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Computation and Estimation of Generalized
Entropy Rates for Denumerable Markov Chains

Gabriela Ciuperca, Valerie Girardin, Loı̈ck Lhote

Abstract—We study entropy rates of random sequences for
general entropy functionals including the classical Shannon and
Rényi entropies and the more recent Tsallis and Sharma-Mittal
ones.

In the first part, we obtain an explicit formula for the
entropy rate for a large class of entropy functionals, as soon as
the process satisfies a regularity property known in dynamical
systems theory as the quasi-power property. Independent and
identically distributed sequence of random variables naturally
satisfy this property. Markov chains are proven to satisfy it too,
under simple explicit conditions on their transition probabilities.
All the entropy rates under study are thus shown to be either
infinite or zero except at a threshold where they are equal to
Shannon or Rényi entropy rates up to a multiplicative constant.

In the second part, we focus on the estimation of the marginal
generalized entropy and entropy rate for parametric Markov
chains. Estimators with good asymptotic properties are built
through a plug-in procedure using a maximum likelihood es-
timation of the parameter.

Index Terms—entropy rate, entropy functional, parametric
Markov chain, plug-in estimation, Rényi entropy, Tsallis entropy.

I. INTRODUCTION

In [21], Shannon adapted to the field of information theory
the concept of entropy introduced by Boltzmann and Gibbs
in the XIX-th century. Entropy measures the randomness
or uncertainty of a random phenomenon. It now applies to
various areas such as information theory, finance, statistics,
cryptography, physics, artificial intelligence, etc.; see [8] for
details. Rényi proposed in [19] a one parameter family of
entropies extending Shannon entropy to new applications.
Since then, many different generalized entropies have been
defined to adapt to many different fields. Among them, Tsallis
[23] or Sharma-Mittal [24] entropies are instances of what
we will call (h, φ)-entropies, thus following [20] – where
only parametric probability density functions are considered.
Precisely, we set

Sh(y),φ(x)(ν) = h

[∑
i∈E

φ(ν(i))

]
(1)

for any measure ν on a countable space E such that the
quantity is finite.
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In this paper, we address the problems of computing and
then estimating the (h, φ)-entropy rates of random sequences –
especially Markov chains, taking values in countable spaces,
either finite or denumerable. This entropy rate is defined as
the limit of the time average of the entropy of the considered
random sequence, that is as the entropy per unit time of the
sequence.

For an independent identically distributed (i.i.d.) sequence,
Shannon and Rényi entropy rates are well-known to be the
entropy of the common distribution. The Shannon entropy
rate of an ergodic and homogeneous Markov chain with a
countable state space is an explicit function of its transition
distributions and stationary distribution; it is also known to
be related to the dominant eigenvalue of some perturbation of
the transition matrix, a result proven for Rényi entropy in [18].
[12] deals with the denumerable case but the proofs contain
flaws (see end of Section IV-B). Up to our knowledge, no other
result exists in the literature concerning explicit determination
of (h, φ)-entropy rates. The aim of the first part of the present
paper is to fill this gap, with a particular interest to Markov
chains.

The entropy of the stationary distribution of a Markov chain
is the (asymptotic) entropy of the chain at equilibrium; if this
distribution is taken as initial distribution of the chain, its
entropy is also the marginal entropy of the chain. In both cases,
the entropy rate is more representative of the whole trajectory
of the sequence. Having the marginal entropy and entropy rate
of Markov chains under an explicit form allows one to use
them efficiently in all applications involving Markov modeling.
When only observations of the chain are available, the need
for estimation obviously appears. We consider the case of
countable parametric chains, for which transition probabilities
are functions of a finite set of parameters. Since the entropy is
an explicit function of the transition probabilities, and hence
of the parameters, plug-in estimators of the marginal entropy
and entropy rate are obtained by replacing the parameters by
their maximum likelihood estimators (MLE).

Up to our knowledge, no result exists in the literature on the
estimation neither of the generalized entropy of the stationary
distribution nor of the generalized entropy rate of a countable
Markov chain. Concerning Shannon entropy, see [5] for results
on the estimation of the marginal entropy through a Monte
Carlo method, and [7] for the estimation of the marginal
entropy and entropy rate of finite chains. The special case
of two-state Markov chains is studied in [11].

The paper is organized as follows. Basics on generalized
entropies and entropy rates are given in Section II. In Section
III, the regularity property called quasi-power property is
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h(y) φ(x) (h, φ)− entropies
y −x log x Shannon (1948)
(1− s)−1 log y xs Renyi (1961)
[t(t− r)]−1 log y xr/t Varma (1966)
y (1− 21−r)−1(x− xr) Havrda and Charvat (1967)
(t− 1)−1(yt − 1) x1/t Arimoto (1971)
(r − 1)−1[y(r−1)/(s−1) − 1] xs Sharma and Mittal 1 (1975)
(r − 1)−1[exp(r − 1)y − 1] −x log x Sharma and Mittal 2 (1975)
y −xr log x Taneja (1975)
y (t− r)−1(xr − xt) Sharma and Taneja (1975)
(r − 1)−1(1− y) xr Tsallis (1988)

TABLE I
SOME (h, φ)-ENTROPIES.

stated and shown to induce convergence of the time average
entropy to an explicit limit. In Section IV, mild conditions
are shown to be sufficient for countable Markov chains to
satisfy the quasi-power property. Estimation of the generalized
marginal entropy and entropy rate for parametric countable
Markov chains is studied in Section V.

