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Abstract

In this paper, we study the numerical approximation of a system of par-

tial differential equations describing the corrosion of an iron based alloy

in a nuclear waste repository. In particular, we are interested in the con-

vergence of a numerical scheme consisting in an implicit Euler scheme in

time and a Scharfetter-Gummel finite volume scheme in space.

Key words : finite volume scheme, corrosion model, convergence analy-

sis, drift-diffusion system

1 Introduction

1.1 General framework of the study

At the request of the French nuclear waste management agency ANDRA, investi-
gations are conducted to evaluate the long-term safety assessment of the geological
repository of high-level radioactive waste. The concept of the storage under study
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in France is the following: the waste is confined in a glass matrix, placed into cylin-
drical steel canisters and stored in a claystone layer at a depth of several hundred
of meters. The long-term safety assessment of the geological repository has to take
into account the degradation of the carbon steel used for waste overpacks, which is
mainly caused by generalized corrosion processes.

In this framework, the Diffusion Poisson Coupled Model (DPCM) has been pro-
posed by C. Bataillon et al. in [2] in order to describe corrosion processes at the
surface of the steel canisters. It assumes that the metal is covered by a dense oxide
layer which is in contact with the claystone. The model describes the evolution of
the dense oxide layer. In most industrial cases, the shape of metal pieces is not flat
(container or pipe). But the oxide layer is very thin compared to the size of the
exposed surface. In practice, the available data are averaged over the whole exposed
surface and the microscopic or even macroscopic heterogeneities of materials are not
taken into account. For these reasons, a 1D modeling has been proposed in order to
describe the real system.

The oxide layer behaves as a semiconductor: charge carriers, like electrons,
cations Fe3+ and oxygen vacancies, are convected by the electric field and the elec-
tric potential is coupled to the charge densities. The DPCM model is then made
of drift-diffusion equations on the charge densities coupled with a Poisson equation
on the electric potential. The boundary conditions induced by the electrochemical
reactions at the interfaces are Robin boundary conditions. Moreover, the system
includes moving boundary equations.

Numerical methods for the approximation of the DPCM model have been de-
signed and studied by Bataillon et al in [1]. Numerical experiments with real-life
data shows the ability of the model to reproduce expected physical behaviors. How-
ever, the proof of convergence of the scheme is challenging. In this paper, we will
focus on a simplified model with only two species: electrons and cations Fe3+. As
the displacement of the interfaces in the full DPCM model is due to the current
of oxygen vacancies, which are not taken into account in this study, the simplified
model will be posed on a fixed domain. These simplifications will permit us to show
how to deal with the boundary conditions for the numerical analysis of the scheme
introduced in [1].

1.2 Presentation of the model

In this paper we focus on the simplified corrosion model already introduced in [1, 10].
The unknowns of the model are the densities of electrons N and cations Fe3+ P and
the electric potential Ψ. The current densities are respectively denoted by JN and
JP ; they contain both a drift and a diffusion part. Therefore, the model consists in
two drift-diffusion equations on the densities, coupled with a Poisson equation on
the electric potential. Let T > 0, the model is written as

∂tP + ∂xJP = 0, JP = −∂xP − 3P∂xΨ, in (0, 1)× (0, T ), (1a)

ε∂tN + ∂xJN = 0, JN = −∂xN +N∂xΨ, in (0, 1)× (0, T ), (1b)

−λ2∂2
xxΨ = 3P −N + ρhl, in (0, 1)× (0, T ), (1c)
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where λ is the rescaled Debye length and ρhl the net charge density of the ionic
species in the host lattice which is constant. The parameter ε stands for the ratio
of the mobility coefficients of electrons and cations, then ε� 1.

As the equations (1a) and (1b) for charge carriers densities have the same form,
we will use the following synthetical form:

εu∂tu+ ∂xJu = 0, Ju = −∂xu− zuu∂xΨ, in (0, 1)× (0, T ). (2)

For u = P,N , the charge numbers of the carriers are respectively zu = 3,−1 and we
respectively have εu = 1, ε.

Let us now focus on the boundary conditions. Charge carriers are created and
consumed at both interfaces x = 0 and x = 1. The kinetics of the electrochemical
reactions at the interfaces are described by Butler-Volmer laws. It leads to Robin
boundary conditions on N and P . As in [1], we assume that the boundary conditions
for P and N have exactly the same form. Therefore, for u = P,N , they are written
as

−Ju = r0
u(u,Ψ) on {x = 0} × (0, T ), (3a)

Ju = r1
u(u,Ψ, V ) on {x = 1} × (0, T ), (3b)

where V is a given applied potential (we just consider here the potentiostatic case)
and r0

u and r1
u are linear and monotonically increasing functions with respect to their

first argument. More precisely, due to the electrochemical reactions at the interfaces,
we have, for u = P,N :

r0
u(s, x) = β0

u(x)s− γ0
u(x), (4a)

r1
u(s, x, V ) = β1

u(V − x)s− γ1
u(V − x), (4b)

where the functions (βiu)i=0,1, (γ
i
u)i=0,1 are given functions. These functions depend

on many parameters: the interface kinetic coefficients (mi
u, k

i
u)i=0,1, the positive

transfer coefficients (aiu, b
i
u)i=0,1, the maximum occupancy for octahedral cations in

the lattice Pmax and the electron density in the state of metal Nmax. For u = P,N ,
the functions (βiu)i=0,1, (γ

i
u)i=0,1 are written

βiu(x) = mi
ue
−zubiux + kiue

zuaiux, i = 0, 1, (5a)

γ0
u(x) = m0

uu
maxe−zub

0
ux, γ1

u(x) = k1
uu

maxezua
1
ux. (5b)

Throughout the paper, we will assume that the interface kinetic coefficients and
the transfer coefficients are given constants which satisfy

m0
u, k

0
u,m

1
u, k

1
u > 0, for u = P,N, (6)

a0
u, b

0
u, a

1
u, b

1
u ∈ [0, 1], for u = P,N. (7)

We also assume that ρhl does not depend on x and that

3Pmax −Nmax + ρhl = 0. (8)
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Indeed, in the applications (see [2]), the scaling of the model leads to ρhl = −5,
Pmax = 2 and Nmax = 1, so that the relation (8) is satisfied.

The boundary conditions for the Poisson equation take into account that the
metal and the solution can be charged because they are respectively electronic and
ionic conductors. Such an accumulation of charges induces a field given by the Gauss
law. These accumulations of charges depend on the voltage drop at the interface
given by the usual Helmholtz law which links the charge to the voltage drop through
a capacitance. The parameters ∆Ψpzc

0 and ∆Ψpzc
1 are the voltage drop corresponding

to no accumulation of charges respectively in the metal and in the solution. Finally,
the boundary conditions for the electric potential are written:

Ψ− α0∂xΨ = ∆Ψpzc
0 , on {x = 0} × (0, T ), (9a)

Ψ + α1∂xΨ = V −∆Ψpzc
1 , on {x = 1} × (0, T ), (9b)

where α0 and α1 are positive dimensionless parameters arising in the scaling.
The system is supplemented with initial conditions, given in L∞(0, 1):

u(x, 0) = u0(x), for u = P,N. (10)

Moreover, we assume that these initial conditions satisfy

0 6 u0 6 umax, a.e. on (0, 1), for u = P,N. (11)

In the remainder of the paper we will denote by (P) the corrosion model defined
by (1), (4), (5), (9) and (10). Let us first note that the system of equations (1)
is the so-called linear drift-diffusion system. This model is currently used in the
framework of semiconductors device modeling (see for instance [36, 27, 33, 32]) or
plasma physics (see [14]). In this context the drift-diffusion model has been widely
studied, from the analytical as from the numerical point of view. Let us refer
to the pioneering work by Gajewski [19] about existence and uniqueness results.
Further developments have been done in [20, 18, 25, 16]. The long-time behavior
of solutions to the drift-diffusion system via an entropy method has been studied in
[21, 26] and the stability at the quasi-neutral limit or at the zero-electron-mass limit
in [23, 28, 29, 30]. Different methods have also been proposed for the approximation
of the drift-diffusion system, and studied, see for instance [11, 12] for finite volume
schemes, [34] for a mixed finite volume scheme and [7, 6, 8, 15] for finite element
and mixed exponential fitting schemes.

