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Introduction

Main results

We consider Grushin-type equations

   ∂ t f -∂ 2 xx f -|x| 2γ ∂ 2 yy f = u(t,
x, y)1 ω (x, y), (t, x, y) ∈ (0, T ) × Ω, f (t, x, y) = 0, (t, x, y) ∈ (0, T ) × ∂Ω, f (0, x, y) = f 0 (x, y), (x, y) ∈ Ω,

where Ω := (-1, 1) × (0, 1), γ > 0 and 1 ω denotes the characteristic function of the subset ω. It is a degenerate parabolic equation, since the coefficient of ∂ 2 yy f vanishes on the line {x = 0}. System (1.1) is a linear control system in which the state is f and the control is the locally distributed source term u. We are interested in its null controllability, in the following sense. Definition 1.1 (Null controllability). Let T > 0 and ω ⊂ Ω. System (1.1) is null controllable from ω in time T if, for every f 0 ∈ L 2 (Ω, R), there exists u ∈ L 2 ((0, T ) × Ω, R) such that the associated solution of (1.1) satisfies f (T, ., .) = 0.

System (1.1) is null controllable from ω if there exists T > 0 such that system (1.1) is null controllable from ω in time T .

In [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF], Beauchard, Cannarsa and Guglielmi proved the following result.

Theorem 1.1. Let ω be an open subset of (-1, 1) × (0, 1) such that ω ⊂ (0, 1) × (0, 1).

1. If γ ∈ (0, 1), then system (1.1) is null controllable from ω in any time T > 0.

2. If γ = 1 and ω = (a, b) × (0, 1) where 0 < a < b 1, then a positive minimal time is required for null controllability from ω; moreover T min := inf{T > 0; system (1.1) is null controllable from ω in time T }, (1.2) satisfies T min a 2 2 . 3. If γ > 1, then system (1.1) is not null controllable from ω.

In particular, null controllability holds for weak degeneracies (0 < γ < 1), fails for strong degeneracies (γ > 1) and, in the transition regime (γ = 1), a positive minimal time is required.

The goal of the present article is to go further in this direction, and to give

• the explicit value of the minimal time T min ,

• a characterization of the initial conditions that can be steered to zero, when the system is not null controllable.

Our first result is the null controllability in any positive time (null minimal time) and with any degeneracy γ > 0, when the control acts on a strip touching the degeneracy line {x = 0}. Theorem 1.2. Let b ∈ (0, 1) and γ 1. System (1.1) is null controllable from (0, b) × (0, 1) in any time T > 0.

Remark 1.1. The null controllability from (0, b) × (0, 1) in any time was already known for γ ∈ (0, 1) from Theorem 1.1.

Our second result is the computation of the minimal time, when the control acts on two strips symmetric with respect to the degeneracy. Let The minimal time required for the null controllability of system (1.1) from ω is T min = a 2 2 . More precisely, i) for every T > a 2

2 , system (1.1) is null controllable from ω in time T , ii) for every T a 2

2 , system (1.1) is not null controllable from ω in time T . The quantity a 2 2 appears in our proof as the Agmon distance, associated to potential q(x) = x 2 , between ω a,b (related to the control support) and {0} (related to the degeneracy location). We recall that, for a given potential q ∈ C 1 (R, R + ), the associated Agmon distance between two points z, c ∈ R, with z < c is d Ag (z, c) := c z q(s)ds.

When system (1.1) is not null controllable, we characterize the initial data that can be steered to zero by L 2 -controls F T := {f 0 ∈ L 2 (Ω); ∃u ∈ L 2 ((0, T ) × Ω, R) such that the solution of (1.1) satisfies f (T, ., .) = 0}.

Their analyticity regularity takes part in this characterization: elements of F T need to be sufficiently analytic in variable y.

Definition 1.2 (Space A α ). For α ∈ R + , A α is the space of functions that are analytic in variable y with values in L 2 ((-1, 1), R) in variable x, defined by

A α := f (x, y) = n∈N *
f n (x) sin(nπy);

n∈N * e 2αn f n 2 L 2 (-1,1) < ∞ .

Theorem 1.4. Let 0 < a < 1, ω := ω a,1 × (0, 1), γ 1 and T > 0. We assume that either [γ > 1] or [γ = 1 and T < a 2 2 ]. Then

inf{α ∈ R + ; A α ⊂ F T } = π a γ+1 γ+1 , if γ > 1, π a 2 2 -T , if γ = 1 and T < a 2 2 .
The quantity a γ+1 γ+1 appears in our proof as the Agmon distance, associated to potential q(x) = |x| 2γ , between ω a,1 and {0}.

Theorem 1.4 emphasizes an influence of the control domain ω and the time T , on the set of null controllable initial conditions F T . It is then natural to state the following conjecture: for γ > 0, ω ⊂ Ω and T > 0 given, the regularity of the initial conditions f 0 that are null controllable in time T for system (1.1) depends on (γ, ω, T ). But this characterization remains an open problem, for an arbitrary control support ω.

Sketch of the proof, structure of the article

The proof of the above results rely on • Hilbert Uniqueness Method, which proves the equivalence between the null controllability of the 2d system (1.1) and the observability of its 2d adjoint system,

• a Fourier expansion of the solution of (1.1) (or its adjoint system) in variable y, f (t, x, y)

= n∈N * f n (t, x) sin(nπy).
These tools are explained in Section 2.

The proof of the positive controllability results (Theorems 1.2 and 1.3 i)), uses the equivalence between the observability of the 2d adjoint system and the observability of the 1d heat equations solved by the Fourier modes, uniformly with respect to the Fourier frequency n ∈ N * .

For Theorem 1.2, this uniform 1d observability is proved thanks to a global Carleman estimate. Observing until {x = 0} gives more latitude in the construction of the weight functions than in the proof of Theorem 1.1 in [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF]. This is the key point to conclude for any γ > 0. The proof of Theorem 1.2 is performed in Section 3.

For Theorem 1.3i), we use transmutation method from 1d heat equations to 1d wave equations. By lateral propagation of energy method on the resulting 1d wave equations, we get observability constants which are exponential in the Fourier frequency, in an optimal way. These observability constants are sharper in the present article than the one proved in [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF] by Carleman estimates. These constants can be compensated by dissipation of the 1d heat equations if T > a 2

2 . The proof of Theorem 1.3 is performed in Section 4.

The proof of Theorem 1.4 also takes advantage of the optimality of the 1d observability constants obtained above. The exponential dependance of the 1d observability constant is compensated by the analyticity regularity of the initial data. The proof of Theorem 1.4 is performed in Section 5.

Comments and conjectures

The presence of a second strip in the control region is related to the techniques used (the 1d wave equation propagates in both directions). If the control acts only on one strip (a, b) × (0, 1), then the proof developped in the present article would lead to null controllability of (1.1) from (a, b)×(0, 1) in any time T > 1+a 2 2 . However, we conjecture that the minimal time is still a 2 2 in this configuration. When the degeneracy function x 2 in Grushin's operator is replaced by a potential q(x), which vanishes at a non degenerate minimum and the two control strips are at the same Agmon distance defined by q from this minimum, then the critical control time is this Agmon distance.

More precisely, when

• the degeneracy function x 2 is replaced by an absolutely continuous function q(x) which is twice differentiable at 0 and satisfies q (0) > 0, q(x) > 0 = q(0) for x = 0,

• the strips of the control set ω = [(-1, -b) ∪ (a, 1)] × (0, 1) are at the same Agmon distance

d q (ω) = a 0 q(s)ds = 0 -b q(s)ds from the degeneracy set {x = 0} then null-controllability from ω in time T of ∂ t -∂ 2 x -q(x)∂ 2 y holds for T > dq(ω) θ
and does not hold for T < dq(ω) θ , where θ = q (0) 2 . The positive result may be proved by a refinement of Haraux's sideways energy method and the negative result may be proved by Agmon estimates, as in Allibert's paper [START_REF] Allibert | Contrôle analytique de l'équation des ondes et de l'équation de Schrödinger sur des surfaces de revolution[END_REF] for the boundary control of the wave equation on the cylindrical surface of a barrel.