II. GENERALIZED ENTROPIES AND ENTROPY RATES

A. Generalized (h, φ)-entropies

All throughout the paper, E will be a countable set, either
finite or denumerable. Both functions h : R+ → R and φ :
[0, 1] → R+ are twice continuously differentiable functions,
with h monotonous and either φ concave or convex. Both φ
and h ◦ φ will be supposed to be positive for simplification,
but all the results below can be adapted to negative functions.

We define the (h, φ)-entropy Sh(x),φ(y)(ν) of any measure
ν on E as in (1) if

∑
i∈E φ(ν(i)) is finite, and as +∞ either.

For the sake of simplicity, we will suppose that Sh(x),φ(y)(ν)
is nonnegative.

The conditions on both φ and h are the usual conditions for
entropy that are for instance satisfied by all the entropies of
Table I. The function h may not be positive (see for instance
Rényi or Varma entropies) but the parameters in h and φ
behave such that h ◦ φ is indeed positive. Note also that h(x)
is finite for all x ∈ R+, but that h may not be bounded on
R+.

For a a random variable X with distribution ν, we set
Sh(x),φ(y)(X) = Sh(x),φ(y)(ν). For a stationary random se-
quence (Xn)n∈N with common distribution ν, we will call
marginal entropy of the sequence the quantity Sh(x),φ(y)(ν) =
Sh(x),φ(y)(Xn).

Definition (1) includes all classical entropies. First, we get
Shannon entropy for φ(x) = −x log x and h the identity
function, so that

S(ν) = Sy,−x log x(ν) = −
∑
i∈E

ν(i) log ν(i).

Shannon entropy is concave and is additive (and fits well to
extensive systems), meaning that the Shannon entropy of the
product of marginal measures is the sum of the entropies of
the marginal measures.

Rényi entropy is obtained for hs(y) = (1− s)−1 log y and
φs(x) = xs with s > 0, that is

Rs(ν) = Shs(y),φs(x)(ν) =
1

1− s
log
∑
i∈E

ν(i)s;

Shannon entropy corresponds to s → 1. Rényi entropy is
additive, but is concave only for s ≤ 1. Note that [2] proves
that additive entropies are necessarily non linear transforms of
Rényi entropies. We refer to [13] for detailed applications of
Rényi entropies.

Standard thermodynamical extensivity is lost in strong mix-
ing, long range interacting or non-Markovian physical systems.
This led Tsallis to postulate in [24] a nonadditive general-
ization of Shannon entropy which now bears his name, thus
allowing for superextensivity (when r < 1) or subextensivity
(when r > 1). Note that Tsallis entropy equals Havrda-Charvat
entropy up to a multiplicative term depending only on the
parameter. Tsallis entropy involves the functions φr(x) = xr

for some positive r 6= 1, and hr(y) = (r − 1)−1(1 − y), so
that

Tr(X) =Shr(y),φr(x)(ν) =
1

r − 1

[
1−

∑
i∈E

ν(i)r

]
.

Tsallis entropy is concave and appears as the unique solu-
tion of a generalized Khinchin’s set of conditions. Shannon
entropy corresponds to the value r = 1. Rényi entropy is a
monotonically decreasing function of Tsallis entropy, precisely
Rs(X) = (1 − s)−1 log[1 − (s − 1)Ts(X)], but concavity is
not preserved through monotonicity. See Tsallis [24] for details
in statistical mechanics, and for hints for determining r from
fitting physical constraints. See [27] and the references therein
for other applications in statistical mechanics, in thermody-
namics, in the study of DNA binding sites, etc.

Both Rényi and Tsallis entropies appear as particular cases
of Sharma-Mittal entropy introduced in [23] with hs,r(y) =
(r − 1)−1[1− y(1−r)/(1−s)] and φs(x) = xs, that is

Ss,r(ν) =Shs,r(y),φs(x)(ν) =
1

r − 1

1−

[∑
i∈E

ν(i)s

] 1−r
1−s

 .

Rényi entropy corresponds to r → 1 and Tsallis entropy to
s→ r. The case s→ 1 is sometimes called Gaussian entropy;
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precisely,

lim
s→1

Ss,r(X) =
1

1− r
(1− exp [(r − 1)S(X)]) .

In general, Sharma-Mittal entropy is neither extensive nor
concave.

A list of (h, φ)-entropies is given in Table I; we refer to
[15] and to the references therein for details.

B. Entropy rates

For a discrete-time process X = (Xn)n∈N, under suitable
conditions (see [10]), the entropy of (X0, . . . , Xn−1) divided
by n converges to a limit called the entropy rate of the process,
say Hh(y),φ(x)(X). Precisely,

Hh(y),φ(x)(X) = lim
n→∞

1

n
Sh(y),φ(x)(X0, . . . , Xn−1).

See [9] for an interesting study of Tsallis and other non-
extensive entropies and entropy rates.

