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Abstract 

Line mixing effects in the Q branch of pure N2 isotropic Raman scattering are studied at room 

temperature using a classical trajectory method. It is the first study using an extended 

modified version of Gordon's classical theory of impact broadening and shift of rovibrational 

lines. The whole relaxation matrix is calculated using an exact 3D classical trajectory method 

for binary collisions of rigid N2 molecules employing the most up-to-date intermolecular 

potential energy surface (PES). A simple symmetrizing procedure is employed to improve 

off-diagonal cross-sections to make them obeying exactly the principle of detailed balance. 

The adequacy of the results is confirmed by the sum rule. The comparison is made with 

available experimental data as well as with benchmark fully quantum close coupling [F. 

Thibault, C. Boulet, and Q. Ma, J. Chem. Phys. 140, 044303 (2014)] and refined semi-

classical Robert-Bonamy [C. Boulet, Q. Ma, and F. Thibault, J. Chem. Phys. 140, 084310 

(2014)] results. All calculations (classical, quantum and semi-classical) were made using the 

same PES. The agreement between classical and quantum relaxation matrices is excellent, 

opening the way to the analysis of more complex molecular systems. 
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I. INTRODUCTION 

An accurate knowledge of molecular rovibrational spectral line parameters in different 

gas media is a crucial point for numerous up-to-date spectroscopic applications, such as 

diagnostics of combustion processes, remote sensing of the atmosphere, etc.1 The lineshape 

parameters are built into spectroscopic models targeted at the solution of the inverse problem, 

namely, the retrieval of gas temperature, pressure and concentrations from measured spectra. 

Since the results of the solution of the inverse problem are very sensitive to input information 

of any kind, the requirements for underlying spectroscopic data are very high; a typical 

accuracy of better than a few percents is now required for adequate atmospheric retrievals of 

various species.2, 3 

To ensure these strict requirements there is a need for theoretical methods capable of 

providing very accurate results for line parameters. Remember that although the capabilities 

of modern experimental instruments are strong, they are not infinite. There are many 

situations where the measurements are difficult, or the interpretation of experimental results 

in a correct and accurate way is extremely challenging, as in the case of the dense molecular 

spectra, especially, at high temperatures. In these cases a reliable theoretical model is clearly 

needed. 

Two sources of error are obviously present in line broadening calculations: the first 

arises from the inaccuracy of the intermolecular potential energy surface (PES) and the 

second is related to approximations in the theory itself. The most accurate, robust and realistic 

PESs are ab initio ones which are produced from the first principles and do not contain 

adjustable parameters. The rapid progress of computational resources over the last two 

decades allowed such PESs to be obtained for many simple molecular pairs. Only ab initio 

PESs (or refined ones on various experimental kinds of data) should be used in broadening 

calculations if we want to obtain accurate and reliable results. 
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As for theory, the most accurate are full quantum calculations within the exact close 

coupling (CC) method4 or within the coupled states (CS) approximation5. It is clear that only 

full quantum CC/CS calculations using ab initio PESs can ensure the required high level of 

accuracy and provide benchmark results. However, both computational schemes, particularly 

the CC one, become extremely time-consuming and unfeasible when many rotational states 

are populated. Therefore, practical applications of these methods are restricted to simple 

molecular systems (two diatomics or even simpler ones) at not too high values of the 

rotational quantum number J, mainly at low and room temperatures. 

In an attempt to overcome this difficulty, alternative more approximate theories have 

been developed: semi-classical6-14 and classical.15-20 

Semi-classical methods treat the translational motion classically, but the internal 

motions (vibration and rotation) are modeled within quantum mechanics. A major defect of 

all these methods is the lack of self-consistency, i.e., the inability to account exactly for 

interactions of the translational and internal motions of colliding molecules. In all semi-

classical methods, the influence of internal motion on the classical path and back-influence 

are ignored. As a result, some essential features connected with rotation–translation coupling 

are completely omitted. For example, the formation of metastable collision complexes 

(Feshbach resonances) is impossible (see Refs. 21, 22 and the references therein). The second 

kind of semi-classical simplifications are related to the quantum mechanical characterization 

of rotation (see Refs. 1, 14, 23). It is well known that only in the most rigorous semi-classical 

formalism of Neilsen and Gordon8,9 is the scattering matrix for the rotation of the active 

molecule calculated exactly using a numerical solution of the time-dependent Schrödinger 

equation. All other semi-classical schemes (namely, peaking approximation,10, 23 Smith-

Giraud-Cooper method,10 Anderson method,6, 7 Robert-Bonamy formalism,11 etc.) are no 

longer rigorous in this regard because they contain different intrinsic approximations 
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simplifying an exact quantum description of the rotational motion.1, 14, 23 Note that the validity 

of these approximations is hard to estimate in most cases. Such a picture is similar to the 

hierarchy of purely quantum methods (CC, CS, IOS, etc.): the ease of computations is 

achieved by spoiling the physics. 

