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Abstract

Symmetric Galerkin boundary element methods (SGBEMs) for three-dimensional elastostatic problems give
rise to fully-populated (albeit symmetric) matrix equations, entailing high solution times for large models.
This article is concerned with the formulation and implementation of a multi-level fast multipole SGBEM
(FM-SGBEM) for multi-zone elasticity problems with cracks. The subdomain coupling approach is based on
a minimal set of interfacial unknowns (i.e. one displacement and one traction vector at any interfacial point)
that are defined globally for the complete multizone configuration. Then, unknowns for each subdomain are
defined in terms of the global unknowns, with appropriate sign conventions for tractions induced by subdo-
main numbering. This formulation (i) automatically enforces the perfect-bonding transmission conditions
between subdomains, and (ii) is globally symmetric. The subsequent FM-SGBEM basically proceeds by as-
sembling contributions from each subregion, which can be computed by means of an existing single-domain
FM-SGBEM implementation such as that previously presented by the authors (EABE, 36:1838-1847, 2012).
Along the way, the computational performance of the FM-SGBEM is enhanced through (a) suitable storage
of the near-field contribution to the SGBEM matrix equation and (b) preconditioning by means of nested
GMRES. The formulation is validated on numerical experiments for 3D configurations involving many cracks
and inclusions, and of sizes up to N ≈ 106.

Keywords: fast multipole method (FMM), generalized minimal residuals (GRMES), symmetric Galerkin
boundary element method (SGBEM), fracture mechanics, multizone.

1. Introduction

Boundary integral equation (BIE) formulations [3, 40] arise naturally in problems involving
piecewise-homogeneous materials (hereinafter referred to as multi-zone problems) or cracks. They
are at the root of many analytical or semi-analytical solutions for canonical problems, e.g. ellip-
soidal inhomogeneities [15, 33] or penny-shaped cracks [42]. Moreover, their numerical implemen-
tation by means of boundary elements permit accurate solutions for e.g. stress concentrations [25]
or stress intensity factors, while greatly simplifying the meshing of complex configurations (e.g. nu-
merical homogenization problems involving many inclusions embedded in an elastic matrix [30]).

Elasticity problems for multi-zone cracked configurations are involved in the modelling and anal-
ysis of e.g. composite materials or geomechanical systems with fractures. Traction BIEs naturally
occur in connection with both multi-zone configurations (as transmission conditions involve trac-
tions) and cracks (because of the well-known degeneracy of displacement-based BIEs in that case).
Collocation-based formulations, while feasible, are then somewhat cumbersome as they require
C1,α regularity of the density at the collocation points and specially designed singular integration
procedures. In contrast, the symmetric Galerkin form of traction BIEs (SGBIE) only requires H1/2

densities for the hypersingular integral operator, making C0 boundary element interpolations suit-
able (see [6] for an early implementation of SGBIEs for planar cracks, and also [20, 21, 17, 4, 29],
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among many references on this kind of treatment). This, together with symmetry and underlying
energy-based variational principles, makes SGBIE formulations a natural approach for problems
involving multi-zone configurations and cracks. For example, a fully symmetric BIE treatment
of multi-zone problems is proposed for heat transfer problems in [21], see also [26] (energy-based
variational BIE for media with piecewise-constant conductivity), [18, 31] (elastostatics), [9] (2D
piecewise-homogeneous configurations with cohesive cracks).

The symmetric Galerkin BEM (SGBEM) yields symmetric but dense matrices, see e.g. the
references in the survey article [5]. As with other forms of BEM, this makes standard implemen-
tations impractical for large-scale problems because of excessive (respectively O(N2), O(N2) and
O(N3)) complexities for set-up, storage and direct linear solvers (N denoting the number of BEM
unknowns), triggering a recourse to acceleration strategies. Most of these entail using iterative
solvers while taking advantage of the blockwise approximate low-rank character of integral opera-
tors (at least for blocks encoding influences between spatially well-separated parts of the featured
boundary). Acceleration approaches include the fast multipole method (FMM) [23], now available
for many engineering problems (e.g. Stokes flows [19, 16], acoustics [1, 46], electromagnetism [10],
elastodynamics [45, 7]). Regarding crack problems, fast multipole BEMs (FM-BEMs) have been
investigated in e.g. [48, 47, 28] for 3D unbounded bodies. FM-SGBEMs have also been developed
in several contexts (see e.g. [35] for potential problems, [44] for electromagnetic problems or [28] for
cracks in unbounded media). Moreover, other acceleration approaches based on e.g. hierarchical
matrices also experience rapid development, see e.g. [24, 2]. For static (Laplace-like) problems, the
multi-level form of the FMM achieves solution times of order O(N) per linear solver iteration.

This article is concerned with the formulation and implementation of a multi-level fast multi-
pole SGBEM (FM-SGBEM) for multi-zone elasticity problems with cracks, and is intended as a
continuation of [36] where FM-SGBEM were investigated for homogeneous elastic solids containing
(possibly many) cracks. The subdomain coupling approach, following [21, 18], is based on a min-
imal set of interfacial unknowns (i.e. one displacement and one traction vector at any interfacial
point) that are defined globally for the complete multizone configuration. Then, unknowns for
each subdomain are defined in terms of the global unknowns, with appropriate sign conventions for
tractions that depend on subdomain numbering. This formulation (i) automatically enforces the
perfect-bonding transmission conditions between subdomains, (ii) uses a minimal set of interfacial
unknowns (e.g. without recourse to Lagrange multipliers) and (iii) is globally symmetric. The
subsequent FM-SGBEM basically proceeds by summation of contributions from each subregion,
which can be computed by means of an existing single-domain FM-SGBEM implementation.

The article is organised as follows. The FM-SGBEM formulation for single-region problems with
cracks is summarized in Sec. 2. The enhancement of its computational performance through (a)
suitable storage of the near-field contribution to the SGBEM linear system and (b) preconditioning
by means of nested GMRES is then examined in Sec. 3, and tested on multiple-crack configurations
of size up to N ≈ 3× 106. Next, the proposed SGBIE treatment of 3D multi-zone problems
with cracks and the resulting FM-SGBEM are presented in Sec. 4. Numerical experiments on
configurations involving many cracks and inclusions, and size up to N ≈ 106, are reported in Sec. 5.