For all additive entropy functionals, the entropy rate of an
i.i.d. sequence X = (Xn)n∈N with common distribution ν is
the entropy of ν, so that in particular Hs(X) = Ss(ν) for
Rényi entropy and H(X) = S(ν) for Shannon entropy. For an
ergodic homogeneous Markov chain X with countable state
space, the Shannon entropy rate depends on the transition
probabilities P = (p(i, j))i,j∈E and stationary distribution
π = (π(i))i∈E (such that πP = π) through the well-known
expression stated in [21],

H(X) = −
∑
i,j∈E

π(i)p(i, j) log p(i, j). (2)

Rached et al proved in [18] that the Rényi entropy rate of a
finite Markov chain is

Hs(X) =
1

1− s
log λ(s), (3)

using that the perturbated matrix Ps = (p(i, j)s)i,j∈E has a
unique dominant eigenvalue λ(s) for any s > 0. We will show
in Section IV-B that (3) holds true for a denumerable Markov
chain too under mild regularity conditions. Note that by letting
s go to 1 in (3), since λ(1) = 1, Shannon entropy rate is also
related to the dominant eigenvalue through H(X) = −λ′(1).

A random sequence can also be described in terms of
symbolic dynamical systems theory. We refer to [25] for the
definition in terms of dynamical systems of i.i.d. sequences
(also called Bernoulli processes) and finite Markov chains,
and to [6] for Markovian dynamical systems with countable
state spaces. Both deal, among other topics, with the Shannon
entropy rate of processes by means of functional operators also
called transfer operators. These operators play the same role as
perturbations of transition matrices do in [18]; they also have
a unique dominant eigenvalue λ(s), and the Shanon entropy
rate is thus proven to be −λ′(1). In the next section, we
will use similar operators techniques for determining (h, φ)-
entropy rates.

III. QUASI-POWER PROPERTY AND (h, φ)-ENTROPY RATE

We will first introduce the quasi-power property and then
prove that the (h, φ)-entropy rate of a random sequence
satisfying that property can be computed explicitly for a large
class of (h, φ) functions. The proof will involve the series

Λn(s) =
∑

in−1
0 ∈En

νn(in−10 )s (4)

for s > 0, and its formal derivatives for k ≥ 1,

Λ(k)
n (s) =

∑
in−1
0 ∈En

[log νn(in−10 )]kνn(in−10 )s, (5)

where νn denotes the marginal distribution of order n of the
random sequence X = (Xn)n∈N; in other words, νn(in−10 ) =
P(X0 = i0, . . . , Xn−1 = in−1). In dynamical systems theory,
Λn(s) is called the Dirichlet series of fundamental measures
of depth n. It is a central tool for studying general sources, in
pattern matching or in the analysis of data structures; see for
instance [6]. This series is also introduced in [17] (see V (n, s)
page 36).

The simplest case of a random sequence is an i.i.d. sequence
with a non-degenerated distribution ν over a finite set E.
Since its marginal distribution of order n is νn(in−10 ) =
ν(i0)ν(i1) . . . ν(in−1), the Dirichlet series Λn(s) defined in
(4) can be simply written as the n-th power of an analytic
function, precisely

Λn(s) =

[∑
i∈E

ν(i)s

]n
.

The quasi-power property next stated says that Λn(s) behaves
for more general random sequences satisfying it like the n-th
power of some analytic function up to some error term.

Property 1 Let X = (Xn)n∈N be a random sequence taking
values in a countable set E and let νn denote the marginal
distribution of (X0, . . . , Xn−1). Then X is said to satisfy
the quasi-power property with parameters [σ0, λ, c, ρ] if both
following conditions are fulfilled:

1. supin−1
0 ∈En νn(in−10 ) converges to zero when n tends to

infinity.
2. there exists a real number σ0 < 1, such that for all real

number s > σ0 and all integer n ≥ 0, the series Λn(s) defined
in (4) is convergent and satisfies

Λn(s) = c(s) · λ(s)n−1 +Rn(s), (6)

with |Rn(s)| = O
(
ρ(s)n−1λ(s)n−1

)
, where c and λ are

strictly positive analytic functions for s > σ0, and λ is strictly
decreasing with λ(1) = c(1) = 1, and Rn is also analytic,
and finally ρ(s) < 1.

Obviously, any i.i.d. sequence taking values in a finite set
E satisfies the quasi-power property for σ0 = 0 and functions
λ, c and ρ defined by

λ(s) =
∑
i∈E

ν(i)s, c(s) = λ(s) and ρ(s) = 0.

The result extends to the case of a denumerable set E as soon
as some σ0 < 1 exists such that, for all s > σ0, the series
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λ(s) converges. Note that Shannon entropy rate is then equal
to −λ′(1) and Rényi entropy rate to (1− s)−1 log λ(s).

We can now state the main result for determinating the
generalized entropy rates of random sequences satisfying the
quasi-power property.

Theorem 1 Let X = (Xn)n∈N be a random sequence satis-
fying the quasi-power property with parameters [σ0, λ, c, ρ].
Suppose that

φ(x) ∼
x→0

c1 · xs · (− log x)k (7)

with s > σ0, c1 ∈ R∗+ and k ∈ N∗. Then Table II gives the
entropy rate Hh,φ(X) according to the behavior of h around 0
for s > 1 and around +∞ for s ≤ 1.

Note that condition (7) is satisfied for all the usual entropies
listed in Table I.

Proof: Point 1 of the quasi-power property and (7)
together induce that for any ε > 0, there exists n0 ∈ N such
that for all n ≥ n0 and in−10 ∈ En,

(1− ε)(−1)kc1νn(in−10 )s logk νn(in−10 ) ≤ φ(νn(in−10 ))

and

φ(νn(in−10 )) ≤ (1 + ε)(−1)kc1νn(in−10 )s logk νn(in−10 ).

