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Université de Savoie
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Abstract

A real polynomial system with support W ⊂ Z
n is called maximally pos-

itive if all its complex solutions are positive solutions. A support W having
n+ 2 elements is called a circuit. We previously showed that the number of
non-degenerate positive solutions of a system supported on a circuit W ⊂ Z

n

is at most m(W) + 1, where m(W) ≤ n is the degeneracy index of W . We
prove that if a circuit W ⊂ Z

n supports a maximally positive system with
the maximal number m(W) + 1 of non-degenerate positive solutions, then
it is unique up to the obvious action of the group of invertible integer affine
transformations of Zn. In the general case, we prove that any maximally
positive system supported on a circuit can be obtained from another one
having the maximal number of positive solutions by means of some elemen-
tary transformations. As a consequence, we get for each n and up to the
above action a finite list of circuits W ⊂ Z

n which can support maximally
positive polynomial systems. We observe that the coefficients of the prim-
itive affine relation of such circuit have absolute value 1 or 2 and make a
conjecture in the general case for supports of maximally positive systems.

Keywords: Polynomial sytems, Fewnomial, Circuits
2010 MSC: 14T05

Introduction and statement of the main results

We consider systems of n polynomial equations in n variables with real
coefficients and monomials having integer exponents. The support of such
a system is the set of points a ∈ Z

n corresponding to monomials xa =
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xa1
1 · · · xan

n appearing with a non-zero coefficient. We are only interested in the
solutions in the complex torus (C∗)n and call them simply complex solutions.
By Kouchnirenko’s theorem [7], the number of isolated complex solutions
is bounded from above by the normalized volume of the convex-hull ∆ of
W , which is the usual euclidian volume of ∆ scaled by n!. We will always
assume that W is not contained in some hyperplane of Rn, for otherwise this
volume would vanish. Kouchnirenko’s bound is attained by non-degenerate
systems. These are systems whose solutions are non-degenerate, that is, at
which the differentials of the defining polynomials are linearly independent.
Non-degenerate systems are generic within systems with given support.

A solution of a system is called positive if all its coordinates are positive
real numbers. A polynomial system is called maximally positive if all its com-
plex solutions are positive solutions. For simplicity, we consider here only
non-degenerate systems whose number of complex solutions is the normal-
ized volume of ∆ (in other words, systems reaching Kouchnirenko’s bound).
Any sufficiently small perturbation of the coefficient matrix of such a sys-
tem produces another non-degenerate system with the same support and the
same number of non-degenerate complex solutions.

Consider for instance the case n = 1 of a polynomial in one variable
f(x) =

∑s
i=1 cix

ai ∈ R[x±1], where ai < ai+1 for i = 1, . . . , s − 1 and all
coefficients ci are non-zero. This polynomial is maximally positive if all its
complex roots are positive. It follows from Descartes’ rule of signs that if f
is maximally positive then ai+1 = ai + 1 and ci · ci+1 < 0 for i = 1, . . . , s− 1.

Another example is provided by systems with support the set of vertices
W = {w0, w1, . . . , wn} of an n-dimensional simplex in R

n. Multipliying each
equation by x−w0 if necessary, we may assume that w0 is the origin. Then
Gaussian elimination transforms this system into an equivalent system of
the form xwi = ci, i = 1, . . . , n, where c1, . . . , cn real non-zero numbers. The
number of complex solutions of this last system is the absolute value of the
determinant of the matrix with columns wi for i = 1, . . . , n, which is precisely
the normalized volume of the convex-hull of W . On the other hand, it is easy
to see that such a system has at most one positive solution. It follows that
if W = {w0, w1, . . . , wn} is the support of a maximally positive system, then
the vectors wi − w0 for i = 1, . . . , n generate the lattice Z

n.
In the general case, it is not difficult to show that if W ⊂ Z

n is the
support of a maximally positive polynomial system, then the integer affine
span ZW of W is equal to Z

n (see Proposition 2.2). Such supports are called
primitive.
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In the present paper, we initiate the study of maximally positive systems
in the first non-trivial case: when the support of the system is a (possibly
degenerate) circuit. We define a circuit in Z

n as a subset of n+2 points. Up
to renumbering the elements of a circuit W = {w1, . . . , wn+2} ⊂ Z

n, there is
only one affine relation

s∑

i=1

λiwi =
n+2∑

i=s+1

λiwi, (1)

where the λi’s are nonnegative coprime integer numbers and
∑s

i=1 λi =∑n+2
i=s+1 λi. This affine relation is called the primitive affine relation of W .

The degeneracy index m(W) is the dimension of the affine span of a min-
imal affinely dependent subset. Thus 1 ≤ m(W) ≤ n and W is called
non-degenerate when m(W) = n. Equivalently, m(W) + 2 is the number of
non-zero coefficients in (1). The following result has been proved in [1].

Theorem 0.1 ([1]). The number of positive solutions of a polynomial system
supported on a circuit W ⊂ Z

n does not exceed m(W)+1. Moreover, for any
positive integers m,n with m ≤ n, there exists a circuit W ⊂ Z

n such that
m(W) = m, and a polynomial system with support W and having m(W) + 1
positive solutions.

