for the wave equation proved in the previous section also enables us to
characterize null controllable initial conditions. By Proposition 2.3, Theorem 1.4
is equivalent to the following result.
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Proposition 5.1. Let 0 < a < 1, γ > 1, T > 0 and ωx := (−1,−a) ∪ (a, 1).
We assume that either [γ > 1] or [γ = 1 and T < a2

2 ]. Then, the explicit value
of the quantity d∗ defined in (2.6) is

d∗ =

{
π a

γ+1

γ+1 , if γ > 1,

π
(
a2

2 − T
)
, if γ = 1 and T < a2

2 .

Proof of Proposition 5.1. Step 1: We prove Proposition 5.1 for γ = 1 and T <
a2

2 .

Step 1.1: We prove that d∗ 6 π
(
a2

2 − T
)
. Let d > π

(
a2

2 − T
)
. We want to

prove that system (2.5) is observable from ωx in time T with exponential cost
d. It is a consequence of (4.26), up to a reduction of δ, δ̃, η.

Step 1.2: We prove that d∗ > π
(
a2

2 − T
)
. Let d < π

(
a2

2 − T
)
. We want to

prove that system (2.5) is not observable from ωx in time T with exponential
cost d. Let gn be as in (4.28). By (4.30) and (2.9), we have

e2dn
∫ T

0

∫
ωx
gn(t, x)2dxdt∫ 1

−1
gn(T, x)2dx

−→
n→+∞

0. (5.1)

which gives the conclusion.

Step 2: We prove Proposition 5.1 for γ > 1.

Step 2.1: We prove that d∗ 6 π a
γ+1

γ+1 . We want to prove that system (2.5)

is observable from ωx in time T with any exponential cost d > π a
γ+1

γ+1 . We here
apply the exact same strategy as in the case γ = 1, except that we do not use
the dissipation of the 1d heat equation. Let L and δ satisfying the assumptions
of Proposition 4.5. We apply Proposition 4.5 with the transmutation kernel kT
and q(x) := (nπ)2|x|2γ . The same computations as (4.18), (4.19) and (4.22)
imply

‖gn(T )‖2L2(−1,1) 6 OW (a, q, δ, δ̃)

∫ T

0

∫
ωx

gn(t, x)2dxdt,

where

OW (a, q, δ, δ̃) 6 C exp

(
2nπ

(
(a+ 2δ)γ+1

γ + 1
+ δ̃(a+ 2δ)

))
.

Step 2.2: We prove that d∗ > π a
γ+1

γ+1 . Let d < π a
γ+1

γ+1 . We want to prove
that system (2.5) is not observable from ωx in time T with exponential cost d.
Let gn(t, x) := vn,γ(x)e−λn,γt where vn,γ and λn,γ are as in Proposition 2.4. We
have, for n large enough

vn(x) 6 Cne
−nπ xγ+1

γ+1 , ∀x > a, (5.2)
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where

Cn :=
2λne

µnx
γ+1
n

(γ + 1)µnx
γ− 1

2
n

, xn :=

(
λn

(nπ)2

) 1
2γ

,

(see, for instance, [6, Lemma 3]). Thus, for n large enough, we have∫ b

a

vn,γ(x)2dx 6 C2
ne
−2nπ a

γ+1

γ+1

Together with the estimates on λn,γ in Proposition 2.4, this proves that (5.1)
holds, which ends Step 2.2.

Remark 5.1. Agmon estimates state the exponential decrease as e−dAg(x)/h, of
the eigenfunctions of −h2∆ + q(x), far from the minimal points of q; where
dAg(x) is the Agmon distance associated to potential q. Thus, the key estimate
(5.2) of the above proof, is an Agmon estimate (take h = 1/nπ and q(x) = |x|2γ).

6 Conclusion and open problems
In this article, we have studied the null controllability of degenerate parabolic
equations, of Grushin type, on a rectangle domain, with strip shaped control
supports.