Therefore,

(1− ε)(−1)kc1Λ(k)
n (s) ≤ Σn ≤ (1 + ε)(−1)kc1Λ(k)

n (s), (8)

where we have set Σn =
∑
in−1
0 ∈En φ(νn(in−10 )) for simpli-

fication. Due to the analyticity of all the functions involved in
(6), for n large enough,

Λ(k)
n (s) = c(s) · λ′(s)k · nk · λ(s)n−k−1 ·

[
1 +O

(
1

n

)]
.

Putting this into (8) yields

Σn ∼ c1 · c(s) · (−λ′(s))k · nk · λ(s)n−k−1, (9)

with −λ′(s) = |λ′(s)| since λ is a decreasing function. Let us
now study the three different cases concerning s.

First, suppose that s = 1. Since λ(1) = c(1) = 1, (9)
simplifies into

Σn ∼ c1 · |λ′(1)|k · nk.

Since φ is a positive function, Σn converges polynomially
to +∞. Depending on the conditions on h, this leads to the
next equivalences: h(Σn) ∼ c2 · c1/k1 · |λ′(1)| · n in Case (I),
h(Σn) ∼ o(n) in Case (II), and h(Σn) ∼ sn·n with sn → +∞
in Case (III). By definition, the (h, φ)-entropy rate is the limit
of h(Σn)/n when n tends to infinity, so the results given in
Table II for s = 1 follow immediately.

For either s < 1 or s > 1, the function λ is strictly
decreasing with λ(1) = 1. Hence λ(s) < 1 for s > 1
and λ(s) > 1 for s < 1, from which we deduce that
Σn tends exponentially to +∞ for s < 1 and to 0+ for
s > 1. Depending on conditions on h, this leads to the next
equivalences: h(Σn) ∼ c2 · log λ(s) ·n in cases (IV) and (VII),
h(Σn) ∼ o(n) in cases (V) and (VIII), and h(Σn) ∼ sn · n
with sn → +∞ in cases (VI) and (IX). Then, we get exactly

in the same way as for s = 1 the results listed in Table II
for s < 1 and s > 1. �

Table III shows applications of Theorem 1 to various
entropy rates for random sequences satisfying the quasi-power
property with parameters [λ, c, ρ, σ0]. Remark that almost all
the entropy rates are finite and non-zero only at a threshold
where they are equal to Shannon or Rényi entropy rates up
to a multiplicative factor. Elsewhere, they are either null or
infinite, which limits their practical interest in applications.

IV. MARKOV CHAINS AND THE QUASI-POWER PROPERTY

Let us begin this section by connecting Markov chains to
dynamical sources. A dynamical source is defined by five
objects: a countable alphabet E, a topological partition (Ii)i∈E
of the interval I = [0, 1], a coding function σ : I → E such
that σ(Ii) = i for all symbols i of E, a density function f0 on
I and finally a shift function T which is twice continuously
differentiable and strictly monotonous on each interval of the
partition. The random sequence X = (Xn) associated to the
dynamical source corresponds to the trace of the iterates Tn(x)
for some x chosen according to the distribution f0. Precisely,

Xn = σ(Tn(X0)),

where X0 is a random variable with density function f0 on I .
The dynamical source (T, I, E, (Ii)i∈E , f0) is Bernoulli if

T is surjective (i.e., T (Ii) = I) and affine on each Ii and
if f0 is constant. Then, it is easy to check that the associated
random sequence X is i.i.d.. The dynamical source is said to be
Markovian if the image of each interval is the union of images
of intervals of the partition. If, furthermore, T is piecewise
affine and f0 is constant on each interval of the partition, the
associated random sequence X is a Markov chain.

Conversely, any Markov chain X over a countable state
space E can be represented by a (non unique) Markovian
dynamical source. Let P = (p(i, j))i,j∈E denote the transition
matrix of X (that is p(i, j) = P(Xn = j|Xn−1 = i)) and µ =
(µ(i))i∈E its initial distribution (that is µ(i) = P(X0 = i)).
For instance, we can consider a topological partition (Ii)i∈E
of I = [0, 1] and then a second one (Ij|i)i,j∈E such that for
all i, j ∈ E,

|Ij|i| = p(i, j) · |Ii| and
⋃
j∈E

Ij|i = Ii,

where I denotes the closure of the interval I . A dynamical
source simulating the Markov chain X is then given by the
following five elements: the alphabet, say E = {j|i, (i, j) ∈
E2}, the topological partition (Ij|i)i,j∈E , the coding function
σ defined by σ(Ij|i) = j|i, the piecewise constant density
function f defined by f(Ii) = µ(i)/|Ii|, and finally the
piecewise linear function T defined by T (Ij|i) = Ij . Note
that even if the state spaces of the Markov chain and of the
associated dynamical source seem different, a clear bijection
exists between both processes.