In the modeling of semiconductor devices, the boundary conditions are generally
mixed Dirichlet/Neumann boundary conditions (corresponding to the ohmic con-
tacts and the insulated boundary segments of the device). Then, the originality of
the corrosion model described in this paper lies in the boundary conditions (4), (9)
which are of Robin type, and induce an additional coupling between the equations.
Let us define the notion of weak solution to the corrosion model (P).

Definition 1.1 We say that (P,N,Ψ) ∈ L2(0, T ;H1(0, 1))∩L∞([0, T ]× [0, 1]) is a

International Journal on Finite Volumes 4
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weak solution of (P), if for all ϕ in L2(0, T ;H1(0, 1)),

− εu
∫ T

0

∫ 1

0
u∂tϕdxdt− εu

∫ 1

0
u0(x)ϕ(0, x)dx−

∫ T

0

∫ 1

0
(−∂xu− zuu∂xΨ) ∂xϕdxdt

+

∫ T

0

[(
β1
u(V −Ψ(t, 1))u(t, 1)− γ1

u(V −Ψ(t, 1))
)
ϕ(t, 1)

+
(
β0
u(Ψ(t, 0))u(t, 0)− γ0

u(Ψ(t, 0))
)
ϕ(t, 0)

]
dt = 0, for u = P,N, (12)

and

λ2

∫ T

0

∫ 1

0
∂xΨ∂xϕdxdt−

∫ T

0

λ2

α1
(V −Ψ(t, 1)−∆Ψpzc

1 )ϕ(t, 1)dt

+

∫ T

0

λ2

α0
(Ψ(t, 0)−∆Ψpzc

0 )ϕ(t, 0)dt =

∫ T

0

∫ 1

0
(3P −N + ρhl)ϕdxdt. (13)

In [10], Chainais-Hillairet and Lacroix-Violet have proved, under some assump-
tions on the chemical and physical parameters, the existence of a weak solution to
(P). This result is obtained by passing to the limit in an approximate solution given
by a semi-discretization in time. Convergence of the sequence of approximate solu-
tions is ensured by some estimates which yield compactness. In the current article,
we apply the same ideas as in [10] to a full discretization of (P) presented below.

1.3 Presentation of the numerical scheme

Some numerical schemes for the approximation of (P) have been proposed by Batail-
lon et al in [1]. Their stability analysis is fulfilled but no convergence results are
given. Here we are interested in the convergence analysis of the fully implicit scheme
introduced in [1]. It is a backward Euler scheme in time and a finite volume scheme
in space, with Scharfetter-Gummel approximation of the convection-diffusion fluxes.

Let us consider a mesh T for the domain [0, 1]. It consists in a family of mesh

cells denoted by
(
xi− 1

2
, xi+ 1

2

)
for i ∈ J1; IK, with

0 = x1/2 < x3/2 < · · · < xI−1/2 < xI+1/2 = 1.

Then, we define xi =
xi+1/2 + xi−1/2

2
, for i ∈ J1; IK and x0 = x1/2 = 0, xI+1 =

xI+1/2 = 1. Moreover, we set

hi = xi+ 1
2
− xi− 1

2
, ∀ i ∈ J1; IK,

hi+ 1
2

= xi+1 − xi, ∀ i ∈ J0; IK.

The mesh size is defined by h = max {hi, i ∈ J1; IK}.
Let us denote by ∆t the time step. We will assume that there exists K ∈ N such

that K∆t = T (either, we would define K as the integer part of T/∆t). We consider
the sequence (tk)06k6K such that tk = k∆t.

International Journal on Finite Volumes 5
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The scheme under study in this paper is written as follows. For i ∈ J1; IK,
k ∈ J0;K − 1K,

−λ2

(
dΨk+1

i+ 1
2

− dΨk+1
i− 1

2

)
= hi

(
3P k+1

i −Nk+1
i + ρhl

)
, (14a)

εuhi
uk+1
i − uki

∆t
+ Fk+1

u,i+ 1
2

−Fk+1
u,i− 1

2

= 0, for u = P,N, (14b)

with the numerical fluxes defined for i ∈ J0; IK by

dΨk+1
i+ 1

2

=
Ψk+1
i+1 −Ψk+1

i

hi+ 1
2

, (15a)

Fk+1
u,i+ 1

2

=

B

(
zuhi+ 1

2
dΨk+1

i+ 1
2

)
uk+1
i −B

(
−zuhi+ 1

2
dΨk+1

i+ 1
2

)
uk+1
i+1

hi+ 1
2

, for u = P,N,

(15b)

where B is the Bernoulli function :

B(x) =
x

ex − 1
, ∀x 6= 0 and B(0) = 1.

We supplement the scheme with the discretization of the boundary conditions: for
k ∈ J0;K − 1K,

Ψk+1
0 − α0dΨk+1

1
2

= ∆Ψpzc
0 , (16a)

Ψk+1
I+1 + α1dΨk+1

I+ 1
2

= V −∆Ψpzc
1 , (16b)

−Fk+1
u, 1

2

= β0
u

(
Ψk+1

0

)
uk+1

0 − γ0
u

(
Ψk+1

0

)
for u = P,N, (16c)

Fk+1
u,I+ 1

2

= β1
u

(
V −Ψk+1

I+1

)
uk+1
I+1 − γ

1
u

(
V −Ψk+1

I+1

)
for u = P,N, (16d)

and of the initial conditions: for i ∈ J1; IK,

u0
i =

1

hi

∫ x
i+1

2

x
i− 1

2

u0(x) dx, for u = P,N. (17)

The scheme (14)-(17) will be denoted in what follows by (S).

Remark 1 The choice of the Bernoulli function for B corresponds to a Scharfetter-
Gummel approximation of the convection-diffusion fluxes. These numerical fluxes
have been introduced by Il’in in [24] and Scharfetter and Gummel in [35] for the
numerical approximation of the drift-diffusion system arising in semiconductor mod-
elling. Lazarov, Mishev and Vassilevsky in [31] have established that they are
second-order accurate in space. Dissipativity of the Scharfetter-Gummel scheme
with a backward Euler time discretization for the classical drift-diffusion system was
proved in [21] and Chatard in [13]. One crucial property of the Scharfetter-Gummel
fluxes is that they generally preserve steady-states.

