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Abstract The LLL algorithm aims at finding a “reduced” basis of a
Euclidean lattice and plays a primary role in many areas of mathemat-
ics and computer science. However, its general behaviour is far from
being well understood. There are already many experimental observa-
tions about the number of iterations or the geometry of the output, that
raise challenging questions which remain unanswered and lead to natural
conjectures which are yet to be proved. However, until now, there exist
few experimental observations about the precise execution of the algo-
rithm. Here, we provide experimental results which precisely describe
an essential parameter of the execution, namely the “logarithm of the
decreasing ratio”. These experiments give arguments towards a “regu-
larity” hypothesis (R). Then, we propose a simplified model for the LLL
algorithm based on the hypothesis (R), which leads us to discrete dy-
namical systems, namely sandpiles models. It is then possible to obtain
a precise quantification of the main parameters of the LLL algorithm.
These results fit the experimental results performed on general input
bases, which indirectly substantiates the validity of such a regularity
hypothesis and underlines the usefulness of such a simplified model.

Introduction

Lenstra, Lenstra, and Lovász designed the LLL algorithm [10] in 1982 for solv-
ing integer programming problems and factoring polynomials. This algorithm
belongs to the general framework of lattice basis reduction algorithms and solves
a general problem: Given a basis for a lattice, how to find a basis for the same
lattice, which enjoys good euclidean properties? Nowadays, this algorithm has a
wide area of applications and plays a central algorithmic role in many areas of
mathematics and computer science, like cryptology, computer algebra, integer
linear programming, and number theory. However, even if its overall structure is
simple (see Figure 1), its general probabilistic behaviour is far from being well
understood. A precise quantification of the main parameters which are character-
istic of the algorithms —principally, the number of iterations and the geometry
of reduced bases— is yet unknown. The works of Gama, Nguyen and Stehlé [6,11]
provide interesting experiments, which indicate that the geometry of the output
seems to be largely independent of the input distribution, whereas the number of
iterations is highly dependent on it. The article of Daudé and Vallée [5] provides
a precise description of the probabilistic behaviour of these parameters (number
of iterations, geometry of the output), but only in the particular case in which
the vectors of the input basis are independently chosen in the unit ball. This



input distribution does not arise naturally in applications. In summary, the first
works [6,11] study general inputs, but do not provide proofs, whereas the second
one [5] provides proofs, but for non realistic inputs. Furthermore, none of these
studies is dedicated to the fine understanding of the internal structure of the
algorithm.

The LLL algorithm is a multidimensional extension, in dimension n, of the Euclid
algorithm (obtained for n = 1) or the Gauss algorithm (obtained for n = 2). In
these small dimensions, the dynamics of the algorithms is now well understood
and there exist precise results on the probabilistic behaviour of these algorithms
[12,13,14] which are obtained by using the dynamical systems theory, as well as
its related tools. However, even in these small dimensions, the dynamics is rather
complex and it does not seem possible to directly describe the fine probabilistic
properties of the internal structure of the LLL algorithm in an exact way.

This is why we introduce here a simplified model of the LLL algorithm, which
is based on a regularity hypothesis: Whereas the classical version deals with a
decreasing factor which may vary during the algorithm, the simplified version
assumes this decreasing factor to be constant. Of course, this appears to be a
strong assumption, but we provide arguments towards this simplification. This
assumption leads us to a classical model, the sandpile model, and this provides
another argument for such a simplification.

Sandpile models are instances of dynamical systems which originate from obser-
vations in Nature [9]. They were first introduced by Bak, Tang and Wiesenfeld [3]
for modelling sandpile formations, snow avalanches, river flows, etc.. By contrast,
the sandpiles that arise in a natural way from the LLL algorithm are not of the
same type as the usual instances, and the application of sandpiles to the LLL
algorithm thus needs an extension of classical results.