Bibliographical comments

Null controllability of the heat equation

The null controllability of the heat equation is a well understood subject. In particular, the heat equation on a smooth bounded domain Ω of R d (d ∈ N * ), with a source term located on an open subset ω of Ω is null controllable in arbitrary time T > 0 and with an arbitrary control support ω. This result is due, for the case d = 1, to Fattorini and Russell [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF], and, for d 2, to Fursikov and Imanuvilov [START_REF] Fursikov | Controllability of evolution equations[END_REF] and Lebeau and Robbiano [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. The literature contains many further developments.

Boundary-degenerate parabolic equations

The null controllability of 1d parabolic equations degenerating on the boundary of the space domain is well-understood. In particular, null controllability still holds for weak degeneracies and fails for too strong ones, see [START_REF] Cannarsa | Null controllability of degenerate heat equations[END_REF][START_REF] Cannarsa | Carleman estimates for a class of degenerate parabolic operators[END_REF][START_REF] Cannarsa | Persistent regional null controllability for a class of degenerate parabolic equations[END_REF][START_REF] Alabau-Boussouira | Carleman estimates for degenerate parabolic operators with applications to null controllability[END_REF][START_REF] Martinez | Carleman estimates for one-dimensional degenerate heat equations[END_REF][START_REF] Cannarsa | Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form[END_REF][START_REF] Cannarsa | Null controllability of degenerate parabolic operators with drift[END_REF][START_REF] Cannarsa | Controllability of 1-d coupled degenerate parabolic equations[END_REF][START_REF] Flores | Carleman estimates for degenerate parabolic equations with first order terms and applications[END_REF][START_REF] Vancostenoble | Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems[END_REF]. Fewer results are available for multidimensional problems, mainly in the case of two dimensional parabolic operators which simply degenerate in the normal direction to the boundary of the space domain, see [START_REF] Cannarsa | Carleman estimates and null controllability for boundary-degenerate parabolic operators[END_REF].

Parabolic equations degenerating inside the domain

In [START_REF] Martinez | Regional null controllability of a linearized Crocco-type equation[END_REF], the authors study linearized Crocco type equations

∂ t f + ∂ x f -∂ 2 vv f = u(t, x, v)1 ω (x, v), (t, x, v) ∈ (0, T ) × T × (0, 1), f (t, x, 0) = f (t, x, 1) = 0, (t, x) ∈ (0, T ) × T.
For a given strict open subset ω of T × (0, 1), they prove that null controllability does not hold: the optimal result is regional null controllability. Then, the literature contains results about Grushin-type equations recalled in Theorems 1.1 (see [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF]). Approximate controllability for a Grushin operator with singular coefficients is obtained by Morancey in [START_REF] Morancey | About unique continuation for a 2D Grushin equation with potential having an internal singularity[END_REF].

Similar results are known for Kolmogorov-type equations

∂ t f -∂ 2 vv f + v γ ∂ x f = u(t, x, v)1 ω (x, v), (t, x, v) ∈ (0, T ) × Ω (K) , f (t, x, ±1) = 0, (t, x) ∈ (0, T ) × T,
with γ ∈ N * and Ω (K) := T × (-1, 1), T being the 1d torus. (see [START_REF] Beauchard | Null controllability of Kolmogorov-type equations[END_REF][START_REF] Beauchard | Degenerate parabolic operators of Kolmogorov type with a geometric control condition[END_REF]).

Other occurences of minimal times in a parabolic context

Even though it does not seem natural at first sight to have a minimal time for controllability of parabolic equations this phenomena has already been enlightened in previous works such as [START_REF] Dolecki | Observability for the one-dimensional heat equation[END_REF] by Dolecki in the case of a pointwise control. Recently, for null controllability of systems of parabolic equations, the existence and the characterization of the minimal time has been obtained by Ammar Khodja, Benabdallah, Gonzalez-Burgos, and De Teresa [START_REF] Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF][START_REF] Khodja | Minimal time of controllability of two parabolic equations with disjoint control and coupling domains[END_REF].

Transmutation method

The proof developed in the present article uses the transmutation strategy and precise estimates on the resulting wave equations with respect to the potential. Due to technical difficulties, we do not use the transmutation strategy from the point of view of controllability as in [START_REF] Phung | Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equation under the Bardos-Lebeau-Rauch geometric control condition[END_REF][START_REF] Miller | The control transmutation method and the cost of fast controls[END_REF] by Phung and Miller but from the observability point of view as done in [START_REF] Ervedoza | Sharp observability estimates for heat equations[END_REF] by Ervedoza and Zuazua. This strategy has already been used by Gueye [START_REF] Gueye | Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations[END_REF] for boundary control of a boundary degenerate operator in divergence form. The estimates on the resulting wave equations rely on a lateral (or 'sideways') propagation of energy (that is where the role of the time and space variables are exchanged) as used by Haraux [START_REF] Haraux | A generalized internal control for the wave equation in a rectangle[END_REF] and Zuazua [START_REF] Zuazua | Exact controllability for semilinear wave equations in one space dimension[END_REF] or more recently by Haraux, Liard and Privat [START_REF] Haraux | How to estimate observability constants of one-dimensional wave equations? Propagation versus Spectral methods[END_REF]. The use of both a transmutation method and lateral propagation of energy was already suggested in [START_REF] Duyckaerts | On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials[END_REF] by Duyckaerts, Zhang and Zuazua.

Agmon distance, analytic control

In [START_REF] Lebeau | Contrôle analytique. I. Estimations a priori[END_REF], Lebeau study the boundary control of the wave equation, when unique continuation holds, but the geometric control condition does not hold. He proves a quantification of the analyticity regularity required for the initial conditions to be null controllable.

In [START_REF] Allibert | Contrôle analytique de l'équation des ondes et de l'équation de Schrödinger sur des surfaces de revolution[END_REF], Allibert study the same question over surfaces of revolution. His strategy relies on Fourier series expansion (with respect to the angle variable), as in the present paper. Moreover, his work emphasizes the role Agmon distance plays in the observabilty constants for wave equations. However, his context is quite different from ours. Indeed, Allibert focuses on boundary control for wave equations, whereas we focus on interior control of Grushin-type equations. As a consequence, our intermediary results on wave equations are different from Allibert's.

2 Well posedness, Fourier decomposition, dissipation speed

In this section, we recall well-posedness results for the Grushin equation (1.1) in Section 2.1 and Hilbert Uniqueness Method in Section 2.2. In Section 2.3, we justify the expansion in Fourier series of the solutions of the 2d system and we reduce the 2d observability problem to the observability of 1d heat equations, uniformly with respect to the Fourier parameter. Finally, in Section 2.4, we recall results concerning the decay rate of these 1d heat equations.

Well posedness

Here, we recall well posedness result for (

1.1) proved in [6, Section 2]. For f, g ∈ C ∞ 0 (Ω), we introduce (f, g) := Ω f x g x + |x| 2γ f y g y dxdy. Let | • | V := (•, •) 1/2 and V := C ∞ 0 (Ω) |•| V , which is a dense subspace of L 2 (Ω).
The operator G γ , defined by

D(G γ ) := {f ∈ V ; ∃c > 0 such that |(f, h)| ≤ c h L 2 , ∀h ∈ V } , G γ f, h := -(f, h), ∀h ∈ V, is self-adjoint on L 2 (Ω)
, generates an analytic semigroup and satisfies

G γ f = ∂ 2 xx f + |x| 2γ ∂ 2 yy f, a.e. on Ω.
This implies the following result.

Proposition 2.1. For any γ > 0,

f 0 ∈ L 2 (Ω), T > 0 and u ∈ L 2 ((0, T ), L 2 (Ω)) there exists a unique solution f in C 0 ([0, T ], L 2 (Ω)) ∩ L 2 ((0, T ), V ) of problem f (t) = G γ f (t) + u(t), t ∈ [0, T ], f (0) = f 0 . It satisfies f (t) ∈ D(G γ ) and f (t) ∈ L 2 (Ω) for a.e. t ∈ (0, T ) and f (t) L 2 ≤ f 0 L 2 + √ T u L 2 ((0,T )×Ω) , ∀t ∈ [0, T ].