At present and for the last three decades, the most widely used semi-classical method 

in pressure broadening and shift calculations is that of Robert and Bonamy (RB) - the 

traditional formalism with parabolic trajectories11 and its modified versions, namely, complex 

implementation12 and the variant with “exact” “isotropic trajectories” (see Ref. 14 and 

references therein). In a recent paper,13 a new refined RB formalism was proposed which 

includes line coupling effects, reducing significantly the difference between semi-classical 

and quantum half-widths obtained from the same ab initio PES without any fitting 

parameters. At the same time, it becomes possible to calculate the off-diagonal elements of 

the relaxation matrix24 W. 

The classical approach in impact line broadening, shifting and line mixing calculations 

was first proposed in 1966 by Roy Gordon.15, 16 Further extensions and explanations are 

described in Refs. 17-20. The classical approach ensures an exact three-dimensional (3D) 

self-consistent characterization of rotational and translational molecular motions. This method 

is simple, visual and computationally efficient. Brought to revival a decade ago (see Refs. 25-

27 and references therein) the classical approach, via its application to many atom-diatom and 

diatom-diatom molecular systems, has acquired a reputation as a very efficient and quite 

accurate tool which allows line broadening coefficients to be obtained that are in much better 

agreement with benchmark and/or experimental data than the results of semi-classical 

formalisms. 

Note that the interpretation of dense molecular spectra with overlapped components is 

a more challenging problem since it requires the knowledge of the whole relaxation matrix 
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W.1 When spectral lines overlap (this depends obviously on pressure and the distance between 

adjacent components), the off-diagonal elements of the W matrix can no longer be neglected 

since they lead to line mixing effects, i.e., transfer of intensity between the various lines. Such 

effects are noticeable in the isotropic Raman Q branch of N2 at pressures higher than 1 atm.28 

In Ref. 29 CC/CS benchmark relaxation matrix elements were obtained for Raman Q lines of 

autoperturbed N2 at room temperature starting from the most accurate ab initio N2-N2 PES.30 

In a subsequent paper24 the refined semi-classical RB method13 was applied to reproduce 

these benchmark data, requiring empirical corrections for the effects of inelasticity in order to 

obtain a reasonable agreement with the quantum off-diagonal elements of Ref. 29. 

In the present paper, Gordon’s classical impact theory is applied for the first time to 

the calculation of the whole relaxation matrix for the same system. 

 Section II gives a brief summary of R. Gordon's classical impact theory in respect to 

isotropic Raman Q lines and the details of trajectory calculations including potential energy 

surface for N2-N2 interactions. In Section III the results obtained are discussed and compared 

with quantum CC/CS and refined semi-classical RB calculations as well as with experimental 

values. Section IV summarizes the conclusions. 

 

II. THEORY 

A. Basics of classical impact theory 

 Within the binary collision and impact approximation the spectral density can be 

written as20 
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where  is the angular frequency of radiation, I  is a unit diagonal matrix, 0  is a diagonal 

matrix of spectral line positions (frequencies) at low pressures (in the case of single branch its 

dimension is equal to the number of populated rotational states), d


 is a vector of transition 

amplitudes (dipole moments or polarizabilities) which determines the intensity of each 

spectral line, p  is a diagonal matrix of the Boltzmann factors for the initial state of each line:  

the relative population of the lower state of the transition “i” at temperature T is 
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, where Iig  is nuclear spin statistical weight, iJ  is rotational 

quantum number, Z is partition function, "
iE  is lower state energy, kB is the Boltzmann 

constant. The central object in Eq. (1) is the relaxation matrix W. When rotational phase shifts 

are neglected (as in the case of a hypothetical purely rotational Raman isotropic Q branch), 

each diagonal element of the W

 

matrix represents the rate at which molecules leave the state 

associated with that line; the off-diagonal elements Wfi are equal to minus the rate at which 

molecules radiating in line “i” leave that line to join line “f ”. It is convenient to express the 

relaxation matrix in terms of the collision cross-sections matrix   (often called the pressure 

broadening cross-section matrix): 

vnW  , OvbSvv ,,
1 )1(       (2) 

 Here n is the number density of buffer molecules, 


Tk
v B8
  is the mean relative 

speed of colliding pair ( being the reduced mass). The averaging <…> is made over all kinds 

of collisions, i.e., over initial conditions: impact parameter b, relative speed v, orientations O 

of molecules and their angular momenta. In doing this average it is assumed that successive 

collisions are uncorrelated. The classical formulas for the elements of the )1( S  matrix are 

presented, for example, in Ref. 16 for different kinds of molecular spectra. 
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 The simplest case of pressure broadening cross-section matrix elements is realized for 

the Q lines of isotropic Raman scattering also neglecting vibrational phase shift (see Eq. (23) 

of Ref. 16): 

Ovbfififi Pvv ,,
1 )(         (3) 

Here δfi is the Kronecker symbol, Pfi is the probability that a collision transfers the 

rotation frequency of molecule from line “i” (before collision) to line “f ” (after collision). 

That collisions may be interpreted as transferring intensity between the lines of the spectrum 

is the central point of Gordon’s classical broadening theory.16 

The transition probability Pfi can be determined from classical dynamical calculations 

using the correspondence principle. Its simplest variant rounds off the classical angular 

momentum to the nearest multiple of Planck’s constant ħ. If this is done for initial (before 

collision) and final (after collision) angular momenta, then Pfi = 1 for the pair of lines i → f 

with the proper values Ji and Jf of initial and final lower state rotational quantum numbers. All 

other Pfi in Eq. (3) are set equal to zero. 

