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KOSTANT SECTION, UNIVERSAL CENTRALIZER,

AND A MODULAR DERIVED SATAKE EQUIVALENCE

SIMON RICHE

Abstract. We prove analogues of fundamental results of Kostant on the uni-

versal centralizer of a connected reductive algebraic group for algebraically

closed fields of positive characteristic (with mild assumptions), and for integral
coefficients. As an application, we use these results to obtain a “mixed modu-

lar” analogue of the derived Satake equivalence of Bezrukavnikov–Finkelberg.

1. Introduction

1.1. Introduction. The main goal of this note is to provide a detailed exposition
of a generalization to arbitrary characteristic (and to integral coefficients) of some
fundamental results of Kostant on the universal centralizer group scheme I (and its
Lie algebra I) associated with a connected reductive group G. Some of these results
are sometimes considered “well known” but, as far as we know, are not treated in
detail in the literature in this generality. Therefore, we believe they deserve a
complete treatment, under assumptions as mild as possible.

In the case of fields of characteristic 0, these results play an important technical
role in various aspects of the geometric Langlands program, see e.g. [G1, BF, Do,
Ng]. More recently, the “modular” case treated in this paper has been used in
a joint work with Carl Mautner [MR2] (again, as a technical tool) to generalize
some constructions of [Do] to positive characteristic, with an application to the
completion of the proof of the Mirković–Vilonen conjecture on stalks of standard
spherical perverse sheaves on affine Grassmannians [MV]. In this paper we present
another application, to a “mixed modular” version of the Bezrukavnikov–Finkelberg
derived Satake equivalence [BF], an equivalence of monoidal triangulated categories
relating the Ǧ(O)-equivariant derived category of the affine Grassmannian Gr of a
reductive group Ǧ and the derived category of equivariant coherent sheaves on the
Lie algebra g of the Langlands dual group G.

1.2. Kostant’s transversal slice. The proofs of the results on the universal cen-
tralizer use in a crucial way a nice transversal slice to the regular nilpotent orbit in
the Lie algebra g of G. After the introduction of this slice by Kostant (in the case
of complex coefficients) in [Ko], the study of transverse slices to more general nilpo-
tent orbits has become a subject of intense study, see e.g. [Sl, Spa, Pr]. The case of
the Kostant section has some special features, however. First of all, its definition
is very explicit and quite elementary, and therefore well suited to a generalization
to integral coefficients. Secondly, since it is concerned with the regular nilpotent
orbit, it captures some features of the whole locus of regular elements in g (which
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plays a crucial role in the study of the universal centralizer) but also of the adjoint
quotient g/G. These considerations do not make sense (at least in this form) for
more general nilpotent orbits.

1.3. Description of the main results. After some preliminaries in Section 2, the
first main part of the paper (Section 3) is concerned with the case of algebraically
closed fields. In this case we have tried to prove the various results in the maximal
reasonable generality, and to introduce our assumptions only when they become
necessary.

First we explain the construction of the Kostant section S, which is both a
transversal slice to the regular nilpotent orbit in g and a section of the adjoint
quotient g → g/G (see Theorem 3.2.2). In the case of positive characteristic, this
construction uses the detailed analysis of the adjoint action of a regular nilpotent
element due to Springer [Sp]. Then we consider the universal centralizer I, i.e. the
group scheme over g whose fiber over a point x ∈ g is the (scheme-theoretic)
centralizer Gx of x in G. Using S, we prove that the restriction Ireg of I to
the regular locus greg is a smooth commutative group scheme (see in particular
Corollary 3.3.6). We also describe the Lie algebra of Ireg in terms of the cotangent
bundle to g/G (see Theorem 3.4.2), generalizing results in characteristic 0 due (to
the best of our knowledge) to Bezrukavnikov–Finkelberg [BF]. Finally we consider
variants of these results when the Lie algebra g is replaced by the Grothendieck
resolution g̃ (see §3.5).

The second main part of the paper (Section 4) is concerned with the case when G
is a split connected, simply-connected, semi-simple algebraic group over the finite
localization R of Z obtained by inverting all the prime numbers which are not very
good, or a general linear group over Z. In this setting, using again the results of
Springer we define and study a Kostant section S (see in particular Theorem 4.3.3),
prove that the restriction of the universal centralizer to S is smooth (see Proposi-
tion 4.4.1), and describe the Lie algebra of this restriction in terms of the cotangent
bundle to S (see Theorem 4.4.4). Finally we study analogues of these objects for
the Grothendieck resolution (see §4.5). The proofs in this section mainly proceed
by reduction to the case of algebraically closed fields. (The necessary general results
related to this technique are treated in §4.1.)

1.4. Application to a derived Satake equivalence. In Section 5 we present
an application of some of these results to a “mixed modular version” of the derived
Satake equivalence of [BF]. Here we let Ǧ be a simply-connected quasi-simple
complex algebraic group, and consider the affine Grassmannian Gr := Ǧ(K )/Ǧ(O),
where K := C((z)) is the field of Laurent series in an indeterminate z, and O :=
C[[z]] is the ring of power series in z. We also let F be an algebraically closed field
whose characteristic ` is very good for Ǧ, and denote by G the simple F-algebraic
group (of adjoint type) which is Langlands dual to Ǧ.

Following earlier work with Pramod Achar [AR], we define the “mixed modular”
Ǧ(O)-equivariant derived category of Gr as

Dmix
Ǧ(O)

(Gr,F) := Kb ParityǦ(O)(Gr,F),

where ParityǦ(O)(Gr,F) is the additive category of Ǧ(O)-equivariant parity sheaves

on Gr, in the sense of Juteau–Mautner–Williamson [JMW]. To justify this definition
we remark that, in the case ` = 0, one can show using results of Rider [Ri] that this
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category is a mixed version (in the natural sense) of the usual equivariant derived
category Db

Ǧ(O)
(Gr,F). In the case ` > 0, a similar definition has been used in the

setting of Bruhat-constructible sheaves on (finite dimensional) flag varieties in [AR];
in this case also we were able to show that the mixed modular derived category is a
mixed version of the ordinary derived category of constructible sheaves. We expect
that a generalization of the results of [AR] will lead to a proof of the similar property
for Dmix

Ǧ(O)
(Gr,F).

The category ParityǦ(O)(Gr,F) has a natural convolution product, which induces

a similar convolution product on Dmix
Ǧ(O)

(Gr,F). In Theorem 5.5.1 we obtain an

equivalence of monoidal triangulated categories

(1.4.1) Dmix
Ǧ(O)

(Gr,F)
∼−→ Db CohG×Gm(g),

where on the right-hand side G × Gm acts on g via (g, t) · x = t−2(g · x), and

Db CohG×Gm(g) is the bounded derived category of G × Gm-equivariant coherent
sheaves on g. This equivalence sends an object F of Dmix

Ǧ(O)
(Gr,F) which is both

parity and perverse to S(F)⊗Og, where S is the Satake equivalence from [MV]. It is
an analogue, in our“mixed modular”context, of one of the equivalences constructed
(in the case ` = 0) in [BF].

The general strategy of our proof of (1.4.1) is similar to the one used in [BF].
However we replace some of the arguments based on explicit computations in
semisimple rank 1 by more general considerations based on results concerning the
(equivariant) cohomology of Gr and of spherical perverse sheaves due, in the case
of characteristic 0, to Ginzburg [G2] and, in the general case, to Yun–Zhu [YZ].

This application only uses the results obtained in §§3.1–3.3; in particular, the
case of integral coefficients is not needed. The other results (and in particular the
integral case) are used in [MR2].

1.5. Some notation and conventions. All rings in this paper are tacitly assumed
to be unital and commutative. If A is a B-algebra, we denote by ΩA/B the A-module
of relative differential forms, see [Ha, §II.8]. If M is an A-module, we denote by
SA(M) (or sometimes simply S(M)) the symmetric algebra of M over A.

If X is a scheme, we denote by OX its structure sheaf, and by O(X) the global
sections of OX . If Y is a scheme and X is a Y -scheme, we denote by ΩX/Y the
OX -module of relative differential forms. If X is smooth over Y , we denote by
T∗(X/Y ) (or simply T∗(X)) the cotangent bundle to X over Y , in other words the
relative spectrum of the symmetric algebra of the locally free OX -module TX/Y :=
H omOX (ΩX/Y ,OX).

If k is a ring and V is a free k-module of finite rank, by abuse we still denote by
V the affine k-scheme Spec

(
Sk(Homk(V, k))

)
.

If R is a finite localization of Z, we define a geometric point of R to be an
algebraically closed field whose characteristic is not invertible in R. If F is a such
a geometric point, then there exists a unique algebra morphism R → F, so that
tensor products of the form F⊗R (−) make sense.

1.6. Acknowledgements. This work is part of a joint project with Carl Mautner,
see [MR1, MR2], and was motivated by discussions with him. We also thank Zhiwei
Yun for useful conversations on regular elements and for confirming a sign mistake
in [YZ], and Sergey Lysenko for his help with some references. Finally, we thank an
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anonymous referee for his/her criticism, which lead us to work on the application
presented in Section 5.

2. Preliminaries on Lie algebras and regular elements

In this section we recall a number of definitions and basic results on Lie algebras
of group schemes and regular elements in the Lie algebra of a reductive group over
an algebraically closed field.

2.1. Lie algebra of group schemes. Let X be a Noetherian scheme, and let G
be a Noetherian group scheme over X. We denote by ε : X → G the identity, and
consider the OX -coherent sheaf

ωG/X := ε∗(ΩG/X).

Then, by definition (see e.g. [SGA, Exposé II, §4.11]; see also [Wa, Chap. 12] for
the case G and X are affine), the Lie algebra of G is the quasi-coherent OX -module

Lie(G/X) := H omOX (ωG/X ,OX),

with its natural bracket. We also denote by Lie(G/X) the scheme over X which
is the relative spectrum of the symmetric algebra of the OX -module ωG/X . This
scheme is naturally a Lie algebra over X. When X is clear, we will sometimes
abbreviate Lie(G/X), resp. Lie(G/X), to Lie(G), resp. Lie(G).

We will use the following easy consequences of the definition.

Lemma 2.1.1. (1) If G is smooth over X, then the OX-module Lie(G/X) is
locally free of finite rank, and Lie(G/X) is a vector bundle over X.

(2) Let f : Y → X be a morphism. Assume that either G is smooth over X, or
f is flat. Then there exists a canonical isomorphism

Lie(G×X Y/Y ) ∼= f∗Lie(G/X)

of OY -Lie algebras.

Proof. (1) Since G → X is smooth, the OG-module ΩG/X is locally free of finite
rank (see [SP, Tag 02G1]), which implies that ωG/X and Lie(G/X) are locally free
of finite rank over OX . The fact that Lie(G/X) is a vector bundle follows.

(2) We have

f∗Lie(G/X) = f∗H omOX (ε∗ΩG/X ,OX) ∼= H omOY (f∗ε∗ΩG/X ,OY )

under our assumptions (see [Ma, Theorem 7.11] for the second case). Now using [Ha,
Proposition II.8.10] one can easily check that f∗ε∗ΩG/X is the restriction to Y of
ΩG×XY/Y , which finishes the proof. �

2.2. Notation and assumptions. In Section 3 we will work in the following set-
ting.

Let F be an algebraically closed field of characteristic ` ≥ 0. Let G be a connected
reductive group over F, of rank r. Let B ⊂ G be a Borel subgroup and T ⊂ B be
a maximal torus. We denote by t ⊂ b ⊂ g the Lie algebras of T ⊂ B ⊂ G. We also
denote by U the unipotent radical of B, by n its Lie algebra, and by DG ⊂ G the
derived subgroup. We denote by B+ the Borel subgroup of G which is opposite to
B with respect to T, by U+ its unipotent radical, and by b+ and n+ their respective
Lie algebras.
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We let Φ be the root system of (G,T), and W be its Weyl group. For α ∈ Φ,
we denote by gα ⊂ g the corresponding root subspace.

We denote by Φ+ ⊂ Φ the system of positive roots consisting of the T-weights
in n+, and by ∆ the corresponding basis of Φ. We also denote by Φ̌ ⊂ X∗(T)
the coroots of Φ, and by ∆̌ ⊂ Φ̌+ ⊂ Φ̌ the coroots corresponding to ∆ and Φ+

respectively. We denote by ZΦ ⊂ X∗(T), resp. ZΦ̌ ⊂ X∗(T), the lattice generated
by the roots, resp. coroots. For α ∈ Φ, resp. α̌ ∈ Φ̌, we denote by dα, resp. dα̌, the
differential of α, resp. α̌, considered as an element in t∗, resp. t.

The results of Section 3 will be proved under one of the following conditions:

(C1) for all α ∈ Φ, dα 6= 0;
(C2) ` is good for G, and X∗(T)/ZΦ̌ has no `-torsion;
(C3) ` is good for G, and neither X∗(T)/ZΦ̌ nor X∗(T)/ZΦ has `-torsion;
(C4) ` is good for G, X∗(T)/ZΦ̌ has no `-torsion, and there exists a G-equi-

variant isomorphism g
∼−→ g∗.

We claim that

(C4)⇒ (C3)⇒ (C2) and (C3)⇒ (C1).

Indeed, the condition that X∗(T)/ZΦ has no `-torsion means that the vectors dα
(α ∈ ∆) are linearly independent in t∗ ∼= F ⊗Z X

∗(T). This implies in particular
that they are non zero. Since any root is W -conjugate to a simple root, this justifies
the implication (C3)⇒ (C1).