International Journal on Finite Volumes 6
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Remark 2 The scheme (S) is written on a nonuniform discretization of the domain
[0, 1]. Indeed, the numerical experiments done in [9] for the steady-state of (S) show
some boundary layers for the density profiles. Therefore, it seems relevant to use a
mesh which is refined near the boundaries. We will use a Tchebychev mesh, already
introduced in [9] and [1].

For the discretization in time, it is easier to deal with a fixed time step when
studying the convergence. However, it would be also possible to introduce a variable
time step. Adaptive time step strategy could also be taken into account, see [1].

1.4 Main results

The aim of this paper is to prove the convergence of a sequence of approximate
solutions obtained with the numerical scheme (S) to a solution of (P).

To this end, we first need to establish the existence of a solution to the scheme.
Indeed, at each time step k ∈ J0;K − 1K, the vector of discrete unknowns
(Pk+1,Nk+1,Ψk+1), with Pk+1 = (P k+1

i )06i6I+1, Nk+1 = (Nk+1
i )06i6I+1 ,

Ψk+1 = (Ψk+1
i )06i6I+1, is defined as a solution to the nonlinear system of equa-

tions (14)–(16). In [1], the existence of a solution has been proved only in the case
where ε > 0. As stated in Proposition 1.1, the result holds even if ε = 0.

Proposition 1.1 Let ε ≥ 0, α0 > 0, α1 > 0 and the hypotheses (6), (7), (8), (11)
hold. Let us assume that

− 1

3a0
P

(
1 + log

(
α0a

0
Pk

0
P

))
6 ∆Ψpzc

0 6
1

a0
N

(
1 + log

(
α0a

0
Nk

0
N

))
, (18)

− 1

b1N

(
1 + log

(
α1b

1
Nm

1
N

))
6 ∆Ψpzc

1 6
1

3b1P

(
1 + log

(
α1b

1
Pm

1
P

))
. (19)

Then there exists a solution (Pk+1,Nk+1,Ψk+1)0≤k≤K−1 to the fully implicit scheme
(S). Moreover, it satisfies the following stability property:

0 6 P ki 6 P
max and 0 6 Nk

i 6 N
max, ∀i ∈ J1; I + 1K, ∀k ∈ J0;KK. (20)

Based on the vector of discrete unknowns, we can define some approximate
solutions, which are piecewise constant function in space and time, as it is usual
for finite volume approximations. For a given mesh T of size h and a given ∆t, we
define, for w = N,P or Ψ,

wkh =
I∑
i=1

wki 1(xi−1/2,xi+1/2) + wk01{x=0} + wkI+11{x=1}, for k ∈ J0;KK, (21)

wh,∆t =
K−1∑
k=0

wk+1
h 1[tk,tk+1). (22)

For a sequence of meshes and time steps (Tm,∆tm)m such that hm → 0 and
∆tm → 0 as m → +∞, we can define a sequence of approximate solutions
(Pm, Nm,Ψm)m with wm = whm,∆tm for w = P,N or Ψ. The main result of the
paper is the convergence of such a sequence of approximate solutions to a weak
solution of the corrosion model (P). It is given in Theorem 1.1.

International Journal on Finite Volumes 7
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Theorem 1.1 Let ε > 0, α0 > 0, α1 > 0. Assuming (6), (7), (8), (11), (18) and
(19), there exist P,N and Ψ ∈ L2(0, T ;H1(0, 1)) such that, up to a subsequence, as
m→ +∞,

Pm → P strongly in L2(0, T ;L2(0, 1)),

Nm → N strongly in L2(0, T ;L2(0, 1)),

Ψm → Ψ strongly in L2(0, T ;L2(0, 1)),

where (P,N,Ψ) is a weak solution of (P) in the sense of Definition 1.1.

As it is well known in the finite volume framework (see for instance [17]), the proof
of Theorem 1.1 will be based on estimates satisfied by the approximate solutions
and on compactness results. Due to the particular boundary conditions, we also
need some additional results on the convergence of traces. They will be obtained
following the ideas of [5].

The paper is organized as follows. Section 2 is devoted to the proof of Proposi-
tion 1.1 and also to the proof of discrete L2(0, T,H1)-estimates on the approximate
densities and on the approximate potential. Then, in Section 3, we establish the
compactness of the sequences of approximate solutions. We also obtain a conver-
gence result for the traces on the boundaries. In Section 4 we conclude the proof of
Theorem 1.1 by passing to the limit in the numerical scheme. Finally, Section 5 is
devoted to the presentation of some numerical experiments.

2 Existence result and discrete L2(0, T,H1)-estimates

2.1 Proof of Proposition 1.1

The proof of Proposition 1.1 for ε > 0 has already been done in [1]. Then, we only
prove the result for ε = 0. To this end, we follow the ideas of [1] and [4].

Letting µ > 0, we introduce a mapping T kµ : RI+2× RI+2 → RI+2× RI+2 such

that T kµ (P,N) = (P̂ , N̂). This mapping is based on a linearization of the scheme ; it
is defined in two successive step. First, we compute Ψ as the solution to the linear
system

−λ2
(

dΨ
i+ 1

2

− dΨ
i− 1

2

)
= hi (3Pi −Ni + ρhl) , ∀i ∈ J1; IK,

with a definition of the numerical fluxes dΨi+ 1
2

analog to (15a) and boundary condi-

tions similar to (16a)-(16b). The matrix of the linear system is obviously invertible
and Ψ is uniquely defined.

Then, we define P̂ and N̂ as the solution to the linear systems

hi
∆t

((
1 +

µ

λ2

)
P̂i −

µ

λ2
Pi − P ki

)
+ FP, i+ 1

2
−FP, i− 1

2
= 0, ∀i ∈ J1; IK,

hi
∆t

µ

λ2

(
N̂i −Ni

)
+ FN, i+ 1

2
−FN, i− 1

2
= 0, ∀i ∈ J1; IK,

International Journal on Finite Volumes 8
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with a definition of the numerical fluxes Fu, i+ 1
2

analog to (15b) and boundary con-

ditions similar to (16c)-(16d). As shown for instance in [1], the matrices defined at
this step are M-matrices. Therefore, they are invertible and, as in [1], we can deduce
that T kµ preserves the set

K =
{

(P, N) ∈ RI+2 × RI+2; 0 6 Pi 6 P
max, 0 6 Ni 6 N

max, ∀0 6 i 6 I + 1
}
,

as long as (18)-(19) are satisfied and ∆t verifies:

∆t 6 µmin

(
1

9Pmax
,

1

Nmax

)
. (23)

Finally, T kµ is a continuous mapping from RI+2× RI+2 to itself which preserves

the set K. Thanks to Brouwer’s Theorem, we conclude that T kµ has a fixed point in
K. This fixed point with the corresponding Ψ defines a solution to (S) with ε = 0
at time step k+ 1. Since µ is an arbitrary constant, we can choose it such that (23)
is verified and a solution to the scheme (S) satisfies (20) without any condition on
∆t.

2.2 Notations and preliminary results

In order to prove Theorem 1.1, we need to define some functional sets and norms
and to establish some properties. This is the goal of this section.

First of all, let us define two sets of functions.