Plan of the paper. Section 1 presents the LLL algorithm, describes a nat-
ural class of probabilistic models, and introduces the simplified models, based
on the regularity assumption. Section 2 provides arguments for the regularity
assumption. Then, Section 3 studies the main parameters of interest inside the
simplified models, namely the number of iterations, the geometry of reduced
bases, and the independence between blocks. Section 4 then returns to the ac-
tual LLL algorithm, within the probabilistic models of Section 1, and exhibits an
excellent fitting between two classes of results : the proven results in the simpli-
fied model, and the experimental results that hold for the actual LLL algorithm.
This explains why these “regularized” results can be viewed as a first step for a
probabilistic analysis of the LLL algorithm.

1 The LLL algorithm and its simplified version.

1.1. Description of the algorithm. The LLL algorithm considers a Euclidean
lattice L given by a system B of n linearly independent vectors in the ambient
space R

p (n ≤ p). It aims at finding a reduced basis B̂ formed with vectors
that are almost orthogonal and short enough. The algorithm operates with the



matrix P which expresses the system B as a function of the Gram–Schmidt
orthogonalized system B∗; the generic coefficient of the matrix P is denoted by
mi,j . The lengths ℓi of the vectors of the basis B⋆ and the ratios ri between
successive ℓi, i.e.

ri :=
ℓi+1

ℓi
, with ℓi := ‖b⋆i ‖. (1)

play a fundamental role in the algorithm. The algorithm aims at obtaining lower
bounds on these ratios, by computing a s–Siegel reduced basis B̂ that fulfills, for
any i ∈ [1..n− 1], the Siegel condition Ss(i),

|m̂i+1,i| ≤
1

2
, r̂i :=

ℓ̂i+1

ℓ̂i
≥ 1

s
, with s > s0 =

2√
3
. (2)

In the classical LLL algorithm, a stronger condition, the Lovasz condition Lt(i),

|m̂i+1,i| ≤
1

2
, ℓ̂2i+1 + m̂2

i+1,i ℓ̂
2
i ≥ 1

t2
ℓ̂2i (with t > 1), (3)

must be fulfilled for all i ∈ [1..n− 1]. When s and t are related by the equality
1/t2 = (1/4) + 1/s2, Condition Lt(i) implies Condition Ss(i).

The version of the LLL algorithm studied here directly operates with the Siegel
conditions (2). However, the behaviours of the two algorithms are similar, as it
is shown in [2], and they perform the same two main types of operations:

(i) Translation (i, j) (for j < i).1 The vector bi is translated with respect to the
vector bj by : bi := bi − ⌊mi,j⌉bj , with ⌊x⌉ := the integer closest to x.
This translation does not change ℓi, and entails the inequality |mi,j | ≤ (1/2).

(ii) Exchange (i, i + 1). When the condition Ss(i) is not satisfied, there is an
exchange between bi and bi+1, which modifies the lengths ℓi, ℓi+1. The new value
ℓ̌i is multiplied by a factor ρ and satisfies

ℓ̌2i := ℓ2i+1+m2
i+1,i ℓ

2
i , so that ℓ̌i = ρ ℓi with ρ2 =

ℓ2i+1

ℓ2i
+m2

i+1,i, (4)

while the determinant invariance implies the relation ℓ̌i ℓ̌i+1 = ℓi ℓi+1, hence the
equality ℓ̌i+1 = (1/ρ) ℓi+1. This entails that ρ defined in (4) satisfies

ρ ≤ ρ0(s) with ρ2
0(s) =

1

s2
+

1

4
< 1; (5)

The “decreasing factor” ρ plays a crucial rôle in the following.

Figure 1 describes the standard strategy for the LLL algorithm, where the index i
is incremented or decremented at each step. However, there exist other strategies
which perform other choices for the next position of reduction, which can be any
index i for which Condition Ss(i) does not hold (See Section 2). Each execution
conducted by a given strategy leads to a random walk. See Figure 9 for some
instances of random walks in the standard strategy.

1 In the usual LLL algorithm, all the translations (i+1, j) are performed at each step
when the condition Ss(i) is satisfied. These translations do not change the length
ℓi+1, but are useful to keep the length of bi+1 small. Here, we look at the trace of
the algorithm only on the ℓi, and the translations (i + 1, j), with j < i, are not
performed.