The implication (C3) ⇒ (C2) is obvious. Now, if κ : g
∼−→ g∗ is a G-equivariant

isomorphism, restricting to T-fixed points we obtain an isomorphism t
∼−→ t∗. It is

not difficult to deduce from the G-equivariance of κ that this isomorphism must
send each differential of a simple root to a non-zero multiple of the differential of
the corresponding coroot. Hence the former are linearly independent iff the latter
are linearly independent, which justifies the implication (C4)⇒ (C3).

Let us note also that the condition that X∗(T)/ZΦ̌ has no `-torsion is automatic
if DG is simply connected. Indeed, let T′ be the maximal torus of DG contained
in T. Then, as explained in [J2, §II.1.18], we have

X∗(T
′) = X∗(T) ∩

(∑
α̌∈Φ̌

Q · α̌
)
.

In particular, X∗(T
′)/ZΦ̌ is the torsion submodule of X∗(T)/ZΦ̌. If DG is sim-

ply connected then X∗(T
′)/ZΦ̌ = 0, hence X∗(T)/ZΦ̌ is a free Z-module. This

remark shows that condition (C4) holds (hence also the other conditions) provided
G satisfies Jantzen’s “standard hypotheses”, see e.g. [J1, §6.4].

Remark 2.2.1. (1) Condition (C1) is discussed in [J3, §13.3]. The only cases
when this condition might not be satisfied occur when ` = 2 and G has a
component of type Cn (n ≥ 1). In particular, it is satisfied if ` is good for
G except possibly when ` = 2 and G has a component of type A1.

(2) Primes satisfying (C3) are called “pretty good” in [He]. See also [He, The-
orem 5.2] for the relation between this condition and other variants of the
“standard hypotheses.” In the case G is semisimple, this condition is equiv-
alent to ` being very good, and (C4) is equivalent to (C3), see the proof of
Lemma 4.2.3 below.
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2.3. Regular elements and the adjoint quotient. We continue with the nota-
tion of §2.2. For any closed subgroup H ⊂ G and any x ∈ g, we denote by Hx the
scheme-theoretic centralizer of x in H, i.e. the closed subgroup of H defined by the
fiber product x×g H, where the morphism H→ g sends h to h ·x. If H is reduced,
we also denote by CH(x) the reduced part of Hx, i.e. the reduced subgroup in H
whose closed points are {g ∈ H | g · x = x}. If h is the Lie algebra of H, we set
hx := {y ∈ h | [x, y] = 0}.

Recall that for x ∈ G we have dim(Gx) ≥ r. (This follows, by standard ar-
guments, from the fact that any element in g is contained in the Lie algebra of
a Borel subgroup, see [Bo, Proposition 14.25], and that B acts trivially on b/n.)
An element x ∈ g is called regular if dim(Gx) = r. We denote by greg ⊂ g the
subset consisting of regular elements; it is open (see e.g. [Hu, Proposition 1.4]) and
non empty (see Lemma 3.1.1 below). We will also consider the subset grs ⊂ greg

consisting of regular semi-simple elements. This subset is open, and non-empty if
(and only if) (C1) holds, see [J3, §13.3]. For any subset k ⊂ g, we set kreg := k∩greg,
krs := k ∩ grs. Then by [J3, §13.3], if (C1) holds we have

(2.3.1) trs = {x ∈ t | ∀α ∈ Φ, dα(x) 6= 0}.

We will denote by

χ : g→ g/G

the quotient morphism, and by χreg : greg → g/G its restriction to regular elements.
(Here, g/G := Spec(O(g)G).) In Section 3 we will need a few well-known results
regarding this morphism.

Lemma 2.3.1. If x, y ∈ greg and χ(x) = χ(y), then x and y are G-conjugate.

Proof. This follows from [J3, Proposition 7.13]. Alternatively, one can prove this
result directly using the facts that χ separates semi-simple G-orbits (since they are
closed, see [Bo, Proposition 11.8]), that CG(x)◦ is reductive if x ∈ g is semi-simple
(see [Bo, Proposition 13.19]) and that the nilpotent cone of a connected reductive
group is irreducible (see [J3, Lemma 6.2]). �

Proposition 2.3.2. Assume that (C1) holds. Then the inclusion t ⊂ g induces an

algebra isomorphism O(g)G
∼−→ O(t)W ; in other words an isomorphism of schemes

t/W
∼−→ g/G.

Proof. In [J3, §7.12] it is explained that the proof given in [SS, §II.3.17’] applies if
(C1) is satisfied. �

When (C1) is satisfied, we will usually use Proposition 2.3.2 to consider χ as a
morphism from g to t/W .

Lemma 2.3.3. Assume that (C1) holds, and that X∗(T)/ZΦ̌ has no `-torsion.
Then

(1) the action of W on trs is free (in the sense that the stabilizer of any x ∈ trs
is trivial);

(2) for any x ∈ trs we have Gx = T.

Proof. (1) Our assumptions imply that the stabilizer in t of the reflection sα as-
sociated with α ∈ Φ is the hyperplane Ker(dα). Using (2.3.1) we deduce that if
x ∈ trs, then x is not fixed by any sα. Hence to conclude it is enough to prove that
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if w ∈ W and x ∈ t satisfy w · x = x, then w is a product of reflections stabilizing
x.

This property follows from a well-known argument (see e.g. [Hu, Lemma on
p. 32]). In fact, let us first assume that ` > 0. Then we have natural isomorphisms

t ∼= X∗(T)⊗Z F ∼= (X∗(T)/` ·X∗(T))⊗F` F.

Hence it is enough to prove a similar property for the W -action on X∗(T)/`·X∗(T).
Now let w ∈ W and µ̌ ∈ X∗(T) be such that w · µ̌ = µ̌ mod ` · X∗(T). Then
w · µ̌ − µ̌ ∈ ZΦ̌ ∩ ` · X∗(T). Since X∗(T)/ZΦ̌ has no `-torsion, this implies that
w · µ̌− µ̌ ∈ ` ·ZΦ̌. Let us write w · µ̌− µ̌ = `λ̌. Then the image of µ̌ in X∗(T)⊗Z R
is fixed by the element (`λ̌) · w of the group W n `ZΦ̌, which is the affine Weyl
group of [J2, §II.6.1] (for the reductive group which is Langlands dual to G). By a
well-known result on groups generated by reflections in real affine spaces (see [Bo,
V, §3, Proposition 1]), (`λ̌) ·w is a product of reflections in W n `ZΦ̌ stabilizing µ̌.
Projecting on W , we deduce that indeed w is a product of reflections in W which
stabilize µ̌ mod ` ·X∗(T), which finishes the proof in the case ` > 0.

The case ` = 0 is similar and simpler; details are left to the reader.
(2) First we show that Gx is smooth. In fact, since x is regular we have

dim(Gx) = r. On the other hand, it is easily checked using the triangular decom-
position of g that gx = t. We deduce that the inclusions Lie(T) ⊂ Lie(Gx) ⊂ gx
must be equalities. We have proved that dim(Gx) = dim(Lie(Gx)), which implies
that Gx is smooth (see [Wa, Corollary on p. 94]).

It follows from [J3, Lemma 13.3] that Gx = CG(x) ⊂ NG(T). Since no element
of W = NG(T)/T stabilizes x by (1), we deduce that Gx = T. �

We will finally use the following easy observation.

Lemma 2.3.4. If κ : g
∼−→ g∗ is a G-equivariant isomorphism, then for any x ∈ g

the image κ(gx) of gx is the subspace (g/[x, g])∗ ⊂ g∗.

Proof. Using the G-equivariance of κ we observe that κ(gx) ⊂ (g/[x, g])∗. Then we
conclude by a dimension argument. �

3. The case of fields

In this section we use the notation of §§2.2–2.3.

3.1. The principal nilpotent element and the Kostant section. For any
α ∈ ∆ we choose a non-zero root vector eα ∈ gα, and set

e :=
∑
α∈∆

eα.

Lemma 3.1.1. The element e ∈ g is regular.

Proof. First we observe that regular nilpotent elements exist: this follows from the
fact that the nilpotent cone in g has dimension dim(g)−r (see [J3, Theorem 6.4]) and
consists of finitely many G-orbits (see [J3, §2.8] and references therein). Then the
claim follows from [Sp, Lemma 5.8]. (In loc. cit. it is assumed that G is semisimple,
but this assumption does not play any role in the proof of this lemma.) �

Lemma 3.1.2. Assume that (C2) holds. Then the morphism

n→ b, x 7→ [e, x]
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is injective.

Proof. This result is a consequence of the considerations in [Sp, Section 2]. In fact,
let GZ ⊃ BZ ⊃ TZ be a split connected reductive group over Z, a Borel subgroup
and a (split) maximal torus such that the base change of GZ, resp. BZ, resp. TZ,
to F is G, resp. B, resp. T. We denote by tZ ⊂ bZ ⊂ gZ the Lie algebras of
TZ ⊂ BZ ⊂ GZ. Then we have g = F⊗Z gZ. Moreover, since the morphism∏

α∈∆

α : T→ (F×)∆

is surjective, we can assume that each eα is the image in g of a vector xα ∈ gZ
which forms a Z-basis of the α-weight space of gZ (with respect to the action of
TZ).

As in [Sp] we consider the Z-grading gZ =
⊕

i∈Z g
i
Z induced by the height1 of

roots, and denote by ti : g
i
Z → gi+1

Z the morphism y 7→ [
∑
α∈∆ xα, y]. Then the

morphism of the lemma is the morphism obtained from⊕
i<0

ti :
⊕
i<0

giZ →
⊕
i≤0

giZ

by applying the functor F⊗Z (−).
It is clear that t−1 identifies with the inclusion ZΦ̌ ↪→ X∗(T). Hence the induced

morphism F⊗Zg
−1
Z → F⊗Zg

0
Z is injective if (C2) holds (more precisely, iff the second

condition in (C2) holds).
Now if i < −1, then by [Sp, Proposition 2.2] the morphism ti is injective, and

by [Sp, Theorem 2.6] its cokernel has no p-torsion if p is good. (In [Sp, Section 2]
it is assumed that the root system of GZ is simple. However the result we need
follows from Springer’s results applied to each simple factor in a simply-connected
cover of the derived subgroup of GZ.) Hence F⊗Z ti is injective, which finishes the
proof. �

From now on we will assume that (C2) holds, so that we can apply Lemma 3.1.2.
Let us consider the cocharacter λ̌◦ :=

∑
α̌∈Φ̌+ α̌ : Gm → T. This cocharacter defines

(via the adjoint action) a Gm-action on g. The vector e is a weight vector for this
action, of weight 2. Let us choose a Gm-stable complement s to [e, n] in b, and set

S := e+ s, Υ := e+ b.

Then Υ is endowed with a Gm-action defined by t · x := t−2λ̌◦(t) · x. This action
contracts Υ to e (as t→∞) and stabilizes S.

Let us note that

(3.1.1) Υ ⊂ greg.

Indeed, by Lemma 3.1.1, e ∈ greg. Hence an open neighborhood of e in Υ is included
in greg. Using the contracting Gm-action on Υ defined above, we deduce that the
whole of Υ is included in greg.

Lemma 3.1.3. Assume that (C3) holds. Then we have

g = s⊕ [e, g].

1Recall that the height of a positive root α is the number of simple roots occurring in the
decomposition of α as a sum of simple roots (counted with multiplicities). The height of a nega-
tive root α is the opposite of the height of −α.
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Proof. By the same argument as for centralizers in G (see §2.3), one can check that
dim(gx) ≥ r for all x ∈ g. In particular, it follows that dim([e, g]) ≤ dim(G) − r.
Hence to prove the lemma it suffices to prove that g = s + [e, g]. And for this it
suffices to prove that n+ ⊂ [e, g].

This fact will again by deduced from [Sp]. We use the same notation as in the
proof of Lemma 3.1.2. As in this proof, one can assume that each eα is obtained
from a Z-basis of the corresponding root space in gZ, and consider the morphisms
ti. Then F⊗ t0 : F⊗Z g0

Z → F⊗Z g1
Z identifies with the morphism

t→ F∆, t 7→ (dα(t))α∈∆.

Hence it is surjective if and only if the linear forms dα (α ∈ ∆) are linearly inde-
pendent, i.e. if and only if the third condition in (C3) holds.

And for i ≥ 1, combining [Sp, Proposition 2.2] and [Sp, Theorem 2.6] we obtain
that Coker(ti) is finite and has no p-torsion if p is good. Hence F⊗Z ti is surjective,
which finishes the proof. �

Remark 3.1.4. More generally, if (C3) holds, for any x ∈ Υ we have g = s⊕ [x, g].
(In particular, we have dim(gx) = r in this case.) Indeed, as in the proof of
Lemma 3.1.3, it suffices to prove that g = s+[x, g], i.e. that the morphism s⊕g→ g
defined by (s, y) 7→ s + [x, y] is surjective. This property is an open condition on
x. Since it is satisfies by e, it is satisfied in a neighborhood of e in Υ. We conclude
using the contracting Gm-action.

3.2. Kostant’s theorem.

Proposition 3.2.1. Assume that (C2) holds. Then the morphism

U× S → Υ

induced by the adjoint action is an isomorphism of varieties.

Proof. The proof is copied from that of [GG, Lemma 2.1].
Let us denote by ψ the morphism of the lemma. First, we remark that the

differential d(1,e)ψ of ψ at (1, e) can be identified with the morphism{
n⊕ s → b
(n, s) 7→ [n, e] + s

.

By Lemma 3.1.2 and the definition of s, this morphism is an isomorphism. It follows
that ψ is étale in a neighborhood of (1, e), and in particular dominant. We deduce
that the morphism ψ∗ : O(Υ)→ O(U× S) is injective.