2. Mathematical background

Letting x, x̃ ∈ R
3 denote two generic points in the three-dimensional physical space, the well-

known Kelvin (elastostatic) fundamental displacement and traction tensors are given by

U(x, x̃) =
1

16πµ(1−ν)r

[
(3−4ν)r̂⊗ r̂ + I

]
, (1a)
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T (x, x̃) = −
1

8π(1−ν)r2
[(

3r̂⊗ r̂ + (1−2ν)I
)
r̂ ·n(x) + (1−2ν)

(
n(x)⊗ r̂ + r̂⊗n(x)

)]
, (1b)

where µ, ν are the shear modulus and Poisson’s ratio characterizing the isotropic elastic constitutive
material, and having set

r = x− x̃, r = ‖r‖, r̂ = r/r

Then, the elastostatic single-layer potential V and double-layer potential W are defined [27], for
a generic piecewise-smooth surface S and vector-valued densities u,p : S 7→ R

3, by

V [S,p](x̃) =

∫

S
U(x, x̃)·p(x) dSx, W [S,u](x̃) =

∫

S
T (x, x̃)·u(x) dSx (x̃∈R

3 \S). (2)

The symmetric Galerkin boundary integral equation (SGBIE) formulation for a cracked solid can
then be formulated in terms of the boundary traces of the potentials (2) and their derivatives with
respect to x̃. Moreover, the notational conventions adopted in (2) will facilitate writing the SGBIE
formulation for multi-domain configurations.

2.1. Symmetric Galerkin BIE single-region formulation

Consider for now a homogeneous elastic solid Ω containing a traction-free crack (or set thereof),
see Fig. 1. The external boundary of Ω is denoted by S, while the (possibly non-connected) open
surface Sc is the geometrical locus of the (set of) internal crack(s). Only internal cracks are
considered in this work, i.e. the closure of Sc is assumed to have no intersection with S. The
displacement discontinuity φ on Sc, also termed crack opening displacement (COD), is defined by
φ(x) := u(x+)−u(x−) (with x+ ∈S+

c and x− ∈S−
c , S

+
c and S−

c being the upper and lower crack
faces, the unit normal to Sc being conventionally directed from S−

c to S+
c , i.e. n := n− = −n+ on

Sc). For this configuration, the Somigliana displacement integral identity reads

u(ỹ) +W [S,u](ỹ)−W [Sc,φ](ỹ)− V [S,p](ỹ) = 0 (ỹ ∈Ω) (3)

Let x̃ denote a regular point of ∂Ω (i.e. such that ∂Ω is smooth at x̃). The integral identities
underlying the SGBIE formulation stem from writing the interior boundary traces (i.e. the limiting
forms as ỹ ∈ Ω → x̃ ∈ ∂Ω) of (i) identity (3) and (ii) the associated traction identity obtained
by applying the traction operator w 7→ t[w](ỹ) := σ[w](ỹ) ·n(x̃) to identity (3). The elastic
potentials (2) have the well-known limiting forms [27]

lim
ỹ∈Ω→x̃∈S

V [S,p](ỹ) = V [S,p](x̃), lim
ỹ∈Ω→x̃∈S

W [S,u](ỹ) = −1
2u(x̃) +K[S,u](x̃) (4)

Figure 1: Solid containing a crack
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with K[S,u](x̃) defined by

K[S,u](x̃) = PV

∫

S
T (x, x̃)·u(x) dSx

(the symbol PV indicating that the integral is to be understood in the Cauchy principal value
sense). As a result, the weak form of the interior boundary trace of (3) reads

1
2

〈
u, p̃

〉
S
+
〈
K[S,u], p̃

〉
S
−
〈
W [Sc,φ], p̃

〉
S
−
〈
V [S,p], p̃

〉
S
= 0 (5)

where p̃ is a test function supported on S and
〈
f, g

〉
S
:=

∫
S fg dS denotes the L2(S) scalar product.

Then, the interior boundary traces of the tractions associated to the potentials (2) are given by

lim
ỹ∈Ω→x̃∈S

t
[
V [S,p]

]
(ỹ) = −1

2p(x̃) +K
′[S,p](x̃),

lim
ỹ∈Ω→x̃∈S

t
[
W [S,u]

]
(ỹ) = D[S,u](x̃)

(6)

with the integral operators K
′ and D represented, for any test function ũ, by

〈
K

′[S,p], ũ
〉
S
=〈

K[S, ũ],p
〉
S
(i.e. K′ is the L2(S)-adjoint of K) and [29]

〈
D[S,u], ũ

〉
S
=

∫

S

∫

S
[R∆u]iq(x)Bikqs(r)[R∆ũ]ks(x̃) dSx̃ dSx. (7)

In (7), the surface curl operator R [34] is defined (in component notation) by

[Ru]ks(x̃) = ejfsnjuk,f (x̃) (8)

(with ejfs denoting the permutation symbol), while the weakly singular kernel Bikqs is given by [29]

Bikqs(r) =
1

8π(1− ν)r
[2δqsr̂ir̂k + 2(δikδqs − 2νδisδkq − (1− ν)δiqδks)] (9)

The traction identity derived from (3), written in weak form, then reads

1
2

〈
p, ũ

〉
S
+
〈
D[S,u], ũ

〉
∂Ω

−
〈
D[Sc,φ], ũ

〉
∂Ω

−
〈
K

′[S,p], ũ
〉
∂Ω

= 0 (10)

Assume boundary conditions in the form of traction-free cracks, prescribed tractions pD over
the part Sp of S and prescribed displacements uD over the complementary part Su := S \Sp. The
SGBIE formulation is then obtained by combining (i) equation (5) with test functions p̃ supported
on Su, (ii) equation (10) with test functions ũ supported on Sp, (iii) equation (10) with test
functions ũ = φ̃ supported on Sc, and introducing the boundary data uD,pD into the resulting
identities, to obtain the symmetric governing SGBIE formulation for the unknowns u,p,φ, whose
respective supports are Sp, Su, Sc:〈

V [Su,p], p̃
〉
Su

−
〈
K[Sp,u], p̃

〉
Su

+
〈
W [Sc,φ], p̃

〉
Su

= Fp(p̃)