 At low pressures when lines are well separated only the diagonal elements of the 

relaxation matrix are large enough to contribute to the spectrum. In this case the spectrum 

)(F  in Eq. (1) reduces to a sum of isolated Lorentzians whose widths and shifts are 

directly proportional to the pressure. As the pressure increases, the broadened individual lines 

begin to overlap, the off-diagonal elements create interferences between the lines (or “line 

mixing”) and cause collisional narrowing effects. Note that for the fundamental Raman Q 

branch of N2 , at pressures greater than ~1 atm, the off-diagonal elements in W  cannot be 

neglected.27 

 The W matrix computed in the above way may not strictly obey the detailed balance 

which is the fundamental principle of statistical physics of equilibrium gases. This is partly 
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due to the limited number of collisions, in particular for elements of the matrix far off the 

diagonal (large |'| JJ   values). Our special calculations made using different numbers of 

collisions have confirmed this suggestion. Also, there are other factors influencing detailed 

balance, e.g., the correspondence principle.  The procedure for determining the transition 

probability described above is too crude and may be the cause of detailed balance violation. 

Obviously, the elaboration of a more sophisticated algorithm for Pfi is a subject for future 

work (some simple suggestion for Pfi improvement was proposed as far back as in Ref. 20). 

However, the principle of detailed balance can be artificially restored a posteriori to 

improve the cross-sections in the regions where there are fewer trajectories. If detailed 

balance holds, the number of molecules going from the line “i” to line “f” per unit time should 

be equal to those going in opposite direction. So, 

fifififififi pppWpW   ,        (4) 

In Ref. 20 a simple symmetrizing procedure was proposed to redefine the elements of 

the cross-section matrix   to satisfy the detailed balance: 

])/([)( 1
ififffiifi

DB
fi ppNNNN   

 

   (5) 

Here Ni and Nf are the numbers of trajectories from which fi and if  are computed 

respectively. Note that this procedure modifies only off-diagonal elements leaving the 

diagonal ones unchanged. 

 

B. Details of classical trajectory calculations 

In all our dynamical calculations we employed the N2-N2 ab initio PES30 determined 

by the symmetry adapted perturbation theory (SAPT) which is the most accurate to date and 

which was also used in our recent works.13, 24, 26, 29, 31 The molecules were treated as rigid 



9 
 

rotors, so the PES is four-dimensional. It has been developed over bispherical harmonics and 

the expansion retained 30 angular functions. 

 Classical calculations were performed using Gordon’s impact theory (see above, 

Section A) at the room temperature T = 298 K. We only present here matrices corresponding 

to even J and J’ values (ortho-N2) ranging from 0 to Jmax = J’max = 28. 

Dynamical calculations of 14N2 –
 14N2 collisions were made using the exact classical 

three-dimensional (C3D) equations of motion. The collision of two rigid linear molecules in 

this picture is described by 17 first-order Hamilton differential equations in body-fixed 

coordinates (their explicit form can be found in the Appendix of Ref. 25). For the sake of 

comparison with semi-classical results, we also used in our calculations a simplified C3Diso 

model of “isotropic trajectories” which employs a classical path driven only by the isotropic 

term (L1 = L2 = L = 0) in the PES expansion over bispherical harmonics.26, 30 This C3Diso 

model is described by 15 first-order Hamilton differential equations. 

Classical trajectory equations, both exact C3D and simplified C3Diso, were integrated 

numerically by the standard IMSL routine for the implicit BDF Gear method.32 All the 

calculations were conducted using double precision with a typical tolerance parameter of 10-8 

and a variable integration step in constant time-grid intervals t =0.0510-13 s. 

The length of the 14N2 molecules was set equal to 1.1 Å and the rotational constant B = 

1.9896 cm-1. Spin statistical weights of perturbing N2 molecules at equilibrium were taken 

into account in the usual way and set to 2/3 for ortho-N2 and 1/3 for para-N2. The initial 

intermolecular distance was set large enough (Rmax = 15 Å) to exclude starting interaction 

between the molecules. Other collision parameters were selected via a Monte Carlo 

procedure. The Maxwell-Boltzmann distribution was used to sample relative speeds at 

temperature T. Uniform sampling was applied to select initial orientations of angular 

momenta and molecular axes of both N2 molecules in 3D space. 
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The initial rotation frequency of the active N2 molecule was determined via its discrete 

rotational quantum number J by the rigid rotor formula  2/1
2

0  J
B


  (B and ћ being 

rotational constant and Planck’s constant, respectively) often called a Langer prescription.33, 34 

It is much closer to reality for J = 0, 1 than the usual quantum-mechanical formula 

)1(
2

0  JJ
B


 ; for other J values the difference between these two formulae is 

negligible. Also, in the present calculations a very efficient algorithm34 for impact parameter 

sampling (twice as fast as the traditional uniform b2 sampling) was applied. The initial 

rotation frequency of the perturbing N2 molecule was selected using a Monte Carlo method 

assuming discrete Boltzmann distribution. 