To prove that ψ∗ is an isomorphism, we consider the Gm-actions on S and Υ
defined in §3.1. In fact we also define a Gm-action on U× S by setting t · (u, s) =
(λ̌◦(t)uλ̌◦(t)

−1, t · s). Then the actions on U× S and Υ are contracting as t→∞
(to (1, e) and to e respectively), and ψ is Gm-equivariant. Hence to conclude we
only have to prove that the characters of the action of Gm on O(Υ) and O(U×S)
coincide. However, if X is any of these spaces, x is its Gm-fixed point, mx ⊂ O(X)
the ideal of x, and Tx the tangent space of X at x, then, as a Gm-module, O(X)
is isomorphic to the associated graded of the mx-adic filtration, which is itself
isomorphic (again as a Gm-module) to O(Tx). Since d(1,e)ψ is an isomorphism, we
deduce the equality of characters, which finishes the proof. �

Now we can prove the main result of this subsection. Our proof is essentially
identical to that in [Ve, Proposition 6.3] (which is due to Springer), and is partially
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based on the same idea as for Proposition 3.2.1. The fact that the proof in [Ve]
can be generalized to very good primes using the results of Demazure is mentioned
in [Sl, §3.14], see also [J3, §7.14]. In fact, slightly weaker assumptions are sufficient.

Theorem 3.2.2 (Kostant’s theorem). Assume that (C1) and (C2) hold. Then the
natural morphisms

S → Υ/U→ g/G

are isomorphisms.

Proof. Proposition 3.2.1 implies that the first morphism is an isomorphism. So
to complete the proof it is enough to prove that the composition S → g/G is an
isomorphism. First, let us prove that this morphism is dominant.

For this it suffices to prove that G ·S contains the open set of regular semisimple
elements. So, let x ∈ g be a regular semisimple element. Then x is G-conjugate to
a regular element y ∈ t by [Bo, Proposition 11.8]. Now U+ · y = y+n+ 3 y+ e (see
e.g. [J3, §13.3]), hence x is G-conjugate to y + e. Finally, since y + e ∈ e+ b = Υ,
it follows from Proposition 3.2.1 that x ∈ G · S.

Now we consider again the Gm-action on S defined in §3.1. Then the morphism
S → g/G is Gm-equivariant, where the Gm-action on g/G is induced by the action
t · x = t−2x on g. As in the proof of Proposition 3.2.1, to conclude it is enough to
prove that the Gm-modules O(S) and O(g/G) have the same character.

To prove this we remark that S is isomorphic, as a Gm-variety, to s, hence to
b/[e, n]. (Here the Gm-action on b is given by t · x = t−2λ̌◦(t) · x.) Now recall the
notation introduced in the proof of Lemma 3.1.2. As in this lemma we can assume
that each eα is obtained from an element xα ∈ gZ. Then one can consider the base
change GC of GZ to C, and the corresponding objects BC, TC, gC, bC, tC. If eC
denotes the image of

∑
α∈∆ xα in gC, then it follows from the proof of Lemma 3.1.2

that the Gm-character of b/[e, n] coincides with the (Gm)C-character of bC/[eC, nC]
(where the (Gm)C-action on bC is defined by the same formula as the (Gm)F-action
on bF considered above). By Lemma 3.1.3 applied to the field C, we have a Gm-

equivariant isomorphism bC/[eC, nC]
∼−→ gC/[eC, gC]. Using Kostant’s theorem over

C (see [Ko, Theorem 7]), we deduce that the Gm-character of O(S) coincides with
the (Gm)C-character of O(tC/W ), where the (Gm)C-action is induced by the action
on tC given by t · x = t−2x.

From these considerations we obtain that to conclude the proof it suffices to prove
that the Gm-character of O(g/G) coincides with the (Gm)C-character of O(tC/W ).
By Proposition 2.3.2, it suffices to show that the Gm-character of O(t/W ) coincides
with the (Gm)C-character of O(tC/W ). However, if N is the product of the prime
numbers p which are bad primes for G or such that X∗(T)/ZΦ̌ has p-torsion, then
we have

O(tC/W ) = C⊗Z[1/N ] SZ[1/N ](X
∗(T)⊗Z Z[1/N ])W

O(t/W ) = F⊗Z[1/N ] SZ[1/N ](X
∗(T)⊗Z Z[1/N ])W

by [De, Corollaire on p. 296]. (Note that the Z-module Coker(i), where i is
the map considered in [De, §5] for the root system Φ ⊂ X∗(T), is isomorphic
to Ext1

Z(X∗(T)/ZΦ̌,Z) with our notation; in particular, this Z-module has the
same torsion as X∗(T)/ZΦ̌.) By [De, Théorème 2 on p. 295], the Z[1/N ]-module
SZ[1/N ](X

∗(T) ⊗Z Z[1/N ])W is graded free. We deduce the equality of characters,
which finishes the proof. �
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Remark 3.2.3. If (C1) and (C2) hold, it follows from Theorem 3.2.2 that g/G = t/W
is smooth. In fact this follows more directly from the ingredients of the proof:
see [De, Corollaire and Théorème 3 on p. 296].

3.3. The universal centralizer. The main object of study in this paper is the
“universal centralizer” over g, i.e. the closed subgroup of the group scheme G × g
over g defined as the fiber product

I := g×g×g (G× g).

Here the morphism g→ g×g is the diagonal embedding, and the morphism G×g→
g×g is defined by (g, x) 7→ (g ·x, x). By definition, for x ∈ g, the (scheme-theoretic)
fiber of I over x identifies with the group scheme Gx.

We will denote by Ireg the restriction of I to greg, by Irs its restriction to grs,
and by IS its restriction to S.

Lemma 3.3.1. Assume that (C3) holds. Then the morphism

a : G× S → greg

induced by the adjoint action is smooth and surjective.

Proof. Let us first prove smoothness. The differential of a at (1, e) can be identified
with the morphism g × s → g sending (x, s) to [x, e] + s. By Lemma 3.1.3 this
differential is surjective under our assumptions, hence a is smooth in a neighborhood
of (1, e). In fact, since this morphism is G-equivariant, there exists a neighborhood
V of e in S such that a is smooth on G× V . Then using the Gm-action on S as in
the proof of (3.1.1), we conclude that a is smooth.

To prove surjectivity, using smoothness it is enough to prove that closed points
of greg belong to the image of a. In other words, we have to prove that any element
of greg is G-conjugate to an element of S. Let x ∈ greg. Then it follows from
Theorem 3.2.2 that there exists y ∈ S such that χ(x) = χ(y). We conclude using
Lemma 2.3.1 and (3.1.1). �

Remark 3.3.2. Assume that (C3) holds. Then for all x ∈ greg we have dim(gx) = r.
In fact, this property was observed for x ∈ S in Remark 3.1.4. But since any
element of greg is G-conjugate to an element in S by Lemma 3.3.1, it holds on the
whole of greg. In the terminology of [Sp, §5.7] this means that, in this case, all
regular elements in g are smoothly regular.

Let us note the following consequence. (See also [BG, Corollary on p. 746] for a
different proof, assuming that Jantzen’s “standard hypotheses” hold and that ` is
odd.)

Proposition 3.3.3. Assume that (C3) holds. Then the morphism χreg : greg →
g/G is smooth and surjective.

Proof. Consider the composition

G× S a−→ greg
χreg−−−→ g/G.

Using Theorem 3.2.2 this morphism identifies with the projection G × S → S on
the second factor. In particular it is smooth and surjective. By [SP, Tag 02K5], we
deduce that χreg is smooth and surjective. �
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Remark 3.3.4. Assume that (C3) holds. The fact that χreg is smooth implies
that, for all x ∈ greg, the morphism dx(χreg) : Tx(greg) → Tχ(x)(g/G) is sur-
jective; in other words we have a surjection g � Tχ(x)(g/G). (Here Tx(greg),
resp. Tχ(x)(g/G), denotes the tangent space to greg at x, resp. to g/G at χ(x).)
Since the composition of χreg with the morphism G→ greg defined by g 7→ g · x is
constant, the differential dx(χreg) must vanish on [x, g]. Since dim(g/[x, g]) = r (see

Remark 3.3.2), we finally obtain that dx(χreg) induces an isomorphism g/[x, g]
∼−→

Tχ(x)(g/G).

Proposition 3.3.5. Assume that (C3) holds. Then the group scheme IS is smooth
over S.

Proof. By definition we have IS = S ×g×S (G × S). Since each of the mor-
phisms which define this fiber product factors through g ×g/G S, we also have
IS ∼= S ×g×g/GS (G × S). Now using Theorem 3.2.2 we obtain that the first pro-

jection induces an isomorphism g×g/G S
∼−→ g, which provides an isomorphism

(3.3.1) IS
∼−→ S ×g (G× S).

In this fiber product the morphism G×S → g is the composition of the morphism a
of Lemma 3.3.1 with the open embedding greg ↪→ g, hence it is smooth; this implies
our claim. �

Corollary 3.3.6. Assume that (C3) holds. Then the group scheme Ireg is smooth
over greg.

Proof. The following diagram (where each map is the natural one) is Cartesian by
the G-equivariance of I:

G× IS //

��

Ireg

��
G× S a // greg.

By Lemma 3.3.1 and Proposition 3.3.5, the composition G× IS → greg is smooth.
Since a is smooth and surjective, so is the morphism G × IS → Ireg. Using [SP,
Tag 02K5], we deduce that the morphism Ireg → greg is smooth. �

Remark 3.3.7. Assume that (C3) holds. Then it follows from Corollary 3.3.6 that
for any x ∈ greg, the stabilizer Gx is a smooth group scheme over F, i.e. an al-
gebraic group in the “traditional” sense. In particular we have dimF(Lie(Gx)) =
dim(Gx) = r, see [Wa, Second corollary on p. 94], and therefore the embedding
Lie(Gx) ↪→ gx is an isomorphism (see Remark 3.3.2).

Corollary 3.3.8. Assume that (C3) holds. Then the group scheme Ireg is commu-
tative.

Proof. By Corollary 3.3.6, Ireg is flat over greg. Hence it is enough to prove that
Irs is commutative. Since any element in grs is G-conjugate to an element in trs
(see [Bo, Proposition 11.8]), it is enough to prove that for any x ∈ trs, the group
Gx is commutative. However in this case we have Gx = T (see Lemma 2.3.3(2)),
which is clearly commutative. �

Let us also note the following property.
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Proposition 3.3.9. Assume that (C3) holds. Then there exists a unique smooth
affine commutative group scheme J over t/W such that the pullback of J under
χreg : greg → t/W is Ireg.

Sketch of proof. The group scheme J is constructed by descent (for schemes affine
over a base) along the smooth and surjective morphism χreg (see Proposition 3.3.3),
following the arguments in [Ng, Lemma 2.1.1].

These arguments use the fact that the morphism µ : G × greg → greg ×t/W greg

defined by (g, x) 7→ (x, g · x) is smooth and surjective. To check this property, we
consider the composition

(3.3.2) G×G× S idG×a−−−−→ G× greg
µ−→ greg ×t/W greg.

To prove that µ is smooth and surjective, it suffices to prove that this composition
has the same properties: then surjectivity is clear, and smoothness follows from
Lemma 3.3.1 and [SP, Tag 02K5]. Now, to prove that (3.3.2) is smooth and surjec-
tive, it is enough to prove that its composition with the automorphism of G×G×S
defined by (g, h, x) 7→ (hg−1, g, x) has the same properties. The latter morphism
sends (g, h, x) to (g · x, h · x). Hence it identifies with the smooth and surjective
morphism

(G× S)×t/W (G× S)
a×a−−−→ greg ×t/W greg,

which finishes the proof. �

Remark 3.3.10. The group scheme IS is naturally isomorphic to the pullback of J

along the isomorphism S ∼−→ t/W given by the composition S ↪→ greg
χreg−−−→ t/W .

We finish this subsection with the construction of the “Kostant–Whittaker re-
duction” functor.2 This functor turns out to be very useful to construct equiv-
alences of categories; see [BF, Do, MR2] and Section 5. We denote by Rep(J),
resp. Rep(Ireg), the category of representations of J, resp. Ireg, which are coherent
over Ot/W , resp. Ogreg

.

Proposition 3.3.11. Assume that (C3) holds. There exists a natural equivalence
of abelian categories

CohG(greg)
∼−→ Rep(J).

Proof. We consider the following composition of functors:

CohG(greg)→ Rep(Ireg)→ Rep(IS)
∼−→ Rep(J).

Here the first functor is the natural “forgetful” functor, see e.g. [MR2, §2.2]. The
second arrow is induced by restriction to S. And the third functor is induced by the
isomorphism S ∼−→ t/W , see Remark 3.3.10. We will prove that the composition of
the first two functors is an equivalence, which will imply the proposition.

Recall that a : G × S → greg is smooth and surjective (see Lemma 3.3.1), in
particular faithfully flat and quasi-compact. Hence descent theory implies that the
category CohG(greg) is equivalent to the category of pairs (F , ϑ) where F is an

object of CohG(G×S) and ϑ is an isomorphism of G-equivariant coherent sheaves
between the two natural pullbacks of F to (G × S) ×greg

(G × S), satisfying the

2In [MR2] we use this terminology for a slightly different functor.
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descent conditions. (Here, G acts diagonally on the fiber product.) Now we have
canonical isomorphisms

(G× S)×greg
(G× S) ∼= G×

(
S ×greg

(G× S)
) ∼= G× IS .

(Here the first isomorphism is induced by the G-action and follows from G-equiva-
riance, and the second isomorphism is given by (3.3.1).) Under these isomorphisms,
the first, resp. second, projection (G×S)×greg (G×S)→ G×S identifies with the
morphism (g, (h, s)) 7→ (g, s), resp. (g, (h, s)) 7→ (gh, s). Hence ϑ can be interpreted
as an isomorphism between the pullbacks of F to G×IS under these two morphisms.