Finally, note that [6] give sufficient conditions on count-
able Markovian dynamical systems ensuring the quasi-power
property. The associated transfer operator (see (12) below) has
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Value of s Condition on h Entropy rate Case

h(x) ∼
x→+∞

c2 · x1/k c2 · c1/k1 · λ′(1) (I)

s = 1 h(x) =
x→+∞

o(x1/k) 0 (II)

x1/k =
x→+∞

o(h(x)) +∞ (III)

h(x) ∼
x→0+

c2 · log x c2 · log λ(s) (IV )

s > 1 h(x) =
x→0+

o(log x) 0 (V )

log x =
x→0+

o(h(x)) +∞ (V I)

h(x) ∼
x→+∞

c2 · log x c2 · log λ(s) (V II)

σ0 < s < 1 h(x) =
x→+∞

o(log x) 0 (V III)

log x =
x→+∞

o(h(x)) +∞ (IX)

TABLE II
VALUE OF THE ENTROPY RATE Hh,φ , ACCORDING TO THE BEHAVIOR OF h

Entropy Parameters Entropy rate
Shannon −λ′(1)

Rényi s = 1 −λ′(1)

s 6= 1
1

1− s
log λ(s)

Varma r = t −
1

t2
λ′(1)

r 6= t
1

t(t− r)
log λ(r/t)

Havrda and Charvat r > 1 0

r = 1
−1

log 2
λ′(1)

r < 1 +∞
Arimoto t > 1 +∞

t = 1 −λ′(1)
t < 1 0

Sharma-Mittal 1 r < 1 +∞
r > 1 0

s = r = 1 −λ′(1)

r = 1 6= s
1

1− s
log λ(s)

Sharma-Mittal 2 1
1−r (exp[−(r − 1)λ′(1)]− 1)

Taneja r < 1 +∞
r = 1 −λ′(1)
r > 1 0

Sharma and Taneja r < 1 or t < 1 +∞
r > 1 and t > 1 0
r = 1 and t > 1 0
r = 1 and t = 1 −λ′(1)
r > 1 and t = 1 0

Tsallis r < 1 +∞
r = 1 −λ′(1)
r > 1 0

TABLE III
VALUES OF CLASSICAL ENTROPY RATES OF A RANDOM SEQUENCE SATISFYING THE QUASI-POWER PROPERTY WITH PARAMETERS [λ, c, ρ, σ0].
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only one eigenvalue with maximum modulus, isolated from the
remainder of the spectrum by a spectral gap. The dominant
eigenvector is strictly positive and a spectral decomposition
of the operators exists. Unfortunately, to exhibit the right
topological partition (Ij)j∈E for which these conditions hold
is quite difficult in terms of transition matrices. Therefore, in
the following sections, we prefer to state conditions especially
fitted to transition matrices under which we prove that the
quasi-power property holds true for countable Markov chains.

A. Finite Markov chains

Let X = (Xn)n∈N be an ergodic Markov chain with finite
state space E, transition matrix P = (p(i, j))i,j∈E and initial
distribution µ = (µ(i))i∈E . The marginal distribution νn of
(X0, . . . , Xn−1) satisfies

νn(in−10 ) = µ(i0)p(i0, i1)p(i1, i2) . . . p(in−2, in−1).

The series Λn(s) defined in (4) can be written in matrix form

Λn(s) = µs · Pn−1s · 1,

where Ps = (p(i, j)s)i,j∈E and µs is the column vector
(µ(i)s)i∈E . Since P is irreducible and aperiodic, the same is
true for Ps for any s. In particular, Ps has a unique dominant
eigenvalue with maximum modulus. This eigenvalue λ(s) is
positive and its associated left and right eigenvectors, say ls
and rs, are also positive in the sense that all their components
are positive. We deduce from these spectral properties that

v · Pn−1s = λ(s)n−1· < v, rs > ls + v ·Rn−1(s),

where the spectral radius of R(s) is strictly less than λ(s).
This defines the functions λ, c and ρ of the quasi-power
property. They are analytic due to perturbation arguments that
are detailed in [14].

Note that this result was indirectly proven in [18], thus
inducing the explicit determination of the Rényi entropy rate
of finite Markov chains.

B. Denumerable Markov chains

Let X = (Xn) be a Markov chain with denumerable state
space E, transition matrix P = (p(i, j))i,j∈E and initial
distribution µ = (µ(i))i∈E . The following assumptions will
be proven to be sufficient for X to satisfy the quasi-power
property.

Assumptions 1
A. sup(i,j)∈E2 p(i, j) < 1;
B. there exists σ0 < 1 such that for all s > σ0,

sup
i∈E

∑
j∈E

p(i, j)s <∞

and ∑
i∈E

µ(i)s <∞;

C. for all ε > 0 and all s > σ0, there exists some A ⊂ E
with a finite number of elements, such that

sup
i∈E

∑
j∈E\A

p(i, j)s < ε.

Before stating the main result of this section, let us prove
a technical lemma which essentially transforms Point C of
Assumption 1 into a more convenient form.

Lemma 1 If Assumptions 1 holds true, then for all s > σ0,
the operator Ps : (L1, || . ||1) → (L1, || . ||1) defined by
Ps[v] = v · Ps is a compact operator on

L1 = {u = (ui)i∈N : ‖u‖1 =
∑
i∈N
|ui| < +∞}.

Proof: For the sake of simplicity, since any denumerable
state space E can be enumerated as a sequence E = (ik)k∈K
with K = N, we will here set E = N, so that Point C of
Assumption 1 takes the form

∀ε > 0, ∀s > σ0, ∃N ∈ N, sup
i∈N

∑
j>N

p(i, j)s < ε.