We have proved that, when the control acts on a strip touching the degen-
eracy line {x = 0}, then, null controllability holds in arbitrary time T > 0 and
for arbitrary degeneracy γ > 0. This result contrasts with the case of a strip
that does not touch the degeneracy line (see Theorem 1.1 from [6]).

Then, we focused on control regions consisting in two symmetric strips.
In this setting, it was already known that a positive minimal time is required

for null controllability when γ = 1 [6]. We here give the exact value of this
minimal time, and its interpretation in terms of the Agmon distance between
the control region and the degeneracy line.

It was also known that, in particular configurations (γ > 1 or [γ = 1, T small]),
null controllability does not hold. In these cases, we characterize the initial con-
ditions that are null controllable: their regularity depends on the control region
ω, the time T and the degeneracy parameter γ. This result may be understood
as a geometric control condition.

Many questions are still open.
The results of the present article incites to conjecture that, for given de-

generacy parameter γ, control region ω, and time T , the regularity of initial
conditions that are null controllable depends on (γ, ω, T ). This characterization
is an open problem, when the control region does not consist in two symetric
strips (even when it consists in one strip).

When the control region ω is not strip shaped, the existence of a critial
parameter γ for which null controllability requires a positive minimal time is
also an open problem.
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7 Appendix
Proposition 7.1. Let ε ∈ (0, 1). There exists a function β ∈ C1([−1, 1]) ∩
C2([−1, 0]) ∩ C2([0, 1]) such that

β > 1 on (−1, 1), (7.1)

β′ < 0 on [−1, 0], (7.2)

β′(−1) < 0 < β′(+1), (7.3)

β′′ < −1 on [−1, 0), (7.4)

(|x|2γβ′)′ > 0 on [−1, 0), (7.5)

β′′ ≡ 0 on [0, ε]. (7.6)

Note that β′′ has a discontinuity at x = 0.

Proof of Proposition 7.1. We define

β : x ∈ [−1, 0) 7→ −x2 − 2γ + 1

γ
x+ 2 + ε

2γ + 1

γ
.

By straightforward computations, this polynomial satisfies the assumptions on
[−1, 0). From the C1 regularity and (7.6) it comes that β must be defined on
[0, ε] by

β : x ∈ [0, ε] 7→ −2γ + 1

γ
x+ 2 + ε

2γ + 1

γ
.

This construction ensures that β > 2 on [0, ε]. We end the construction on [ε, 1]
with any function satisfying

β(ε) = 2, β′(ε) = −2γ + 1

γ
, β′′(ε) = 0, β > 1 on [ε, 1], β′(1) > 0.

Proof of Proposition 3.2. All the computations of the proof will be made as-
suming, first, g ∈ H1((0, T ), L2(−1, 1))∩L2((0, T ), H2 ∩H1

0 (−1, 1)). Then, the
conclusion of Proposition 3.2 will follow by a density argument.

We consider the weight function

α(t, x) :=
Mβ(x)

t(T − t)
, (t, x) ∈ (0, T )× R, (7.7)

where β is as in Proposition 7.1 and M = M(T, β) > 0 will be chosen later on.
We also introduce the function

z(t, x) := g(t, x)e−α(t,x), (7.8)
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that satisfies
e−αPn,γg = P1z + P2z + P3z, (7.9)

where

P1z : = −∂
2z

∂x2
+ (αt − α2

x)z + (nπ)2|x|2γz,

P2z : =
∂z

∂t
− 2αx

∂z

∂x
,

P3z : = −αxxz.