Now we observe that there exist canonical equivalences of categories

Coh(S)
∼−→ CohG(G× S), Coh(IS)

∼−→ CohG(G× IS)

induced by pullback under the second projection. Under these equivalences, both
pullbacks considered above identify with the natural pullback morphism Coh(S)→
Coh(IS). Hence CohG(greg) is equivalent to the category of pairs (F ′, ϑ′) where
F ′ is an object of Coh(S) and ϑ′ is an automorphism of the pullback of F ′ to IS
satisfying certain conditions. But Coh(S) is equivalent to the category of O(S)-
modules via Γ(S,−), and unravelling the definitions one can check that the datum
of the automorphism ϑ′ considered above is equivalent to the datum of an O(IS)-
comodule structure on Γ(S,F ′), which finishes the proof. �

Remark 3.3.12. One can describe the equivalence of Proposition 3.3.11 in slightly
more canonical terms, as the composition CohG(greg)→ Rep(Ireg)→ RepU(IΥ)

∼−→
Rep(J). Here RepU(IΥ) is the category of U-equivariant representations of the

restriction IΥ of I to Υ, and the last functor is induced by the isomorphism Υ/U
∼−→

t/W , see Theorem 3.2.2. In particular, this functor does not depend on the choice
of s, up to canonical isomorphism.

3.4. Lie algebras. We set

I := Lie(I/g), Ireg := Lie(Ireg/greg), IS := Lie(IS/S), J := Lie(J/(t/W )).

It follows from Lemma 2.1.1(2) that Ireg, resp. Irs, is the restriction of I to greg,
resp. grs. We also set

I := Lie(I/g), Ireg := Lie(Ireg/greg), IS := Lie(IS/S), J := Lie(J/(t/W )).

The following properties are easy consequences of the results of §3.3.

Proposition 3.4.1. Assume that (C3) holds. Then:

(1) the coherent sheaf Ireg, resp. IS , resp. J, on greg, resp. S resp. t/W , is
locally free of finite rank;

(2) the Lie algebra Ireg, resp. IS , resp. J, is a vector bundle over greg, resp. S,
resp. t/W ;

(3) the Lie algebras Ireg, IS and J are commutative;
(4) the restriction of Ireg to S is canonically isomorphic to IS ; in other words

there exists a canonical Cartesian diagram

IS //

��

Ireg

��
S // greg;
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(5) there exists a canonical isomorphism χ∗reg(J) ∼= Ireg; in other words there
exists a canonical Cartesian diagram

Ireg
//

��

J

��
greg

χreg // t/W ;

(6) the coherent sheaf IS is canonically isomorphic to the pullback of J under

the isomorphism S ∼−→ t/W ; in other words IS is canonically isomorphic to

the pullback of J under the isomorphism S ∼−→ t/W .

Proof. (1) and (2) follow from Lemma 2.1.1(1) together with Proposition 3.3.5,
Corollary 3.3.6 and Proposition 3.3.9. (3) follows from Corollary 3.3.8 and Propo-
sition 3.3.9. (4) follows from Lemma 2.1.1(2) and Corollary 3.3.6. (5) follows from
Lemma 2.1.1(2) and Proposition 3.3.9. Finally, (6) follows from Remark 3.3.10. �

The main result of this subsection gives a more concrete description of the Lie
algebras J, Ireg and IS . The proof will require that (C4) holds. In fact, from now

on we fix a G-equivariant isomorphism κ : g
∼−→ g∗.

Theorem 3.4.2. Assume that (C4) holds. Then there exist canonical isomorphisms

J ∼= T∗(t/W ), Ireg
∼= greg ×t/W T∗(t/W ), IS ∼= T∗(S)

of commutative Lie algebras over t/W , greg and S, respectively.

Proof. It is enough to construct the third isomorphism; then the other two isomor-
phisms follow, using Proposition 3.4.1(5)-(6).

First we construct a morphism of coherent sheaves IS → ΩS . Since IS is a closed
subgroup of G×S, the Lie algebra IS embeds naturally in Lie(G×S/S) = g⊗FOS .
Now since S is a smooth closed subvariety in g, the tangent sheaf TS embeds in the
restriction Tg|S of Tg to S, i.e. in g ⊗F OS , and the cokernel of this embedding is
a locally free sheaf. We deduce a canonical surjection g∗ ⊗F OS � ΩS . Then we
define our morphism as the composition

(3.4.1) IS ↪→ g⊗F OS
κ⊗OS−−−−→
∼

g∗ ⊗F OS � ΩS .

To finish the proof it suffices to prove that this morphism is an isomorphism.
Recall the contracting Gm-action on S considered in §3.1. One can “extend”

this action to a compatible action on G × S by group automorphisms, setting
t · (g, x) = (λ̌◦(t)gλ̌◦(t)

−1, t · x). This action stabilizes IS , and we deduce a Gm-
equivariant structure on IS . The Gm-action on S also induces a Gm-equivariant
structure ΩS , and (3.4.1) induces a morphism of Gm-equivariant coherent sheaves
IS → ΩS〈−2〉. Since ΩS is locally free (in particular, has no torsion), using the
graded Nakayama lemma we deduce that to prove that (3.4.1) is an isomorphism
it suffices to prove that the induced morphism

(3.4.2) i∗e(IS)→ i∗e(ΩS)

is an isomorphism, where ie : {e} ↪→ S is the inclusion.

We claim that there exists a canonical isomorphism i∗e(IS)
∼−→ ge. Indeed, us-

ing Lemma 2.1.1(2) and Proposition 3.3.5 there exists a canonical isomorphism

i∗e(IS)
∼−→ Lie(Ge), and by Remark 3.3.7 the right-hand side identifies with ge



16 SIMON RICHE

canonically. Using this claim and the obvious isomorphism i∗e(ΩS) ∼= s∗, one can
identify (3.4.2) with the composition

ge ↪→ g
κ−→
∼

g∗ � s∗.

The fact that this morphism is an isomorphism follows from Lemma 2.3.4 and
Lemma 3.1.3. �

3.5. Variant for the Grothendieck resolution. In this subsection we consider
analogues of the objects studied above for the Grothendieck resolution g̃. Recall
that this variety is the vector bundle on the flag variety B of G (considered as the
variety of Borel subgroups in G) defined as

g̃ = {(x,B′) ∈ g×B | x ∈ Lie(B′)}.

There exists a natural projective morphism π : g̃ → g defined by π(x,B′) = x.
We denote by g̃reg, resp. g̃rs, the inverse image of greg, resp. grs, in g̃, and by
πreg : g̃reg → greg, resp. πrs : g̃rs → grs, the restriction of π.

We will also use the morphism ν : g̃ → t defined as follows: for g ∈ G and
x ∈ Lie(gBg−1), ν(x, gBg−1) is the inverse image under the isomorphism t ↪→
b � b/n of the image of g−1 ·x in b/n. (One can easily check that this morphism is
well defined, and is a smooth morphism which satisfies g̃rs = ν−1(trs), see e.g. [J3,
§13.3].) We denote by νreg : g̃reg → t the restriction of ν to g̃reg. Combining π and
ν we obtain a morphism

ϕ : g̃→ g×t/W t.

We denote by ϕreg : g̃reg → greg×t/W t, resp. ϕrs : g̃rs → grs×trs/W trs, the restriction
of ϕ to g̃reg, resp. g̃rs.

We will consider the schemes

S̃ := S ×g g̃, Υ̃ := Υ×g g̃.

These schemes are also endowed with an action of Gm, obtained by restricting the
action on g̃ defined by

t · (x,B′) := (t−2λ̌◦(t) · x, λ̌◦(t)B′λ̌◦(t)−1)

for t ∈ Gm and (x,B′) ∈ g̃. The natural morphisms S̃ → S and Υ̃ → Υ are
Gm-equivariant. Note that the set-theoretic fiber of π over e is reduced to (e,B+)

by [Sp, Lemma 5.3]. Hence this Gm-action on Υ̃ is contracting to (e,B+).

One can also consider the universal stabilizer Ĩ over g̃, defined as the fiber product

Ĩ := g̃×g̃×g̃ (G× g̃).

If (x,B′) is a point in g̃, then the fiber of Ĩ over (x,B′) identifies with (B′)x. We

will denote by Ĩreg the restriction of Ĩ to g̃reg, by Ĩrs its restriction to g̃rs, and by

ĨS its restriction to S̃. If (C3) holds, then it follows from Corollary 3.3.8 that these
group schemes are commutative.

Lemma 3.5.1. Assume that (C3) holds. Then the morphism

ã : G× S̃ → g̃reg

induced by the G-action on g̃ is smooth and surjective.
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Proof. By G-equivariance the following diagram is Cartesian:

G× S̃ ã //

��

g̃reg

πreg

��
G× S a // greg,

where the left vertical map is the product of idG with the morphism induced by
π. Hence smoothness and surjectivity of ã follow from the same properties for a,
which we proved in Lemma 3.3.1. �

Remark 3.5.2. Using similar arguments one can prove that the morphism U×S̃ →
Υ̃ induced by the U-action on g̃ is an isomorphism, assuming that (C2) holds.

Lemma 3.5.3. Assume that (C3) holds. Then the morphism

ϕreg : g̃reg → greg ×t/W t

is an isomorphism.

Proof. Following the arguments in [G2, Remark 4.2.4(i)], we only have to prove the
following properties:

(1) the morphism ϕreg is finite;
(2) the scheme greg ×t/W t is a smooth variety;
(3) ϕrs is an isomorphism.

Indeed, then the claim follows from the general result that if f : X → Y is a finite,
birational morphism of integral Noetherian schemes such that Y is normal, then f
is an isomorphism.

First, we claim that the projection πreg : g̃reg → greg is quasi-finite. In fact, since
the locus where πreg is quasi-finite is open (see [SP, Tag 01TI]), it is enough to prove
that this morphism is quasi-finite at all closed points of g̃reg. Since any closed point

in g̃reg is G-conjugate to a closed point in S̃ (see Lemma 3.5.1), it is enough to prove

that πreg is quasi-finite at all closed point of S̃. Using the contracting Gm-action

on S̃ (and again the fact that the quasi-finite locus is open), it is enough to prove
that πreg is quasi-finite at (e,B+). This property follows from [SP, Tag 02NG] and
the fact that the set-theoretic fiber of πreg over e is reduced to (e,B+).

Since πreg is quasi-finite, a fortiori ϕreg is quasi-finite, see [SP, Tag 03WR]. Since
this morphism is also projective, it is finite, see [SP, Tags 02NH & 02LS], which
proves (1).

Property (2) is a consequence of Proposition 3.3.3.
Finally we turn to (3). We remark that πrs is étale by [J3, Lemma 13.4]. On the

other hand, the quotient morphism trs → trs/W is étale by Lemma 2.3.3(1) and [J3,
Remark 12.8], hence the morphism grs ×trs/W trs → grs is also étale. We deduce
that ϕrs is étale. Moreover, comparing the fibers of πrs (see [J3, Lemma 13.3]) and
of the projection grs ×trs/W trs → grs (see Lemma 2.3.3(1)) over closed points, we
obtain that ϕrs induces a bijection at the level of closed points. Using [SP, Tag
04DH], we deduce that ϕrs is an isomorphism. �

Remark 3.5.4. Let P ⊂ G be a standard parabolic subgroup of G, let WP ⊂ W
be the Weyl group of the Levi factor of P containing T, and consider the variety
g̃P := {(x, gP) ∈ g × G/P | x ∈ Lie(gPg−1)}. There exist natural morphisms
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g̃→ g̃P → g, and we denote by g̃Preg ⊂ g̃P the inverse image of greg. If (C3) holds,
there exist canonical isomorphisms

g̃Preg
∼−→ greg ×t/W (t/WP) and g̃reg

∼−→ g̃Preg ×t/WP
t.

(Indeed, the same arguments as for Lemma 3.5.3 prove the first isomorphism, and
the second one follows.)

Proposition 3.5.5. Assume that (C3) holds.

(1) The morphisms

S̃ → S ×t/W t, and Υ̃→ Υ×t/W t

induced by ϕ are isomorphisms. In particular, S̃ and Υ̃ are affine schemes.

(2) The morphism νreg restricts to an isomorphism S̃ ∼−→ t.

Proof. (1) follows from (3.1.1) and Lemma 3.5.3. Then (2) follows from (1) and
Theorem 3.2.2. �

Now we consider universal centralizers.

Proposition 3.5.6. Assume that (C3) holds. The natural commutative diagram

Ĩreg
//

��

Ireg

��
g̃reg

πreg // greg

is Cartesian. In particular, the group scheme Ĩreg is smooth over g̃reg.

Proof. The first claim follows from the compatibility of universal centralizers with
fiber products. More specifically, by definition we have

Ĩreg = g̃reg ×g̃reg×g̃reg
(G× g̃reg).

Since both morphisms in this fiber product factor through g̃reg ×t g̃reg, we deduce
that

Ĩreg
∼= g̃reg ×g̃reg×tg̃reg

(G× g̃reg) ∼= g̃reg ×g̃reg×tg̃reg
((G× t)×t g̃reg).

Now by Lemma 3.5.3 the right-hand side is naturally isomorphic to

t×t/W

(
greg ×greg×t/W greg

((G× t/W )×t/W greg)
) ∼= t×t/W Ireg

∼= g̃reg ×greg
Ireg.

The second claim follows from the first one and Corollary 3.3.6. �

Remark 3.5.7. (1) Consider the setting of Remark 3.5.4. If ĨPreg denotes the

restriction of the universal centralizer over g̃P to g̃Preg, then the same argu-
ments as for Proposition 3.5.6 show that the following diagrams are Carte-
sian:

Ĩreg
//

��

ĨPreg

��
g̃reg

// g̃Preg,

ĨPreg
//

��

Ireg

��
g̃Preg

// greg.