Definition 2.1 Let T be a mesh of size h and ∆t a discretization time step. We
first define HT the set of piecewise constant functions in space as

HT =
{
wh : [0, 1] 7→ R | ∃(wi)0≤i≤I+1 ∈ RI+2 such that

wh(x) =
I∑
i=1

wi1(xi−1/2,xi+1/2)(x) + w01{x=0}(x) + wI+11{x=1}(x)

}
, (24)

Then, we define the set of piecewise constant functions in space and time as

HT ,∆t =
{
wh,∆t : [0, 1]× [0, T ] 7→ R | ∃(wk+1

h )0≤k≤K−1 ∈ (HT )K such that

wh,∆t(x, t) =

K−1∑
k=0

wk+1
h (x)1[tk,tk+1)(t)

}
. (25)

Then, denoting by ‖ · ‖0 the usual L2(0, 1)-norm, we remark that

‖wh‖0 =

(
I∑
i=1

hiw
2
i

)1/2

∀wh ∈ HT .

International Journal on Finite Volumes 9
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Moreover, we define some norms on HT and HT ,∆t, which are discrete counterparts
of H1(0, 1), H−1(0, 1) and L2(0, T,H1(0, 1))-norms:

‖wh‖1, T =

(
I∑
i=0

(wi+1 − wi)2

hi+ 1
2

+ w2
0 + w2

I+1

) 1
2

∀wh ∈ HT ,

‖wh‖−1,2, T = max

{∫ 1

0
whvh dx, vh ∈ HT and ‖vh‖1, T 6 1

}
∀wh ∈ HT ,

‖wh,∆t‖0;1,T =

(
K−1∑
k=0

∆t‖wk+1
h ‖21, T

) 1
2

∀wh,∆t ∈ HT ,∆t.

As shown in [9], for all wh ∈ HT , we have:

(wi)
2 6 2‖wh‖21, T ∀i ∈ J1; IK, (26)

and, as a direct consequence, the following discrete Poincaré inequalities:

‖wh‖0 6
√

2‖wh‖1, T ∀wh ∈ HT . (27)

Finally, we end this section with some properties satisfied by the functional
spaces. These properties will be crucial in order to apply some compactness results.
More precisely, the following lemmas state that the hypotheses (H1) and (H2) of
Lemma 3.1 in [22] hold for sequences (HTm)m and (whm)m such that for all m,
whm ∈ HTm .

Lemma 2.1 Let (HTm)m be a sequence of finite-dimensional subspaces of L2(0, 1)
defined by (24). Let (whm)m be a sequence such that whm ∈ HTm for all m and
satisfying :

∃C > 0 such that ∀m, ‖whm‖1, Tm 6 C.

Then, up to a subsequence, (whm)m converges to wh in L2(0, 1) when m tends to
+∞.

The proof of this lemma is a consequence of a Kolmogorov’s compactness Theorem
(see for instance Theorem 10.3 in [17]).

Lemma 2.2 Let (HTm)m be a sequence of finite-dimensional subspaces of L2(0, 1)
defined by (24). Let (whm)m be a sequence such that whm ∈ HTm for all m. If
(whm)m converges to w in L2(0, 1) and ‖whm‖−1,2,Tm converges to 0, then w = 0.

Proof We will obtain that w = 0, as a consequence of:

∀ϕ ∈ C∞c ([0, 1]),

∫ 1

0
wϕ dx = 0.

Thus, letting ϕ ∈ C∞c ([0, 1]), we set ϕi = ϕ(xi) for all i ∈ J0; I + 1K and we define
the associate ϕhm ∈ HTm . Since whm and ϕhm ∈ HTm :∣∣∣∣∫ 1

0
whmϕhm dx

∣∣∣∣ 6 ‖whm‖−1,2, Tm‖ϕhm‖1, Tm . (28)
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But, thanks to the regularity of ϕ,∣∣∣∣∫ 1

0
whmϕdx

∣∣∣∣ 6 ∣∣∣∣∫ 1

0
whmϕhm dx

∣∣∣∣+

∣∣∣∣∫ 1

0
whm(ϕ− ϕhm) dx

∣∣∣∣
6 ‖whm‖−1,2, Tm‖ϕhm‖1, Tm + ‖whm‖0Cϕhm.

Since ‖whm‖0 is bounded independently of hm, for all ϕ ∈ C∞c ([0, 1]), we have∫ 1

0
wϕdx = lim

m→+∞

∫ 1

0
whmϕdx = 0,

and then w = 0. �

2.3 Discrete L2(0, T,H1(0, 1)) estimates on P , N and Ψ

In order to apply compactness results, we need some estimates on Ph,∆t, Nh,∆t and
Ψh,∆t. Let us begin with the estimate on Ψh,∆t.

Proposition 2.1 Under the assumptions of Proposition 1.1, there exists a constant
C depending only on the data and independent of ∆t and h, such that:

‖Ψk+1
h ‖21, T 6 C, ∀ k ≥ 0, (29)

and ‖Ψh,∆t‖20;1,T 6 CT. (30)

The proof is left to the reader. It follows the line of the proof of Proposition 2
in [10]. It mainly uses (20) and (27).

Remark 3 Thanks to estimates (26) and (29), we have ‖Ψk+1
h ‖L∞(0,1) 6 C for all

k ≥ 0.

Let us now state the same result on Ph,∆t and Nh,∆t.

Proposition 2.2 Under the assumptions of Proposition 1.1, there exists a constant
C depending only on the data and independent of ∆t and h, such that:

‖uh,∆t‖20;1,T 6 C, for u = P,N (31)

Proof The proof is based on a classical method, already applied in [17]. How-
ever, it requires to pay a special attention on the boundary conditions which induce
a new difficulty.

Multiplying (14b) with ∆tuk+1
i and summing over i and k, we obtain A+B = 0

with

A =

K−1∑
k=0

I∑
i=1

εuhiu
k+1
i

(
uk+1
i − uki

)
and B =

K−1∑
k=0

I∑
i=1

∆tuk+1
i

(
Fk+1
u, i+ 1

2

−Fk+1
u, i− 1

2

)
.

It is easy to see that:

A >
K−1∑
k=0

I∑
i=1

εuhi
2

(
uk+1
i − uki

)2
−

I∑
i=1

εuhi
2

(
u0
i

)2
. (32)
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Moreover, applying a discrete integration by parts to B and using the following
decomposition of the numerical fluxes given in [3]:

Fk+1
u, i+ 1

2

= −zudΨk+1
i+ 1

2

uk+1
i + uk+1

i+1

2

+
zudΨk+1

i+ 1
2

2
coth

−zuhi+ 1
2
dΨk+1

i+ 1
2

2

(uk+1
i+1 − u

k+1
i

)
, (33)

we can rewrite B as B = B1 +B2 +B3 with

B1 = −
K−1∑
k=0

I∑
i=0

∆tzu
2

dΨk+1
i+ 1

2

coth

−zuhi+ 1
2
dΨk+1

i+ 1
2

2

(uk+1
i+1 − u

k+1
i

)2
,

B2 =
K−1∑
k=0

I∑
i=0

∆tzu
2

dΨk+1
i+ 1

2

((
uk+1
i+1

)2
−
(
uk+1
i

)2
)
,

B3 =

K−1∑
k=0

∆t

(
uk+1
I+1F

k+1
u, I+ 1

2

− uk+1
0 Fk+1

u, 1
2

)
.