Null controllability and observability

By duality, we consider the adjoint system of (1.1)

   ∂ t g -∂ 2 xx g -|x| 2γ ∂ 2 yy g = 0, (t, x, y) ∈ (0, T ) × Ω, g(t, x, y) = 0, (t, x, y) ∈ (0, T ) × ∂Ω, g(0, x, y) = g 0 (x, y), (x, y) ∈ Ω.
(2.1)

Definition 2.1 (Observability). Let T > 0. System (2.1) is observable from ω in time T if there exists C > 0 such that, for every g 0 ∈ L 2 (Ω), the solution of (2.1) satisfies Ω g(T, x, y) 2 dxdy C T 0 ω g(t, x, y) 2 dxdydt.
System (2.1) is observable from ω if there exists T > 0 such that it is observable from ω in time T . By Hilbert uniqueness method, system (1.1) is null controllable from ω in time T if and only if system (2.1) is observable from ω in time T . In this article, our strategy relies on this equivalence.

Fourier expansion and uniform observability

Let us consider the solution of (1.1). Since f belongs to C([0, T ], L 2 (Ω)), the function y → f (t, x, y) belongs to L 2 (0, 1) for a.e. (t, x) ∈ (0, T ) × (-1, 1), thus it can be developed in Fourier series with respect to y as follows

f (t, x, y) = n∈N * f n (t, x)ϕ n (y), (2.2) 
where ϕ n (y) := √ 2 sin(nπy), ∀n ∈ N * , and

f n (t, x) := 1 0 f (t, x, y)ϕ n (y)dy, ∀n ∈ N * . (2.3) 
We also develop u ∈ L 2 ((0, T ) × Ω) in Fourier series in the variable y as

u(t, x, y) = n∈N * u n (t, x)ϕ n (y).
We consider strip shaped control domains ω := ω x × (0, 1). The following result follows from [6, Proposition 2] Proposition 2.2. For every n ≥ 1, f n is the unique weak solution of

     ∂ t f n -∂ 2 xx f n + (nπ) 2 |x| 2γ f n = u n (t, x)1 ωx (x), (t, x) ∈ (0, T ) × (-1, 1), f n (t, ±1) = 0, t ∈ (0, T ), f n (0, x) = f 0 n (x), x ∈ (-1, 1), (2.4 
)

where f 0 n ∈ L 2 (-1, 1) is given by f 0 n (x) := 1 0 f 0 (x, y)ϕ n (y)dy.
Using Parseval identity, it comes that (2.1) is observable from ω = ω x ×(0, 1) in time T if and only if the adjoint system of (2.4)

   ∂ t g n -∂ 2 xx g n + (nπ) 2 |x| 2γ g n = 0, (t, x) ∈ (0, T ) × (-1, 1), g n (t, ±1) = 0, t ∈ (0, T ), g n (0, x) = g 0 n (x), x ∈ (-1, 1), (2.5) 
is uniformly observable from ω x in time T in the following sense.

Definition 2.2 (Cost of observability). Let T > 0, ω x ⊂ (-1, 1) and d 0. System (2.5) is observable from ω x in time T with exponential cost d if there exists C = C(d) > 0 such that, for every n ∈ N * and g 0 n ∈ L 2 (-1, 1), the solution of (2.5) satisfies 1 -1 g n (T, x) 2 dx 1/2 Ce dn T 0 ωx g n (t, x) 2 dxdt 1/2 . System (2.5) is uniformly observable from ω x in time T if it is observable from ω x in time T with exponential cost d = 0.
In all what follows, null controllability of 2d systems will be studied through uniform observability of the associated sequence of 1d problems.

The following proposition links the null controllability of analytic initial conditions of (1.1) and the cost of observability (when not uniform) of (2.5).

Proposition 2.3. Let γ 1, T > 0 and ω x be an open subset of (0, 1). Assume that

d * := inf{d > 0; system (2.5) is observable from ω x in time T with exponential cost d} (2.6) is positive. Then inf{α > 0; A α ⊂ F T } = d * .
Proof of Proposition 2.3. Using a classical duality argument (see [START_REF] Dolecki | A general theory of observation and control[END_REF][START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] by Dolecki, Russell and Lions for pioneer works and [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] by Tucsnak and Weiss for a complete overview), if (2.5) is observable from ω x in time T with exponential cost α, then the linear map

U T,n : f 0 n ∈ L 2 ((-1, 1), R) → u n ∈ L 2 ((0, T ) × ω x , R),
where u n is the control of minimal L 2 norm steering the solution of (2.4) from f 0 n to 0, is well defined and its norm is the smallest observability constant for (2.5). In particular

U T,n L[L 2 (-1,1),L 2 ((0,T )×(-1,1))] C(α)e nα ,
where C(α) is as in Definition 2.2.

Step 1: We prove that

A α ⊂ F T for every α > d * . Let α > d * and f 0 ∈ A α , i.e. n∈N * e 2αn f 0 n 2 L 2 (-1,1) < ∞. Let u(t, x, y) := n∈N * u n (t, x)ϕ n (y) where u n := U T,n (f 0 n ).
Then u is supported on ω x × (0, 1), steers the solution of (1.1) from f 0 to 0 and belongs to

L 2 ((0, T ) × Ω, R) because T 0 Ω u(t, x, y) 2 dxdydt = n∈N * T 0 1 -1 u n (t, x) 2 dxdt n∈N * C(α) 2 e 2αn f 0 n 2 L 2 (-1,1) < ∞.
Step 2: We prove that, for every α < d * , A α is not contained in F T . Let α ∈ (0, d * ). By assumption, there exists an extraction (n k ) k∈N * such that U T,n k > ke αn k for every k ∈ N * . Thus, there exists f 0

n k ∈ L 2 ((-1, 1), R) such that f 0 n k L 2 = 1 and U T,n k f 0 n k L 2 ((0,T )×(-1,1)) ke αn k .
Let f 0 ∈ A α be defined by

f 0 (x, y) := k∈N * f 0 n k (x) e -αn k k ϕ n k (y).
Assume that there exists u ∈ L 2 ((0, T ) × Ω, R) that steers the solution of (1.1) from f 0 to 0. Then, u n k (t, x) := 1 0 u(t, x, y)ϕ n k (y)dy steers the solution of (2.4) from f 0 n k e -αn k k to 0. Thus,

u n k L 2 ((0,T )×(-1,1)) U T,n k f 0 n k e -αn k k L 2 ((0,T )×(-1,1)) ke αn k e -αn k k = 1.
This is in contradiction with the fact that u belongs to L 2 ((0, T ) × Ω, R).

Dissipation speed

Let us introduce, for every n ∈ N * , γ > 0, the operator G n,γ defined on L 2 (-1, 1) by

D(G n,γ ) := H 2 ∩ H 1 0 (-1, 1), G n,γ ϕ := -ϕ + (nπ) 2 |x| 2γ ϕ. (2.7)
The smallest eigenvalue of G n,γ is given by

λ n,γ = min 1 -1 v (x) 2 + (nπ) 2 |x| 2γ v(x) 2 dx 1 -1 v(x) 2 dx ; v ∈ H 1 0 (-1, 1), v = 0 .
(2.8)

We are interested in the asymptotic behavior (as n → +∞) of λ n,γ , which quantifies the dissipation speed of the solution of (2.5). The following result is proved in [6, Lemma 2, Lemma 4 and Proposition 4].