(2) Assume that (C3) holds. Then Proposition 3.5.6 implies that for (x,B′) ∈
g̃reg the inclusion (B′)x ↪→ Gx is an equality.
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Let us record the following immediate consequence of Proposition 3.5.6, for later
reference.

Corollary 3.5.8. Assume that (C3) holds. The natural commutative diagram

ĨS //

��

IS

��
S̃ // S

is Cartesian. In particular, the group scheme ĨS is smooth over S̃.

From Proposition 3.3.9 and Proposition 3.5.6 we deduce that, if (C3) holds, there

exists a smooth, affine and commutative group scheme J̃ on t whose pullback under

νreg : g̃reg → t is Ĩreg. In fact we have Cartesian diagrams

(3.5.1)

J̃ //

��

J

��
t // t/W

and

ĨS
∼ //

��

J̃

��
S̃ ∼ // t.

Remark 3.5.9. Assume that (C3) holds. Using similar constructions as in Propo-
sition 3.3.11, one can construct a “Kostant–Whittaker reduction” equivalence of

categories CohG(g̃reg)
∼−→ Rep(J̃).

We set

Ĩ := Lie(̃I/g̃), Ĩreg := Lie(̃Ireg/g̃reg), ĨS := Lie(̃IS/S̃), J̃ := Lie(J̃/t)

and

Ĩ := Lie(̃I/g̃), Ĩreg := Lie(̃Ireg/g̃reg), ĨS := Lie(̃IS/S̃), J̃ := Lie(J̃/t).

The following proposition is analogous to Proposition 3.4.1, and its proof is
similar (hence left to the reader).

Proposition 3.5.10. Assume that (C3) holds. Then:

(1) the coherent sheaf Ĩreg, resp. ĨS , resp. J̃ on g̃reg, resp. S̃, resp. t, is locally
free of finite rank;

(2) the Lie algebra Ĩreg, resp. ĨS , resp. J̃, is a vector bundle over g̃reg, resp. S̃,
resp. t;

(3) the Lie algebras Ĩreg, ĨS and J̃ are commutative;

(4) the restriction of Ĩreg to S̃ is canonically isomorphic to ĨS ; in other words
there exists a canonical Cartesian diagram

ĨS //

��

Ĩreg

��
S̃ // g̃reg;

(5) there exists a canonical isomorphism ν∗reg(J̃) ∼= Ĩreg; in other words there
exists a canonical Cartesian diagram

Ĩreg
//

��

J̃

��
g̃reg

νreg // t;
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(6) the coherent sheaf ĨS is canonically isomorphic to the pullback of J̃ under

the isomorphism S̃ ∼−→ t; in other words ĨS is canonically isomorphic to the

pullback of J̃ under the isomorphism S̃ ∼−→ t. �

Lemma 3.5.11. Assume that (C3) holds. Then there exist canonical Cartesian
diagrams

ĨS //

��

IS

��
S̃ // S,

Ĩreg
//

��

Ireg

��
g̃reg

// greg

and

J̃ //

��

J

��
t // t/W.

Proof. This follows from Lemma 2.1.1(2), Corollary 3.3.6, Proposition 3.5.6, Corol-
lary 3.5.8, and the left diagram in (3.5.1). �

Combining Theorem 3.4.2 and Lemma 3.5.11 we obtain the following.

Theorem 3.5.12. Assume that (C4) holds. Then there exist canonical isomor-
phisms

J̃ ∼= t×t/W T∗(t/W ), Ĩreg
∼= g̃reg ×t/W T∗(t/W ), ĨS ∼= S̃ ×S T∗(S)

of commutative Lie algebras over t, g̃reg and S̃, respectively. �

4. The case of integral coefficients

4.1. Reduction to algebraically closed fields. Let R be a finite localization of
Z. In this subsection we prove various results that allow to deduce results over R
from their analogues over algebraically closed fields of positive characteristic. These
results (which are independent of the rest of the paper) will be used crucially in the
rest of the section.

Lemma 4.1.1. Let A be a finitely generated R-algebra, and let A′ be a finitely
generated A-algebra. Assume that A′ is flat over R and that for any geometric
point F of R of positive characteristic, F⊗RA

′ is flat over F⊗RA. Then A′ is flat
over A.

Proof. By [SP, Tag 00HT, Item (7)], it suffices to prove that for all maximal ideals
m ⊂ A′, with p the inverse image of m in A, the Ap-module A′m is flat. Let also
q be the inverse image of m in R. Then, by [SP, Tag 00GB], q is a maximal
ideal of R, i.e. is of the form ` · R for some prime number ` not invertible in R.
From our assumption on geometric points one can easily deduce that A′/(` ·A′) is
flat over A/(` · A). Hence, using [SP, Tag 00HT, Item (7)] again, we deduce that
(A′/(` · A′))m/`·A′ = A′m/q · A′m is flat over (A/(` · A))p/`·A = Ap/q · Ap. By the
same result and our other assumption we know that A′m is flat over Rq. Hence we
can apply [SP, Tag 00MP] to the morphisms Rq → Ap → A′m to deduce that A′m
is flat over Ap, which finishes the proof. �

In the next statements, if X is an R-scheme and S is an R-algebra, we set
XS := X ×Spec(R) Spec(S).

Corollary 4.1.2. Let X and Y be schemes which are locally of finite type over R,
and let f : X → Y be a morphism. Assume that X is flat over R and that for any
geometric point F of R of positive characteristic, the morphism XF → YF induced
by f is flat. Then f is flat.
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Proof. Since flatness is a property which is local both on X and Y , we can assume
that both of them are affine. Then the claim follows from Lemma 4.1.1. �

Proposition 4.1.3. Let X and Y be schemes which are of finite type over R, and
let f : X → Y be a morphism. Assume that X is flat over R and that for any
geometric point F of R of positive characteristic, the morphism XF → YF induced
by f is smooth. Then f is smooth.

Proof. First, by Corollary 4.1.2, f is flat.
The smooth locus of f is open (see e.g. the definition of smoothness in [SP, Tag

01V5]) and the closed points are dense in every closed subset of X (see [SP, Tag
00G3]), hence it is enough to prove that f is smooth at closed points of X. Let x
be such a closed point. By [SP, Tag 00GB], the residue field κ(x) has characteristic
` for some prime number ` not invertible in R. Let F be an algebraic closure of
κ(x), let x′ be the point in Xκ(x) whose image in X is x, and let x′′ be the unique
closed point of XF lying over x′. Let also f ′ : Xκ(x) → Yκ(x) and f ′′ : XF → YF be
the morphisms induced by f . Then f ′′ is smooth by assumption. Moreover, one
can see (using e.g. the characterization of smoothness in [SP, Tag 01V9, Item (3)]
and the invariance of dimension under field extension, see [GW, Proposition 5.38])
that the smoothness of f ′′ at x′′ is equivalent to the smoothness of f ′ at x′, which
is itself equivalent to the smoothness of f at x. This finishes the proof. �

Lemma 4.1.4. Let A be a finitely generated R-algebra. Let X be a Noetherian A-
scheme which is projective over A and flat over R. Assume that for any geometric
point F of R of positive characteristic, the scheme XF is affine. Then X is affine.

Proof. By Serre’s criterion (see [Ha, Theorem III.3.7]) it suffices to prove that for
any coherent sheaf of ideals I ⊂ OX , the complex of A-modules RΓ(X, I) is con-
centrated in degree 0. However by Grothendieck’s vanishing theorem [Ha, Theo-
rem III.2.7] this complex is bounded, and since X is projective over A its coho-
mology sheaves are finitely generated over A (see [Ha, Theorem III.5.2]). Hence
by [BR, Lemma 1.4.1(2)] it suffices to prove that for any geometric point F of R,
the complex F⊗LR RΓ(X, I) is concentrated in degree 0.

Now one can easily check that we have

F
L
⊗R RΓ(X, I) ∼= RΓ(X,F

L
⊗R I).

Moreover, since OX is flat over R, the complex F⊗LR I is concentrated in degree 0,
and isomorphic to the direct image of a coherent sheaf IF on XF. Hence we have

F
L
⊗R RΓ(X, I) ∼= RΓ(XF, IF),

and the desired claim follows from the assumption that XF is affine and the other
direction in Serre’s criterion. �

4.2. Definitions and preliminary results. From now on, we let GZ be a group
scheme over Z which is a product of split simply connected quasi-simple groups,
and general linear groups GLn,Z. In particular, GZ is a split connected reductive
group over Z. We let BZ ⊂ GZ be a Borel subgroup, and TZ ⊂ BZ be a (split)
maximal torus. We denote by gZ, bZ, tZ the Lie algebras of GZ, BZ, TZ.

We let N be the product of all the prime numbers which are not very good for
some quasi-simple factor of GZ, and set R := Z[1/N ]. We let GR, BR, TR be
the groups obtained from GZ, BZ, TZ by base change to R, and gR, bR, tR be
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their respective Lie algebras. We have gR = R ⊗Z gZ. We also denote by UR

the unipotent radical of BR, by nR its Lie algebras, and by W the Weyl group of
(GR,TR).

We denote by Φ ⊂ X∗(TR) the root system of GR, by Φ+ ⊂ Φ the set of roots
which are opposite to the TR-weights in nR, by ∆ ⊂ Φ+ the corresponding basis,
by Φ̌ ⊂ X∗(TR) the coroots, and by Φ̌+ ⊂ Φ̌ the coroots corresponding to Φ+.

For any geometric point F of R we set

GF := Spec(F)×Spec(R) GR.

We also denote by BF, TF the base change of BR, TR, and by tF ⊂ bF ⊂ gF the
Lie algebras of TF ⊂ BF ⊂ GF.

Proposition 4.2.1. The inclusion tR ↪→ gR induces an isomorphism of R-schemes

tR/W
∼−→ gR/GR.

Moreover, these R-schemes are smooth (in fact they are affine spaces).

Proof. Consider the first claim. Clearly, it is enough to prove the claim in the case
GR is either simply-connected and quasi-simple, or else equal to GLn,Z. The first
case is treated in [CR, Theorem 1]. In the second case, we have R = Z, and one can
argue as follows. We can assume that TZ is the standard maximal torus consisting
of diagonal matrices. Considering the natural diagram

Z[gln,Z]GLn,Z //

��

Z[tZ]W

��
C[gln,C]GLn,C // C[tC]W ,

in which the vertical morphisms are injective and the lower horizontal morphism
is an isomorphism (by Proposition 2.3.2), we obtain the injectivity of the upper
horizontal arrow. To prove surjectivity we only have to prove that the elementary
symmetric functions ei ∈ Z[tZ] = Z[X1, · · · , Xn] (1 ≤ i ≤ n) belong to the image;
however, ei is the image of the function on gln,Z sending a matrix M to the trace

of the i-th exterior power of M , which clearly belongs to Z[gln,Z]GLn,Z .
The second claim follows from [De, Théorème 3]. �

Using Proposition 4.2.1, we will freely identify gR/GR with tR/W . Let us also
note the following corollary.

Corollary 4.2.2. For any geometric point F of R, the natural morphism

gF/GF → Spec(F)×Spec(R) (gR/GR)

is an isomorphism.

Proof. By Proposition 2.3.2 and Proposition 4.2.1 it is enough to prove that the
natural morphism

tF/W → Spec(F)×Spec(R) (tR/W )

is an isomorphism. The latter property follows from [De, Corollary on p. 296]. �

Lemma 4.2.3. There exists a symmetric GR-invariant bilinear form on gR which
is a perfect pairing.
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Proof. As in the proof of Proposition 4.2.1, we can assume that GR is either quasi-
simple and simply-connected, or isomorphic to GLn,Z. The second case is easy. In
the first case, if GR is exceptional then by [SS, Corollary I.4.9] the discriminant of
the Killing form of gZ is invertible in R, hence the Killing form of gR satisfies the
conditions of the lemma. If GR is a classical simply-connected quasi-simple group,
then gR can be realized naturally as a subalgebra of gl(m,R) for some m, and one
can check that the restriction of the bilinear form

(4.2.1)

{
gl(m,R)⊗R gl(m,R) → R

X ⊗ Y 7→ tr(XY )

is non-degenerate; see the considerations in [SS, p. 184]. For instance, let us explain
this argument in types B or D: in this case there exists a natural quotient morphism

GR → SOm,R = {M ∈ GLm,R | tM ·M = 1}
for some m ≥ 3. The induced morphism on Lie algebras is an isomorphism since 2
is invertible in R, so that we can identify gR with

so(m,R) = {x ∈ gl(m,R) | tx = −x}.
Then the submodule

{x ∈ gl(m,R) | tx = x}
is a complement to so(m,R) in gl(m,R) which is orthogonal to so(m,R) for (4.2.1),
which proves that the restriction to so(m,R) is a perfect pairing. �

Lemma 4.2.3 implies in particular that for any geometric point F of R, the group
GF satisfies condition (C4) of §2.2. It follows that all the results of Section 3 are
applicable to this group.

From now on, we fix a bilinear form as in Lemma 4.2.3, and denote by κ : gR
∼−→

g∗R the induced isomorphism of GR-modules. (Here g∗R := HomR(gR,R).)

4.3. Kostant section. We now explain how to define the Kostant section over R.
For any α ∈ ∆ we choose a vector eα ∈ gZ which forms a Z-basis of the α-weight
space in gZ (with respect to the action of TZ), and set

e =
∑
α∈∆

eα.

We denote similarly the image of this vector in gR.

Lemma 4.3.1. The R-module bR/[e, nR] is free of rank r.

Proof. This follows from the results of [Sp] as in the proof of Lemma 3.1.2. �

Now we consider the cocharacter λ̌◦ :=
∑
α̌∈Φ̌+ α̌ ∈ X∗(TR), and the (Gm)R-

action on gR defined by
t · x := t−2λ̌◦(t) · x.