As x coth(x) ≥ 1 for all x ∈ R, we have, as in [3],

B1 >
K−1∑
k=0

I∑
i=0

∆t

hi+ 1
2

(
uk+1
i+1 − u

k+1
i

)2
. (34)

Applying a discrete integration by parts and using the scheme (14), we get:

B2 =
K−1∑
k=0

I∑
i=1

∆tzuhi
2

zP

(
P k+1
i − Pmax

)
+ zN

(
Nk+1
i −Nmax

)
λ2

(
uk+1
i

)2

+

K−1∑
k=0

∆tzu
2

(
dΨk+1

I+ 1
2

(
uk+1
I+1

)2
− dΨk+1

1
2

(
uk+1

0

)2
)
.

Since zP zN

(
uk+1
i − umax

)(
uk+1
i

)2
> 0 for u = N,P , we have:

K−1∑
k=0

I∑
i=1

∆tzuhi
2

zP

(
P k+1
i − Pmax

)
+ zN

(
Nk+1
i −Nmax

)
λ2

(
uk+1
i

)2

>
K−1∑
k=0

I∑
i=1

∆tz2
uhi

2λ2

(
uk+1
i − umax

)(
uk+1
i

)2
,

which yields

B2 >
K−1∑
k=0

I∑
i=1

∆tz2
uhi

2λ2

(
uk+1
i − umax

)(
uk+1
i

)2
+B4, (35)
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with

B4 =
K−1∑
k=0

∆tzu
2

(
dΨk+1

I+ 1
2

(
uk+1
I+1

)2
− dΨk+1

1
2

(
uk+1

0

)2
)
.

Using the boundary conditions (16), we may now rewrite B3 +B4 as

B3 +B4 = −
K−1∑
k=0

∆t((f0
u)k+1 + (f1

u)k+1),

with

(f0
u)k+1 =

(
uk+1

0

)2
[
−β0

u

(
ψk+1

0

)
+
zu
2

ψk+1
0 −∆ψpzc0

α0

]
+ uk+1

0 γ0
u

(
ψk+1

0

)
,

(f1
u)k+1 =

(
uk+1
I+1

)2
[
−β1

u

(
V − ψk+1

I+1

)
− zu

2

V − ψk+1
I+1 −∆ψpzc1

α1

]
+ uk+1

I+1γ
1
u

(
V − ψk+1

I+1

)
.

It remains to find an upper bound of (f0
u)k+1 + (f1

u)k+1. To this end, we proceed as
in [1] and [10]. We introduce:

ξ0
u(x) = γ0

u(x)− umaxβ0
u(x) + umax

zu
α0

(x−∆ψpzc0 ) , ∀x ∈ R,

ξ1
u(x) = γ1

u(x)− umaxβ1
u(x)− umax zu

α1
(x−∆ψpzc1 ) , ∀x ∈ R,

which are nonpositive functions under the hypotheses (18)-(19) (see [1]). As

(f0
u)k+1 =

(
uk+1

0

)2

2umax

[
ξ0
u

(
ψk+1

0

)
− umaxβ0

u

(
ψk+1

0

)
− γ0

u

(
ψk+1

0

)]
+ γ0

u

(
ψk+1

0

)
uk+1

0 ,

we clearly have: (f0
u)k+1 ≤ γ0

u

(
ψk+1

0

)
uk+1

0 . Rewriting (f1
u)k+1 with the help of ξ1

u,

we similarly prove: (f1
u)k+1 ≤ γ1

u

(
V − ψk+1

I+1

)
uk+1
I+1. Then, using the estimates (20)

and (29) and the continuity of the functions γ0
u and γ1

u, we have

B3 +B4 ≥ −C. (36)

From (32), (34), (35) and (36), we deduce that

K−1∑
k=0

I∑
i=0

∆t

(
uk+1
i+1 − u

k+1
i

)2

hi+ 1
2

+
εu
2

K−1∑
k=0

I∑
i=1

hi

(
uk+1
i − uki

)2
6 C, (37)

with C depending only on Pmax, Nmax, α0, α1, V , ∆Ψpzc
0 , ∆Ψpzc

1 , λ,
(
βiu, γ

i
u

)
i=0, 1

and T . This ends the proof of Proposition 2.2 �

Remark 4 Note that a direct consequence of (37) is

εu

K−1∑
k=0

I∑
i=1

hi

(
uk+1
i − uki

)2
6 C, (38)

with C a constant independent of h and ∆t. This inequality will be used in Sec-
tion 3.2.
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3 Compactness results and passage to the limit

In this section, we prove the Theorem 1.1. Firstly, we establish the convergences
of (Pm)m and (Nm)m using a Gallouët-Latché compactness Theorem (Theorem 3.4
in [22]), which is a discrete counterpart of the Aubin-Simon Lemma. Secondly, we
prove the convergence of (Ψm)m using a classical Kolmogorov Theorem. Then, we
show the convergence of the traces on the boundaries following the ideas of [5].
Finally, passing to the limit in the scheme, we prove that (Pm, Nm,Ψm)m tends to
a solution of (P) in the sense of Definition 1.1.

3.1 Compactness of (Pm)m and (Nm)m

The proof of compactness being analogous for (Pm)m and (Nm)m, in all this section
we use the notation (um)m where u can be replaced by P or N . To prove the
compactness of the sequence (um)m, we will use Theorem 3.4 in [22]. Therefore, for
any function wh,∆t ∈ HT ,∆t, we define a discrete time derivative ∂t,T wh,∆t and a
discrete space derivative ∂x,T wh,∆t. There are piecewise constant function in space
and time, defined by:

∂t,T wh,∆t(x, t) = ∂kt,T wh,∆t =
1

∆t
(wk+1

h − wkh) on [tk, tk+1),

∂x,T wh,∆t(x, t) = ∂ix,T wh,∆t =
wk+1
i+1 − w

k+1
i

hi+1/2
, on (xi, xi+1)× (tk, tk+1).

Let us first establish an estimate on the discrete time derivative needed for the
convergence proof.

Proposition 3.1 Under the assumptions of Theorem 1.1, there exists a constant
C depending only on the data such that:

Km−1∑
k=0

∆tm‖∂kt,Tmum‖
2
−1,2, Tm 6 C. (39)

Proof Let consider vhm ∈ HTm such that ‖vhm‖1, Tm 6 1. By definition, we have:

∫ 1

0

(
∂kt,Tmum

)
vhm =

I∑
i=0

hi
uk+1
i − uki

∆t
vi.

Then, using the scheme (14b), a discrete integration by parts and the reformulation
(33) of the fluxes, we get∣∣∣∣∫ 1

0

(
∂kt,Tmum

)
vhm dx

∣∣∣∣ 6 A1 +A2 +A3,
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with

A1 =
1

εu

I∑
i=0

|vi+1 − vi|

∣∣∣∣∣zudΨk+1
i+ 1

2

uk+1
i+1 + uk+1

i

2

∣∣∣∣∣ ,
A2 =

1

εu

I∑
i=0

|vi+1 − vi|

∣∣∣∣∣∣
zudΨk+1

i+ 1
2

2
coth

−zuhi+ 1
2
dΨk+1

i+ 1
2

2

(uk+1
i+1 − u

k+1
i

)∣∣∣∣∣∣ ,
A3 =

1

εu

∣∣∣∣Fk+1
u, 1

2

v0

∣∣∣∣+
1

εu

∣∣∣∣Fk+1
u, I+ 1

2

vI+1

∣∣∣∣ .
Using (20) and (29), we obtain:

A1 6
|zu|umax

εu

(
I∑
i=0

(vi+1 − vi)2

hi+ 1
2

) 1
2

 I∑
i=0

(
Ψk+1
i+1 −Ψk+1

i

)2

hi+ 1
2


1
2

6
C

εu
‖vhm‖1, Tm .