RLLL (ρ, s)
with s > 2/

√
3, ρ ≤ ρ0(s) < 1

Input. A sequence (ℓ1, ℓ2, . . . ℓn)

Output. A sequence (bℓ1, bℓ2, . . . bℓn)

with bℓi+1 ≥ (1/s)bℓi.

i := 1;
While i < n do

If ℓi+1 ≥ (1/s)ℓi, then i := i+1
else ℓi := ρ ℓi;

ℓi+1 := (1/ρ) ℓi+1;
i := max(i − 1, 1);

ARLLL (α) with α > α0(s).

Input. A sequence (q1, q2, . . . qn)
Output. A sequence (bq1, bq2, . . . bqn)

with bqi − bqi+1 ≤ 1.

i := 1;
While i < n do

If bqi − bqi+1 ≤ 1, then i := i + 1
else qi := qi − α;

qi+1 := qi+1 + α;
i := max(i − 1, 1);

Figure 1. Two versions of the LLL algorithm. On the left, the classical version, which
depends on parameters s, ρ, with ρ0(s) defined in (5). On the right, the additive version,
which depends on the parameter α := − logs ρ, with α0 := − logs ρ0(s).

1.2. What is known about the analysis of the LLL algorithm? The main
parameters of interest are the number of iterations and the quality of the output
basis. These parameters depend a priori on the strategy. There are classical
bounds, which are valid for any strategy, and involve the potential D(B) and
the determinant detB defined as

D(B) =

n∏

i=1

ℓii, det(B) =
n∏

i=1

ℓi.

Number of iterations. This is the number of steps K where the test in step 2
is negative. There is a classical upper bound for K which involves the potential
values, the initial one D(B) and the final one D(B̂), together with the constant
ρ0(s) defined in (5). We observe that K can be exactly expressed with the po-
tential values and the mean α of the values α := − logs ρ used at each iteration

K(B) =
1

α(B)
logs

D(B)

D(B̂)
, so that K(B) ≤ 1

α0
logs

D(B)

D(B̂)
, (6)

where α0 := − logs ρ0(s) is the minimal value of α.

Quality of the output. The first vector b̂1 of a s-Siegel reduced basis B̂ is short
enough; there is an upper bound for the ratio γ(B) between its length and the
n-th root of the determinant,

γ(B) :=
||̂b1||

det(B)1/n
≤ s(n−1)/2. (7)

The two main bounds previously described in (6) and (7) are worst–case bounds,
and we are interested here in the “average” behaviour of the algorithm: What
are the mean values of the number K of steps and of the output parameter γ?

1.3. Our probabilistic model. We first define a probabilistic model for input
bases, which describe realistic instances, of variable difficulty. We directly choose
a distribution on the actual input instance, which is formed with the coefficients



mi,j of the matrix P, together with the ratios ri. As Ajtai in [1], we consider
lattice bases of full–rank (i.e, n = p) whose matrix B is triangular: in this case,
the matrix P and the ratios ri are easy to compute as a function of bi := (bi,j),

ri =
bi+1,i+1

bi,i
, mi,j =

bi,j
bj,j

.

Furthermore, it is clear that the main parameters are the ratios ri, whereas the
coefficients mi,j only play an auxilliary rôle. As Ajtai suggests it, we choose them
(for j < i) independently and uniformly distributed in the interval [−1/2,+1/2].
Since Ajtai is interested in worst-case bounds, he chooses very difficult instances
where the input ratios ri are fixed and very small, of the form ri ∼ 2−(a+1)(2n−i)a

with a > 0. Here, we design a model where each ratio ri is now a random variable
which follows a power law :

∀i ∈ [1..n− 1], ∃θi > 0 for which P [ri ≤ x] = x1/θi for x ∈ [0, 1]. (8)

This model produces instances with variable difficulty, which increases when the
parameters θi become large. This distribution arises in a natural way in various
frameworks, in the two dimensional case [13] or when the initial basis is uniformly
chosen in the unit ball. See [14] for a discussion about this probabilistic model.