The collision parameters were selected as follows: impact parameter (0–12) Å; relative 

speed (0.01–3)vp . Here 


Tk
v B

p

2
  is the most probable relative speed of the colliding pair 

(= 14 u being the reduced mass of 14N2 – 14N2 system). In our calculations the statistical 

errors, i.e., root-mean-square (RMS) errors of Monte Carlo averaging, for diagonal elements 

of relaxation matrix (half-widths) were generally kept at less than 1%. This took ~ 86,000 

trajectories for C3D method per each J value and ~ 111,000 trajectories for C3Diso method in 

the same conditions. 

 

III. RESULTS AND DISCUSSION 

 The results of these calculations are presented in Tables I - IV and in Fig. 1 - 3. Note 

once more that all classical results were calculated using Maxwell-Boltzmann velocity 

averaging (RMS Monte Carlo error was < 1% for diagonal elements of W matrix in all cases). 

In Table I the comparison is made between classical (C3D and C3Diso), fully quantum 

CC/CS results and the experimental data of Sitz and Farrow.35 This table is the extension of 
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Table III of Ref. 29 and gives very valuable additional information. We give the results for 

both C3D and C3Diso for two kinds of calculations: (1) applying detailed balance (DB) 

principle via the symmetrizing procedure of Gordon and McGinnis ( DB , Eq. (5), upper 

value in each cell) and (2) without imposing detailed balance ( , raw trajectory results, 

lower value in each cell). The N2 rotational relaxation rate constants (in s-1Torr-1) presented 

in Table I correspond (about to truncation errors) to those in the full W matrix (see Table II), 

via the factor of 1000/(-247.85) (see Ref. 35). 

The results of exact classical C3D calculations are in very good agreement with both 

quantum CC/CS results and experimental data. Also, one may observe that C3D results 

obtained with the detailed balance symmetrizing procedure of Eq. (5) (case (1) in the 

following) are noticeably better than without it. The results of case (1) are consistently 

somewhat higher than CC/CS results,  the absolute value of the relative distance being less 

than 28% (mean 8%). In case (2) (without detailed balance) the C3D results noticeably 

oscillate around the CC/CS values. The absolute value of the relative difference in this case is 

less than 31% (mean 14%). 

For the C3Diso values the situation is quite different than those for the exact C3D. In 

both cases the C3Diso results strongly oscillate about the CC/CS values. The corresponding 

errors are as follows: in case (1) < 100% (mean 20%); in case (2) < 106% (mean 32%). All 

these results are illustrated in Fig. 1. 

Table II contains complete information for all rotational transitions up to J = 14. This 

table is the extension of Table IV of Ref. 35. Each cell of this table contains five positions 

corresponding to the results obtained using different methods: 1-st - quantum CC/CS; 2-nd - 

exact C3D with imposed detailed balance (DB); 3-rd - exact C3D but no imposed DB; 4-th - 

C3Diso with imposed DB; 5-th - C3Diso no imposed DB. Diagonal elements (half-widths) 

were reported and discussed in Ref. 26. For rotational transitions not included in Table I the 
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accuracy estimates for the methods used are nearly the same as for Table I and the conclusion 

is that the C3Diso method works badly, especially, for large |'| JJ   values. Note that a 

similar result was obtained from the semi-classical approach of Ref. 24, corroborating the 

necessity of taking into account the translational-rotational coupling in such cases of high 

inelasticity. 

It is worth asking the following question: to what degree do our raw, unprocessed data 

from the classical calculations obey detailed balancing ? Table III displays relative errors (in 

% as compared to symmetrized by Eq. (5) values) in the detailed balance in raw C3D (upper 

value) and C3Diso (lower value) calculations of the relaxation matrix W. One can see that raw 

C3D calculations respect reasonably well detailed balancing. In other words, the empirical 

Gordon-McGinnis symmetrization procedure seems to be of slight influence in this case 

(except for the transitions from J = 2-8 to J’ = 0). As for raw C3Diso calculations, they almost 

always respect more poorly the detailed balancing requirement. We can propose some 

explanations of these interesting facts. First, if we apply the Maxwell distribution over initial 

speeds of molecules at temperature T for averaging and if the dynamics of rotational exchange 

in collisions is correct, then we will reproduce the Boltzmann distribution over rotational J 

levels at temperature T. In other words, direct and inverse cross sections for rotational 

transitions in collisions will obey detailed balance. Calculations indeed showed that this is the 

case for C3D for most transitions, but not for the C3Diso case. So, we may assert that the 

degree of detailed balancing in raw trajectory calculations (in Maxwell velocity equilibrium) 

is a measure of the adequacy of the description of rotational exchange in collisions. 

There exists also a useful and significant property called the sum rule, namely, 

0

'
max

0'
' 



J

J
JJW  which can be also rewritten as 





'
max

'
0'

'

J

JJ
J

JJJJ WW . As shown in Appendix 

A, Gordon’s formalism (without the empirical symmetrization procedure) verifies exactly that 
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relation. Table IV displays how the sum rule is satisfied in different classical calculations. 