Since x 7→ x coth(x) is a 1-Lipschitz continuous function and is equal to 1 in 0 and
thanks to Cauchy-Schwarz inequality, we obtain:

A2 ≤
1

εu

I∑
i=0

|vi+1 − vi|
hi+ 1

2

∣∣∣∣∣∣
zuhI+ 1

2
dΨk+1

i+ 1
2

2
coth

−zuhi 12 dΨk+1
i+ 1

2

2

− 1

∣∣∣∣∣∣
∣∣∣uk+1
i+1 − u

k
i

∣∣∣
+

1

εu

I∑
i=0

|vi+1 − vi|
hi+ 1

2

∣∣∣uk+1
i+1 − u

k
i

∣∣∣
≤
(
C

εu
‖Ψk+1

m ‖1, Tm +
1

εu
‖uk+1

m ‖1, Tm
)
‖vhm‖1, Tm .

Let us now consider the term A3 containing the boundary conditions. Using (29)
and the continuity of the functions (βiu, γ

i
u)i=0, 1, we have

εuA3 6
(
γ0
u

(∣∣∣Ψk+1
0

∣∣∣)+
∣∣∣uk+1

0

∣∣∣β0
u

(∣∣∣Ψk+1
0

∣∣∣)) |v0|

+
(
γ1
u

(∣∣∣V −Ψk+1
I+1

∣∣∣)+
∣∣∣uk+1
I+1

∣∣∣β1
u

(∣∣∣V −Ψk+1
I+1

∣∣∣)) |vI+1|

6 C
(

1 + |uk+1
0 |+

∣∣∣uk+1
I+1

∣∣∣) (|v0|+ |vI+1|)

6 C(1 + ‖uk+1
m ‖1, Tm)‖vhm‖1, Tm .

Therefore, we obtain:∣∣∣∣∫ 1

0

(
∂kt,Tmum

)
vhm dx

∣∣∣∣ 6 C‖vhm‖1, Tm
εu

(
1 + ‖uk+1

m ‖1, Tm
)
,

which yields

K−1∑
k=0

∆tm‖∂kt,Tmum‖
2
−1,2, Tm 6

2C2T

ε2
u

+
2C2

ε2
u

K−1∑
k=0

∆tm‖uk+1
m ‖21, Tm .

Finally, the estimate (39) is a consequence of the L2(0, T,H1(0, 1)) estimate (31). �
We are now able to prove the following convergence result.
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Proposition 3.2 Under the assumptions of Theorem 1.1, there exists
u ∈ L2(0, T ;H1(0, 1)) such that, up to a subsequence,

um → u strongly in L2(0, T ;L2(0, 1)), when m→ +∞
∂x,Tmum ⇀ ∂xu weakly in L2(0, T ;L2(0, 1)) when m→ +∞.

Proof The sequence (HTm,∆tm)m is a sequence of finite-dimensional subspaces
of L2(0, 1). Each subspace HTm,∆tm can be endowed either with the norm ‖ · ‖1,Tm
or with the norm ‖ · ‖−1,2,Tm . These two norms verify Lemma 2.1 and Lemma 2.2
which correspond to the hypotheses of Theorem 3.4 in [22].

Then, thanks to Proposition 2.2 and 3.1, we can apply Theorem 3.4 in [22] :
up to a subsequence, um → u strongly in L2(0, T, L2(0, 1)). Moreover, Proposition
2.2 implies that u ∈ L2(0, T,H1(0, 1)). Finally the weak convergence of ∂x,Tmum in
L2(0, T ;L2(0, 1)) is also a consequence of Proposition 2.2. �

3.2 Compactness of (Ψm)m

The convergence of the sequence (Ψm)m will be obtained as a consequence of the
Kolmogorov compactness Theorem, as it is done for instance in [17].

Let us first remark that the following estimate on the space translates of Ψh,∆t

is a consequence of the estimate (30).

Lemma 3.1 Under the assumptions of Theorem 1.1, there exists a constant C such
that for all η < h:

‖Ψh,∆t(·+ η, ·)−Ψh,∆t(·, ·)‖2L2(0,T,L2(0,1−η)) ≤ Cη
Then, we can also establish an estimate on the time translates of Ψh,∆t.

Lemma 3.2 Under the assumptions of Theorem 1.1, there exists a constant C such
that for all τ < ∆t:

‖Ψh,∆t(., .+ τ)−Ψh,∆t(., .)‖2L2(0,T−τ,L2(0,1)) ≤ Cτ

Proof Using (14a), (16a) and (16b), we have, for i ∈ J1; IK,

−λ2

(
dΨk+2

i+ 1
2

− dΨk+1
i+ 1

2

− dΨk+2
i− 1

2

+ dΨk+1
i− 1

2

)
=

hi

(
3
(
P k+2
i − P k+1

i

)
−
(
Nk+2
i −Nk+1

i

))
,

Ψk+2
0 −Ψk+1

0 = α0

(
dΨk+2

1
2

− dΨk+1
1
2

)
,

Ψk+2
I+1 −Ψk+1

I+1 = −α1

(
dΨk+2

I+ 1
2

− dΨk+1
I+ 1

2

)
.

Multiplying by
(

Ψk+2
i −Ψk+1

i

)
and summing over i and k, we obtain A = B with

A =

K−1∑
k=0

I∑
i=1

−λ2

(
dΨk+2

i+ 1
2

− dΨk+2
i− 1

2

− dΨk+1
i+ 1

2

+ dΨk+1
i− 1

2

)(
Ψk+2
i −Ψk+1

i

)
,

B =
K−1∑
k=0

I∑
i=1

hi

(
3
(
P k+2
i − P k+1

i

)
−
(
Nk+2
i −Nk+1

i

))(
Ψk+2
i −Ψk+1

i

)
.
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Using the boundary conditions, in a same way as in the proof of Proposition 2.1, we
get:

A > λ2α

K−1∑
k=0

‖Ψk+2
h −Ψk+1

h ‖21, T ,

with α = min(1, 1/α0, 1/α1). Then, using Young’s inequality, (27) and Remark 4,
we also have:

B 6
λ2α

2

K−1∑
k=0

‖Ψk+2
h −Ψk+1

h ‖21, T + C.

Then, we obtain

K−1∑
k=0

‖Ψk+2
h −Ψk+1

h ‖21, T 6 C,

with C a constant independent of τ and ∆t. With (27), this yields the expected
result, since

‖Ψh,∆t(., .+ τ)−Ψh,∆t(., .)‖2L2(0,T−τ,L2(0,1)) = τ
K−1∑
k=0

‖Ψk+2
h −Ψk+1

h ‖20.

�
Finally, we deduce from Lemmas 3.1 and 3.2 the following convergence result for

the sequence (Ψm)m.