1.4. An additive version. First, we adopt an additive point of view, and thus
consider the logarithms of the main variables (logs is the logarithm to base s),

qi := logs ℓi, ci := − logs ri = qi − qi+1 α := − logs ρ, (9)

Then, the Siegel condition becomes qi ≤ qi+1 +1 or ci ≤ 1, and the exchange
in the LLL algorithm is rewritten as (see Figure 1. right)

If qi > qi+1 + 1, then [q̌i = qi − α, ˇqi+1 = qi+1 + α]. (10)

In our probabilistic model, each ci follows an exponential law of the form

P[ci ≥ y] = s−y/θi for y ∈ [0,+∞[ with E[ci] =
θi

log s
. (11)

This model is then called the Exp-Ajtai(θ) model. Remark that, if we restrict
ourselves to non-reduced bases, we deal with the Mod-Exp-Ajtai(θ) distribution,

P[ci ≥ y + 1] = s−y/θi for y ∈ [0,+∞[, with E[ci] = 1 +
θi

log s
. (12)

1.5. The regularized version of the LLL algorithm. The main difficulty
of the analysis of the LLL algorithm is due to the fact that the decreasing
factor ρ defined in (4) can vary throughout the interval [0, ρ0(s)]. For simplifying
the behaviour of the LLL algorithm, we assume that the following Regularity
Hypothesis holds (R):

(R). The decreasing factor ρ (and thus its logarithm α := − logs ρ) are constant.

Then, Equation (10) defines a sandpile model which is studied in Section 3.

There are now three main questions:

– Is Hypothesis (R) reasonable? This is discussed in Section 2.

– What are the main features of the regularized versions of the LLL algorithm,
namely sandpiles? This is the aim of Section 3.



– What consequences can be deduced for the probabilistic behaviour of the LLL
algorithm? This is done in Section 5 that transfers results of Section 4 to the
framework described in Section 2 with the arguments discussed in Section 4.

2 Is the LLL algorithm regular?

2.1. General bounds for α. Since the evolution of the coefficients mi+1,i

seems less “directed” by the algorithm, we may suppose them to be uniformly
distributed inside the [−1/2,+1/2] interval, and independent of the Siegel ratios.
The average of the square m2 is then equal to 1/12, and if we assume m2 to be
constant and equal to 1/12, then the value of α satisfies (with s near s0 = 2/

√
3),

−1

2
logs0

(
3

4
+

1

12

)
≤ α := −1

2
logs0

(
r2 +

1

12

)
≤ −1

2
logs0

(
1

12

)
.

Then α ∈ [0.5, 8.5] most of the time. This fits with our experiments.

2.2. General study of parameter α. We must make precise the regularity
assumption. Of course, we cannot assume that there is a universal value for
α := − logs ρ, and we describe the possible influence of four variables on the
parameter α, when the dimension n becomes large:

(a) The input distribution of Exp-Ajtai type is described by Θ = (θ1, . . . , θn−1).

(b) The position i ∈ [1..n(B) − 1] is the index where the reduction occurs.

(c) The discrete time j ∈ [1..K(B)] is the index when the reduction occurs,

(d) The strategy defines the choice of the position i at the j–th iteration, inside
the set N (j) which gathers the indices for which Condition S(i) is not satisfied.
We consider three main strategies Σ : – The standard strategy Σs chooses i :=
MinN (j) – The random strategy Σr chooses i at random in N (j) – The greedy
strategy Σg chooses the index i ∈ N (j) for which the ratio ri is minimum.

The study of α decomposes into two parts. First, we study the variations of α
during one execution, due to the position i or the time j. Second, we consider
the variable α, defined as the mean value of α during one execution, and study
the influence of the input distribution, the strategy, and the dimension on α.

We consider a set B of input bases, and we determine a maximal value M of α
for this set of inputs. In order to deal with fixed intervals for positions, times,
and values, we choose three integers X,Y, Z, and we divide

– the interval [1..n] of positions into X equal intervals of type Ix with x ∈ [1..X],

– the interval [1..K] of times into Y equal intervals of type Jy with y ∈ [1..Y ], –
the interval [0,M ] of values into Z equal intervals. of type Lz with z ∈ [1..Z]

Then the parameters α〈x〉, α
〈y〉 are respectively defined as the restriction of α

for i ∈ Ix, (resp. for j ∈ Jy).