Then e is fixed under this action, and the subalgebras bR and nR are (Gm)R-stable.
Using Lemma 4.3.1 we can choose a (Gm)R-stable free R-submodule sR ⊂ bR such
that bR = sR ⊕ [e, nR]. Then we set

SR := e+ sR, ΥR := e+ bR.

It is clear that SR and ΥR are (Gm)R-stable.
By construction, if F is a geometric point of R, the base change of ΥR to F is

the scheme Υ studied in Section 3 for the group GF, and the base change of SR is
the scheme S studied in Section 3 for GF, for the choice s = F⊗R sR.
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Proposition 4.3.2. The morphism

UR ×Spec(R) SR → ΥR

induced by the adjoint action is an isomorphism of R-schemes.

Proof. We have to prove that the induced morphism O(ΥR)→ O(UR ×SR) is an
isomorphism of R-modules. Now, as in the proof of Proposition 3.2.1, each of these
modules is endowed with a natural (Gm)R-action (equivalently, a Z-grading), and
one can easily check that the weight spaces are finitely generated free R-modules.
Moreover, our morphism is (Gm)R-equivariant. Hence it suffices to prove that for
any prime ` not invertible in R, the induced morphism F` ⊗R O(ΥR) → F` ⊗R

O(UR × SR) is an isomorphism. The latter result follows from the similar claim
for an algebraic closure of F`, which is a consequence of Proposition 3.2.1. �

Theorem 4.3.3 (Kostant’s theorem over R). The natural morphisms

SR → ΥR/UR → gR/GR

are isomorphisms of R-schemes.

Proof. The fact that the morphism SR → ΥR/UR is an isomorphism is a conse-
quence of Proposition 4.3.2. Hence what remains is to prove that the morphism
SR → gR/GR is an isomorphism. By the same arguments as in the proof of Propo-
sition 4.3.2 it suffices to observe that for any geometric point F of R, the induced
morphism

Spec(F)×Spec(R) SR → Spec(F)×Spec(R) (gR/GR)

is an isomorphism (by Corollary 4.2.2 and Theorem 3.2.2 applied to GF). �

Proposition 4.3.4. The morphism

a : GR ×Spec(R) SR → gR

induced by the GR-action on gR is smooth.

Proof. This follows from Proposition 4.1.3 and Lemma 3.3.1. �

Remark 4.3.5. Since a is in particular a flat morphism, its image is an open sub-
scheme in gR. One can define the regular locus greg

R ⊂ gR as this image. Then the
morphism a : GR ×SR → greg

R is smooth and surjective. Moreover, the same argu-
ment as in the proof of Proposition 3.3.3 shows that the restriction greg

R → tR/W
of the adjoint quotient is smooth and surjective.

4.4. The universal centralizer and its Lie algebra. We define the (affine)
group scheme IR over gR as the fiber product

IR := gR ×gR×gR
(GR × gR),

where the morphisms are similar to those considered in §3.3. We also denote by
IRS the restriction of IR to SR. It is clear that for any geometric point F of R, the
base change of IR, resp. IRS , to F is the corresponding group scheme defined and
studied in §3.3 for the group GF.

Proposition 4.4.1. The group scheme IRS is smooth over SR, and commutative.
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Proof. Smoothness follows from the same arguments as in the proof of Proposi-
tion 3.3.5, using Theorem 4.3.3 and Proposition 4.3.4.

To prove commutativity, we have to prove that the comultiplication morphism
O(IRS )→ O(IRS )⊗O(SR)O(IRS ) is cocommutative. However using flatness of IRS over
SR (hence over R) we obtain that the vertical arrows in the natural commutative
diagram

O(IRS ) //

��

O(IRS )⊗O(SR) O(IRS )

��
O(ICS) // O(ICS)⊗O(SC) O(ICS)

are injective, where ICS := Spec(C) ×Spec(R) IRS and SC := Spec(C) ×Spec(R) SR.
Hence the desired cocommutativity follows from the case F = C of Corollary 3.3.8.

�

Remark 4.4.2. If one defines greg
R as in Remark 4.3.5, then the same arguments as in

the proof of Corollary 3.3.6 imply that the restriction of IR to the open subscheme
greg
R is smooth (and commutative). Moreover, one can construct an affine smooth

group scheme JR over tR/W as in Proposition 3.3.9, and an equivalence as in
Proposition 3.3.11.

We set

IRS := Lie(IRS /SR), IRS := Lie(IRS /SR).

Lemma 4.4.3. (1) The coherent sheaf ISR on SR is locally free of finite rank,
and the Lie algebra IRS is a vector bundle over SR.

(2) The Lie algebra IRS is commutative.
(3) For any geometric point F of R, the Lie algebra Spec(F)×Spec(R) IRS iden-

tifies with the Lie algebra IS of §3.4 for the group GF.

Proof. These properties follows from Lemma 2.1.1 and Proposition 4.4.1. �

Theorem 4.4.4. There exists a canonical isomorphism

IRS
∼−→ T∗(SR)

of commutative Lie algebras over SR. In other words, if one identifies SR with
tR/W via the isomorphism of Theorem 4.3.3, there exists a canonical isomorphism

IRS
∼−→ T∗(tR/W ) of commutative Lie algebras over tR/W .

Proof. As in the proof of Theorem 3.4.2 one can construct a canonical morphism
IRS → ΩSR of coherent sheaves on SR. To prove that this morphism is an isomor-
phism it suffices to prove that its cone is isomorphic to 0. Since both IRS and ΩSR
are flat over R, to prove this it suffices to prove that for any geometric point F
of R, the induced morphism F ⊗R IRS → F ⊗R ΩSR is an isomorphism (see [BR,
Lemma 1.4.1(1)]). However, by Lemma 4.4.3(3), F⊗R IRS is the Lie algebra IS of
§3.4 for the group GF, hence the desired claim follows from Theorem 3.4.2. �

4.5. Variant for the Grothendieck resolution. In this subsection we consider
the Grothendieck resolution

g̃R := GR ×BR bR.
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It is clear that, for any geometric point F of R, the base change of g̃R to F is the
variety g̃ studied in §3.5, for the group GF. There is a natural projective morphism
π : g̃R → gR induced by the adjoint action, and we set

S̃R := SR ×gR
g̃R.

We will also consider the natural morphism ν : g̃R → tR.
The following lemma follows from the same arguments as for Lemma 3.5.1, using

Proposition 4.3.4.

Lemma 4.5.1. The morphism

ã : GR ×Spec(R) S̃R → g̃R

induced by the GR-action on g̃R is smooth.

Proposition 4.5.2. The scheme S̃R is affine, and the natural morphisms

(4.5.1) S̃R → SR ×tR/W tR → tR

are isomorphisms.

Proof. First we observe that S̃R is flat over R. In fact, it follows from Lemma 4.5.1

that GR×S̃R is flat over R. Since R is a direct factor in O(GR), this implies that

S̃R is also flat over R. Then, since S̃R is R-flat and projective over SR, the first
assertion follows from Proposition 3.5.5(1) and Lemma 4.1.4.

The fact that the second morphism in (4.5.1) is an isomorphism follows from
Theorem 4.3.3. To prove that the first one is also an isomorphism, consider the
induced morphism

(4.5.2) O(SR ×tR/W tR)→ O(S̃R).

Then both sides are finite modules over O(tR/W ) (by [De, Théorème 2] and [Ha,
Theorem III.5.2], respectively), and are R-flat. Hence, using [BR, Lemma 1.4.1(1)],
to prove that (4.5.2) is an isomorphism it suffices to prove that it becomes an
isomorphism after applying F ⊗R (−) for all geometric points F of R. The latter
fact was proved in Proposition 3.5.5(1). �

We define the universal stabilizer ĨR over g̃R as the fiber product

ĨR := g̃R ×g̃R×g̃R
(GR × g̃R).

We denote by ĨRS the restriction of ĨR to S̃R.

Proposition 4.5.3. The group scheme ĨRS is smooth over S̃R, and the following
natural commutative diagram is Cartesian:

ĨRS
//

��

IRS

��
S̃R // SR.

Proof. The proof of the first claim is similar to the proof of Proposition 3.3.5,
namely we use isomorphisms

ĨRS = S̃R ×g̃R×S̃R (GR × S̃R) ∼= S̃R ×g̃R×tR
S̃R (GR × S̃R) ∼= S̃R ×g̃R

(GR × S̃R)

(where the last isomorphism uses Proposition 4.5.2), and then the result follows
from Lemma 4.5.1.
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To prove the second claim, we observe that the commutative square of the state-

ment induces a canonical morphism of S̃R-group schemes

(4.5.3) ĨRS → S̃R ×SR IRS .

Since both group schemes are closed subschemes of GR×Spec(R) S̃R, and since this

morphism is compatible with their inclusion in GR ×Spec(R) S̃R, (4.5.3) must be a

closed embedding. Since the R-algebra O(S̃R×SR IRS ) is of finite type and flat over

R, and since ĨRS is also R-flat, by [BR, Lemma 1.4.1(1)], to prove that (4.5.3) is an
isomorphism it suffices to prove that, for any geometric point F of R, the morphism

Spec(F)×Spec(R) ĨRS → Spec(F)×Spec(R) (S̃R ×SR IRS )

is an isomorphism, which follows from Corollary 3.5.8. �

Now we set
ĨRS := Lie(̃IRS /S̃R), ĨRS := Lie(̃IRS /S̃R).

Lemma 4.5.4. There exists a canonical Cartesian diagram

ĨRS
��

// IRS

��
S̃R // SR.

Proof. This follows from Lemma 2.1.1(2), Proposition 4.4.1 and Proposition 4.5.3.
�

Combining Lemma 4.5.4 and Theorem 4.4.4 we deduce the following result.

Theorem 4.5.5. There exists a canonical isomorphism

ĨRS
∼−→ S̃R ×SR T∗(SR)

of commutative Lie algebras over S̃R. In other words, if one identifies S̃R with
tR via the isomorphism of Proposition 4.5.2, there exists a canonical isomorphism

ĨRS
∼−→ tR ×tR/W T∗(tR/W ) of commutative Lie algebras over tR. �

5. Application: mixed modular derived Satake equivalence

5.1. Notation. Let Ǧ be a connected reductive complex algebraic group. We will
consider the affine Grassmannian

Gr := Ǧ(K )/Ǧ(O),

with its natural structure of complex ind-variety, where K := C((z)) and O :=
C[[z]]. We also choose a Borel subgroup B̌ ⊂ Ǧ (considered as the “negative” Borel
subgroup) and a maximal torus Ť ⊂ Ǧ, and denote by Ǔ the unipotent radical of B̌
and by X := X∗(Ť ) the lattice of cocharacters of Ť . Any λ ∈ X defines in a natural

way a point Lλ ∈ Gr, and we set Grλ := Ǧ(O) · Lλ. Then, if X+ ⊂ X denotes the
subset of dominant weights, we have

Gr =
⊔
λ∈X+

Grλ.

We fix ` which is either 0 or a prime number which is very good for Ǧ, and
let F be an algebraically closed field of characteristic `. We consider the Ǧ(O)-
equivariant derived category Db

Ǧ(O)
(Gr,F) with coefficients in F (in the sense of
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Bernstein–Lunts), and the the full subcategory PǦ(O)(Gr,F) of perverse sheaves.

There exists a natural convolution product ? on Db
Ǧ(O)

(Gr,F), which makes it a

monoidal category. This bifunctor restricts to a bifunctor

(−) ? (−) : PǦ(O)(Gr,F)×PǦ(O)(Gr,F)→ PǦ(O)(Gr,F),

see [MV]. We also have a natural functor

F := H•(Gr,−) : PǦ(O)(Gr,F)→ Vect(F),

which has a natural structure of tensor functor. The main results of [MV] show
that the F-group scheme G of tensor automorphisms of the functor F is a con-
nected reductive algebraic group over F which is Langlands dual to Ǧ, and that
this isomorphism induces an equivalence of tensor categories

S : PǦ(O)(Gr,F)
∼−→ Rep(G),

where the right-hand side is the category of finite dimensional (algebraic) repre-
sentations of G. Using the Mirković–Vilonen “weight functors,” this equivalence
defines a maximal torus T ⊂ G and a canonical identification X∗(T) = X, see
e.g. [GR, §6.1] for a brief reminder of these constructions. We denote by B the
Borel subgroup of G containing T and whose T-roots are the Ť -coroots of B̌, and
then use the same notation as in Sections 2–3.

The natural morphism

H•
Ǧ(O)

(pt;F) ∼= H•
Ǧ

(pt;F)→ H•
Ť

(pt;F) ∼= S(t) = O(t∗)

is injective, and identifies the left-hand side with O(t∗/W ), see [MR2, §3.2] for
references. In particular this graded ring is concentrated in even degrees, so that
we can consider the category ParityǦ(O)(Gr,F) of Ǧ(O)-equivariant F-parity com-

plexes on Gr in the sense of [JMW, Definition 2.4]. By [JMW, Theorem 2.4 &
§4.1], for any λ ∈ X+ there exists a unique indecomposable parity complex Eλ in

ParityǦ(O)(Gr,F) supported on Grλ and whose restriction to Grλ is FGrλ [dimGrλ].

Moreover, any indecomposable parity complex in ParityǦ(O)(Gr,F) is isomorphic

to Eλ[i] for some unique λ ∈ X+ and i ∈ Z.
By [MR2, Corollary 1.6], the parity complexes Eλ are perverse (see also [JMW2]

for an earlier proof of this fact, under stronger assumptions). We denote by
PParityǦ(O)(Gr,F) the full subcategory of ParityǦ(O)(Gr,F) consisting of parity

complexes which are perverse, in other words of direct sums of objects Eλ (with no
shift).