First, let us prove that for all s > σ0, there exists a sequence
of integers Nk increasing to infinity such that

sup
i∈N

∑
j>Nk

p(i, j)s <
1

k
. (10)

Point C of Assumption 1 says that for all k ∈ N∗, some
Nk ∈ N exists such that (10) holds true. If Nk is replaced
by supl≤kNl, the inequality remains true and the sequence
is clearly increasing. If Nk did not converge to infinity, some
j0 ∈ N would exist such that j0 > Nk for all k, and hence,

1

k
≥ sup

i∈N

∑
j>Nk

p(i, j)s ≥ sup
i∈N

p(i, j0)s.

Letting k tend to infinity, we would obtain that p(i, j0) is zero
for all i, which is untrue since the chain is irreducible.

Now, let us prove that Ps is indeed a compact operator. Let
(un)n denote a sequence of elements un = (uni )i∈N of L1

such that ||un||1 ≤ 1 and define vn = un · Ps. By induction
on k, we can build a sequence of functions sk : N→ N such
that (sk+1(n))n is a subsequence of (sk(n))n and such that
for all i ≤ Nk, with Nk such as in (10), vsk(n)i converges
to some vi. Then v = (vi)i∈N belongs to L1; indeed, for all
ε > 0 and all M ∈ N, there exists Nk ∈ N, such that M < Nk
and for n large enough,∑

i<M

|vi| ≤
∑
i<Nk

|vi − vsk(n)i |+
∑
i<Nk

|vsk(n)i |

≤ ε+ ||Ps||1,

and ||Ps||1 is finite by Point B of Assumption 1.
Let us now extract a subsequence of (vn)n converging to v

for the L1-norm. Since v belongs to L1, for all k ∈ N∗, there
exists Mk ∈ N such that∑

i>Mk

|vi| <
1

k
.

Let us set k∗ = max(k, k′), where k′ is such that Mk < Nk′ .
Then∑
i∈N
|vsk∗ (n)i − vi| ≤∑
i<Nk∗

|vsk∗ (n)i − vi|+
∑
i>Nk∗

|vsk∗ (n)i |+
∑
i>Nk∗

|vi|.
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For ñ = ñ(k) such that the first term in the sum is less than
1/k, we get∑

i∈N
|vsk∗ (ñ)i − vi| ≤

2

k
+
∑
i>Nk∗

|vsk∗ (n)i |.

Finally, since by Point C of Assumption 1 again,∑
i>Nk∗

|vsk∗ (n)i | ≤
∑
j∈N
|usk∗ (n)j |

∑
i>Nk∗

p(i, j)s

≤ ||usk∗ (n)j ||1
1

k∗
≤ 1

k
,

we obtain ∑
i∈N
|vsk∗ (ñ)i − vi| ≤

3

k
,

which concludes the proof that Ps is compact. �

Lemma 1 allows us to prove that denumerable Markov
chains satisfy the quasi-power property under mild conditions.
Note that all results remain true if Point A of Assumption 1
is replaced by: there exist n ∈ N and η < 1 such that all the
coefficients of Pn are less than η.

Theorem 2 Let X = (Xn)n∈N be an irreducible and aperi-
odic Markov chain with transition matrix P = (p(i, j))(i,j)∈E2

and initial distribution µ = (µ(i))i∈E . If Assumption 1 holds
true, then X satisfies the quasi-power property.

Proof: It follows from Lemma 1 that Ps is compact for
all s > σ0. Therefore, the spectrum of Ps over L1 is a
sequence converging to zero. Hence, Ps has a finite number of
eigenvalues with maximum modulus and there exists a spectral
gap separating these dominant eigenvalues from the remainder
of the spectrum; details can be found in [14].

Further, since X is irreducible and aperiodic, Ps is a non-
negative irreducible and aperiodic infinite matrix, so has a
unique dominant eigenvalue λ(s) which, moreover, is posi-
tive. We deduce from these spectral properties the following
spectral decomposition of the iterates of Ps,

u · Pns = λ(s)n · u ·Qs + u ·Rns , u ∈ L1, (11)

where Qs is the projector over the dominant eigenspace and
Rs is the projector over the remainder of the spectrum. In
particular, the spectral radius of Rs can be written ρ(s) · λ(s)
with ρ(s) < 1. Finally, Λn(s) is given by the L1-norm of
µs · Pn−1s , where µs = (µ(i)s)i∈E , so that

Λn(s) = λ(s)n−1||µs ·Qs||1[1 +O(ρ(s)n−1λ(s)n−1)],

which means that X satisfies the quasi-power property. The
analyticity with respect to s of all the functions involved
in (11) is due jointly to the analyticity of s → Ps and to
perturbation arguments detailed in [14]. Moreover, for s < t,
due to Point A of Assumption 1,

Λn(t) =
∑

in−1
0 ∈En

Pr(in−10 )t

≤ ηn(t−s)
∑

in−1
0 ∈En

Pr(in−10 )s = η(n−1)(t−s)Λn(s),

where η = sup(i,j)∈E2 p(i, j), so that s → λ(s) is strictly
decreasing. �

Then, applying Theorems 1 and 2 to φ satisfying (7), the
(h, φ)-entropy rate of the chain is given by

Hh(x),φ(y)(X) = lim
n→+∞

1

n
h
(
c1c(s)λ

′(s)knkλ(s)n−k−1
)
.