−
〈
K

′[Su,p], ũ
〉
Sp

+
〈
D[Sp,u], ũ

〉
Sp

−
〈
D[Sc,φ], ũ

〉
Sp

= Fu(ũ)
〈
W

′[Su,p], φ̃
〉
Sc

−
〈
D[Sp,u], φ̃

〉
Sc

+
〈
D[Sc,φ], φ̃

〉
Sc

= Fφ(φ̃)

(11)

with the linear forms Fp,Fu,Fφ defined by

Fp(p̃) =
1
2

〈
uD, p̃

〉
Su

+
〈
K[Su,u

D], p̃
〉
Su

−
〈
V [Sp,p

D], p̃
〉
Su

Fu(ũ) = −1
2

〈
pD, ũ

〉
Sp

−
〈
D[Su,u

D], ũ
〉
Sp

+
〈
K

′[Sp,p
D], ũ

〉
Sp

Fφ(φ̃) =
〈
D[Su,u

D], φ̃
〉
Sc

−
〈
K

′[Sp,p
D], φ̃

〉
Sc
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2.2. Solution strategy for the SGBEM equations

The spaces Vu,Vp,Vφ of admissible boundary traces are defined as

Vu =
{
u∈ H̃1/2(S;R3)

}
, Vφ =

{
φ∈ H̃1/2(Sc;R

3)
}
, Vp =

{
p∈H−1/2(S;R3)

}
,

and ũ, φ̃, p̃ are test displacements, displacement jumps, and tractions belonging to the same
spaces (see e.g. [13] for the definition of these spaces). For Galerkin discretization, natural finite-
dimensional subspaces of Vu, Vφ consist of continuous interpolations of u over Sp and φ over Sc

with a zero trace on the edges ∂Sp, ∂Sc, while piecewise-continuous interpolation of p over Su

define appropriate subspaces of Vp. Note that the data uD appearing in the linear forms Fu and Ft

is actually an arbitrary extension to S of the displacement value prescribed on Su having H1/2(S)
regularity (the corresponding integrals in Fp, Fu, Fφ thus being taken over S), so that the actual
displacement on Sp is u+uD. This allows u and ũ to belong to the same space Vu. The discretized
set of equations arising from (11) is symmetric by virtue of the fact that the same interpolation
spaces are used for the unknowns and trial functions, and has the form

KX = F (12)

where the symmetric matrix K∈R
N×N
sym arises from discretizing the bilinear forms, X∈R

N collects

all unknown DOFs on Sp, Sc and Su, and F∈R
N corresponds to the right-hand side of (11). The

operators K,K′ are in practice reformulated in regularized form [36] to avoid actual evaluation of
principal value integrals.

BEM problems of large size N are solved by means of iterative algorithms such as GMRES [39].
Each GMRES iteration requires one evaluation of KW for given W∈R

N (in practice, W and KW

are two consecutive Krylov vectors). The fast multipole method (FMM) mainly aims at achieving a
computational complexity lower than O(N2) for evaluating KW, taking advantage of the low-rank
approximation of submatrices of K implicitly achieved by the FMM. For the present elastostatic
context, the expected computational complexity of one matrix-vector product evaluation is O(N).

2.3. Fast Multipole algorithm in BEM

The FM-SGBEM is based on a reformulation of the tensorial kernels U ,T ,B into multipole
expansions, which achieve a separation of the variables x and x̃. For this purpose, the relative
position vector r = x−x̃ (Fig. 2) is decomposed into r = x′+r0−x̃′ with r0 = x0−x̃0, x

′ = x−x0

and x̃′ = x̃ − x̃0, where x0, x̃0 are two origins about which the expansions are performed. With
these notations, the multipole expansion of 1/r has the form (see e.g. [47])

1

r
= lim

p→+∞

p∑

n=0

n∑

m=−n

(−1)nRnm(x̃′)

n∑

n′=0

n′∑

m′=−n′

Sn+n′,m+m′(r0)Rn′m′(x′), (13)

where the (complex-valued) solid harmonics Rnm(y), Snm(y) are defined and computable e.g. by
means of known recursive relations [47]. For given poles x0, x̃0, expansion (13) is convergent for
any x0, x̃0 such that:

‖x′‖ < ‖x̃′ − r0‖ and ‖x̃′‖ < ‖x′ + r0‖ (14)

The Kelvin solution (1a,b) can then be rewritten in terms of 1/r and its derivatives:

U(x, x̃) =
1

16πµ(1−ν)

[
I − (3−4ν)(x+ r0 − x̃)⊗∇

]1
r
, (15)
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x0

x̃0

x̃
x r

r0

Figure 2: Decomposition of the position vector: notation

with similar reformulations also available for the other kernels T and B. This allows to take
advantage of (13) for deriving multipole expansions of the elastostatic kernels.

Now, consider two subsets Γ(x0), Γ̃(x̃0) of S, such that (14) holds for any x ∈ Γ(x0) and
x̃∈ Γ̃(x̃0) with suitably chosen poles x0, x̃0 (such subsets are said to be well-separated). Then, the
contribution of surfaces Γ(x0), Γ̃(x̃0) to the bilinear form Bpp(p, p̃), denoted by Bpp(x0, x̃0) and
given by

Bpp(x0, x̃0) :=

∫

Γ(x0)

∫

Γ̃(x̃0)
p(x)·U(x, x̃)·p̃(x̃) dSx̃ dSx, (16)

can be evaluated by replacing the kernel U by its multipole expansion. Indeed, inserting expan-
sion (13), truncated at a finite value of p, into (15) and exploiting the resulting expression of U
in (16), Bpp(x0, x̃0) is found to be given by

Bpp(x0, x̃0) =

p∑

n=0

n∑

m=−n

(−1)n
{
M̃1

nm(x̃0)·L
1
nm(x0) + M̃2

nm(x̃0)L
2
nm(x0)

}
+ ǫp (17)

(where ǫp is the truncation error resulting from using a finite value of p in (13)), in terms of the
multipole moments associated to the pole x̃0:

M̃1
nm(x̃0) =

∫

Γ̃(x̃0)

[
I + (3−4ν)x̃⊗∇

]
Rnm(x̃)·p̃(x) dSx̃

M̃2
nm(x̃0) = (3−4ν)