2.3. Distribution of the variable α. Here, the parameter Θ of the input
distribution and the strategy Σ ∈ {Σs, Σr, Σg} are fixed, . and we consider a set
N of dimensions. We first consider the global variable α, study its distribution,
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and its mean, for each n ∈ N [See Figure 2(1)]. We observe that the distribution
of α gets more and more concentrated when the dimension grows, around a value
which appears to tend to 2.5.

2.4. Variations of α during an execution. Figure 2(2) describes the two
functions x 7→ α〈x〉 and y 7→ α〈y〉, for each dimension n ∈ N . Figure 2(3) provides

(for n = 20) a description of the distribution of parameters α〈x〉, α
〈y〉 for various

values of (x, y). We observe that the variations of the functions y 7→ α〈y〉 and
x 7→ α〈x〉 are small, and become smaller when the dimension n increases. The

distributions of α〈x〉 and α〈y〉 are also concentrated, at least for y’s not too small
and for central values of x.

2.5. Influence of the strategy. Here, for n = 20, we investigate the influence
of the strategy on the functions x 7→ A〈x〉, y 7→ α〈y〉, z 7→ P[α ∈ Lz].
The experimental results, reported in Figure 2(4), show the important influence
of the strategy on the parameter α. They are of independent interest, since, to the
best of our knowledge, the strategy is not often studied. There are two groups:
On the one hand, the standard strategy2 is the least efficient: it performs a larger
number of steps, and deals with a parameter α whose value is concentrated below
α = 5. On the other hand, the other two ones, (random and greedy) are much
more efficient, with a much smaller number of steps; they deal with values of
α which vary in the whole interval [5, 20] and decrease with the discrete time.
These two strategies (random and greedy) must be used if we wish more efficient
algorithms. If we wish simulate with sandpiles the LLL algorithm under these
two strategies, we have to consider different values of α, for instance, at the
beginning, in the middle and at the end of the execution.

2.6. Influence of the input distribution. We study the influence of the
parameter Θ of the Exp-Ajtai distribution on α. We first recall what happens
in two dimensions, where the LLL algorithm coincides with the Gauss algorithm.
The paper [13] studies this algorithm when the input c := − logs r follows an
exponential law with mean θ and proves that the number of steps K of the Gauss
algorithm follows a geometric law of ratio λ(1+1/θ), where λ(s) is the dominant
eigenvalue of the transfer operator associated to the Gauss algorithm.

The relations − logs P[K ≥ k] ∼ − logs P [c ≥ kα] ∼ Eθ[α]

θ
k

entail that the mean Eθ[α] depends on θ as Eθ[α] ∼ −θ logs λ

(
1 +

1

θ

)
.

Then, properties of the pressure3 imply that the function Eθ[α] satisfies

Eθ[α] ∼ |λ′(1)|
log s

for θ → ∞, and Eθ[α] ∼ 2

log s
log(1 +

√
2) for θ → 0,

2 We have not reported the results relative to the anti-standard strategy which chooses
i := MaxN (j), but they are of the same type as the standard one.

3 In dynamical systems theory, the pressure is the logarithm of the dominant eigen-
value.



where |λ′(1)| ∼ 3.41 equals the entropy of the Euclid centered algorithm. This
entails that, in two dimensions, the mean value E[α] varies in the interval [14, 23].
Led by the dynamical point of view, we set a conjecture which extends the
previous two–dimensional property to any dimensions.

Entropy Conjecture. Consider the probabilistic Exp-Ajtai(θ) model in n di-
mensions. Then, for θ → ∞, the mean of the variable α tends to the entropy En

of the dynamical system underlying the LLL algorithm.

lim
θ→∞

E(θ,n)[α] =
En

log s

3 Study of the sandpile model.

There are three main questions about the RLLL algorithm :

(Q1) Does the RLLL algorithm depend on the strategy?