(7.10)

We develop the classical proof (see [21]), taking the L2(Q)-norm in the identity
(7.9), then developing the double product, which leads to∫

Q

(
P1zP2z −

1

2
|P3z|2

)
dxdt 6

∫
Q

|e−αPn,γg|2dxdt, (7.11)

where Q := (0, T )× (−1, 1) and we compute precisely each term, paying atten-
tion to the behaviour of the different constants with respect to n and T .
Terms concerning −∂2

xxz: Integrating by parts, we get

−
∫
Q

∂2z

∂x2

∂z

∂t
dxdt =

∫
Q

∂z

∂x

∂2z

∂t∂x
dxdt =

∫ T

0

1

2

d

dt

∫ 1

−1

∣∣∣∂z
∂x

∣∣∣2dxdt = 0, (7.12)

because ∂tz(t,±1) = 0 and z(0) ≡ z(T ) ≡ 0, which is a consequence of assump-
tions (7.8), (7.7) and (7.1). Moreover,∫

Q

∂2z

∂x2
2αx

∂z

∂x
dxdt = −

∫
Q

∣∣∣∂z
∂x

∣∣∣2αxxdxdt

+

∫ T

0

(
αx(t, 1)

∣∣∣∂z
∂x

(t, 1)
∣∣∣2 − αx(t,−1)

∣∣∣∂z
∂x

(t,−1)
∣∣∣2)dt. (7.13)

Terms concerning (αt − α2
x)z: Again integrating by parts, we have∫

Q

(αt − α2
x)z

∂z

∂t
dxdt = −1

2

∫
Q

(αt − α2
x)t|z|2dxdt. (7.14)

Indeed, the boundary terms at t = 0 and t = T vanish because, using (7.8),
(7.7), (7.1), we get

|(αt − α2
x)|z|2| 6 1

[t(T − t)]2
e
−M
t(T−t) |M(T − 2t)β + (Mβ′)2| |g|2

which tends to zero when t→ 0 and t→ T , for every x ∈ [−1, 1]. Moreover,

− 2

∫
Q

(αt − α2
x)zαx

∂z

∂x
dxdt =

∫
Q

[(αt − α2
x)αx]x|z|2dxdt, (7.15)

thanks to an integration by parts in the space variable.
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Terms concerning (nπ)2|x|2γz: First, since z(0) ≡ z(T ) ≡ 0,∫
Q

(nπ)2|x|2γz ∂z
∂t

dxdt =
1

2

∫ T

0

d

dt

∫ 1

−1

(nπ)2|x|2γ |z|2dxdt = 0. (7.16)

Furthermore, thanks to an integration by parts in the space variable,

− 2

∫
Q

(nπ)2|x|2γzαx
∂z

∂x
dxdt =

∫
Q

[(nπ)2|x|2γαx]xz
2dxdt. (7.17)

Combining (7.11), (7.12), (7.13), (7.14), (7.15), (7.16) and (7.17), we get∫
Q

|z|2
{
− 1

2
(αt − α2

x)t + [(αt − α2
x)αx]x + (nπ)2[|x|2γαx]x −

1

2
α2
xx

}
dxdt

+

∫ T

0

(
αx(t, 1)

∣∣∣∂z
∂x

(t, 1)
∣∣∣2 − αx(t,−1)

∣∣∣∂z
∂x

(t,−1)
∣∣∣2)dt

−
∫
Q

∣∣∣∂z
∂x

∣∣∣2αxxdxdt 6
∫
Q

|e−αPn,γg|2dxdt. (7.18)

In view of (7.3), we have αx(t, 1) > 0 and αx(t,−1) 6 0, thus (7.18) yields∫
Q

|z|2
{
− 1

2
(αt − α2

x)t + [(αt − α2
x)αx]x −

1

2
α2
xx + n2π2[|x|2γαx]x

}
dxdt

−
∫
Q

∣∣∣∂z
∂x

∣∣∣2αxxdxdt 6
∫
Q

|e−αPn,γg|2dxdt. (7.19)

Now, in the left side of (7.19) we separate the terms on (0, T ) × (−1, 0) and
those on (0, T )× (0, 1). One has