∫

Γ̃(x̃0)
∇Rnm(x̃)·p̃(x̃) dSx̃ (18)

and the local expansion coefficients

L1
nm(x0) =

n∑

n′=0

n′∑

m′=−n′

Sn+n′,m+m′(r0)
[
M1

n′m′(x0) + r0M
2
n′m′(x0)

]
(19)

L2
nm(x0) =

n∑

n′=0

n′∑

m′=−n′

Sn+n′,m+m′(r0)M
2
n′m′(x0) (20)

defined in terms of the multipole moments associated to the pole x0:

M1
nm(x0) =

∫

Γ(x0)
Rnm(x)p(x) dSx, M2

nm(x0) =

∫

Γ(x0)
Rnm(x)

(
x·p(x)

)
dSx (21)

Similar treatments apply for the other bilinear forms involved in (11). The computation of contri-
butions of type (16) for surface portions Γ(x0), Γ̃(x̃0) which violate the separation conditions (14)
need to be effected using the classical SGBEM quadrature methods; this normally includes all cases
of (coincident, edge-adjacent or vertex-adjacent) singular integrations.

The usual way to define pairs of well-separated boundary portions Γ(x0), Γ̃(x̃0) (so as to take
advantage of (17) and similar expressions for the other SGBEM bilinear forms whenever permitted

6



by the well-separatedness conditions (14)) consists in implementing a hierarchical subdivision of
the region of space containing the boundary of interest ∂Ω into cubic cells. Each non-terminal cell
(or non-leaf cell, in FMM parlance) is then subdivided into 2×2×2 children cubic cells. Poles x0 or
x̃0 are then taken as cell centers, and Γ(x0) or Γ̃(x̃0) as those portions of ∂Ω intersecting the cubic
cell centered at x0 or x̃0. Following this approach, Γ(x0) and Γ̃(x̃0) satisfy the separation condi-
tions (14) whenever the underlying same-level cells are not adjacent. The hierarchical subdivision
aims at producing new pairs of non-adjacent children cells (at a lower level) whenever two parent
cells are adjacent, thus reducing the cases where double integrals need to be computed by “tradi-
tional” (and costlier) methods. These considerations are at the root of the well-known multi-level

fast multipole method, used here and described in more detail (for the present elastostatic SGBEM
context) in [36]. It implicitly recasts the SGBEM system (12) in the form

KFMMX+KnearX = F (22)

where KFMM and Knear gather the contributions to K arising from pairs of cells that are well-
separated or adjacent, respectively. Importantly, the matrix KFMM is neither computed nor stored,
as the iterative solver only exploits matrix-vector products (whose evaluation is in fact the main
computational task effected by the FMM). In contrast, setting up and storing Knear (as a sparse
matrix) is feasible (although not mandatory), see Sec. 3.1.

3. Performance improvement

Before addressing multizone configurations in Sec. 4, we consider two improvements of the FM-
SGBEM aiming at enhancing its computational efficiency. The first one concerns the evaluation
and storage of the near-field influence matrix Knear, taking advantage of its symmetry and sparsity
(Sec. 3.1), while the second one consists in iteratively solving system (12) by means of the flexible
GMRES preconditioned by Knear, aiming to reduce the iteration count entailed by the linear solver
(Sec. 3.2). Numerical experiments on a cracked single-region configuration using this modified
version of the FM-SGBEM are then reported in Sec. 3.3.

3.1. Evaluation and storage of near-field influence terms

Evaluation. The evaluation of all contributions to the near component Knear of the SGBEM gov-
erning matrix must be done using traditional numerical quadrature methods, entailing significant
computational work. To achieve a trade-off between accuracy and speed, the nonsingular dou-
ble element integrals assembled into the Knear(C) are computed using Gaussian quadrature rules
whose density is adjusted according to the spatial arrangement of the two elements involved. An
empirical scheme for this purpose has been proposed in [37], whereby an indicator of severity (IS)
that depends primarily on the ratio of the element size to the inter-element distance is computed:

IS := ⌊( 2.87 + 0.424 cos θ)H/d ⌋, (23)

where ⌊·⌋ denotes the integral part of a number, the element size H is defined (for the quadrilateral
elements employed in this work) as the length of the longest diagonal, while d refers to the distance
between the element centers and θ is the angle between the line joining the element centers and the
normal of the exterior element (Fig.3). The Gaussian rule is then selected according to the value
of IS as shown in Table 1. Even though the cheapest 2×2 Gaussian rule ends up being used for
over 80% of the element quadratures, the solution accuracy is found to be only marginally affected
(compared to using 4×4 Gaussian rules throughout).
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Figure 3: Geometry of a pair of elements

IS 1 2 3 4 5 6 7 8
Number of Gauss points 2×2 3×3 4×4 5×5 6×6 4× (4×4) 4× (5×5) 4× (6×6)

Table 1: Correspondence between the Indicator of Severity (IS) and the quadrature rule over one element [37]

Storage. The near influence contributions arise from pairs of adjacent cells, one of which at least
being a leaf cell. For a given cell C, let A(C) denote the set of same-level cells that are adjacent
to C (with the convention that C ∈ A(C)), noting that A(C) may contain up to 27 cells, and
consider as an example the near-interaction contributions arising from Bpp. Those result from the
BEM discretization of either

∫

S∩C

∑

C′∈A(C)

∫

C′∩S
p(x)·U(x, x̃)·p̃(x̃) dSx̃ dSx (24a)

(if C is a leaf cell) or
∫

S∩C

∑

C′∈A(C), C′ leaf

∫

C′∩S
p(x)·U(x, x̃)·p̃(x̃) dSx̃ dSx (24b)

(if C is not leaf cell). Let Knear(C) gather the contribution to Knear produced by the BEM
discretization of (24a,b) and the corresponding contributions of the other SGBIE bilinear forms
(note that (24b) yields a zero contribution whenever A(C) contains no leaf cell). With these
conventions (and treating all matrices Knear(C) as extended to the whole SGBEM model), one has

Knear =
∑

C

Knear(C)

with the sum going over all nonempty cells C. Each submatrix Knear(C) is symmetric and sparse,
the sparsity resulting from the fact that only contributions from C and some of its adjacent cells
are involved in (24a,b), as sketched in Fig. 4.