(Q2) How does the behaviour of the RLLL algorithm depend on the value of
parameter α? What about the number of iterations? the output configuration?
Are there lower bounds on average in relations (6) and (7)?

(Q3) Does there exist a characterisation for two blocks to be independent in the
RLLL algorithm? We can run the execution of the LLL algorithm, both on the
block B− formed with the first vectors and on the block B+ formed on the last
vectors The two blocks B− and B+ are said to be independent if the total basis

formed by concatening the two reduced bases B̂− and B̂+ is reduced.

Here, we answer these three main questions. As we already said previously, the
additive version of the regularized algorithm (see Figure 1.right) deals with the
sandpile model. Even if this model is very well known, the modelling of the
RLLL algorithm gives rise to non classical instances of sandpile models.

3.1. Main objects for sandpiles. Here, H,h denote strictly positive real
numbers.

A sandpile model Qn(q,H, h) describes all the possible evolutions of the config-
uration q = (q1, . . . , qn) under the action of functions fi

fi(q) =






qj − h if j = i and qi − qi+1 > H,

qj + h if j = i+ 1 and qi − qi+1 > H,

qj else.

We associate to q := (q1, . . . , qn) the configuration c := ∆(q) formed with the
differences between the components, ci = qi − qi+1 for i ∈ [1..n− 1].

The strategy graph, denoted by G(q,H, h), is a directed graph whose vertices
are all the configurations that are reachable from q; there is an edge from u to
v (with u 6= v) if there exists an index i ∈ [1..n− 1] for which v = fi(u).

The energy E and the total mass M of the configuration q are defined by

E(q) =
n∑

i=1

i · qi, and M(q) =
n∑

i=1

qi, (13)



and satisfy M(fi(q)) = M(q), E(fi(q)) = E(q) + h.

3.2. Various kinds of sandpiles. The usual sandpiles are basic and decreasing:

Definition 1. (i) A sandpile q is basic if the configuration ∆(q) is integral and
parameters (H,h) equal (1, 1)

(ii) A sandpile is (H,h)–integral if the components ci of c := ∆(q) belong to
the same discrete line H + Zh

(iii) A basic sandpile q is decreasing if the components of c := ∆(q) are positive
(ci ≥ 0). It is strictly decreasing if c is strictly positive. On the contrary, it is
increasing if all the components of c are negative.

The sandpiles used in the RLLL algorithm are not basic. However, the following
result shows that any general sandpile is isomorphic to a basic sandpile.

Proposition 1. The mapping ψ : q 7→ q′ defined by

c′i := 1 −
⌊
H − ci
h

⌋
, q′n = 0 (14)

transforms a general sandpile into a basic sandpile. Moreover, the two graphs
G(q,H, h) and G(ψ(q), 1, 1) are isomorphic.

A general sandpile q is decreasing (resp. strictly decreasing, increasing) if ψ(q) is
decreasing (resp. strictly decreasing, increasing). A general sandpile decomposes
into strictly decreasing configurations, separated by increasing configurations.

Definition 2. Two adjacent strictly decreasing sandpiles q−,q+ are indepen-
dent if the configuration obtained by concatening the two final configurations
q̂− and q̂+ is a final configuration.

3.3. Study of a general sandpile. Here, we obtain (easy) extensions of
results of Goles and Kiwi who considered only in [8] basic decreasing sandpiles.

Theorem 1. The following holds for any sandpile Q(q,H, h):

(i) The graph G(q,H, h) is finite, with a unique final configuration q̂. The length
of a path q → q̂ is the same for any path. This is the number of steps T (q),

T (q) =
1

h
[E(q̂) − E(q)] =

1

2h

n−1∑

i=1

i(n− i) (ci − ĉi)

(ii) If Qn(q,H, h) is decreasing, then the components of the output configuration
ĉ satisfy H − 2h < ĉi ≤ H, and the number of iterations satisfy