By [JMW, Theorem 4.8], the convolution product ? restricts to a bifunctor
ParityǦ(O)(Gr,F) × ParityǦ(O)(Gr,F) → ParityǦ(O)(Gr,F), hence to a bifunctor

PParityǦ(O)(Gr,F)×PParityǦ(O)(Gr,F)→ PParityǦ(O)(Gr,F). It also follows from

the results of [JMW2] that the equivalence S restricts to an equivalence of categories

PParityǦ(O)(Gr,F)
∼−→ Tilt(G),

where the right-hand side is the category of finite dimensional tilting G-modules;
see [MR2, §1.5] for remarks and more precise references.
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5.2. Equivariant cohomology of spherical perverse sheaves. In this subsec-
tion we assume that the derived subgroup DǦ of Ǧ is quasi-simple. We will denote
by | · |2 the unique W -invariant quadratic form on ZΦ such that short roots have
length one. (Recall that |α|2 ∈ {1, 2, 3} for any α ∈ Φ.)

As explained in [YZ, §5.3] (following earlier ideas developed in particular by
Ginzburg [G2]), the geometric Satake equivalence determines a canonical regular
nilpotent element e ∈ n+ which is a sum of non-zero simple root vectors eα ∈ gα (for
α ∈ ∆), see in particular [YZ, Proposition 5.6]. By definition, for F in PǦ(O)(Gr,F),

the action of e on F(F) = H•(Gr,F) is the cup product with the first Chern class
of the determinant line bundle on Gr.

For α ∈ ∆, we will denote by e−α ∈ g−α the unique element such that [eα, e−α] =
hα, where hα ∈ t is the differential of the coroot of G associated with α. We also let
U−α ⊂ U be the unique closed subgroup with Lie algebra g−α, and u−α : F ∼−→ U−α
be the unique group isomorphism whose differential is e−α.

In [YZ] the authors give a description of the equivariant cohomology H•
Ť

(Gr,F)

for any F in PǦ(O)(Gr,F), which we now briefly recall. For λ ∈ X, following [MV]

we set Tλ := Ǔ(K ) · Lλ, and denote by

tλ : Tλ ↪→ Gr and tλ : Tλ ↪→ Gr

the inclusions. By [MV, Proposition 3.1] we have Tλ =
⊔
µ≥λ Tµ, and by [MV,

Theorem 3.5] for λ ∈ X and F in PǦ(O)(Gr,F) we have

Hn(Tλ, t
!
λF) = 0 unless i = 〈λ, 2ρ̌〉,

where 2ρ̌ ∈ X̌ is the sum of positive roots of Ǧ. From these observations one can
deduce that the morphism

H
〈λ,2ρ̌〉
Ť

(Tλ, t
!
λF)→ H

〈λ,2ρ̌〉
Ť

(Tλ, t
!
λF)

induced by restriction, and the morphism

H
〈λ,2ρ̌〉
Ť

(Tλ, t
!
λF)→ H〈λ,2ρ̌〉(Tλ, t

!
λF)

induced by “forgetting the Ť -equivariance,” are both isomorphisms. Combining
these identification and identifying H•

Ť
(pt;F) with O(t∗) as in §5.1 we obtain a

natural morphism

O(t∗)⊗F H
〈λ,2ρ̌〉(Tλ, t

!
λF)→ H•

Ť
(Tλ, t

!
λF).

Composing with the natural morphism H•
Ť

(Tλ, t
!
λF)→ H•

Ť
(Gr,F) and then taking

the direct sum for all λ, we obtain a canonical morphism

(5.2.1)
⊕
λ∈X
O(t∗)⊗F H

〈λ,2ρ̌〉(Tλ, t
!
λF)→ H•

Ť
(Gr,F).

It is explained in [YZ, Lemma 2.2] that this morphism is an isomorphism. In
fact, the image under F ⊗O(t∗) (−) of this morphism can be identified with the
isomorphism ⊕

λ∈X
H〈λ,2ρ̌〉(Tλ, t

!
λF)

∼−→ H•(Gr,F)

of [MV, Theorem 3.6]. Hence (5.2.1) can be interpreted as an isomorphism

(5.2.2) O(t∗)⊗ F(F)
∼−→ H•

Ť
(Gr,F).
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By [YZ, Lemma 2.4] this isomorphism is compatible with the natural monoidal
structures on both sides.

Since F is Ǧ(O)-equivariant, the right-hand side in (5.2.2) is endowed with a
natural action of W .

Lemma 5.2.1. Assume that F is in PParityǦ(O)(Gr,F), and identify O(t∗)⊗F(F)

with the space of (algebraic) functions on t∗ with values in the vector space F(F).
For α ∈ ∆, under the isomorphism (5.2.2) the action of sα is given by

(5.2.3) (sα · f)(ξ) = u−α(−|α|2〈ξ, hα〉) · f(sαξ).

Proof. First, let us assume that Ǧ has semisimple rank 1. Since any connected
component of Gr is isomorphic (in a Ǧ(O)-equivariant way) to a connected com-
ponent of the affine Grassmannian of the quotient Ǧ/Z(Ǧ)◦, we can assume that
Ǧ is semisimple, and then that Ǧ = PGL(2,C) (with B̌, resp. Ť , the subgroup of
lower-triangular, resp. diagonal, matrices). Then X = Z (where α corresponds to

2), and Gr1 is the only 1-dimensional Ǧ(O)-orbit on Gr; this orbit is isomorphic to
Ǧ/B̌ ∼= P1 via gB̌ 7→ g·L1. Since our formula (5.2.3) is preserved by tensor products
and direct summands, and since any tilting SL(2,F)-module is a direct summand
of a tensor power of the natural representation F2, it is sufficient to consider the
case F = IC(Gr1,F) = DGr1 [−1].

This case will be checked by explicit computation. We have

H•
Ť

(Gr,F) = H•−1
Ť

(Gr1,DGr1) = F[x] · [{L1}]⊕ F[x] · [Gr1],

where we identify H•
Ť

(pt;F) = O(t∗) with F[x] in the standard way (so that x

corresponds to hα), and [Z] is the fundamental class of Z in equivariant Borel–

Moore homology. In the identification (5.2.2) we have F(F) = F · [{L1}]⊕ F · [Gr1],

where [{L1}] has weight 1 and [Gr1] has weight −1. The action of the simple

reflection sα stabilizes [Gr1], and sends [{L1}] to [{L−1}] = −x · [Gr1] + [{L1}]. It
is well known (see e.g. [YZ, Proof of Proposition 5.6] or [Ba, Théorème 2]) that e

sends [Gr1] to [{L1}]. Formula (5.2.3) follows.
Now we consider the general case. Let Ľ be the Levi subgroup of Ǧ containing Ť

whose roots are the coroots associated with α and −α. Let also P̌ be the minimal
parabolic subgroup containing B̌ with Levi factor Ľ. Then we have a diagram

Gr GrP̌
//oo GrĽ,

where GrP̌ and GrĽ are the affine Grassmannians of P̌ and Ľ respectively, and the
associated restriction functor

RǦ
Ľ

: PǦ(O)(Gr,F)→ PĽ(O)(GrĽ,F),

as e.g. in [GR, §6.3]. If L is the Levi subgroup of G whose roots are α and −α, then

we have a Satake equivalence SĽ for Ľ, with dual group L, and RǦ
Ľ

corresponds,

under S and SĽ, to the restriction functor Rep(G)→ Rep(L). It is also known that

RǦ
Ľ

sends parity complexes to parity complexes, see [JMW2, Theorem 1.6].

Using isomorphism (5.2.2) this provides a canonical isomorphism

H•
Ť

(Gr,F) ∼= H•
Ť

(Gr,RǦ
Ľ

(F)),

which is easily seen to commute with the actions of sα on both sides. If e(Ľ) denotes
the canonical regular nilpotent element in the Lie algebra l of L provided by SĽ,

then it follows from the proof of [YZ, Proposition 5.6] that eα = |α|2 · e(Ľ). Hence
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e−α is equal to 1
|α|2 times the similar element in l, and we deduce our formula (5.2.3)

from its analogue for Ľ proved above. �

5.3. Equivariant cohomology of Gr. In this subsection we assume further that
Ǧ is quasi-simple and simply connected.

Let θ ∈ X be the highest short root of G. As in [YZ, Proposition 5.7]3 we
consider the W -invariant Q-valued bilinear form on X := X∗(Ť ) defined by

〈λ, µ〉Gr := 2 · (λ, µ)Kil

(θ, θ)Kil
where (ν, η)Kil :=

∑
α̌∈Φ̌

〈ν, α̌〉 · 〈η, α̌〉.

Identifying X∗(T) with the dual of X in the standard way, this bilinear form defines
a W -equivariant morphism τ : X→ Q⊗Z X∗(T).

Lemma 5.3.1. For any α ∈ Φ we have

τ(α) = |α|2 · α∨,
where α∨ is the coroot associated with α.

Proof. Since τ is W -equivariant, we have sα(τ(α)) = −τ(α); therefore, τ(α) =
zαα

∨ for some zα ∈ Q. To compute zα, we remark that

2zα = 〈τ(α), α〉 = 〈α, α〉Gr = 2
(α, α)Kil

(θ, θ)Kil
= 2|α|2.

Hence zα = |α|2, which completes the proof. �

Under our assumptions, the image of |α|2 in F is invertible for any α, and the
images of simple roots (resp. simple coroots) in t∗ (resp. in t) form a basis of t∗

(resp. t). Hence Lemma 5.3.1 implies that τ induces an isomorphism from t∗ =
X⊗Z F = ZΦ⊗Z F to t = X∗(T)⊗Z F = ZΦ̌⊗Z F. For α ∈ Φ, the same arguments
as in Lemma 5.3.1 show that

(5.3.1) (dα) ◦ τ = |α|2 · hα in (t∗)∗ = t.

Now, recall the element e ∈ g defined in §5.2. Using this element we can define
Υ := e + b ⊂ g as in §3.1. We also set Σ := e + t, and consider the isomorphism
τΣ : t∗ → Σ defined by τΣ(ξ) = e+ τ(ξ). We denote by It∗ the pullback under τΣ of
the restriction IΣ of I to Σ. Note that Σ ⊂ Υ ⊂ greg (see (3.1.1)), so that It∗ is a
smooth commutative group scheme over t∗ by Corollary 3.3.6 and Corollary 3.3.8.

Proposition 5.3.2. There exists a canonical F-algebra isomorphism

H•
Ť

(Gr;F)
∼−→ Dist(It∗),

where Dist denotes the distribution algebra.

Proof. By [YZ, Theorem 6.1], there exists a canonical isomorphism

HŤ• (Gr;F)
∼−→ O(It∗).

Now by definition (see [YZ, §2.6]), H•
Ť

(Gr;F) identifies with the graded dual of

HŤ• (Gr;F). Since the quotient of O(It∗) by any power of the augmentation ideal is

3In [YZ, Proposition 5.7] the bilinear form appears with a “−” sign. However this is a mistake;

in fact in the definition of dV in Lemma 4.2 the coefficient 1
2

should be corrected to − 1
2

(as can

be checked from the proof), and as a consequence the sign in [YZ, Proposition 5.7] should be
changed from “−” to “+.”
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finitely generated over O(t∗), any distribution on It∗ belongs to this graded dual,
so that we deduce an embedding

Dist(It∗) ↪→ H•
Ť

(Gr;F).

The image of this morphism under the functor F ⊗H•
Ť

(pt;F) (−) is an isomorphism

by [YZ, Corollary 6.4]. (Here we use also [J2, §I.7.4(1)] and the fact that smooth
group schemes are infinitesimally flat, see [MR2, Proof of Lemma 5.15] for refer-
ences.) By the graded Nakayama lemma, this implies that our morphism itself is
an isomorphism. �

5.4. Kostant–Whittaker reduction. The results of this subsection apply in the
general setting of §§3.1–3.3; in fact we only need to assume that the group G
satisfies condition (C3).

Let us consider the composition

σ : CohG(greg)→ Rep(Ireg)→ Rep(IΣ)

where as above Σ = e+ t. Here the first arrow is the functor considered in the proof
of Proposition 3.3.11, and the second arrow is induced by restriction to Σ.

Consider the action of W on Σ induced by the natural action on t. The restriction
χΣ of χreg to Σ is W -equivariant, where W acts trivially on the codomain. It follows
from Proposition 3.3.9 that IΣ is canonically isomorphic to Σ×t/W J; therefore this
group scheme is W -equivariant. We claim that κ factors through a functor with
values in the category RepW (IΣ) of W -equivariant representations of IΣ which are
coherent over OΣ, i.e. the category whose objects consist of a representation F in
Rep(IΣ) together with a collection of isomorphisms ϕw : w∗(F)

∼−→ F compatible
with composition (and identity) in the obvious sense. Indeed, recall the equivalences

CohG(greg)
∼−→ RepU(IΥ)

∼−→ Rep(J)

from Proposition 3.3.11 and Remark 3.3.12, and denote by κ this composition. Then
we have σ = χ∗Σ ◦ κ. Clearly χ∗Σ factors through a functor Rep(J) → RepW (IΣ),
and our claim follows.

For V in Rep(G), we set

ς(V ) := σ(V ⊗F Ogreg
).

As a coherent sheaf on Σ, ς(V ) is isomorphic to V ⊗ OΣ. The W -action on the
global sections of this coherent sheaf can be described more concretely as follows:
since Υ is a U-torsor over t/W (see Proposition 3.2.1), there exists a canonical
isomorphism

O(Υ)⊗O(t/W )

(
V ⊗O(Υ)

)U ∼−→ V ⊗O(Υ).