One can see that for both C3D and C3Diso “unprocessed” data the sum rule is well-respected, 

in agreement with theory.  Note that the non-zero but very small departure from the sum rule 

in our trajectory calculations simply reflects the truncation of the sum over J ' to a too low 

value J’max . In other words, inelastic collisions with J’ > J’max = 28 were simply ignored. This 

is confirmed by the fact that the error increases with increasing J (see Table IV). 

When the detailed balance symmetrization procedure is applied then the fulfillment of 

the sum rule is much worse, especially in the C3Diso case. First, note that in the C3D case, 

imposing the empirical Gordon and McGinnis symmetrization procedure leads only to a slight 

deterioration of the sum rule. In contrast, in the C3Diso case, the deviation from the detailed 

balance in raw C3Diso data is very strong, much stronger than in C3D calculations. So, it is 

not surprising that artificially imposing detailed balance for final data spoils the sum rule 

since detailed balancing is not respected in the raw data. If both the sum rule and the detailed 

balance are needed with a greater accuracy, new more sophisticated classical trajectory codes 

should be written. It is the subject for future work. 

 Summing up, one may assert that: 1) when detailed balance is not imposed, both C3D 

and C3Diso verify the sum rule, in agreement with theory; 2) in the C3D case, the sum rule 

remains within the limit of experimental uncertainty when detailed balance is imposed; 3) 

C3Diso results are somewhat worse than exact C3D, especially, when detailed balance is not 

imposed; 4) the sum rule is generally violated if we impose detailed balance in C3Diso 

calculations. This result is similar to that obtained in the semi-classical formalism of Ref. 24 

where it was not possible to obtain relaxation matrix elements verifying at the same time 

detailed balance and the sum rule. 

 Let us now make a more detailed comparison with semi-classical results obtained 

using the recently refined Robert-Bonamy formalism.13 Diagonal elements (half-widths) as a 
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function of rotational quantum number J are presented in Fig. 2. One can see that the classical 

results are much closer to the quantum CC/CS values than the semi-classical results. It is 

curious that the C3Diso results look better than the C3D ones, however, this fact is deceiving 

and, undoubtedly, does not reflect real physics. Note also that both classical C3Diso and 

semi-classical Robert-Bonamy calculations are obtained using the trajectories driven by the 

same isotropic part of the PES. However, their results differ significantly. 

Selected off-diagonal elements as a function of J are presented in Fig. 3. As for 

diagonal elements, the results of classical calculations are in good agreement with quantum 

values. At the same time, the refined RB method disagrees strongly, particularly for upward 

transitions (J’ > J) corresponding to the greater inelasticity which required empirical 

procedures to introduce in some simple way the exchange of energy between translation and 

rotation. While going in the right direction for most upward transitions (see Fig. 3, curve 7), 

these procedures were too crude to provide at the same time via the sum rule, line widths in 

good agreement with the quantum benchmark data, in contrast to the present classical 

approach. Further work is clearly needed but there is no doubt that classical calculations will 

be of great help in understanding the various remaining limits of semi-classical models. 

 

IV. CONCLUSION 

 Here, for the first time, we have applied Gordon’s classical impact theory in order to 

calculate the full relaxation matrix for Q lines of isotropic Raman scattering in autoperturbed 

N2 without any simplification. Alternative computational methods are needed due to the 

complexity of full quantum CC/CS calculations. For example, even at room temperature the 

numerical problems that arise are associated with the convergence of the quantum 

calculations of N2-N2 relaxation matrix.29 Classical calculations are free from the troubles of 

such sort. 
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 This study demonstrates that the undeservedly forgotten classical impact theory of 

Roy G. Gordon is capable of remarkable accuracy and has great potential for the simulation of 

line interference effects in molecular spectra. We are sure that classical impact theory should 

be developed further in different aspects, in particular: 1) further improvement in accuracy; 2) 

straightforward application to Raman anisotropic, dipolar and multiplet spectra of linear 

molecules (the formalism was already developed by R.G. Gordon in Refs. 16, 17); 3) 

extension of theory and application to other types of molecules (symmetric and asymmetric 

tops; fortunately, the formulae of Ref. 17 can be directly applied to symmetric tops). 
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APPENDIX A: THE SUM RULE WITHIN CLASSICAL GORDON’S FORMALISM 

 

1. Consider a diatomic molecule in a rotational level J and all inelastic transitions 

J→J’≠J. Then for isotropic Raman Q lines the off-diagonal elements of the collision cross-

section matrix are defined by Eq. (3) 

OvbJJOvJJ

b

JJJJ PvvPvbdbv
,,'

1
,'

0

1
''

max

2  
   ,   (A1) 

where 


Tk
v B8
  is mean relative speed of colliding pair, bmax is maximum value of the 

impact parameter; PJ’J  is the probability (“index”) of J → J’ transition in collision, namely, 
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PJ’J = 1 if in given collision the transition J → J’ occurs (all others PJ’’J  (J” ≠ J') are set equal 

to zero). 

The diagonal elements of the collision cross-section matrix JJ  are defined by Eq. 