0 ≤ T (q) − 1

2h

n−1∑

i=1

i(n− i) (ci −H) ≤ 2A(n) with A(n) := n
n2 − 1

12

(iii) If Qn(q,H;h) is strictly decreasing, then there exists j ∈ [1..n−1] for which

∀i 6= j, H − h < ĉi ≤ H, and H − 2h < ĉj ≤ H − h,



and the number of steps T (q) satisfies

0 ≤ T (q) −
[
A(n) +

1

2h

n−1∑

i=1

i(n− i) (ci −H)

]
≤ 1

8
n2

(iv) For a general sandpile Qn(q,H, h), the output configuration satisfies

H − 2h < ĉi ≤ H if ci > H − h, ĉi ≥ ci if ci ≤ H − h

and the number of steps T (q) satisfies

1

2h

n−1∑

i=1

i(n− i)(ci −H + h) ≤ T (q) ≤ 1

2h

n−1∑

i=1

i(n− i)max(ci −H + h, 0)

(v) A sufficient condition for two adjacent sandpiles Qp(q−,H, h),Qn(q+,H, h)
to satisfy the independence condition of Definition 2 is

1

p
M(q−) − 1

n
M(q+) ≤

(
n+ p

2

)
(H − h) − h

and for a sandpile (H,h)–integral:
1

p
M(q−) − 1

n
M(q+) ≤

(
n+ p

2

)
H − 2h.

4 Returning to lattices.

We now return to the LLL algorithm, with the framework of Section 1, and
apply the results of Section 3 to the so–called ρ–regular executions of the LLL
algorithm, for which the decreasing factor is constant and equal to ρ. We recall
that, in this case, the execution of the algorithm in dimension n can be viewed
as a sandpile model Qn(q, 1, α) associated to a parameter α := − logs ρ, and an
initial configuration q related to the lengths ℓi of the orthogonalised basis B⋆

of the input basis B via the equalities qi := logs ℓi. The main objects associated
to the basis B, namely the potential D(B) or the determinant det(B) are then
related to the energy E(q) or the total mass M(q),

E(q) = logsD(B), M(q) = logs det(B).

We are interested in two kinds of input bases:

(i) We first study totally non-reduced bases, for which Condition Ss(i) is never
satisfied on the input. In this case, the sandpile is strictly decreasing. [Sections
4.1 and 4.2]

(ii) We then study a general input basis, which is a sequence of blocks, some of
them are totally non-reduced, and other ones are totally reduced [Section 4.3]

We compare here the results that are proven for regular executions of the LLL
algorithm, (by an easy transfer of results of Section 3) and the experimental
results that are performed on general executions of the algorithm. We will see
that there is a good fitting between these two kinds of results. This good fitting
has two main consequences:

– This provides an indirect validation of the property : “The executions of the
LLL algorithm are very often regular enough”.

– This shows that long experiments on the LLL algorithm can be simulated by
fast computations in the sand pile model (with a good choice of parameter α).



As in Section 3, we study the final configurations, the number of steps, and the
independence of blocks.

4.1. Final configurations. When the initial basis is totally non reduced, the
sandpile is strictly decreasing. Then, with Theorem 1 (ii), each output Siegel
ratio r̂i and the first vector of the output basis satisfy

ρs ≤ 1

r̂i
=

ℓ̂i

ℓ̂i+1

≤ s, ρ(s · ρ)(n−1)/2 ≤ γ(B̂) =
||̂b1||

(detL)1/n
≤ s(n−1)/2. (15)

Then, we have proven:

Theorem 2. Consider a totally non reduced basis B on which the execution of
the LLL algorithm is ρ–regular. Then, the output parameter γ(B̂) defined in (7)
satisfies 2

n− 1
logs γ(B̂) ∈ [1 − α, 1], with α := − logs ρ.

This is compatible with experiments done on general executions by Nguyen and
Stehlé [11], which show that there is a mean value β ∼ 1.04 , such that, for most

of the output bases B̂, the ratio γ(B̂) is close to β(n−1)/2. The relation β ∼ s
√
ρ

is then plausible, so that the “usual” ρ would be close to 0.81.