−αxx(t, x) >
C1M

t(T − t)
, ∀x ∈ (−1, 0), t ∈ (0, T ),

αxx(t, x) = 0, ∀x ∈ (0, ε), t ∈ (0, T ),

|αxx(t, x)| 6 C2M

t(T − t)
, ∀x ∈ (ε, 1), t ∈ (0, T ),

(7.20)

where C1 = C1(β) := inf{−β′′(x);x ∈ [−1, 0)} is positive thanks to the assump-
tion (7.4) and C2 = C2(β) := sup{|β′′(x)|;x ∈ [ε, 1]}. Moreover,

− 1

2
(αt − α2

x)t + [(αt − α2
x)αx]x −

1

2
α2
xx =

1

(t(T − t))3

{
Mβ(3Tt− T 2 − 3t2)

+M2
[
(2t− T )(β′′β + 2β′2)− t(T − t)β′′2

2

]
− 3M3β′′β′2

}
.

Hence, owing to (7.2) and (7.4), there exist m1 = m1(β) > 0, C3 = C3(β) > 0
and C4 = C4(β) > 0 such that, for every M >M1 and t ∈ (0, T ),

− 1

2
(αt − α2

x)t + [(αt − α2
x)αx]x −

1

2
α2
xx >

C3M
3

[t(T − t)]3
∀x ∈ (−1, 0),∣∣∣− 1

2
(αt − α2

x)t + [(αt − α2
x)αx]x −

1

2
α2
xx

∣∣∣ 6 C4M
3

[t(T − t)]3
∀x ∈ (0, 1)

(7.21)

27



where
M1 = M1(T, β) := m1(β)(T + T 2). (7.22)

Note that, by assumption (7.5),

(nπ)2[|x|2γαx]x = (nπ)2M(|x|2γβ′)′

t(T − t)
> 0, ∀(t, x) ∈ (0, T )× (−1, 0),∣∣∣(nπ)2[|x|2γαx]x

∣∣∣ 6 Mn2C ′4
t(T − t)

, ∀(t, x) ∈ (0, T )× (0, 1),

(7.23)

where C ′4 = C ′4(β, γ) > 0. The key point of this proof is the first inequality in
the above formula: outside the control support, the only term that depends on
n is positive and can be neglected. In particular M does not need to depend on
n, contrarily to what happens in reference [6]. Using (7.19), (7.20), (7.21) and
(7.23) we get, for every M >M1,∫ T

0

∫
(−1,0)

[
C1M

t(T − t)

∣∣∣∂z
∂x

∣∣∣2 +
C3M

3

(t(T − t))3
|z|2
]

dxdt

6
∫
Q

|e−αPn,γg|2dxdt+

∫ T

0

∫
(ε,1)

C2M

t(T − t)

∣∣∣∂z
∂x

∣∣∣2dxdt

+

∫ T

0

∫
(0,1)

[
C4M

3

(t(T − t))3
+
C ′4Mn2

t(T − t)

]
|z|2dxdt. (7.24)

For every δ > 0,

C1M

t(T − t)

∣∣∣∂g
∂x
− αxg

∣∣∣2 +
C3M

3

2(t(T − t))3
|g|2

>

(
1− 1

1 + δ

)
C1M

t(T − t)

∣∣∣∂g
∂x

∣∣∣2 +
M3

(t(T − t))3

(
C3

2
− δC1(β′)2

)
|g|2. (7.25)

Hence, choosing

δ = δ(β) :=
C3

4C1‖β′‖2∞
,

from (7.24), (7.25) and (7.8) we deduce that

∫ T

0

∫
(−1,0)

C3M
3|g|2

4(t(T − t))3
e−2αdxdt

6
∫
Q

|e−αPn,γg|2dxdt+

∫ T

0

∫
(ε,1)

C8M

t(T − t)

∣∣∣∂g
∂x

∣∣∣2e−2αdxdt

+

∫ T

0

∫
(0,1)