(3) as follows 

OvbelOvJJ

b

JJ JPvvPvbdbv
,,

1
,

0

1 ))(1()1(2
max

    ,   (A2) 

where )(JPP elJJ   is the probability (“index”) that given collision starting from level J is 

elastic. The diagonal cross-section JJ  characterizes the total inelastic rate from J level. 

Note that the right-hand part of the Eq. (A2) is simply the pressure broadening cross-section 

of the half-width of isotropic Raman Q line. 

 Summing Eq. (A1) over J'≠J from 0 to J’max (which must be high enough to include 

all possible inelastic transitions from J level), we arrive at: 

OvbelOvbinel

Ovb

J

JJ
JJ

J

JJ
JJ

JPvvJPvv

Pvv

,,
1

,,
1

,,
'

'
1

'
'

))(1())(

'
max

'
max












 

  ,   (A3) 

since )(1)(

'
max

'
' JPJPP elinel

J

JJ
JJ 



. 

Comparing Eq. (A2) and Eq. (A3) we obtain 

JJ

J

JJ
JJ  



'
max

'
'  ,      (A4)  

or, equivalently, 

0

'
max

0'
' 



J

J
JJ .      (A5) 

The elements of the relaxation matrix vnW   are straightforward 

JJJJ vnW ''   ,     JJJJ vnW      (A6) 
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They also obey the sum rule  

JJ

J

JJ
JJ WW 



'
max

'
'  ,  or 0

'
max

0'
' 



J

J
JJW  .      (A7) 

Note that sum rule Eq. (A4), Eq. (A5) or Eq. (A7) is exactly valid for both C3D and 

C3Diso classical methods for the Q lines of isotropic Raman scattering when vibrational 

phase shifts are neglected. 

2. The Gordon-McGinnis symmetrization procedure20 for re-establishing the detailed 

balance leads to a new expression for the off-diagonal elements: 












 ''
'

'
'

'
1

JJJ
J

J
JJJ

JJ

DB
JJ N

p

p
N

NN
    (A8) 

Here NJ and NJ’ are the numbers of trajectories from which JJ ' and 'JJ  are 

computed respectively ( 'Jp  and Jp  are defined in the main text). It is not surprising that 

these artificially changed values of the cross-sections DB
JJ '  no longer obey exactly the sum 

rule. In other words, artificially imposing detailed balance, Eq. (A8), spoils the sum rule. 

From our exact classical C3D calculations, it follows that the sum rule is satisfied only 

approximately, i.e., 



JJ

DB
JJ

DB
JJ WW

'
'  (however, with fair accuracy as is seen from the 

Table IV). 
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TABLE I. One body rate constants for J →J’ transitions in N2 at 298 K in s-1Torr-1. 
Comparison of classical C3D and C3Diso results with fully quantum CC/CS results from Ref. 
29 and with the experimental data of Sitz and Farrow.35 The first (upper) figures in each cell 
for classical C3D and C3Diso columns correspond to results with imposed detailed balance 
applied via the symmetrizing procedure of Gordon and McGinnis (see text), the second 
(lower) ones – to raw trajectory results (no imposed detailed balance). 
 

J J’ Experiment Quantum 
CC/CS 

Classical 
C3D 

Classical C3Diso 

0 2 6.64±1.18 7.23 7.46 
7.98 

7.64 
7.46 

0 4 3.76±0.83 3.78 4.20 
4.95 

3.34 
3.36 

0 6 2.73±0.61 2.58 2.64 
3.03 

1.91 
1.95 

0 8 0.86±0.51 1.69 1.73 
1.80 

1.42 
1.45 

0 10 0.64±0.12 0.94 0.98 
0.93 

0.95 
0.98 

0 12 0.29±0.06 0.45 0.46 
0.36 

0.61 
0.63 

0 14 0.22±0.04 0.175 0.19 
0.13 

0.35 
0.36 

2 4 5.13±0.58 4.52 5.09 
5.83 

4.51 
4.66 

2 6 2.40±0.44 2.83 2.97 
3.35 

2.04 
2.20 

2 8 1.52±0.34 1.81 1.85 
1.97 

1.32 
0.99 

2 10 0.97±0.22 1.01 1.03 
0.97 

0.87 
1.47 

2 12 0.28±0.14 0.49 0.49 
0.42 

0.53 
0.61 

2 14 0.12±0.04 0.19 0.22 
0.15 

0.32 
0.38 

4 6 4.7±0.6 3.74 4.08 
4.53 

3.58 
3.83 

4 8 2.2±0.4 2.12 2.24 
2.36 

1.60 
1.81 

4 10 1.4±0.2 1.15 1.22 
1.16 

0.94 
1.14 

4 12 0.54±0.13 0.56 0.62 
0.53 

0.56 
0.70 

4 14 0.21±0.04 0.22 0.25 
0.19 

0.31 
0.41 

6 8 3.37±0.47 3.18 3.33 
3.69 

3.06 
3.35 

6 10 2.22±0.29 1.51 1.57 
1.59 

1.33 
1.58 

6 12 0.71±0.14 0.77 0.74 0.71 
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0.67 0.92 
6 14 0.23±0.05 0.28 0.32 