Remarks
1. In dynamical sources theory, the perturbated matrices Ps

are replaced for Bernoulli sources by the transfer operators
Gs defined by

Gs[f ](y) =
∑

x:T (x)=y

f(x)

|T ′(x)|s
,

and for Markovian sources by the secant operators Gs defined
by

Gs[F ](y1, y2) = (12)∑
i∈E

∑
(x1,x2)∈Ii(y1,y2)

|x1 − x2|s

|T (x1)− T (x2)|s
F (x1, x2),

where Ii(y1, y2) = {(x1, x2) ∈ Ii|T (x1) = y1, T (x2) = y2}.
2. As noticed in the introduction, Golshani et al deal in

[12] with the denumerable case for the Rényi entropy rate
but their proofs contain some errors. Indeed, they use results
issued from the R-theory of non-negative matrices developed
in [26]. In particular, they invoke the following asymptotic
argument: if T is a positive irreducible and aperiodic matrix
with radius of convergence R, then for all states i, j ∈ E,
the (i, j) coefficient of RnTn converges to some finite value
µi,j . Actually, in [12], the expression of the Rényi entropy rate
involves the double sum Sn =

∑
i,j∈E(RnTn)i,jfj for large

n, where (fj)j∈E is related to the initial distribution of the
Markov chain, and T is a perturbation of the transition matrix
of the chain. The authors exchange the limit with respect to n
with the double infinite sum whereas the uniform convergence
is not proven to hold true. On the contrary, [26, Theorem 6.2]
states necessary and sufficient conditions to allow the change
when T is R-positive recurrent; unfortunately, these conditions
involve the generally unknown R-invariant vectors, which
makes them difficult to check in practice. Furthermore, even if
the transition matrix of the chain was supposed to be positive
recurrent, it would remain to prove that its perturbation T
shares the same property.

In the above first part of the paper, we have explicitly ob-
tained the generalized (h, φ)-entropy rate of random sequences
satisfying the quasi-power property. We have also given simple
assumptions on countable Markov chains for the quasi-power
property to hold. In the second part below, we will focus on the
estimation of the entropy rates for parametric Markov chains
using the expressions given in Table III and plug-in estimators
built from the MLE of the parameter.

V. ESTIMATION OF ENTROPY FOR DENUMERABLE
MARKOV CHAINS

We suppose that the transition probabilities of the chain
depend on an unknown parameter θ ∈ Θd, where Θ is an
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open subset of some Euclidean space and d ≥ 1.
The partial derivatives will be denoted with a subscript, as

for example fu = ∂f/∂θu. The expectation under the value
θ of the parameter will be denoted E θ. The true value of the
parameter will be denoted by θ0.

A. Estimation of the parameters

Let X = (X0, . . . , Xn) be a sample of the chain. Let
(x0, . . . , xn) ∈ En+1 denote an observation; the associated
log-likelihood is

logµ(x0) +

n−1∑
m=0

log p(xm, xm+1; θ),

where µ denotes the initial distribution of the chain. The infor-
mation contained in the observation of this initial distribution
does not increase with n. Hence, for a large sample theory, it
is convenient to consider the value of θ maximizing the pseudo
log-likelihood

n−1∑
m=0

log p(xm, xm+1; θ).

Asymptotic results on the MLE θ̂n of the parameter θ thus
obtained are proven in [3] under the following regularity
assumptions.

Assumptions 2
A. For any x, the set of y for which p(x, y; θ) > 0 does not

depend on θ.
B. For any (x, y), the partial derivatives pu(x, y; θ),

puv(x, y; θ) and puvw(x, y; θ) exist and are continuous with
respect to Θ.

C. For all θ ∈ Θ, there exists a neighborhood N such that
for any u, v, x, y, the functions pu(x, y; θ) and puv(x, y; θ) are
uniformly bounded in L1(µ(dy)) on N and

Eθ[ sup
θ′∈N

| pu(x, y; θ′) |2] < +∞.

D. There exists α > 0 (possibly depending on θ) such that
Eθ[| pu(x, y; θ) |2+α] is finite, for u = 1, . . . , d.
E. The d × d Fisher information matrix σ(θ) = (σuv(θ)) is
non singular, where σuv(θ) = Eθ[pu(x, y; θ)pv(x, y; θ)].

Proposition 1 If Assumptions 2 are satisfied, then a strongly
consistent MLE θ̂n of θ exists. Moreover,

√
n(θ̂n − θn) is

asymptotically centered and normal, with covariance matrix
σ−1(θ0).

Note that if n is large, there is exactly one MLE in N . We
refer to [16] for weaker differentiability assumptions on the
transition functions.

Any finite Markov chain can be considered as a parametric
chain, with parameters θi,j = p(i, j), for i 6= j. The MLE of
the transition probabilities are the empirical ones, defined by

p̂n(i, j) =
Nn(i, j)

Nn(i)
11Nn(i)>0,

where

Nn(i, j) =

n∑
m=1

11{Xm−1=i,Xm=j},

and

Nn(i) =
∑
j∈E

Nn(i, j) =

n−1∑
m=0

11Xm=i, i, j ∈ E,

The estimators p̂n(i, j) are strongly consistent and asymp-
totically normal. Precisely, when n tends to infinity, the
vector (

√
n[p̂n(i, j) − p(i, j)]) converges in distribution to

a centered Gaussian vector with covariances δik[δjlp(i, j) −
p(i, j)p(i, l)]/π(i) for 1 ≤ i, j, k, l ≤ |E|.