Proposition 2.4. For every γ > 0, there are constants c * , c * > 0 such that

c * n 2 1+γ λ n,γ c * n 2 1+γ , ∀n ∈ N * .
There exists a unique positive solution with L 2 (-1, 1) norm one of problem

-v n,γ (x) + (nπ) 2 |x| 2γ v n,γ (x) = λ n,γ v n,γ (x), x ∈ (-1, 1), v n,γ (±1) = 0.
This solution v n,γ is even. Moreover, there exists C > 0 such that

nπ λ n,1 nπ + C, ∀n ∈ N * .
(2.9)

3 Observability on a strip touching the degeneracy line

The goal of this section is the proof of Theorem 1.2. In Sect. 3.1, we reduce the problem to that of controllability from (0, 1) × (0, 1). Then, it suffices to prove observability from (0, 1) × (0, 1) which relies on a global Carleman estimate for solutions of (2.5), stated in Sect. 3.2 and proved in Appendix.

Towards the study of controllability from the half domain

The following proposition states that it is sufficient to consider the case b = 1.

Proposition 3.1. Let γ 1, b ∈ (0, 1) and T > 0. If system (1.1) with Ω = (-1, b) × (0, 1) is null controllable from ω = (0, b) × (0, 1) in time T then system (1.1) with Ω = (-1, 1) × (0, 1) is null controllable from ω = (0, b) × (0, 1) in time T .
The property given in assumption can be proved with the strategy developed in this article : the fact that the interval x ∈ (-1, b) is non-symmetric plays no role; the only important thing is that we control up to the boundary.

Proof of Proposition 3.1. The proof relies on a cut-off argument. Let δ ∈ (0, b 2 ), χ 1 ∈ C ∞ ([-1, 1], [0, 1]) such that χ 1 = 1, on (b -δ, 1), χ 1 = 0, on (-1, δ)
and χ 2 := 1 -χ 1 . We introduce the domains

Ω 1 := (b -δ, 1) × (0, 1), ω 1 := (b -δ, b) × (0, 1)
,

Ω 2 := (-1, b -δ) × (0, 1), ω 2 := (0, b -δ) × (0, 1).
Let f 0 ∈ L 2 (Ω) and T > 0. By uniform parabolicity in the case j = 1 (see for example [START_REF] Fursikov | Controllability of evolution equations[END_REF]) and by assumption and rescalling in the case j = 2, there exist

u j ∈ L 2 ((0, T ) × Ω j ) such that the solutions of      ∂ t f j -∂ 2 xx f j -|x| 2γ ∂ 2 yy f j = u j (t, x, y)1 ωj (x, y), (t, x, y) ∈ (0, T ) × Ω j , f j (t, x, y) = 0, (t, x, y) ∈ (0, T ) × ∂Ω j , f j (0, x, y) = f 0 (x, y), (x, y) ∈ Ω j , satisfy f j (T, ., .) = 0 on Ω j for j = 1, 2. Then f (t, x, y) := j=1,2 χ j (x)f j (t, x, y) solves (1.1) with u(t, x, y) := j=1,2 u j (t, x, y)1 ωj (x, y) -χ j (x)f j (t, x, y) -2χ j (x)∂ x f j (t, x, y)
which belongs to L 2 ((0, T ) × Ω) by Proposition 2.1 and is supported on (0, T ) × (0, b) × (0, 1).

A global Carleman estimate

For n ∈ N * and γ > 0, we introduce the operator

P n,γ g := ∂ t g -∂ 2 xx g + (nπ) 2 |x| 2γ g. Proposition 3.2. Let γ 1. There exist a weight function β ∈ C 1 ([-1, 1], [1, +∞))
and a positive constant C 1 such that for every

T > 0, M M * = M * (T, β), n ∈ N * and g ∈ C 0 ([0, T ], L 2 (-1, 1)) ∩ L 2 ((0, T ), H 1 0 (-1, 1 
)) the following inequality holds

C 1 T 0 1 -1 M 3 (t(T -t)) 3 g(t, x) 2 e -M β(x) t(T -t) dxdt T 0 1 -1 |P n,γ g| 2 e -M β(x) t(T -t) dxdt + T 0 1 0 M 3 (t(T -t)) 3 + M n 2 t(T -t) |g(t, x)| 2 e -M β(x) t(T -t) dxdt. (3.1)
We refer to the Appendix for a complete proof, which follows the usual strategy. Note that M does not need to depend on n, contrarily to what happens in reference [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF], where the observability region ω does not touch the degeneracy line {x = 0}. Our weight β is inspired by the classical one (see (7.1), (7.2), (7.3) and (7.4)), but it is an appropriate adaptation to our situation (see (7.5), (7.6)).

Uniform observability

The Carleman estimate of Proposition 3.2 allows to prove the following result, which implies Theorem 1.2. Proposition 3.3. Let γ ∈ [1, +∞) and T > 0. System (2.5) is uniformly observable from (0, 1) in time T .

Proof of Proposition 3.3. For t ∈ (T /3, 2T /3), we have

4 T 2 1 t(T -t) 9 2T 2 and 1 -1 g(T, x) 2 dx 1 -1 g(t, x) 2 dxe -λn,γ T 3 .
Thus, by Proposition 3.2.

C 1 64M 3 T 6 e -9M β * 2T 2 T 3 e λn,γ T 3 1 -1 g(T, x) 2 dx C 3 (1 + n 2 ) T 0 1 0 g(t, x) 2 dxdt
where

β * := max{β(x); x ∈ [-1, 1]}, β * := min{β(x); x ∈ [-1, 1]} and C 3 := max{(x + x 3 )e -β * x ; x 0}. By Proposition 2.4, we get 1 -1 g(T, x) 2 dx C 4 T 5 e c1 M T 2 -c2n 2 1+γ T (1 + n 2 ) T 0 1 0 g(t, x) 2 dxdt (3.2)
for some constants c 1 , c 2 , C 4 > 0 (independent of n, T and g). This gives the conclusion.

Minimal time

The goal of this section is the proof of Theorem 1.3 through the study of uniform observability of (2.5). Thus, in the whole section, we take γ = 1.

In Section 4.1, through transmutation method, we associate 1d wave equations to the 1d heat equations (2.5). We then study an observability-like estimate for these wave equations. In Sections 4.2, using a lateral propagation of energy method, we give a precise estimate of the exponential cost appearing in this observability-like inequality. We prove Theorem 1.3 i) in Section 4.3 getting back to the 2d equation and using the dissipation of Fourier modes. Finally, we prove Theorem 1.3 ii) in Section 4.4.

Strategy and transmutation method

We state in Proposition 4.1 that it is sufficient to study null controllability from ω a,1 × (0, 1). Proposition 4.1. Assume that 0 < a < b 1 and T > 0. If system (1.1) is null controllable in time T > 0 from ω a,1 × (0, 1) then system (1.1) is null controllable in time T from ω a,b × (0, 1) .

The proof of this proposition is very similar to that of Proposition 3.1 (except that there is here two strips in the control domain) and is left to the reader. Then, Theorem 1.3 i) is a consequence of the following result. Proposition 4.2. Let a ∈ (0, 1) and T > a 2 2 . System (2.5) is uniformly observable on ω a,1 in time T .

This observability property will be studied on a 1d wave equation associated through transmutation. We here recall the properties needed for the transmutation strategy. For simplicity of notations, the partial derivatives are sometimes denoted by subscripts i.e. g x = ∂ x g.