0.27 
0.36 
0.50 

8 10 2.52±0.41 2.65 2.88 
3.09 

2.70 
2.98 

8 12 1.12±0.22 1.07 1.19 
1.20 

1.08 
1.36 

8 14 0.29±0.07 0.39 0.50 
0.42 

0.50 
0.69 

10 12 2.68±0.43 2.26 2.46 
2.66 

2.41 
2.74 

10 14 1.04±0.13 0.72 0.89 
0.91 

0.86 
1.11 

12 14 1.83±0.26 1.96 2.13 
2.32 

2.16 
2.52 
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TABLE II. Relaxation matrix W for N2-N2 at 298 K. The WJ’J elements are expressed in 10-3 
cm-1atm-1. Each cell contains five positions corresponding to the results obtained using 
different methods: 1-st - quantum CC/CS from Ref. 29; 2-nd - exact C3D with imposed 
detailed balance; 3-rd - exact C3D raw data (no imposed detailed balance); 4-th - C3Diso with 
imposed detailed balance; 5-th C3Diso raw data (no imposed detailed balance). 
 

J  
J’ 

0 2 4 6 8 10 12 14 

0 
 

68.2 
70.06 
70.06 
67.07 
67.07 

-6.2 
-6.38 
-7.31 
-6.53 
-7.18 

-2.1 
-2.28 
-2.56 
-1.80 
-1.72 

-1.22 
-1.23 
-1.36 
-0.80 
-0.67 

-0.82 
-0.82 
-0.92 
-0.67 
-0.44 

-0.54 
-0.54 
-0.55 
-0.53 
-0.24 

-0.34 
-0.33 
-0.34 
-0.44 
-0.15 

-0.19 
-0.20 
-0.21 
-0.37 
-0.089 

2 
 

-29.2 
-30.11 
-29.04 
-30.84 
-30.10 

50.3 
55.04 
55.04 
50.64 
50.64 

-11.6 
-13.04 
-12.72 
-11.57 
-10.93 

-6.3 
-6.51 
-6.68 
-4.47 
-3.54 

-4.1 
-4.15 
-4.16 
-2.97 
-1.93 

-2.7 
-2.68 
-2.59 
-2.27 
-1.05 

-1.69 
-1.68 
-1.66 
-1.80 
-0.65 

-0.97 
-1.11 
-1.12 
-1.59 
-0.38 

4 
 

-15.3 
-16.95 
-16.65 
-13.47 
-13.56 

-18.3 
-20.52 
-20.83 
-18.21 
-18.79 

46.0 
49.83 
49.83 
46.37 
46.37 

-13.0 
-14.08 
-14.03 
-12.35 
-11.10 

-7.53 
-7.87 
-7.91 
-5.62 
-4.30 

-4.8 
-5.03 
-4.98 
-3.87 
-2.15 

-3.05 
-3.36 
-3.34 
-3.03 
-1.32 

-1.75 
-1.91 
-1.88 
-2.43 
-0.71 

6 
 

-10.46 
-10.66 
-10.51 
-7.71 
-7.87 

-11.5 
-11.98 
-11.8 
-8.22 
-8.89 

-15.1 
-16.45 
-16.50 
-14.43 
-15.47 

44.4 
47.34 
47.34 
43.24 
43.24 

-13.14 
-13.72 
-13.40 
-12.58 
-11.11 

-7.3 
-7.54 
-7.48 
-6.37 
-4.63 

-4.9 
-4.64 
-4.64 
-4.46 
-2.39 

-2.575 
-2.94 
-2.92 
-3.29 
-1.21 

8 
 

-6.84 
-6.98 
-6.87 
-5.73 
-5.87 

-7.33 
-7.48 
-7.47 
-5.35 
-5.94 

-8.6 
-9.02 
-8.98 
-6.44 
-7.29 

-12.9 
-13.45 
-13.77 
-12.33 
-13.51 

44.0 
46.09 
46.09 
40.91 
40.91 

-12.57 
-13.57 
-13.42 
-12.72 
-11.27 

-6.67 
-7.32 
-7.29 
-6.67 
-4.58 

-3.59 
-4.42 
-4.48 
-4.44 
-2.31 

10 
 

-3.81 
-3.95 
-3.95 
-3.85 
-3.96 

-4.1 
-4.14 
-4.22 
-3.51 
-3.98 

-4.67 
-4.94 
-4.99 
-3.80 
-4.60 

-6.12 
-6.33 
-6.39 
-5.35 
-6.37 

-10.73 
-11.63 
-11.78 
-10.90 
-12.03 

42.3 
44.71 
44.71 
39.16 
39.16 

-11.8 
-12.99 
-12.80 
-12.72 
-10.95 

-5.5 
-6.81 
-6.67 
-6.59 
-4.68 

12 
 

-1.84 
-1.86 
-1.84 
-2.47 
-2.56 

-1.97 
-1.99 
-2.01 
-2.13 
-2.48 

-2.26 
-2.52 
-2.54 
-2.28 
-2.84 

-3.13 
-2.98 
-2.98 
-2.87 
-3.70 

-4.34 
-4.80 
-4.83 
-4.37 
-5.49 

-9.13 
-9.93 
-10.11 
-9.73 
-11.05 

40.1 
42.97 
42.97 
37.04 
37.04 

-11.37 
-12.46 
-12.17 
-12.61 
-10.53 

14 
 

-0.7 
-0.78 
-0.78 
-1.41 
-1.47 

-0.77 
-0.90 
-0.89 
-1.30 
-1.53 

-0.88 
-0.99 
-1.02 
-1.26 
-1.64 

-1.13 
-1.31 
-1.33 
-1.46 
-2.02 

-1.6 
-2.00 
-1.94 
-2.01 
-2.78 

-2.9 
-3.59 
-3.72 
-3.48 
-4.49 

-7.92 
-8.60 
-8.88 
-8.70 
-10.17 

34.1 
40.30 
40.30 
34.27 
34.27 
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TABLE III. Relative errors 