A natural estimator of the stationary distribution π is the
empirical estimator

π̂n(i) =
Nn(i)

n
, i ∈ E.

It is strongly consistent and asymptotically normal. Precisely,
when n tends to infinity,
√
n [π̂n(i)− π(i)]

L−→ N
(
0, π(i)2[2E πτ(i)− 1]− π(i)

)
,

where Eπτ(i) is the expectation of the return time τ(i) of the
chain to state i when the initial distribution is π.

These asymptotic properties derive from the law of large
numbers and central limit theorem for Markov chains; see [7]
for details.

For a finite chain with state space E, the transition prob-
abilities may also be functions of a number d of parameters
strictly smaller than |E|(|E|−1). In this case, Points C to E of
Assumption 2 reduce to: for any θ, the d×d matrix

(
pu
p (i, j)

)
has rank d; see [3].

B. Estimation of marginal entropy

Since the transition probabilities of the chain depend on
θ, the stationary distribution also depends on θ. It is nat-
ural to consider the plug-in estimator Sh(y),φ(x)(π(θ̂n)) of
Sh(y),φ(x)(π(θ)).

Theorem 3 Let X be an ergodic homogeneous finite Markov
chain satisfying the quasi-power property. If Assumption 2 is
satisfied, then the estimator Sh(y),φ(x)(π(θ̂n)) is strongly con-
sistent. If, moreover, the differential function DθSh(y),φ(x)(π)
is not null at θ0, then the plug-in estimator is asymptotically
normal. Precisely
√
n[Sh(y),φ(x)(π(θ̂n))− Sh(y),φ(x)(π(θ))]→ N (0,Σπ),

where

Σπ =
[
Dθ0Sh(y),φ(x)(π)

]t
σ−1(θ0)

[
Dθ0Sh(y),φ(x)(π)

]
.

Proof: We know from Proposition 1 that θ̂n converges
almost surely to θ0. Due to operators properties detailed in
[1] (see particularly p94), the eigenvector π is known to be
a continuously differentiable function of the operator; using
Point B of Assumption 2 shows that π(x, y; θ) is absolutely
continuous with respect to θ. The continuous mapping theorem
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implies that Sh(y),φ(x)(π(θ̂n)) converges almost surely to
Sh(y),φ(x)(π(θ0)).

Then, the normality of Sh(y),φ(x)(π(θ̂n)) follows from
Proposition 1 by the delta method. �

C. Estimation of entropy rates

Table III shows that when the (h, φ)-entropy rate is neither
null nor infinite, only two cases happen. Either, the entropy
rate is equal to −λ′(1), that is to Shannon entropy rate, or
it is a simple function of Rényi entropy rate, that is of (1 −
s)−1 log λ(s). Therefore, we will only detail the estimation of
Shannon and Rényi entropy rates.

The estimation of Shannon entropy rate has already been
considered by two of the authors in [7], mainly for finite chains
for which estimation is detailed under different schemes of
observation, with a plug-in method based on (2). It allowed
them to prove the asymptotic normality of plug-in estimators
for finite chains but does not apply to the denumerable case.
We will solve the problem here, for any countable parametric
chains, by applying results from operators theory.

Let us define the plug-in estimators H(θ̂n) = −λ′(1; θ̂n)
of Shannon entropy rate H(θ), and Hs(θ̂n) = (1 −
s)−1 log λ(s; θ̂n) of Rényi entropy rate Hs(θ).

Theorem 4 Let X be an ergodic homogeneous countable
Markov chain satisfying the quasi-power property. If Assump-
tion 2 is satisfied, then the estimators H(θ̂n) and H(s; θ̂n)
for s 6= 1, are strongly consistent and asymptotically normal.
Precisely √

n[H(θ̂n)−H(θ)]→ N (0,Σ1),

where

Σ1 =

{
∂

∂θ
[−λ′(1; θ)]

}t
σ−1(θ)

∂

∂θ
[−λ′(1; θ)]

and
√
n[Hs(θ̂n)−Hs(θ0)]→ N (0,Σs), where

Σs =
1

(1− s)2

{
∂

∂θ
λ(s; θ)

}t
σ−1(θ)

∂

∂θ
λ(s; θ).

Proof: For a parametric chain depending on θ, let us
set ps(x, y, θ) = p(x, y, θ)s. Due to operators properties (see
again [1, p94]), the eigenvalue λ(s, θ) of the perturbated
operator defined by Ps = (ps(x, y, θ)) and its derivative
λ′(s, θ) are known to be continuous with respect to Ps. Point
B of Assumption 2 induces that Ps too is a continuously
differentiable function of θ. Therefore both λ(s; θ) and
λ′(s; θ) are continuous with respect to θ. The results follow
from the continuous mapping theorem and the delta method.�
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Physica A vol. 365 (1), pp57–62, 2006.

[14] Kato, T., Perturbation Theory for Linear Operators, 2d edition, Springer-
Verlag, Berlin, 1976.

[15] Menéndez, M.L., Morales, D., Pardo, L., and Salicrú, M., (h,Φ)-entropy
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[19] Rényi, A., On measures of information and entropy, Proc. 4th Berkeley
Symposium on Mathematics, Statistics and Probability, pp547-561, 1960.
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