Using an integral transformation, the transmutation strategy induces observability properties of the heat equation (2.5) from the study of the following wave equation

   w ss -w xx + (nπ) 2 x 2 w = 0, (s, x) ∈ (-L, L) × (-1, 1), w(s, ±1) = 0, s ∈ (-L, L), (w, w s )(0, x) = (w 0 , w 1 )(x), x ∈ (-1 , 1). (4.1) 
The integral transformation is based on the following kernel which existence is proved in [18, Proposition 3.1]. Proposition 4.3. Let T > 0 and L > 0. For any ν > 3L 2 , there exists a unique solution of

         ∂ t k T (t, s) + ∂ 2 ss k T (t, s) = 0, (t, s) ∈ (0, T ) × (-L, L), k T (0, s) = k T (T, s) = 0, s ∈ (-L, L), k T (t, 0) = 0, t ∈ (0, T ), ∂ s k T (t, 0) = exp -νT t(T -t) , t ∈ (0, T ). (4.2) 
Moreover, for any (t, s) ∈ (0, T ) × (-L, L), this solution satisfies

|k T (t, s)| |s|exp 2 min(t, T -t) s 2 - ν 3 , |∂ s k T (t, s)| exp 2 min(t, T -t) s 2 - ν 3 .
Once this kernel is defined, the transmutation from a solution of the parabolic equation (2.5) to a solution of the hyperbolic equation (4.1) is given by the following proposition (see [START_REF] Ervedoza | Sharp observability estimates for heat equations[END_REF]Theorem 2.1] for the proof). Proposition 4.4. Let g 0 ∈ L 2 (-1, 1) and g be the associated solution of (2.5). We define

w(s, x) := T 0 k T (t, s)g(t, x)dt, (s, x) ∈ (-L, L) × (-1, 1). (4.3)
Then, w is the unique solution of (4.1) associated to the initial conditions

w 0 (x) := 0, w 1 (x) := T 0 exp - νT t(T -t) g(t, x)dt. (4.4)

Study of wave equations

For the sake of generality, we consider an abstract potential q ∈ C 1 ([-1, 1], R)

i.e. we study the system

   w ss -w xx + q(x)w = 0, (s, x) ∈ (-L, L) × (-1, 1), w(s, ±1) = 0, s ∈ (-L, L), (w, w s )(0, x) = (w 0 , w 1 )(x), x ∈ (-1, 1). (4.5)
This subsection is dedicated to the proof of precise estimates of the solution of (4.5) with respect to the potential q. Proposition 4.5. Let L > 1 and δ ∈ (0, a) be such that a + 3δ < 1. There exists C > 0 such that, for every

δ > 0, q ∈ C 1 ([-1, 1], R + )\{0}, (w 0 , w 1 ) ∈ H 1 0 × L 2 (-1, 1)
, the associated solution of (4.5) satisfies

w 0 2 H 1 0 + w 1 2 L 2 CO W (a, q, δ, δ) L -L ωa,1 w 2 s + w 2 (s, x)dxds, (4.6) 
where O W (a, q, δ, δ) = max e a+2δ 0

[M (y)+2 √ q(y)]dy , e 0 -a-2δ [M (y)+2 √ q(y)]dy , (4.7)

q : x ∈ (-1, 1) → q(x) + δ2 ||q|| L ∞ (-1,1) , M : x ∈ (-1, 1) → |q (x)| q(x) .
Remark 4.1. Note that the Agmon distance associated to the potential q appears in the observability-like constant O W (a, q, δ, δ).

Because of the term in w, the inequality (4.6) is not a classical observability inequality. However using the definition of w in (4.3) we will be able, in the next subsection, to relate (4.6) to the observability of (2.5).

Proof of Proposition 4.5. Let ε ∈ (0, L -1) be such that L > a + 2δ + ε. We use lateral propagation of the energy, inspired by Haraux [START_REF] Haraux | A generalized internal control for the wave equation in a rectangle[END_REF]Proposition 1.4]. It is sufficient to prove (4.6) for q, w 0 , w 1 in C ∞ c ((-1, 1), R). We will use a modified energy defined, by

F (x) := x+ε -x-ε w 2 s (s, x) + w 2
x (s, x) + q(x)w 2 (s, x) ds, ∀x ∈ (0, 1). (4.8)

First step : Growth of F . Differentiating F , integrating by parts and using equation (4.5) lead to

F (x) = w 2 s + w 2 x + q(x)w 2 (x + ε, x) + w 2 s + w 2 x + q(x)w 2 (-x -ε, x) + x+ε -x-ε q (x)w 2 (s, x)ds + 2 x+ε -x-ε w s w sx + w x w xx + q(x)ww x (s, x)ds q(x)w 2 (x + ε, x) + q(x)w 2 (-x -ε, x) + x+ε -x-ε q (x)w 2 (s, x)ds + 2 x+ε -x-ε
q(x)ww x + q(x)ww x (s, x)ds.

Then, as q(x) q(x), and using the definition of M gives

F (x) -M (x) x+ε -x-ε q(x)w 2 (s, x)ds -2 q(x) x+ε -x-ε q(x)w 2 + w 2 x (s, x)ds -M (x) + 2 q(x) F (x).
Hence, the map

x ∈ (0, 1) → F (x) exp x 0 M (y) + 2 q(y)dy (4.9)
is non-decreasing.

Second step : Estimates on (0, a + δ). From (4.9), it comes that for any j ∈ {0, . . . , a δ }, for any x ∈ (jδ, (j + 1)δ),

F (x) exp

x+a-(j-1)δ

x [M (y) + 2 q(y)]dy F (x + a -(j -1)δ).

Then integrating for x ∈ (jδ, (j + 1)δ) leads to We now estimate the term in w x in the right-hand side of (4.10

). Let ζ ∈ C ∞ c ((-L, L) × (a, a + 3δ), [0, 1]) be such that ζ ≡ 1 on [-a -2δ -ε, a + 2δ + ε] × [a + δ, a + 2δ].
Multiplying the equation (4.5) by w an using the definition of ζ it comes that

a+2δ+ε -a-2δ-ε a+2δ a+δ w 2 x (s, x)dxds L -L a+3δ a ζ(s, x)w 2 x (s, x)dxds L -L a+3δ a ζ(s, x) w 2 s -q(x)w 2 + (ww x ) x -(ww s ) s (s, x)dxds.
After integration by parts and using q 0, we obtain

a+2δ+ε -a-2δ-ε a+2δ a+δ w 2 x (s, x)dxds C(ζ) L -L a+3δ a w 2 s + w 2 (s, x)dxds.
Then, going back to (4.10) and using again q q gives ε -ε

a+δ 0 w 2 s + w 2 x + q(x)w 2 )(s, x)dxds a+δ 0 F (x)dx Ce a+2δ 0 [M (y)+2 √ q(y)]dy L -L a+3δ a w 2 s + w 2 (s, x)dxds. (4.11)
Third step : estimates on (a + δ, 1).

Let ζ 2 ∈ C ∞ c ((-L, L) × (a, 2), [0, 1]) be such that ζ 2 ≡ 1 on [-ε, ε] × [a + δ, 1],
The same arguments as previously lead to

ε -ε 1 a+δ w 2 x (s, x)dxds C(ζ 2 ) L -L 1 a w 2 s + w 2 (s, x)dxds.
Together with (4.11) this leads to

ε -ε 1 0 w 2 s + w 2 x + q(x)w 2 )(s, x)dxds Ce a+2δ 0 M (y)+2 √ q(y)dy L -L 1 a w 2 s + w 2 (s, x)dxds. (4.12)
Fourth step : conclusion. The exact same strategy on (-1, 0) leads to

ε -ε 0 -1 w 2 s + w 2 x + q(x)w 2 )(s, x)dxds Ce 0 -a-2δ [M (y)+2 √ q(y)]dy L -L -a -1 w 2 s + w 2 (s, x)dxds. (4.13)
Defining the classical energy

E(s) := 1 -1 w 2 s + w 2 x + q(x)w 2 (s, x)dx (4.14)
and using its conservation we get

2εE(0) = ε -ε 1 -1 w 2 s + w 2 x + q(x)w 2 (s, x)dxds.
Then, summing (4.12) and (4.13) and using the non-negativity of q ends the proof of Proposition 4.5.

Upper bound on the minimal time

This subsection is dedicated to the proof of Proposition 4.2 which implies Theorem 1.3 i).

Proof of Proposition 4.2. Let a ∈ (0, 1) and T > a 2 2 . Let L and δ satisfying the assumptions of Proposition 4.5. Up to a reduction of δ, we set η, δ > 0 such that

T > (a + 2δ) 2 2 + δ(a + 2δ) + η. (4.15) 
Let n ∈ N * and g 0 n ∈ L 2 (-1, 1). Let g n be the associated solution of (2.5). For the sake of brevity, we omit the subscript n in the rest of the proof. We consider k η the transmutation kernel associated to the time η defined in Proposition 4.3, and w the associated solution of (4.1) given by Proposition 4.4.