28

0'
'''

/)(
J

DBDBNDB

JJJJJJ
WWW  (in %) in the detailed balance in the 

raw classical calculations of relaxation matrix elements WJ’J : C3D (upper value) and C3Diso 

(lower value). DB – modified results with final application of detailed balance 

symmetrization by Eq. (5), NDB – raw, unsymmetrized results, i.e., no imposed detailed 

balance by Eq. (5). 

 

J 
J’ 

0 2 4 6 8 10 12 14 

0 0 
0 

14.6 
9.9 

12.1 
-5.3 

10.7 
-24.6 

12.1 
-35.3 

1.1 
-53.8 

3.3 
-65.4 

3.6 
-75.8 

2 -3.6 
-2.4 

0 
0 

-2.5 
-5.6 

2.6 
-20.7 

0.2 
-35.0 

-3.2 
-53.7 

-1.3 
-64.0 

1.1 
-76.1 

4 -1.8 
0.7 

1.5 
3.2 

0 
0 

-0.3 
-10.1 

0.5 
-23.4 

-1.0 
-44.5 

-0.6 
-56.6 

-1.4 
-70.7 

6 -1.3 
2.0 

-1.4 
8.1 

0.3 
7.2 

0 
0 

-2.4 
-11.7 

-0.8 
-27.3 

-0.1 
-46.4 

-0.9 
-63.2 

8 -1.6 
2.4 

-0.1 
11.1 

-0.4 
13.2 

2.4 
9.6 

0 
0 

-1.1 
-11.4 

-0.38 
-31.2 

1.3 
-47.9 

10 -0.2 
3.0 

2.0 
13.4 

1.0 
21.0 

1.0 
19.1 

1.3 
10.4 

0 
0 

-1.4 
-13.9 

-1.9 
-29.0 

12 -0.6 
3.7 

1.0 
16.5 

0.8 
24.5 

0.1 
29.1 

0.6 
25.6 

1.8 
13.6 

0 
0 

-2.3 
-16.5 

14 -1.0 
4.2 

-1.4 
17.8 

2.7 
30.4 

2.0 
38.3 

-3.1 
38.7 

3.6 
29.0 

3.2 
16.9 

0 
0 
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TABLE IV. The relative error 


28

0'

/||
'

J
JJJJ

WW  (in %) of the sum rule 



28

0'
' 0

J
JJW  in 

classical calculations. DB – modified results with final application of detailed balance 

symmetrization by Eq. (5), NDB – raw, unsymmetrized results, i.e., no imposed detailed 

balance. 

 

J C3D, DB C3D, NDB C3Diso, DB C3Diso, NDB 
0 2.39 1.13·10-2 8.2·10-3 1.35·10-2 
2 0.90 1.52·10-2 7.7 4.5·10-2 
4 0.90 1.69·10-2 15.7 7.24·10-2 
6 0.47 1.78·10-2 21.47 9.85·10-2 
8 0.45 1.84·10-2 22.84 0.15 
10 0.26 1.9·10-2 17.75 0.19 
12 0.73 2.0·10-2 4.6 0.27 
14 0.82 2.1·10-2 18.0 0.38 
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Figure captions 

 

FIG. 1. Relative errors of C3D (a) and C3Diso (b) results presented in Table I versus quantum 

CC/CS data. DB – detailed balance. 

 

FIG. 2. Comparison between calculated half-widths (diagonal elements of W matrix) for N2-

N2 Raman Q lines at T = 298 K. Theory: 1 – semi-classical refined Robert-Bonamy 

formalism,13, 24 2 – quantum CC/CS results,26 3 – present exact classical C3D method, 4 - 

present classical C3Diso method. Experimental data: 5 – Ref. 31 , 6 – Ref. 36, 7 – Ref. 37. 

 

FIG. 3. Comparison of the present classical calculations with the quantum CC/CS results of 

Ref. 36 and refined semi-classical RB data of Ref. 24 for selected off-diagonal elements at T 

= 298 K. J = 4 (a), J = 6 (b), J = 8 (c). 

1 – semi-classical refined RB formalism (see Fig. 1 of Ref. 24); 2 – quantum CC/CS results of 

Ref. 36; 3 – present classical C3D method with imposed detailed balance; 4 – C3D raw data; 

5 – present classical C3Diso method with imposed detailed balance; 6 – C3Diso raw data; 7 – 

corrected semi-classical refined RB formalism (see Fig. 3 of Ref. 24). 
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