[
C9M

3

(t(T − t))3
+
C ′4Mn2

t(T − t)

]
|g|2e−2αdxdt,
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where C8 = C8(β) := 2C2 and C9 = C9(β) := C4 + 2C2 sup{β′(x)2 : x ∈ [0, 1]}.
So, adding the same quantity to both sides,∫

Q

C3M
3|g|2

4(t(T − t))3
e−2αdxdt

6
∫
Q

|e−αPng|2dxdt+

∫ T

0

∫
(ε,1)

C8M

t(T − t)

∣∣∣∂g
∂x

∣∣∣2e−2αdxdt

+

∫ T

0

∫
(0,1)

[
C11M

3

(t(T − t))3
+
C ′4Mn2

t(T − t)

]
|g|2e−2αdxdt, (7.26)

where C11 = C11(β) := C9+C3/4. Let us prove that the second term of the right
hand side may be dominated by terms similar to the third one. We consider
χ ∈ C∞(R,R+) such that 0 6 χ 6 1 and

χ ≡ 1 on (ε, 1), (7.27)

χ ≡ 0 on (−1, 0). (7.28)

We have∫
Q

(Png)
gχe−2α

t(T − t)
dxdt =

∫ T

0

∫ 1

−1

[
∂g

∂t
− ∂2g

∂x2
+ (nπ)2|x|2γg

]
gχe−2α

t(T − t)
dxdt.

Integrating by parts with respect to time and space, we obtain∫
Q

1

2

∂(g2)

∂t

χe−2α

t(T − t)
dxdt =

∫
Q

1

2
|g|2χ

(
2αt

t(T − t)
+

T − 2t

(t(T − t))2

)
e−2αdxdt

and

−
∫
Q

∂2g

∂x2

gχe−2α

t(T − t)
dxdt =

∫
Q

χe−2α

t(T − t)

∣∣∣∣∂g∂x
∣∣∣∣2 dxdt

−
∫
Q

|g|2e−2α

2t(T − t)
(
χ′′ − 4χ′αx + χ(4α2

x − 2αxx)
)

dxdt.

Thus,∫
Q

Png
gχe−2α

t(T − t)
dxdt >

∫
Q

χe−2α

t(T − t)

∣∣∣∣∂g∂x
∣∣∣∣2 dxdt

−
∫
Q

|g|2e−2α

2t(T − t)

(
χ′′ − 4χ′αx + χ

(
4α2

x − 2αxx − 2αt −
T − 2t

t(T − t)

))
dxdt.
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Therefore,∫ T

0

∫ 1

ε

C8M

t(T − t)

∣∣∣∂g
∂x

∣∣∣2e−2αdxdt 6
∫
Q

C8Mχ

t(T − t)

∣∣∣∂g
∂x

∣∣∣2e−2αdxdt

6
∫
Q

Png
C8Mgχe−2α

t(T − t)
dxdt

+

∫
Q

C8M |g|2e−2α

2t(T − t)

(
χ′′ − 4χ′αx + χ

(
4α2

x − 2αxx − 2αt −
T − 2t

t(T − t)

))
dxdt

6
∫
Q

|Png|2e−2αdxdt+

∫ T

0

∫
(0,1)

C12M
3

(t(T − t))3
|g|2e−2αdxdt

for some constant C12 = C12(β, χ) > 0 and when M >M2 = M2(T, β, χ).
Combining (7.26) with the previous inequality, we get∫

Q

C3M
3|g|2

4(t(T − t))3
e−2αdxdt

6
∫
Q

2|e−αPng|2dxdt+

∫ T

0

∫
(0,1)

[
C13M

3

(t(T − t))3
+
C ′4Mn2

t(T − t)

]
|g|2e−2αdxdt,

where C13 = C13(β, χ) := C11 +C12. Then, the global Carleman estimates (3.1)
holds with

C1 = C1(β) :=
C3

4 max{2;C13;C ′4}
.
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