To take advantage of the symmetry and sparsity of each Knear(C), a simple storage algorithm
called symmetric compressed sparse row can be used, whereby the upper-triangular part of a
symmetric sparse matrix is stored as three linear arrays AA, JA, IA containing respectively the
non-zero entries, the column indexes and the position in AA of the first non-zero entry of each
row. Summarizing, the adopted storage scheme for Knear facilitates tackling large FM-SGBEM
models with moderate resources: (i) the global Knear is decomposed into cell-wise blocks Knear(C)
of moderate sizes; (ii) each block is efficiently compressed, thus further reducing the required
memory.
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Figure 4: Block-wise population of Knear(C) for cases (24a) (C is a leaf, left) and (24b) (C is not a leaf, right), with
grey squares representing nonzero blocks. There are n+1 cells in A(C) (with n ≤ 26 for 3D problems). In case (24a),
interactions of C with all C′ ∈ A(C) are computed, while in case (24b) only the leaf cells C′ in A(C) are involved.

3.2. Flexible GMRES

The second concern is to reduce the iterative solution time, which is done mainly by using
a preconditioned version of the iterative solver GMRES, in order to lower the iteration count.
Many preconditioning strategies have been proposed, exploiting e.g. incomplete LU (ILU) fac-
torization [41], sparse approximate inverses (SPAI) [32, 11], Calderon identities [43] or on-surface
radiation condition (OSRC) [14]. In addition, the strategy where a low-precision inner GMRES
solver to the near-interaction matrix Knear is used as a right preconditioner is simple to implement
and has proved to be effective when applied to the elastodynamic collocation FM-BEM [8]. This
scheme, which is a particular instance of a flexible GMRES (F-GMRES) solver [38], is adopted in
this work. The major iteration loop produces, as usual with GMRES solvers, a sequence of nested
subspaces of RN that are generated by Krylov vectors Wk such that

KnearWk+1 = KWk

The main computational task involved in the iterative solution algorithm lies in evaluating the
matrix-vector product Yk := KWk (one such evaluation per main GMRES iteration). The pre-
conditioning then consists in solving the above system of equations each time a new Krylov vector
is computed, using in this work a low-precision GMRES solver (the stopping criterion being of the
form ‖KnearWk+1 −Yk‖ ≤ ǫ2‖Yk‖, with typically ǫ2 = 10−1). This inner GMRES solver is itself
enhanced by a simple diagonal preconditioning. The outer GMRES iterations are carried out until
the condition ‖F−BX‖ ≤ ǫ1‖F‖ is met (with typically ǫ1 = 10−3).

3.3. Numerical validation

The numerical code is written in Fortran 90. All numerical experiments reported hereafter are
run on a single-processor PC (3Ghz, 48Gb RAM). In this example, the FM-SGBEM is applied to
an array of nc×nc×nc randomly-oriented penny-shaped cracks of radius rc = 1 (Fig. 5), whose
centers are located at the nodes of a cubic grid with regular spacing dc = 4 oriented along the
coordinate axes. The array is embedded in an unbounded homogeneous domain, characterized by
E = 1, ν = 0.3846 and subjected to a remote tensile load σ0

33 = 1. Each crack is modelled using
48 eight-noded quadrilateral elements. The elements adjacent to the crack front are quarter-point
elements [22]. We compute the COD by solving the following variational traction equation:

Bφφ(φ, φ̃) =
〈
σ0 ·n , φ̃

〉
Sc

∀φ̃∈Vc (25)
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Figure 5: Array of randomly oriented penny-shaped cracks embedded in an unbounded domain (nc = 10).

Mesh N ℓ̄ M iters CPU (s) / iter. CPU (s), GMRES CPU (s), total
GMRES Flex GMRES Flex GMRES F-GMRES GMRES F-GMRES

M1 1,061,928 7 15 18 6 1,569 1,626 28,217 11,155 38,952 21,807
M2 1,585,152 6 30 18 4 2,317 2,349 42,659 11,706 57,067 26,053
M3 2,256,984 7 30 18 4 3,299 3,377 59,004 16,711 84,904 42,424
M4 3,096,000 7 30 18 4 4,576 4,756 79,403 23,542 128,828 73,383

Table 2: Crack array under remote tension: computational data for FM-SGBEM solutions using GMRES or F-
GMRES (ℓ̄ and M respectively denote the octree depth and the maximum number of elements in a leaf cell).

The performance of F-GMRES is tested on four meshes M1, M2, M3, M4, respectively cor-
responding to nc = 14, 16, 18, 20, by applying the FM-SGBEM formulation of (25) in conjunc-
tion with either (i) GMRES left-preconditioned by the diagonal of Knear or (ii) F-GMRES right-
preconditioned by Knear. Since the computation of Knear and F proceeds identically for both
solvers, their respective runtimes are only affected by the iterative solution part of the compu-
tation. Computational data for these tests, given in Table 2, shows that F-GMRES achieves
a significant reduction of the solution times (of up to over 70%) relative to standard GMRES,
through much-reduced lower iteration counts. Moreover, the CPU time per iteration is seen in
both cases to depend linearly on the problem size N , consistently with the well-known linear com-
plexity predicted by theoretical studies of the FMM. For this example, the GMRES iteration count
is observed to be virtually independent on N . This is believed to result from the fact that the
boundary is made of many separated objects (the cracks), making Knear the block diagonal matrix
that treats each crack as isolated in an uncracked infinite medium. Such a matrix is a very good
preconditioner. The very low and model size-independent iteration counts reported in [30] for the
FMM treatment of many-inclusions problems corroborate this interpretation.
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4. FM-SGBEM in multizone problems

4.1. Multizone formulation

Considering a fractured solid Ω made of L homogeneous sub-domains Ωℓ (1≤ ℓ≤L), see Fig. 6.
Each subdomain may contain internal cracks, defined by the open surface Sℓ

c . The boundary Sℓ of
Ωℓ may be partitioned according to

∂Ωℓ = Sℓ
c ∪ Sℓ

u ∪ Sℓ
p ∪ Σℓ,

where Sℓ
u := Su∩∂Ω

ℓ and Sℓ
p := Sp∩∂Ω

ℓ are the contributions of ∂Ωℓ to the Dirichlet and Neumann

surfaces, and Σℓ = ∂Ωℓ\∂Ω is the interfacial part of ∂Ωℓ, i.e. the part shared with the boundaries
of neighboring subregions. Moreover, let Σℓ,m := ∂Ωℓ ∩ ∂Ωm denote the interface shared by two
adjacent subdomains Ωℓ,Ωm (implying, in particular, that Σℓ,m ⊂ Σℓ and Σℓ,m ⊂ Σm). On any
such interface, both the displacement and the traction are unknown.