Proposition 3.3 Under the assumptions of Theorem 1.1, there exists
Ψ ∈ L2(0, T ;H1(0, 1)) such that, up to a subsequence,

Ψm → Ψ strongly in L2(0, T ;L2(0, 1)), when m→ +∞,

∂x,TmΨm ⇀ ∂xΨ weakly in L2(0, T ;L2(0, 1)), when m→ +∞.

3.3 Convergence of the traces

Up to now, we have proved the existence of P , N and Ψ belonging to L2(0, T ;H1(0, 1)),
such that, up to a subsequence, (Pm)m, (Nm)m and (Ψm)m converge respectively to
P , N and Ψ. It remains to prove that (P,N,Ψ) is a solution to the corrosion model
in the sense of Definition 1.1. Therefore, we will pass to the limit in the scheme, see
Section 3.4. But, at this stage, we will have to pass to the limit in some boundary
terms. Therefore, we need the convergence of different traces.

For w = N,P, or Ψ, we have established that w ∈ L2(0, T ;H1(0, 1)). Due to the
compact embedding of H1(0, 1) into C([0, 1]) in 1D, it is clear that the trace of w in
0 and 1 is equal respectively to w(0, ·) and w(1, ·), which belong to L2(0, T ).

For a given function wh,∆t ∈ HT ,∆t, the usual trace, denoted by γwh,∆t is a
piecewise constant function of time defined by

γwh,∆t(0, t) = wk+1
1 and γwh,∆t(1, t) = wk+1

I , ∀t ∈ [tk, tk+1).
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But, it will be easier to deal with an approximate trace γ̃wh,∆t defined by

γ̃wh,∆t(0, t) = wk+1
0 and γ̃wh,∆t(1, t) = wk+1

I+1 , ∀t ∈ [tk, tk+1).

Proposition 3.4 For w = N,P, or Ψ, the sequence (γ̃wm(0, ·))m (resp. (γ̃wm(1, ·))m)
converges towards w(0, ·) (resp. w(1, ·)) strongly in L1(0, T ), up to a subsequence.

Proof To prove this Proposition we follow the ideas presented in the proof of
lemma 4.8 of [5]. More precisely , for all % > 0, we write:

T∫
0

|γ̃wm(0, t)− w(0, t)|dt =
1

%

%∫
0

T∫
0

|γ̃wm(0, t)− w(0, t)|dtdy 6 T1 + T2 + T3,

(40)

with

T1 =
1

%

%∫
0

T∫
0

|γ̃wm(0, t)− wm(y, t)| dt dy,

T2 =
1

%

%∫
0

T∫
0

|wm(y, t)− w(y, t)|dtdy,

T3 =
1

%

%∫
0

T∫
0

|w(y, t)− w(0, t)| dt dy.

Let us first note that T3 → 0 when %→ 0, as w(0, t) is the trace on x = 0 of w(·, t).
Let us now show that T1 and T2 converge also to 0.

Let us define K% =

⌊
%

hm

⌋
+ 1. We can show:

T1 6
1

%

K−1∑
k=0

∆tm

K%∑
p=1

hp

∣∣∣wk+1
0 − wk+1

p

∣∣∣ 6 1

%

K−1∑
k=0

∆tm

K%∑
p=1

hp

p−1∑
i=0

∣∣∣wk+1
i+1 − w

k+1
i

∣∣∣ .
Using Cauchy-Schwarz inequality and (30) or (31)

T1 6 C
√
T

(hm + %)
3
2

%
−→
hm→0

C
√
T%

1
2 . (41)

Moreover,

T2 6

√
T
√
%

 %∫
0

T∫
0

(wm(y, t)− w(y, t))2dt dy


1
2

−→
hm→0

0, (42)

which gives with (40), (41), (42) and ρ tends to 0,

lim
hm→0

T∫
0

|γ̃wm(0, t)− w(0, t)| dt = 0.

This concludes the proof. �
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Corollary 3.1 Up to a subsequence, the sequence (γ̃wm(0, ·))m (resp. (γ̃wm(1, ·))m)
converges towards w(0, ·) (resp. w(1, ·)) strongly in L2(0, T ), for w = P,N or Ψ.

Proof The sequence (γ̃wm(0, ·))m (resp. (γ̃wm(1, ·))m) converges almost every-
where on (0, T ). Moreover, γ̃wm(0, ·) (resp. γ̃wm(1, ·)) is uniformly bounded thanks
to the Propositions 1.1 and 2.1. Then, we obtain the strong convergence in L2(0, T ).
�

3.4 Passage to the limit

We end the proof of Theorem 1.1. Indeed, it remains to prove that the limit P,N ,
Ψ, defined in Propositions 3.2 and 3.3 is a solution of (P) in the sense of Definition
1.1. To this end, we follow the method used in [3] and [11].

First of all we prove that (P,N , Ψ) satisfy (12). For u = P,N and ϕ ∈ D([0, 1]×
[0, T [), we define

A10(m) = −
(∫ T

0

∫ 1

0
εuum(x, t) (∂tϕ(x, t)) dxdt+

∫ 1

0
εuum(x, 0)ϕ(x, 0) dx

)
,

A20(m) =

∫ T

0

∫ 1

0
(∂x,Tmum(x, t)) (∂xϕ(x, t)) dxdt,

A30(m) =

∫ T

0

∫ 1

0
zuum(x, t) (∂x,TmΨm(x, t)) (∂xϕ(x, t)) dxdt,

A40(m) =

∫ T

0

(
β1
u(V − γ̃Ψm(1, t))γ̃um(1, t)− γ1

u(V − γ̃Ψm(1, t))
)
ϕ(1, t) dt,

+

∫ T

0

(
β0
u(γ̃Ψm(0, t))γ̃um(0, t)− γ0

u(γ̃Ψm(0, t))
)
ϕ(0, t) dt,

εA(m) = −A10(m)−A20(m)−A30(m)−A40(m).

Due to Propositions 3.2, 3.3 and Corollary 3.1, we have:

εA(m) −→
m→+∞

∫ T

0

∫ 1

0
εuu (∂tϕ) dxdt+

∫ 1

0
εuu(x, 0)ϕ(x, 0) dx+

∫ T

0

∫ 1

0
Ju (∂xϕ) dxdt

−
∫ T

0

(
β1
u(V −Ψ(1, t))u(1, t)− γ1

u(V −Ψ(1, t))
)
ϕ1(1, t) dt

−
∫ T

0

(
β0
u(Ψ(0, t))u(0, t)− γ0

u(Ψ(0, t))
)
ϕ1(0, t) dt.