Recall that according to Proposition 4.4,

w(s, x) = η 0 k η (t, s)g(t, x)dt, (s, x) ∈ (-L, L) × (-1, 1), w 0 (x) = 0, x ∈ (-1, 1), w 1 (x) = η 0 exp - νη t(η -t) g(t, x)dt, x ∈ (-1, 1)
,

where ν > 3L 2 .
Then, Proposition 4.5 applied to the case q(x) := (nπ) 2 x 2 , implies the existence of C > 0 independent of n and g 0 such that

w 1 2 L 2 CO W (a, q, δ, δ) L -L ωa,1 w 2 s + w 2 (s, x)dxds. (4.16)
In all what follows, C denotes a positive constant that may vary but which is always independent of n and g 0 .

Using the definitions of M and q given in Proposition 4.5, it comes that M does not depend on n and thus we get

O W (a, q, δ, δ) = exp a+2δ 0 [M (y) + 2 q(y)]dy C exp 2nπ (a + 2δ) 2 2 + δ(a + 2δ) . ( 4 

.17)

We now relate the left and right-hand sides of (4.16) to the function g. Straightforward computations imply

L -L ωa,1 w 2 (s, x)dxds = L -L ωa,1 η 0 k η (t, s)g(t, x)dt 2 dxds k η 2 L 2 ((0,η)×(-L,L)) η 0 ωa,1 g 2 (t, x)dxdt k η 2 L 2 ((0,η)×(-L,L)) T 0 ωa,1 g 2 (t, x)dxdt. (4.18)
In the same way, it comes that

L -L ωa,1 w 2 s (s, x)dxds = L -L ωa,1 η 0 ∂ s k(t, s)g(t, x)dt 2 dxds ∂ s k η 2 L 2 ((0,η)×(-L,L)) T 0 ωa,1 g 2 (t, x)dxdt. (4.19)
Thus, using (4.18) and (4.19) in (4.16) leads to

w 1 2 L 2 Ce 2nπ (a+2δ) 2 2 
+ δ(a+2δ)

( k η 2 L 2 + ∂ s k η 2 L 2 ) T 0 ωa,1 g 2 (t, x)dxdt. 
(4.20) To give a lower estimate on the left side of (4.16) we use a spectral decomposition. For a fixed n ∈ N * , we denote by (λ

(n) j ) j∈N * and (ϕ (n) j ) j∈N * the nondecreasing sequence of eigenvalues and the associated sequence of L 2 normal- ized eigenvectors of the operator -∂ 2 xx + (nπ) 2 x 2 with domain H 2 ∩ H 1 0 (-1, 1) i.e. -∂ 2 xx + (nπ) 2 x 2 ϕ (n) j = λ (n) j ϕ (n) j , ϕ (n) j (-1) = ϕ (n) j (1) = 0.
For any g 0 ∈ L 2 (-1, 1), expanded in the basis (ϕ

(n) j ) j∈N * as g 0 = +∞ j=1 g 0 j ϕ (n) j ,
the associated solution g of (2.5) reads as

g(t) = +∞ j=1 e -λ (n) j t g 0 j ϕ (n) j . (4.21) 
Then, straightforward computations lead to

w 1 2 L 2 (-1,1) = η 0 exp - νη t(η -t) g(t, •)dt 2 L 2 (-1,1) = +∞ j=1 |g 0 j | 2 η 0 exp - νη t(η -t) e -λ (n) j t dt 2 η 0 exp - νη t(η -t) dt 2 +∞ j=1 |g 0 j | 2 e -2λ (n) j η = η 0 exp - νη t(η -t) dt 2 g(η) 2 L 2 (-1,1) . (4.22) 
Finally, using (4.20) and (4.22) in the observability inequality (4.16) leads to the existence of C > 0 such that

g(η) 2 L 2 (-1,1) Ce 2nπ (a+2δ) 2 2 + δ(a+2δ) T 0 ωa,1 g 2 (t, x)dxdt. (4.23) 
We conclude using the dissipation speed given by Proposition 2.4

λ (n) 1 πn, ∀n ∈ N * . (4.24) 
Thus, g(T ) 2

L 2 (-1,1) e -2nπ(T -η) g(η) 2 L 2 (-1,1) . (4.25) 
Together with (4.23) we get the existence of C > 0 such that

g(T ) 2 L 2 (-1 ,1) Ce 2nπ (a+2δ) 2 2 
+ δ(a+2δ)+η-T T 0 ωa,1

g 2 (t, x)dxdt. (4.26)
Thus, the choice of constants δ, δ, η in (4.15) implies the uniform observability of (2.5) and Proposition 4.2.

Remark 4.2. We see in (4. [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]) that the term in w in the right-hand side of the observability-like inequality is easily dealt with. From (4.17) and (4.25) we see that the key point in the proof of Theorem 1.3 is the competition between the cost of observability of the wave equation (4.1) and the dissipation of the heat equation (2.5). Both are of the same order of magnitude when γ = 1 and thus the dissipation compensates the cost of observability only for T > a 2

2 . Remark 4.3. Notice that, by Theorem 1.3 ii), the exponential cost in (4.17) is optimal with respect to the power of n and with respect to the multiplicative constant in front of this power of n.

Lower bound on the minimal time

The goal of this section is the proof of Theorem 1.3 ii), which is a consequence of the following result 2 . We design a sequence of solutions of (2.5) such that

T 0 ω a,b g n (t, x) 2 dxdt 1 -1 g n (T, x) 2 dx -→ n→+∞ 0. (4.27) 
Let v n,1 be the eigenfunction associated to the smallest eigenvalue of G n,1 in Proposition 2.4. For any n ∈ N * , let

g n (t, x) := e -λn,1t v n,1 (x), ∀(t, x) ∈ (0, +∞) × (-1, 1). (4.28) 
Then g n solves (2.5) and

1 -1 g n (T, x) 2 dx = e -2λn,1T , T 0 ω a,b g n (t, x) 2 dxdt = 1 -e -2λn,1T 2λ n,1 ω a,b v n,1 (x) 2 dx.
As v n,1 is even, to get (4.27) it suffices to prove that

e 2λn,1T λ n,1 b a v 2 n,1 (x)dx -→ n→∞ 0. (4.29) From [6, Lemma 4], it comes that b a v 2 n,1 (x)dx ∼ n→∞ e -a 2 nπ 2aπ √ n . (4.30) 
By (2.9), this implies (4.29).

Null controllable initial conditions

The goal of this section is the proof of Theorem 1.4. The observability-like inequality for the wave equation proved in the previous section also enables us to characterize null controllable initial conditions. By Proposition 2.3, Theorem 1.4 is equivalent to the following result.

Proposition 5.1. Let 0 < a < 1, γ 1, T > 0 and ω x := (-1, -a) ∪ (a, 1). We assume that either [γ > 1] or [γ = 1 and T < a 2 2 ]. Then, the explicit value of the quantity d * defined in (2.6) is

d * = π a γ+1 γ+1 , if γ > 1, π a 2 2 -T , if γ = 1 and T < a 2 2 .
Proof of Proposition 5.1.

Step 1: We prove Proposition 5.1 for γ = 1 and T < a 2

2 .

Step 1.1: We prove that d * π a 2 2 -T . Let d > π a 2 2 -T . We want to prove that system (2.5) is observable from ω x in time T with exponential cost d. It is a consequence of (4.26), up to a reduction of δ, δ, η.

Step 1.2: We prove that d * π a 2 2 -T . Let d < π a 2 2 -T . We want to prove that system (2.5) is not observable from ω x in time T with exponential cost d. Let g n be as in (4.28). By (4.30) and (2.9), we have

e 2dn T 0 ωx g n (t, x) 2 dxdt 1 -1 g n (T, x) 2 dx -→ n→+∞ 0. (5.1) 
which gives the conclusion.

Step 2: We prove Proposition 5.1 for γ > 1.