The governing SGBIE formulation for a given subdomain Ωℓ is obtained from (11) by replacing
Su, Sp, Sc with Sℓ

u∪Σℓ, Sℓ
p∪Σℓ, Sℓ

c , and reads
〈
V [Sℓ

u∪Σℓ,pℓ], p̃
〉
Sℓ
u∪Σ

ℓ −
1
2

〈
uℓ, p̃

〉
Σℓ −

〈
K[Sℓ

p∪Σℓ,uℓ], p̃
〉
Sℓ
u∪Σ

ℓ +
〈
K[Sℓ

c ,φ
ℓ], p̃

〉
Sℓ
u∪Σ

ℓ = F ℓ
p(p̃),

1
2

〈
pℓ, ũ

〉
Σℓ −

〈
K

′[Sℓ
u∪Σℓ,pℓ], ũ

〉
Sℓ
p∪Σ

ℓ +
〈
D[Sℓ

p∪Σℓ,uℓ], ũ
〉
Sℓ
p∪Σ

ℓ −
〈
D[Sℓ

c ,φ
ℓ], ũ

〉
Sℓ
p∪Σ

ℓ , = F ℓ
u(ũ)

〈
K

′[Sℓ
u∪Σℓ,pℓ], φ̃

〉
Sℓ
c
−

〈
D[Sℓ

p∪Σℓ,uℓ], φ̃
〉
Sℓ
c
+
〈
D[Sℓ

c ,φ
ℓ], φ̃

〉
Sℓ
c
= F ℓ

φ(φ̃),

(26)
where uℓ,pℓ,φℓ are the boundary unknowns relative to Ωℓ and with the linear forms F ℓ

p,F
ℓ
u,F

ℓ
φ

defined by

F ℓ
p(p̃) =

1
2

〈
uD, p̃

〉
Sℓ
u
+
〈
K[Sℓ,uD], p̃

〉
Sℓ
u∪Σ

ℓ −
〈
V [Sℓ

p,p
D], p̃

〉
Sℓ
u∪Σ

ℓ

F ℓ
u(ũ) = −1

2

〈
pD, ũ

〉
Sℓ
p
−
〈
D[Sℓ,uD], ũ

〉
Sℓ
p∪Σ

ℓ +
〈
K

′[Sℓ
p,p

D], ũ
〉
Sℓ
p∪Σ

ℓ

F ℓ
φ(φ̃) =

〈
D[S,uD], φ̃

〉
Sc

−
〈
K

′[Sℓ
p,p

D], φ̃
〉
Sc

A global SGBIE formulation for the complete cracked multiregion configuration is then obtained by
invoking the SGBIE systems (26) for all subdomains and enforcing the perfect-bonding transmission
conditions uℓ = um (displacement continuity) and pℓ = −pm (equilibrium) linking the boundary
traces on all interfaces Σℓ,m. The latter task can be effected by either (i) appending explicitly the
set of all transmission conditions to the set of all SGBIE systems (26) or (ii) using the transmission
conditions for eliminating redundant interfacial unknowns.

Figure 6: A multizone fractured domain
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Approach (ii) is followed here (and also in e.g. [21, 18]). For any pair of generic subregion
numbers 1≤ ℓ<m≤L, let the interface Σℓ,m = Σm,ℓ be given a global interface number I(ℓ,m) if
nonempty, i.e. if Ωℓ and Ωm are adjacent (that interface may then be denoted ΣI(ℓ,m)). Moreover,
the normal vector on ΣI(ℓ,m) is conventionally directed from Ωℓ to Ωm. Then, a displacement
field is defined over the whole system of surfaces and interfaces, together with corresponding test
functions ũ, with the provision that u, ũ be continuous between connected surfaces and interfaces
(a requirement achieved in practice by means of C0-conforming boundary elements). Moreover, on
each nonempty interface, one unknown traction field pI(ℓ,m) is defined, together with correspond-
ing test functions ũI(ℓ,m), p̃I(ℓ,m). The unknown and test displacements and tractions on ΣI(ℓ,m)

relative to Ωℓ to Ωm are then taken as

uℓ = um = u |ΣI(ℓ,m) , pℓ = −pm = pI(ℓ,m), (27a)

ũℓ = ũm = ũ |ΣI(ℓ,m) , p̃ℓ = −p̃m = p̃I(ℓ,m). (27b)

The SGBIE formulation for the complete multizone problem is then obtained by (i) expressing all
unknowns and test functions on the interfaces using (27a,b) in terms of the corresponding interface-
bound quantities, and (ii) summing equations (26) written for all subregions. Equations (26) for
a given subdomain are symmetric except for the single-integral terms

〈
uℓ, p̃

〉
Σℓ and

〈
pℓ, ũ

〉
Σℓ .

However, by virtue of (27a,b), the latter can be checked to cancel out with similar contributions
coming from adjacent subdomains, ensuring symmetry of the global multizone SGBIE formulation.

The SGBEM discretization divides all external, crack and interfacial surfaces into boundary
elements. A C0 conforming interpolation of all displacement-like quantities u,φ, ũ, φ̃ is assumed,
so that in particular their continuity is enforced between all connected boundary and interface
components. On the other hand, the interpolation of the traction-like quantities p, p̃ must allow
for discontinuities between connected surface and interface components, in order to permit imple-
mentation of the sign conventions adopted in (27a,b). We note [12] that the set of interfaces in a
multi-region configuration is in general not orientable, i.e. it is not possible to define an orientation
convention for the normal to the interfaces such that the normal to any given subdomain Ωℓ has
a uniform (either inward or outward) orientation over all of ∂Ωℓ, hence the necessity of adopting
conventions such as (27a,b).