4.2. Number of iterations. Suppose that the (totally non reduced) input basis
follows the Mod-Exp-Ajtai(θ) distribution. Then, the configuration c′ associated
to c via Theorem 1 follows a geometric law,

P[c′i ≥ 1 + k] = ρk/θ, E[c′i − 1] =
ρ1/θ

1 − ρ1/θ
,

and Theorem 1 (iii) entails:

Theorem 3. Consider an input basis B, which follows the Mod-Exp-Ajtai dis-
tribution of parameter θ. If the execution of the LLL algorithm in dimension n
is ρ–regular on the basis B, the number of iterations satisfies

Kn(ρ, θ) ∼ n3

12α

(
ρ1/θ

1 − ρ1/θ

)
(n→ ∞).

If the Entropy Conjecture of Section 3.6 is true, then

lim
θ→∞

Kn(θ) ∼
(
θ log s

12

)
n3

E2
n

where En is the entropy of the LLL algorithm.

This results fits with the experiments done for general executions of the LLL al-
gorithm by Nguyen and Stehlé [11]. In particular, for the choice of Ajtai, namely
θ = na, the experiments show a number of iterations of order Θ(n3+a).

4.3. An instance of the independence property. The question of the
independence between blocks is important. We now describe such an instance of
this phenomenon in the framework of Coppersmith’s method. In the paper [4],
Boneh and Durfee present a method for breaking the RSA cryptosystem based on
Coppersmith’s method. Coppersmith’s method uses the LLL algorithm in order



to find a small root of a polynomial modulo an integer E. For the cryptanalysis
of RSA, one deals with the public exponent E. We let L := logsE.

The initial configuration is formed with m+ 1 blocks, indexed from k = 0 to m.
The k-th block has length k+ 1, is (1, α)-integral, and the components ci of the
configuration c are equal to L/2. However, the total configuration is not totally
decreasing, but the (second) sufficient condition of Theorem 1 (v) is always true.
Then, Theorem 1(v) entails:

Theorem 4. Suppose that the execution of the LLL algorithm is ρ-regular on
the Coppersmith lattice described in [4]. Then, the blocks of the lattice are
always independent, and the reduction can be done in parallel on each block.
The number of iterations Kp performed in this parallel strategy is then

Kp =
m3

12α

(
L

2
− 1

)
to be compared to Ks =

m∑

i=1

Ki ∼
m4

48α

(
L

2
− 1

)
,

which is the number of steps in the sequential strategy.

Figure 3. On the left, the random walk of the actual LLL algorithm on a Coppersmith
lattice of dimension 21 (related to m = 5). On the right, the random walk of the
execution of the LLL algorithm on the basis formed by the concatenation of the reduced
blocks.

Of course, the execution of the LLL algorithm on the Boneh-Durfee lattice cannot
be totally regular : the first vector of the reduced lattice basis would be the first
vector of the initial basis, and the method would fail! However, it is possible
to compare (see [7]) the result of Theorem 4 to an execution of the actual LLL
algorithm on a Boneh–Durfee lattice (see Figure 3 left). We first see that, on each
block, the number of iterations is quite large (the blocks are totally non reduced)
and this fits with the order Θ(k3) which is proven for a ρ–regular execution. We
also remark that the blocks are not independent but almost independent: the
basis obtained by concatening the reduced bases of each block is not totally
reduced, but few reduction steps are needed for reducing it, as Figure 3 (right)
shows it. Such a strategy, whose first step can be performed in a parallel way, is
very efficient in this case



Conclusion. This paper presents a simplified model of the LLL algorithm, under
a “regularity” hypothesis which assumes that the decreasing factor ρ is constant.
Of course, this hypothesis does not exactly hold in the reality, and we have pro-
vided experimental results about its validity. We have also explained why this
simplified model is very useful for understanding the LLL algorithm in an intu-
itive way, and for testing (at least qualitative) conjectures on the algorithm. The
excellent fitting of this model on a class of Coppersmith lattices is also striking.
In fact, the sandpile model represents a good compromise between simplicity
and adequation to the reality.
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