Step 2.1: We prove that d * π a γ+1 γ+1 . We want to prove that system (2.5) is observable from ω x in time T with any exponential cost d > π a γ+1 γ+1 . We here apply the exact same strategy as in the case γ = 1, except that we do not use the dissipation of the 1d heat equation. Let L and δ satisfying the assumptions of Proposition 4.5. We apply Proposition 4.5 with the transmutation kernel k T and q(x) := (nπ) 2 |x| 2γ . The same computations as (4.18), (4.19) and (4.22) imply

g n (T ) 2 L 2 (-1,1) O W (a, q, δ, δ) T 0 ωx g n (t, x) 2 dxdt,
where

O W (a, q, δ, δ) C exp 2nπ (a + 2δ) γ+1 γ + 1 + δ(a + 2δ) .
Step 2.2: We prove that d * π a γ+1 γ+1 . Let d < π a γ+1 γ+1 . We want to prove that system (2.5) is not observable from ω x in time T with exponential cost d. Let g n (t, x) := v n,γ (x)e -λn,γ t where v n,γ and λ n,γ are as in Proposition 2.4. We have, for n large enough

v n (x) C n e -nπ x γ+1 γ+1 , ∀x a, (5.2) 
where Together with the estimates on λ n,γ in Proposition 2.4, this proves that (5.1) holds, which ends Step 2.2.

C n := 2λ n e µnx γ+1 n (γ + 1)µ n x γ-1 2 n , x n := λ n (nπ)
Remark 5.1. Agmon estimates state the exponential decrease as e -d Ag (x)/h , of the eigenfunctions of -h 2 ∆ + q(x), far from the minimal points of q; where d Ag (x) is the Agmon distance associated to potential q. Thus, the key estimate (5.2) of the above proof, is an Agmon estimate (take h = 1/nπ and q(x) = |x| 2γ ).

Conclusion and open problems

In this article, we have studied the null controllability of degenerate parabolic equations, of Grushin type, on a rectangle domain, with strip shaped control supports.

We have proved that, when the control acts on a strip touching the degeneracy line {x = 0}, then, null controllability holds in arbitrary time T > 0 and for arbitrary degeneracy γ > 0. This result contrasts with the case of a strip that does not touch the degeneracy line (see Theorem 1.1 from [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF]).

Then, we focused on control regions consisting in two symmetric strips. In this setting, it was already known that a positive minimal time is required for null controllability when γ = 1 [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF]. We here give the exact value of this minimal time, and its interpretation in terms of the Agmon distance between the control region and the degeneracy line.

It was also known that, in particular configurations (γ > 1 or [γ = 1, T small]), null controllability does not hold. In these cases, we characterize the initial conditions that are null controllable: their regularity depends on the control region ω, the time T and the degeneracy parameter γ. This result may be understood as a geometric control condition.

Many questions are still open.

The results of the present article incites to conjecture that, for given degeneracy parameter γ, control region ω, and time T , the regularity of initial conditions that are null controllable depends on (γ, ω, T ). This characterization is an open problem, when the control region does not consist in two symetric strips (even when it consists in one strip).

When the control region ω is not strip shaped, the existence of a critial parameter γ for which null controllability requires a positive minimal time is also an open problem.

Acknowledgements: The third author thanks Sylvain Ervedoza for stimulating discussions about transmutation method.

7 Appendix Proposition 7.1. Let ∈ (0, 1). There exists a function

β ∈ C 1 ([-1, 1]) ∩ C 2 ([-1, 0]) ∩ C 2 ([0, 1]) such that β 1 on (-1, 1), (7.1) 
β < 0 on [-1, 0], (7.2) 
β (-1) < 0 < β (+1), (7.3 
)

β < -1 on [-1, 0), (7.4) 
(|x| 2γ β ) 0 on [-1, 0), (7.5 
)

β ≡ 0 on [0, ]. (7.6) 
Note that β has a discontinuity at x = 0.

Proof of Proposition 7.1. We define

β : x ∈ [-1, 0) → -x 2 - 2γ + 1 γ x + 2 + ε 2γ + 1 γ .
By straightforward computations, this polynomial satisfies the assumptions on [-1, 0). From the C 1 regularity and (7.6) it comes that β must be defined on [0, ε] by

β : x ∈ [0, ε] → - 2γ + 1 γ x + 2 + ε 2γ + 1 γ .
This construction ensures that β 2 on [0, ε]. We end the construction on [ε, 1] with any function satisfying

β(ε) = 2, β (ε) = - 2γ + 1 γ , β (ε) = 0, β 1 on [ε, 1], β (1) > 0.
Proof of Proposition 3.2. All the computations of the proof will be made assuming, first, g ∈ H

1 ((0, T ), L 2 (-1, 1)) ∩ L 2 ((0, T ), H 2 ∩ H 1 0 (-1, 1 
)). Then, the conclusion of Proposition 3.2 will follow by a density argument.

We consider the weight function

α(t, x) := M β(x) t(T -t) , (t, x) ∈ (0, T ) × R, (7.7) 
where β is as in Proposition 7.1 and M = M (T, β) > 0 will be chosen later on. We also introduce the function z(t, x) := g(t, x)e -α(t,x) ,

that satisfies e -α P n,γ g = P 1 z + P 2 z + P 3 z,

where

P 1 z : = - ∂ 2 z ∂x 2 + (α t -α 2 x )z + (nπ) 2 |x| 2γ z, P 2 z : = ∂z ∂t -2α x ∂z ∂x , P 3 z : = -α xx z. (7.10) 
We develop the classical proof (see [START_REF] Fursikov | Controllability of evolution equations[END_REF]), taking the L 2 (Q)-norm in the identity (7.9), then developing the double product, which leads to

Q P 1 zP 2 z - 1 2 |P 3 z| 2 dxdt Q |e -α P n,γ g| 2 dxdt, (7.11) 
where Q := (0, T ) × (-1, 1) and we compute precisely each term, paying attention to the behaviour of the different constants with respect to n and T . Terms concerning -∂ 2 xx z: Integrating by parts, we get

- Q ∂ 2 z ∂x 2 ∂z ∂t dxdt = Q ∂z ∂x ∂ 2 z ∂t∂x dxdt = T 0 1 2 d dt 1 -1 ∂z ∂x 2 dxdt = 0, (7.12) 
because ∂ t z(t, ±1) = 0 and z(0) ≡ z(T ) ≡ 0, which is a consequence of assumptions (7.8), (7.7) and (7.1). Moreover, 

Q ∂ 2 z ∂x 2 2α x ∂z ∂x dxdt = - Q ∂z ∂x 2 α xx dxdt + T 0 α x (t,
(α t -α 2 x )z ∂z ∂t dxdt = - 1 2 Q (α t -α 2 x ) t |z| 2 dxdt. (7.14) 
Indeed, the boundary terms at t = 0 and t = T vanish because, using (7.8), (7.7), (7.1), we get

|(α t -α 2 x )|z| 2 | 1 [t(T -t)] 2 e -M t(T -t) |M (T -2t)β + (M β ) 2 | |g| 2
which tends to zero when t → 0 and t → T , for every

x ∈ [-1, 1]. Moreover, -2 Q (α t -α 2 x )zα x ∂z ∂x dxdt = Q [(α t -α 2 x )α x ] x |z| 2 dxdt, (7.15) 
thanks to an integration by parts in the space variable.