Thus, it remains to prove that εA(m)−→0, when m→ +∞. To this end, we multiply
the scheme (14b) by ∆t ϕki , with ϕki = ϕ(xi, t

k), and sum over i and k. Using the
fluxes decomposition (33) and the boundary conditions (16), we obtain:

A1(m) +A2(m) +A3(m) +A4(m) = 0,
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with

A1(m) =

K−1∑
k=0

I∑
i=1

εuhi

(
uk+1
i − uki

)
ϕki

= −εu
K−1∑
k=0

I∑
i=1

∫ tk+1

tk

∫ xi+1/2

xi−1/2

uk+1
i ∂tϕ(xi, t) dxdt− εu

I∑
i=1

∫ xi+1/2

xi−1/2

u0
iϕ(xi, 0) dx,

A2(m) = −
K−1∑
k=0

I∑
i=0

∆tm

zudΨk+1
i+ 1

2

2
coth

−zuhi+ 1
2
dΨk+1

i+ 1
2

2

(uk+1
i+1 − u

k+1
i

)(
ϕki+1 − ϕki

)
,

A3(m) =
K−1∑
k=0

I∑
i=0

∆tmzudΨk+1
i+ 1

2

uk+1
i+1 + uk+1

i

2

(
ϕki+1 − ϕki

)
,

= zu

K−1∑
k=0

I∑
i=0

uk+1
i+1 + uk+1

i

2
dΨk+1

i+ 1
2

∫ tk+1

tk

(
ϕ(xi+1, t

k)− ϕ(xi, t
k)
)

dt,

A4(m) =

K−1∑
k=0

∆tm

[(
β1
u(V −Ψk+1

I+1)uk+1
I+1 − γ

1
u(V −Ψk+1

I+1)
)
ϕkI+1

+
(
β0
u(Ψk+1

0 )uk+1
0 − γ0

u(Ψk+1
0 )

)
ϕk0

]
.

Following the standard method used in [3], we can prove that

|Ai −Ai0| −→
m→+∞

0, for i ∈ J1, 3K.

The only difference with the standard method concerns the terms related to the
boundary conditions.

Then, let us compare A4 with A40. We can rewrite A40 under the form:

A40(m) =
K−1∑
k=0

(
β1
u(V −Ψk+1

I+1)uk+1
I+1 − γ

1
u(V −Ψk+1

I+1)
)∫ tk+1

tk
ϕ(1, t) dt

−
K−1∑
k=0

(
β0
u(Ψk+1

0 )uk+1
0 − γ0

u(Ψk+1
0 )

)∫ tk+1

tk
ϕ(0, t) dt,

and, using the continuity of the functions (βiu, γ
i
u)i=0, 1, the regularity of ϕ, (20) and

(26), we obtain:

|A4(m)−A40(m)| 6 C‖ϕ‖C2((0,T )×[0,1])∆tm −→
m→+∞

0.

Finally, εA(m) −→
m→+∞

0 and P,N , Ψ satisfy (12). In the same way, we can prove

that P,N and Ψ satisfy (13). This concludes the proof of Theorem 1.1.

4 Numerical experiments

In this Section, we present some numerical results for a test case close to the real
case given in [1]. Indeed, we have modified some data of the real case in order to
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have a simplified model which is close to the DPCM model. For the DPCM and
simplified models, it was performed a scaling relative to the characteristic time of
the cations. This gives a very small value for the coefficient ε. Therefore, even if
we have proved the convergence of the scheme only for ε > 0, we want to study
numerically the behavior of the scheme for different values of ε. More precisely, we
are interested in its behaviour in the limit ε→ 0.

4.1 Presentation of the test case

The test case, introduced here, is inspired by the real case given in [1]. Starting from
the data given in [1], we have built a test case which is adapted for the simplified
model. We only consider a potentiostatic case, which means that V is an applied
potential. For the different experiments, we will consider the numerical values for
the dimensionless simplified model given in Table 1.

Table 1: Dimensionless parameters.

λ2 α0 α1 Pm Nm k0
P k0

N k1
P k1

N

1.1 10−3 0.177 0.089 2 1 108 10−18 1011 26.8

m0
P m0

N m1
P m1

N a0
P a0

N b0P b0N a1
P

0 1.45 10−24 108 26.8 0.5 0.5 0.5 0.5 0.5

a1
N b1P b1N ∆Ψpzc

0 ∆Ψpzc
1 V ρhl

0.5 0.5 0.5 −0.866 0 0.5 −5

Let us remark that for such a choice of coefficients all the hypotheses ((6), (7),
(8), α0 and α1 positive, (18) and (19)) are satisfied except for the right inequality
in (19). Nevertheless, we observe that numerically (20) still holds.

As mentioned in the introduction, a scaling relative to the charateristic time gives
a very small coefficient ε, which is the quotient of the mobilities of the densities. In
practice, ε is close to 10−14. Then, for the experiments, we will consider different
small values of ε, ε ∈ {0, 10−6, 10−4, 10−2} in order to verify that the scheme is
asymptotic preserving in the limit ε tends to zero.

4.2 Numerical results

First, we want to illustrate numerically the convergence of the scheme, for different
values of ε and its asymptotic preserving behavior in the limit ε tends to zero. Since
the exact solution of this problem is not available, we compute a reference solution
on a uniform mesh made of 4000 cells with a time step ∆t = 10−6 for each values
of ε. For the simplified model, there is a stationary state in long-time. Thus, it is
important to take a small time T in order to compute a solution different from the
stationary state. Then, for Figures 1, 2 and 3, the L2-norms in space are computed
at the final time T = 10−3.

Figure 1 shows the L2-convergence rate in space of the scheme for different values
of ε. We observe that the convergence rate is independent of ε and the scheme has

International Journal on Finite Volumes 21



Finite volume scheme for a corrosion model

an order 2 in space, even for ε = 0. It is due to the choice of Scharfetter-Gummel
fluxes for the numerical approximation of the convection-diffusion fluxes. Figure 2
shows the L2-convergence rate in time for different values of ε. We observe that this
convergence rate is also independent of ε and the scheme has an order 1 in time as
expected.

In Figure 3 we present, for different values of the time step, the L2 error in space
at the final time T = 10−3 with respect to ε. The asymptotic preserving behavior
of the scheme, in the limit ε tends to zero, clearly appears.

(a) L2 error on the cations density
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(b) L2 error on the electrons density
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(c) L2 error on the electric potential
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Figure 1: L2 errors with respect to the space step on the densities and the electric
potential for different values of ε and at final time T = 10−3.

In Figure 4, we present the profiles of the two densities and the electric potential,
in the case ε = 0. In order to reach the stationary state, we use as final time T = 1.
The solution is computed on a uniform mesh with 2000 cells in space and with a
time step ∆t = 10−3. We obtain the expected behavior for the densities and the
electric potential.

5 Conclusion

In this paper, we prove the convergence of a numerical scheme consisting in an
implicit Euler scheme in time and a Scharfetter-Gummel finite volume scheme in
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(a) L2 error on the electrons density
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(b) L2 error on the cations density

10
−7

10
−6

10
−5

10
−4

10
−4

10
−3

10
−2

10
−1

Time step

L
2
 e

rr
o
r

 

 

ε = 10
−2

ε = 10
−4

ε = 10
−6

ε = 0

(c) L2 error on the electric potential
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Figure 2: L2 errors with respect to the time step on the densities and the electric
potential for different values of ε and at final time T = 10−3.

space for a corrosion model. The convergence proof is only valuable for ε > 0. But,
as mentioned in the introduction, the dimensionless parameter ε is the ratio of the
mobility coefficients for cations and electrons and it is therefore very small. It should
be set to 0 in the practical applications. As seen in the numerical experiments, the
scheme is robust with respect to the value of ε. It seems to be asymptotic preserving
in the limit ε→ 0 (Figures 1,2 and 3). In practice, we can set ε = 0 and obtain the
expected behavior for the densities and the potential (Figure 4).
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[26] A. Jüngel. Qualitative behavior of solutions of a degenerate nonlinear drift-
diffusion model for semiconductors. Math. Models Methods Appl. Sci., 5(4):497–
518, 1995.

International Journal on Finite Volumes 26



Finite volume scheme for a corrosion model
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