The discretized counterpart of equations (26) yields a SGBEM linear system of the form

KℓXℓ = Fℓ (28)

where (i) Xℓ gathers all boundary and interfacial unknowns pertaining to subdomain Ωℓ, (ii) Fℓ

results from the discretization of the linear forms F ℓ
p, F

ℓ
u, F

ℓ
φ, and (iii) the matrix Kℓ is symmetric

after disregarding the contributions from
〈
uℓ, p̃

〉
Σℓ and

〈
pℓ, ũ

〉
Σℓ , known to cancel out in the

global SGBEM system. The latter is then obtained by simply summing all equations (28), wherein
matrices and vectors are understood as being extended to the whole multizone SGBEM model by
means of appropriate zero-padding:

KX = F, with K :=

L∑

ℓ=1

Kℓ, F :=

L∑

ℓ=1

Fℓ (29)

4.2. Fast multipole treatment of the multizone problem

Equation (29) indicates that the single-domain FM-SGBEM can be used as a building block for
solving multizone problems, by the simple expedient of looping over the subdomains, evaluating
for each Ωℓ the contribution Fℓ to F (at the initialization stage of GMRES) and the contribution
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Algorithm 1 Multizone FM-SGBEM

1 – Initialization:

(a) Import geometry and parameters.
(b) Create an octree for the complete multizone configuration.
(c) Compute the right-hand side F of (29) using FMM:

Initialization: F = 0;
Loop over ℓ = 1, . . . L:

Compute Fℓ for each subdomain, set F := F+ Fℓ (assemblage)
End

(d) For each ℓ = 1, . . . L, compute Kℓ,near.
2 – Iterative solution:

(a) Initialize family of Krylov vectors: set W1 = F;
(b) GMRES main loop: set k=1; while ‖KXk − F‖ ≥ ǫ1 (with typically ǫ1 =10−3),

(i) Compute new Krylov vector Wk+1:
Initialization: Yk = 0;
Loop over ℓ = 1, . . . L:

Compute Yℓ
k := Kℓ,FMMWℓ

k using FMM;
Add near contribution: Yℓ

k := Yℓ
k +Kℓ,nearWℓ

k;
Accumulate: Yk := Yk +Yℓ

k.
End
Solve KnearWk+1 = Yk using inner GMRES loop (preconditioning)

(stopping criterion: ‖KnearWk+1 = Yk‖ ≤ ǫ2, with typically ǫ2 =10−1)
(ii) Find Xk ∈ Vect(W1, . . .Wk) such that ‖KXk − F‖ → min
(iii) Set k := k + 1

3 – Post-processing

Yℓ
k := KℓWℓ

k to Yk := KWk (when GMRES requires the (k+1)-th Krylov vector Wk+1), with
the global quantities F,Yk computed using an assembly-like procedure. Based on this observation,
the main steps of the multizone FM-SGBEM are as shown in Algorithm 1. The Krylov vectors
W̃k used in the inner GMRES loop (preconditioning step) are computed as

W̃1 = Yk, W̃k+1 =
L∑

ℓ=1

Kℓ,nearW̃ℓ
k,

with the summation again performed by means of a loop over the subregions and accumulation.
The memory usage of multizone FM-SGBEM is similar to that of the single-domain counterpart.

Near interactions are stored in sparse matrices Kℓ,near; multipole moments are allocated in tem-
porary spaces (corresponding to octree cells) that are freed when switching to another subdomain
for performing the next FMM computation in the course of a loop over subdomains.

5. Numerical examples

The proposed multizone and multicrack SGBEM formulation is now tested on four examples.
The first two examples (Secs. 5.1 and 5.2) are simple correctness tests on moderate-scale models.
The last two examples (Secs. 5.3 and 5.4) demonstrate the formulation on large-scale BEM models.
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Figure 7: Three-layer spherical envelope under internal uniform pressure: r1 = 1, r2 = 2, r3 = 3, r4 = 4, materials:
E1 =1, E2 =2, E3 =3, ν1 = ν2 = ν3 =0.3.

position r1 r2 r3 r4
relative error (%) on ur 0.50 0.90 0.92 0.92
relative error (%) on tr = σrr — -0.19 -0.49 —

Table 3: Spherical envelope under internal pressure: relative solution errors on surfaces and interfaces

5.1. Spherical envelope under internal pressure

The first numerical test consists of a spherical envelope made of three concentric material layers,
of internal radius a and external radius b. The constitutive material in each layer is elastic isotropic
(with material parameters given in Fig. 7). The internal surface r= r1 = a is subjected to a normal
uniform pressure p = 1, the outer surface r= r4 = b is traction-free, and perfect bonding is assumed
at the material interfaces r= r2 and r= r3. This simple test has an analytical solution, which for
the radial displacement ur in the i-th layer is of the form ur(r) = Air+Bir

−2, the constants Ai, Bi

being determined by satisfying the boundary conditions σrr(a) = −p, σrr(b) = 0 and the perfect
bonding conditions at the interfaces r= r2 and r= r3.

In this example, the two external surfaces and the two interfaces are modelled using a total
of 1047 eight-noded quadrilateral elements, leading to 13.689 unknowns (9.447 displacement un-
knowns and 4.242 traction unknowns). The FM-SGBEM analysis converges after 18 iterations. A
comparison of the mean values ur and tr computed from the radial displacements and tractions
at all nodes on the same surface or interface to the corresponding exact values of ur(ri) and tr(ri)
(Table 3) shows solution errors that are consistent with the accuracy ǫ1 =10−3 chosen for GMRES.

5.2. Bi-material fractured cylinder

In this example, a simple bi-material cylinder (176 four-noded quadrilateral elements) con-
taining a small internal crack is used for verifying the basic multi-domain formulation. Boundary
conditions and materials properties are defined in Fig. 8a. The crack, located inside zone 2, is
elliptical, with major semi-axis a and minor semi-axis b; it is modelled using 48 quarter-point
eight-noded quadrilateral elements. The crack size and position are chosen such that the COD
φ is well approximated by the known analytical solution for the same crack buried in an infinite
homogeneous medium. The mode-I component of the latter is given (see [42], Sec. 3.8) by

φ3 =
2(1− ν)σ0

33

µ

b

E(k)

√
1−

x2

a2
−

y2

b2
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(where E(k) is the complete elliptic integral of the second kind and k is defined by k2 =1−b2/a2).
Numerical values of φ3 along the minor semi-axis are seen in Fig. 8b to agree well with the above
analytical solution for several values of b/a.