Restricting to Σ we deduce an isomorphism

O(Σ)⊗O(t/W )

(
V ⊗O(Υ)

)U ∼−→ V ⊗O(Σ) = Γ(Σ, ς(V ))

Then the W -action is induced by the action on O(Σ).

Lemma 5.4.1. For V , V ′ in Rep(G), the functor σ induces an isomorphism

HomCohG(g)(V ⊗F Og, V
′ ⊗F Og)

∼−→
(
HomRep(IΣ)(ς(V ), ς(V ′))

)W
.



KOSTANT SECTION, UNIVERSAL CENTRALIZER, DERIVED SATAKE 33

Proof. First we recall that grgreg has codimension at least 2 in g.4 Hence restriction
induces an isomorphism

HomCohG(g)(V ⊗F Og, V
′ ⊗F Og)

∼−→ HomCohG(greg)(V ⊗F Ogreg , V
′ ⊗F Ogreg).

Now the equivalence κ induces an isomorphism

HomCohG(greg)(V ⊗F Ogreg , V
′ ⊗F Ogreg)

∼−→ HomRep(J)(κ(V ),κ(V ′)),

where κ(V ) = κ(V ⊗ Ogreg) and similarly for V ′. And finally, using the fact that
O(t) is free over O(t/W ) one can easily check that the functor χ∗Σ induces an
isomorphism

HomRep(J)(κ(V ),κ(V ′))
∼−→
(
HomRep(IΣ)(ς(V ), ς(V ′))

)W
,

which finishes the proof. �

Below we will need an explicit description of the W -action on ς(V ), as follows.
Recall the isomorphism u−α : F→ U−α defined in §5.2.

Lemma 5.4.2. Identifying the global sections on ς(V ) with the space of (algebraic)
functions from Σ to V , the action of sα satisfies

(sα · f)(e+ h) = u−α(−(dα)(h)) · f(e+ sαh)

for h ∈ t and f a global section of ς(V ).

Proof. By definition of the action, for w ∈W we have

(w · f)(x) = u(w, x) · f(w−1 · x),

where u(w, x) ∈ U is the unique element such that u(w, x) · (w−1 · x) = x. In our
case we have sα · (e+ h) = e+ sαh, and a straightforward computation shows that

u−α(−(dα)(h)) · (e+ sαh) = e+ h.

The formula follows. �

5.5. Mixed modular derived Satake equivalence. From now on we assume
that Ǧ is quasi-simple and simply connected.

We define the mixed Ǧ(O)-equivariant derived category of Gr with coefficients in
F by

Dmix
Ǧ(O)

(Gr,F) := Kb ParityǦ(O)(Gr,F);

see §1.4 for a justification of this definition. As in [AR] we denote by {1} the auto-
equivalence induced by the cohomological shift in the category ParityǦ(O)(Gr,F)

and define the “Tate twist” by the formula 〈1〉 = {−1}[1], where [1] is the coho-
mological shift in the triangulated category Kb ParityǦ(O)(Gr,F). The restriction

to ParityǦ(O)(Gr,F) of the convolution product ? (see §5.1) induces a convolution

product on Dmix
Ǧ(O)

(Gr,F), which we again denote by ?.

On the other hand, we consider the bounded derived category Db CohG×Gm(g) of
G×Gm-equivariant coherent sheaves on g, where G×Gm acts on g via (g, t) · ξ =
t−2(g · ξ). This category has “shift functor” 〈1〉, defined as the tensor product
with the tautological 1-dimensional Gm-module. Since g is a smooth variety, the

4This fact is well known. For instance, the following proof works for any connected reductive
group satisfying (C1). The same arguments as in [BR, Proposition 1.9.4] show that the complement
of g̃reg in g̃ has codimension at least 2; then the case of g follows, since g r greg is the image of

g̃ r g̃reg in g and dim(g̃) = dim(g).
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category Db CohG×Gm(g) has a natural monoidal structure induced by (derived)
tensor product of coherent sheaves.

The main result of this section is the following. It provides a “mixed modular”
analogue of the “derived Satake equivalence” of [BF].

Theorem 5.5.1. Assume that Ǧ is quasi-simple and simply connected, and that `
is very good for Ǧ. There exists an equivalence of monoidal triangulated categories

Φ: Dmix
Ǧ(O)

(Gr,F)
∼−→ Db CohG×Gm(g)

which satisfies Φ ◦ 〈1〉 ∼= 〈1〉[1] ◦ Φ and

Φ(F) ∼= S(F)⊗F Og

for all F in PParityǦ(O)(Gr,F).

The proof of this theorem is given in §5.6. In the remainder of this subsection
we introduce some “tilting” objects in Db CohG×Gm(g) from which one can recover
the entire category. (We do not claim that these objects are tilting for any quasi-
hereditary structure, but they will play the same role as the one played by actual
tilting objects in [AR] or [MR2].) More precisely, we denote by TG×Gm(g) the

additive, monoidal full subcategory of CohG×Gm(g) consisting of objects of the
form V ⊗Og〈n〉 where V ∈ Tilt(G) and n ∈ Z.

Lemma 5.5.2. For V , V ′ in Tilt(G) and for n,m ∈ Z we have

Homi
Db CohG×Gm (g)(V ⊗Og〈n〉, V ′ ⊗Og〈m〉) = 0 for i > 0.

Proof. Since O(t) is free over O(t)W , see [De], the object

Rπ∗Og̃
∼= Og ⊗O(t)W O(t)

is a direct sum of Gm-shifts of the structure sheaf Og. (The isomorphism stated
here is well known, see e.g. [BMR, Proof of Proposition 3.4.1] for a proof under our
assumptions.) Therefore, to prove the lemma it is enough to prove that

Homi
Db CohG×Gm (g)(V ⊗Og〈n〉,Rπ∗(V ′ ⊗Og̃)〈m〉) = 0

for all i > 0. However, by adjunction we have

Homi
Db CohG×Gm (g)(V ⊗Og〈n〉,Rπ∗(V ′ ⊗Og̃)〈m〉) ∼=

Homi
Db CohG×Gm (g̃)(V ⊗Og̃〈n〉, V ′ ⊗Og̃〈m〉).

Now the fact that the right-hand side vanishes follows from the similar claim on

Ñ (which itself follows from [MR1, Corollary 4.3.7]) by the same arguments as
in [MR2, Proposition 5.5]. �

Lemma 5.5.3. The category Db CohG×Gm(g) is generated, as a triangulated cate-
gory, by the “free” objects of the form V ⊗Og〈i〉 for V in Rep(G) and i ∈ Z.

Proof. The proof of [Ac, Lemma 5.7] applies in our situation; let us recall its main
steps. First, it is clear that any G×Gm-equivariant coherent sheaf on g is a quotient
of a direct sum of free objects. Then, using an appropriate form of Hilbert’s syzygy
theorem, to conclude it suffices to prove that any G×Gm-equivariant O(g)-module
M which is graded free as an O(g)-module admits a filtration, as a G × Gm-
equivariant module, by free objects. However, if N is the lowest degree in which M
is non-zero, the subspace MN ⊂M of elements of degree N is G×Gm-stable, the
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natural morphism O(g)⊗MN →M is an injective morphism of G×Gm-equivariant
O(g)-modules, and its cokernel is graded-free over O(g), of rank smaller than M .
We conclude by induction. �

Corollary 5.5.4. There exists an equivalence of monoidal triangulated categories

KbTG×Gm(g)
∼−→ Db CohG×Gm(g).

Proof. Consider the composition

KbTG×Gm(g) ↪→ Kb CohG×Gm(g)→ Db CohG×Gm(g).

Lemma 5.5.2 (together with standard arguments) implies that this functor is fully-
faithful. Since the (finite-dimensional) tilting G-modules generate the derived cate-
gory Db Rep(G), using Lemma 5.5.3 we obtain that it is also essentially surjective.
Finally, our functor is clearly monoidal, hence the corollary is proved. �

5.6. Proof of Theorem 5.5.1. By Corollary 5.5.4 and the definition of the cate-
gory Dmix

Ǧ(O)
(Gr,F), to prove the theorem it suffices to construct an equivalence of

monoidal additive categories

(5.6.1) ParityǦ(O)(Gr,F)
∼−→ TG×Gm(g)

which intertwines the shift functors {1} and 〈−1〉 and sends any object F in
PParityǦ(O)(Gr,F) to S(F) ⊗F Og. Now ParityǦ(O)(Gr,F) is equivalent, as an

additive monoidal category, to the category whose objects are sequences (Fi)i∈Z of
objects of PParityǦ(O)(Gr,F) satisfying Fi = 0 for all but finitely many i’s (where
morphisms are defined in the obvious way, and with the obvious “graded” convolu-
tion product), via the functor

(Fi)i∈Z 7→
⊕
i∈Z
Fi[−i].

Therefore, to construct an equivalence as in (5.6.1) it is enough to prove that the
assignment F 7→ Ψ(F) := S(F) ⊗F Og (which is obviously compatible with the
monoidal structures) can be extended to a monoidal functor; in other words we
have to define, for any i ∈ Z and F , G in PParityǦ(O)(Gr,F), an isomorphism

(5.6.2) HomParityǦ(O)(Gr,F)(F ,G{i})
∼−→ HomTG×Gm (Ψ(F),Ψ(G)〈−i〉),

compatible with all our structures (and in particular with composition). To define
this isomorphism we will describe both sides in similar terms. (This strategy is
of course reminiscent of the “Soergel construction” used in particular in [BF, AR,
MR2]).

First we consider the left-hand side of (5.6.2). We claim that there exists a
canonical isomorphism

HomParityǦ(O)(Gr,F)(F ,G{i})
∼−→
(
HomDb

Ť
(Gr,F)(F ,G{i})

)W
,

where Db
Ť

(Gr,F) is the Ť -equivariant constructible derived category of Gr, and

W acts naturally on HomDb
Ť

(Gr,F)(F ,G{i}). In fact, since we have H•
Ǧ

(pt;F) ∼=
(H•

Ť
(pt;F))W (see §5.1), to prove this it suffices to prove that the H•

Ǧ
(pt;F)-module

Hom•Db
Ǧ(O)

(Gr,F)(F ,G) is free and that the natural morphism

H•
Ť

(pt;F)⊗H•
Ǧ

(pt;F) Hom•Db
Ǧ(O)

(Gr,F)(F ,G)→ Hom•Db
Ť

(Gr,F)(F ,G)
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is an isomorphism. Now, using [JMW, Proposition 2.6], to prove this fact it suffices

to prove that for any λ ∈ X the H•
Ǧ

(pt;F)-module H•
Ǧ

(Grλ;F) is free, and that the
natural morphism

H•
Ť

(pt;F)⊗H•
Ǧ

(pt;F) H
•
Ǧ

(Grλ;F)→ H•
Ť

(Grλ;F)

is an isomorphism. Finally, since Grλ is an affine bundle over a partial flag variety
of Ǧ, it is enough to prove the similar claim for each partial flag variety Ǧ/P̌ . This
result is well known, and can e.g. be proved by a spectral sequence argument.

Now, recall that the functor H•
Ť

(Gr,−) induces an isomorphism

Hom•Db
Ť

(Gr,F)(F ,G)
∼−→ HomH•

Ť
(Gr;F)(H

•
Ť

(Gr,F),H•
Ť

(Gr,G)),

see [MR2, Proposition 3.12].5 We deduce a canonical isomorphism

(5.6.3) Hom•ParityǦ(O)(Gr,F)(F ,G)
∼−→
(
HomH•

Ť
(Gr;F)(H

•
Ť

(Gr,F),H•
Ť

(Gr,G))
)W

.

Now we consider the right-hand side of (5.6.2). First we observe that the forgetful
functor induces an isomorphism⊕

i∈Z
HomCohG×Gm (g)(S(F)⊗Og,S(G)⊗Og〈−i〉)

∼−→ HomCohG(g)(S(F)⊗Og,S(G)⊗Og).

Next, by Lemma 5.4.1 we have a canonical isomorphism

HomCohG(g)(S(F)⊗Og,S(G)⊗Og)
∼−→
(
HomRep(IΣ)(ς(S(F)), ς(S(G)))

)W
.

Using [J2, Lemma I.7.16] we deduce a canonical isomorphism

HomCohG(g)(Ψ(F),Ψ(G))
∼−→
(
HomDist(IΣ)(ς(S(F)), ς(S(G)))

)W
.

(See the proof of Proposition 5.3.2 for remarks on the infinitesimal flatness assump-
tion.) Finally, since τΣ is an isomorphism we deduce a canonical isomorphism

(5.6.4) HomCohG(g)(Ψ(F),Ψ(G))
∼−→
(
HomDist(It∗ )(τ

∗
Σς(S(F)), τ∗Σς(S(G)))

)W
.

By construction (see [YZ]), isomorphism (5.2.2) is H•
Ť

(Gr;F)-equivariant, where

H•
Ť

(Gr;F) acts on the left-hand side via the isomorphism of Proposition 5.3.2. With
the present notation, this isomorphism can therefore be written as an isomorphism
of H•

Ť
(Gr;F)-modules

H•
Ť

(Gr,F)
∼−→ τ∗Σ

(
ς(S(F))

)
.

Comparing Lemma 5.2.1 with Lemma 5.4.2, and using (5.3.1), we observe that this
isomorphism is W -equivariant. It is also compatible with the natural monoidal
structure on both sides. Hence, using this identification and comparing (5.6.3)
with (5.6.4) we deduce an isomorphism as in (5.6.2), with all the necessary com-
patibility properties.

5In [MR2] we work with integral coefficients and with a particular class of parity complexes.
However the same arguments work in the case of fields, and in this setting they apply to all parity
complexes; see [MR2, Remark 3.18].
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