Terms concerning (nπ) 2 |x| 2γ z: First, since z(0) ≡ z(T ) ≡ 0,

Q (nπ) 2 |x| 2γ z ∂z ∂t dxdt = 1 2 T 0 d dt 1 -1 (nπ) 2 |x| 2γ |z| 2 dxdt = 0. (7.16) 
Furthermore, thanks to an integration by parts in the space variable,

-2 Q (nπ) 2 |x| 2γ zα x ∂z ∂x dxdt = Q [(nπ) 2 |x| 2γ α x ] x z 2 dxdt. (7.17) 
Combining (7.11), (7.12), (7.13), (7.14), (7.15), (7.16) and (7.17), we get

Q |z| 2 - 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x + (nπ) 2 [|x| 2γ α x ] x - 1 2 α 2 xx dxdt + T 0 α x (t, 1) ∂z ∂x (t, 1) 2 -α x (t, -1) ∂z ∂x (t, -1) 2 dt - Q ∂z ∂x 2 α xx dxdt Q |e -α P n,γ g| 2 dxdt. (7.18) 
In view of (7.3), we have α x (t, 1) 0 and α x (t, -1) 0, thus (7.18) yields

Q |z| 2 - 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x - 1 2 α 2 xx + n 2 π 2 [|x| 2γ α x ] x dxdt - Q ∂z ∂x 2 α xx dxdt Q |e -α P n,γ g| 2 dxdt. (7.19) 
Now, in the left side of (7.19) we separate the terms on (0, T ) × (-1, 0) and those on (0, T ) × (0, 1). One has

-α xx (t, x) C 1 M t(T -t)
, ∀x ∈ (-1, 0), t ∈ (0, T ), α xx (t, x) = 0, ∀x ∈ (0, ), t ∈ (0, T ),

|α xx (t, x)| C 2 M t(T -t)
, ∀x ∈ ( , 1), t ∈ (0, T ), (7.20) where C 1 = C 1 (β) := inf{-β (x); x ∈ [-1, 0)} is positive thanks to the assumption (7.4) and C 2 = C 2 (β) := sup{|β (x)|; x ∈ [ , 1]}. Moreover,

- 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x - 1 2 α 2 xx = 1 (t(T -t)) 3 M β(3T t -T 2 -3t 2 ) + M 2 (2t -T )(β β + 2β 2 ) - t(T -t)β 2 2 -3M 3 β β 2 .
Hence, owing to (7.2) and (7.4), there exist m 1 = m 1 (β) > 0, C 3 = C 3 (β) > 0 and C 4 = C 4 (β) > 0 such that, for every M M 1 and t ∈ (0, T ), The key point of this proof is the first inequality in the above formula: outside the control support, the only term that depends on n is positive and can be neglected. In particular M does not need to depend on n, contrarily to what happens in reference [START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF]. Using (7.19) 

- 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x - 1 2 α 2 xx C 3 M 3 [t(T -t)] 3 ∀x ∈ (-1, 0), - 1 2 (α t -α 2 x ) t + [(α t -α 2 x )α x ] x -
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 313 ω a,b := (-b, -a) ∪ (a, b) (1Theorem Let 0 < a < b 1, ω := ω a,b × (0, 1) and γ = 1.

FFF

  (x)dx.Using the same strategy for x ∈ ( a δ δ, a + δ) and summing the inequalities then leads to a+δ 0 (x)dx.(4.10) 
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 462 Let 0 < a < b 1 and T a . System (2.5) is not uniformly observable on ω a,b in time T . Proof of Proposition 4.6. This proof follows the one of [6, Lemma 4]. Let γ = 1 and T a 2

2

 2 

  for instance,[START_REF] Beauchard | Null controllability of Grushin-type operators in dimension two[END_REF] Lemma 3]). Thus, for n large enough, we have b a v n,γ (x) 2 dx C 2 n e -2nπ a γ+1 γ+1

1 2 α 2 xxC 4 M 1 =

 241 M 3 [t(T -t)] 3 ∀x ∈ (0, 1) M 1 (T, β) := m 1 (β)(T + T 2 ). (7.22)Note that, by assumption (7.5),(nπ) 2 [|x| 2γ α x ] x = (nπ) 2 M (|x| 2γ β ) t(T -t) 0, ∀(t, x) ∈ (0, T ) × (-1, 0), (nπ) 2 [|x| 2γ α x ] x M n 2 C 4 t(T -t) , ∀(t, x) ∈ (0, T ) × (0, 1),(7.23)where C 4 = C 4 (β, γ) > 0.

C 3 2 -C 3 M 3

 233 δC 1 (β ) 2 |g| 2 . (7.25) Hence, choosing δ = δ(β) |g| 2 4(t(T -t)) 3 e -2α dxdt Q |e -α P n,γ g| 2 dxdt +

C 9 C 3 M 3 C

 933 M 3 (t(T -t)) 3 + C 4 M n 2 t(T -t)|g| 2 e -2α dxdt,whereC 8 = C 8 (β) := 2C 2 and C 9 = C 9 (β) := C 4 + 2C 2 sup{β (x) 2 : x ∈ [0, 1]}.So, adding the same quantity to both sides,Q |g| 2 4(t(T -t)) 3 e -2α dxdt Q |e -α P n g| 2 dxdt + 11 M 3 (t(T -t)) 3 + C 4 M n 2 t(T -t) |g| 2 e -2α dxdt,(7.26)whereC 11 = C 11 (β) := C 9 +C 3 /4.Let us prove that the second term of the right hand side may be dominated by terms similar to the third one. We consider χ ∈ C ∞ (R, R + ) such that 0 χ 1 and χ ≡ 1 on ( , 1),(7.27) χ ≡ 0 on (-1, 0

C 12 M 3 C

 3 (t(T -t))3 |g| 2 e -2α dxdt for some constant C 12 = C 12 (β, χ) > 0 and when M M 2 = M 2 (T, β, χ).Combining (7.26) with the previous inequality, we getQ C 3 M 3 |g| 2 4(t(T -t)) 3 e -2α dxdt Q 2|e -α P n g| 2 dxdt + 13 M 3 (t(T -t)) 3 + C 4 M n 2 t(T -t) |g| 2 e -2α dxdt, where C 13 = C 13 (β, χ) := C 11 + C 12 . Then, the global Carleman estimates (3.1) holds with C 1 = C 1 (β) := C 3 4 max{2; C 13 ; C 4 } .

  , (7.20),(7.21) and (7.23) we get, for everyM M 1 , -t)) 3 |z| 2 dxdt Q |e -α P n,γ g| 2 dxdt +

		0	T	(-1,0)		C 1 M t(T -t)	∂z ∂x	2	C 3 M 3 (t(T T + 0 C 2 M t(T -t)	∂z ∂x	2	dxdt
											( ,1)
		+			0	T		C 4 M 3 (t(T -t)) 3 +	C 4 M n 2 t(T -t)	|z| 2 dxdt.	(7.24)
						(0,1)			
	For every δ > 0,						
	C 1 M t(T -t)	∂g ∂x	-α x g	2	+	C 3 M 3 2(t(T -t)) 3 |g| 2
	1 -	1 1 + δ		C 1 M t(T -t)	∂g ∂x	2	+	M 3 (t(T -t)) 3

  M |g| 2 e -2α 2t(T -t) χ -4χ α x + χ 4α 2 x -2α xx -2α t -|P n g| 2 e -2α dxdt +

	Therefore,					
	0	T				1 C 8 M t(T -t)	∂g ∂x	2	e -2α dxdt	Q	C 8 M χ t(T -t)	∂g ∂x	2	e -2α dxdt
			Q	P n g	C 8 M gχe -2α t(T -t)	dxdt
	+	Q	C 8 T -2t t(T -t)	dxdt
													T
													0	(0,1)
													).	(7.28)
	We have						
		Q	(P n g)	gχe -2α t(T -t)	dxdt =	0	T	1 -1	∂g ∂t	-	∂ 2 g ∂x 2 + (nπ) 2 |x| 2γ g	gχe -2α t(T -t)	dxdt.
	Integrating by parts with respect to time and space, we obtain
		Q	1 2	∂(g 2 ) ∂t	χe -2α t(T -t)	dxdt =	Q	1 2	|g| 2 χ	2α t t(T -t)	+	T -2t (t(T -t)) 2 e -2α dxdt
	and											
										-	Q	∂ 2 g ∂x 2	gχe -2α t(T -t)	dxdt =	Q	χe -2α t(T -t)	∂g ∂x	2	dxdt
										-	Q	|g| 2 e -2α 2t(T -t)	χ -4χ α x + χ(4α 2 x -2α xx ) dxdt.
	Thus,									
		Q	P n g	gχe -2α t(T -t)	dxdt	Q	χe -2α t(T -t)	∂g ∂x	2	dxdt
	-			Q	|g| 2 e -2α 2t(T -t)		χ -4χ α x + χ 4α 2 x -2α xx -2α t -	T -2t t(T -t)	dxdt.
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