(a) (b)

Figure 8: (a) Bi-material fractured cylinder (b) ∆u3 along the minor semi-axis of the elliptical crack, for several
values of the aspect ratio b/a

5.3. Bi-material cube with crack array

We study now a bi-material cube occupying the region 0 ≤ x1, x2, x3 ≤ 100, with the planar
bimaterial interface defined by x3 = 50. The cube is clamped on the bottom face x3 = 0 and
subjected to a uniform tensile load p = 1 on the top face x3 = 100 (Fig. 9a). The external
boundary of the cube is modelled with 4.400 four-noded quadrilateral elements. The material
properties are set to E1 = 1000, ν1 = 0, 15 (zone 1) and E2 = 2000, ν2 = 0.3 (zone 2). The bi-
material cube contains many cracks, located on a cubic grid of step dc whose center coincides with
the cube center. We consider three crack arrays 1,2,3, respectively containing nc = 103, 123, 143

penny-shaped cracks of unit radius, with dc = 10, 8, 6. The truncation parameter p in (13) is set
to 7. The maximal number of elements in a leaf is 30, the GMRES restart parameter is set to 50,
and the stopping tolerance for F-GMRES is ǫ1 = 10−3.

Table 4 shows computational data for FM-SGBEM analyses run on the three meshes. The CPU
times per iteration grows linearly with the problem size N , consistently with the expected behavior

Mesh N ℓ̄ M CPU(s), preparation iters CPU(s)/iter CPU(s), total
1 401,412 7 30 5,457 79 561 50,986
2 683,148 7 30 12,197 66 1,204 95,584
3 1,061,928 7 30 11,903 102 1,872 206,114

Table 4: Bi-material cube with crack array: computational data (with ℓ̄ and M defined as in Table 2).

15



(a) (b)

Figure 9: (a) Bi-material cube under uniform tensile load (b) Mesh 1: cube containing a 10x10x10 crack array

of the elastostatic FM-SGBEM algorithm. Nevertheless, one notes that the computation times for
this example are significantly larger than those recorded for the unbounded single-zone problem of
Sec. 3.3. This is because, by contrast with the unbounded fractured geometry involving only the
bilinear form Bφφ, equation (29) for the present bi-material bounded configuration involves many
other terms, which must all be evaluated. Furthermore, uneven spatial distribution of cracks may
lead to leaf cells being located next to highly populated cells, increasing the work and memory
required by near interactions.

5.4. Cube with crack and inclusion arrays

We now turn to the application of our method to composite materials made of inclusions
embedded in a matrix. Configurations involving a cube of side a, subjected to a tensile load
p = 1 on its top face while clamped on its bottom face, and containing a system of 4 × 4 × 4
spherical inclusions of radius ri, are considered (Fig. 10). The inclusion centers are located on
a regular cubic grid of step di. The matrix material characteristics are Esolid = 1, νsolid = 0, 3,
while the material parameters of the inclusions are randomly chosen such that Einclusion = 1− 10,
νinclusion = 0, 1− 0, 4. In addition, the solid contains a system of n3

c internal penny-shaped cracks.
These cracks are oriented randomly in space, while their centers are distributed on a regular cubic
grid of step dc. Each crack is either penny-shaped (with radius ξrc) or elliptical (with major
semi-axis ξac and minor semi-axis ξbc), where ξ ∈ [0.5, 1] is a scaling coefficient chosen randomly
in order to vary the size of each crack and inclusion. The geometrical parameters are set to
di = 20, ri = 4 for the inclusion array, rc = 1, ac = 1, bc = 0.5 for the crack array, and a = 80 for
the external cube size; moreover, four different crack arrays are considered, with nc = 8, 10, 12, 14
and corresponding values of dc as given in Table 5. Each geometrical setting ensures that the cracks
and inclusions are well-separated from each other and from the external boundary. The external
surface of the cube and each inclusion boundary are made of 600 and 151 four-noded quadrilateral
elements respectively. The crack is meshed with 48 eight-noded quadrilateral elements. The
SGBEM equations (28) for each inclusion subdomain considered separately involve too few DOFs
for the fast multipole treatment to be effective. Therefore, they are assembled in the traditional
way, whereas the fast multipole treatment is of course applied to the SGBEM equations (28) relative
to the cracked matrix subdomain, which involves the totality of the DOFs.
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(a) (b)

Figure 10: (a) Model of fractured composite material (4x4x4 spherical inclusions & 8x8x8 cracks) (b) Interior view
of cracks and inclusions

Table 5 shows computational data for FM-SGBEM analyses run on the four configurations.
The CPU time per iteration is again seen to depend approximately linearly on the problem size
N , while low outer iteration counts are achieved in all cases, for reasons similar to those given for
the results of Table 2.

Mesh nc dc N M ℓ̄ CPU(s), preparation iters CPU(s)/iter CPU(s), total
1 8 10 258,702 5 30 4,182 16 823 18,219
2 10 7 447,558 8 30 6,165 15 1,274 26,832
3 12 6 729,294 8 30 24,112 16 2,353 63,666
4 14 5 1,122,468 6 30 15,982 14 4,404 83,180

Table 5: Cube with crack and inclusion arrays: computational data (with ℓ̄ and M defined as in Table 2).

6. Conclusions and outlook

In this article, the formulation and implementation of a multi-level fast multipole SGBEM
(FM-SGBEM) for piecewise-homogeneous elastic solid with cracks, applicable for arbitrary ge-
ometries and boundary conditions, was presented. Additional improvements of the FM-SGBEM
performance were proposed and evaluated. Numerical results on test problems for BE models
involving up to 3× 106 unknowns were discussed. They show the applicability of the proposed
FM-SGBEM to large-scale multi-zone and multi-crack configurations and in particular follow the
predicted desirable trends of the elastostatic FM-SGBEM, such as a O(N) complexity per iteration.

Future work includes extensions to more complex configurations involving surface-breaking or
interface cracks, and the implementation of crack propagation algorithms. Practical modeling
applications will address e.g. multi-layer road structures.
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