The proof for the sharpness (the second assertion of Theorem 0.1) given
in [1] uses the notion of real dessins d’enfant. This technique is constructive
but explicit values for the coefficients of the system are not given. Explicit
systems reaching this bound have been given by Kaitlyn Phillipson and J.
Maurice Rojas in [10]. It turns out that the polynomial systems constructed
in [1] are maximally positive: they have m(W) + 1 positive solutions and
no other complex solutions. The corresponding dessins d’enfant have a lot
of symmetries, and it was then natural to ask to what extent these dessins
d’enfant are special. The present note answers this question. We prove
that the dessins d’enfant constructed in [1] are the unique ones (up to the
obvious action of the real projective linear group of the Riemann sphere)
which correspond to maximally positive systems supported on a circuit W ⊂
Z
n and having the maximal number m(W) + 1 of positive solutions. As a

consequence, we obtain the following result, where (e1, . . . , en) stands for the
canonical basis of Zn.

Theorem 0.2. For any pair of positive integers (m,n) such that m ≤ n,
there is up to action of the group of invertible integer affine transformations
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of Zn only one circuit W ⊂ Z
n with m(W) = m and which is the support of

a maximally positive polynomial system with the maximal number m + 1 of
positive solutions. Namely,

1. if m is even, m = 2k > 1, then, W = {0, e1, . . . , em, em+1, . . . , en, w}
with

w = 2(e1 + · · ·+ ek)− 2(ek+1 + · · ·+ em).

Equivalently, W = {w1, . . . , wn+2} is, up to action of the group of
invertible integer affine transformations of Z

n, the unique primitive
circuit in Z

n with affine relation

w1 + 2(w2 + · · ·+ wk+1) = wk+2 + 2(wk+3 + · · ·+ wm+2).

2. if m is odd, m = 2k + 1 > 1, then W = {0, e1, . . . , em, em+1, . . . , en, w}
with

w = 2(ek+1 + · · ·+ em)− 2(e1 + · · ·+ ek).

Equivalently, W = {w1, . . . , wn+2} is, up to action of the group of
invertible integer affine transformations of Z

n, the unique primitive
circuit in Z

n with affine relation

w1 + w2 + 2(w3 + · · ·+ wk+2) = 2(wk+3 + · · ·+ wm+2).

For instance, the unique primitive circuit W ⊂ Z
5 such that m(W) = 3

and which is the support of a maximally positive system is the set of points
(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)
and (−2, 2, 2, 0, 0), up to action of the group of invertible integer affine trans-
formations of Zn.

Gale duality for polynomial systems supported on circuits (see [1, 2])
gives a correspondence between the solutions of a system supported on W =
{w1, . . . , wn+2} ⊂ Z

n and the solutions of Φ = 1, where Φ is some real rational
function determined by the system. Precisely, the function Φ has the special
form (

∏s
i=1 g

λi

i )/(
∏n+2

i=s+1 g
λi

i ), where g1, . . . , gn+2 are homogeneous real poly-
nomials of degree 1 in two variables, and λ1, . . . , λn+2 are the coefficients of
the primitive affine relation of (1). Any real rational function whose denom-
inator and numerator have only real roots has this form and is associated to
a polynomial system supported on a circuit. The real dessin d’enfant associ-
ated to any real rational map Φ is the inverse image of the real projective line
under Φ. If Φ = (

∏s
i=1 g

λi

i )/(
∏n+2

i=s+1 g
λi

i ) and if λi is some exponent bigger
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than 1, we may perturb slightly the factor gλi

i into gλi−k
i ·(gi+ε)k where k ≤ λi

is a positive integer and 0 < ε ≪ 1. The resulting rational map corresponds
to a polynomial system supported on a circuit W̃ with m(W̃) = m(W) + 1
and with the same numbers of complex and positive roots than the starting
system. In particular, if one system is maximally positive, so is the other. We
call this operation a splitting. Its effect on a dessin d’enfant associated to g is
clear. The inverse operation on dessins d’enfant is easy to describe, though
it may not come from a small perturbation as above. This inverse operation
called collapsing preserves maximally positive polynomial systems supported
on circuits, and in fact the number of complex and positive solutions, but
decreases the number m(W) by 1. We prove the following result.

Theorem 0.3. Any dessin d’enfant associated to a maximally positive system
supported on a circuit can be transformed by a finite sequence of collapsings
into a dessin d’enfant associated to a maximally positive system with support
a circuit W and having the maximal number m(W) + 1 of positive solutions.

Together with Theorem 0.2, this leads to the complete classification of
circuits supporting maximally positive polynomial systems.

Theorem 0.4. If m > 2ℓ, there is no circuit with degeneracy index m and
which is the support of a maximally positive polynomial systems with ℓ + 1
positive (or complex) solutions. Let ℓ,m, n be positive integers such that
ℓ ≤ m ≤ n and m ≤ 2ℓ. There is a up to the action of the group of
invertible integer affine transformations of Zn a finite number of circuits in
Z

n with degeneracy index m and which are the supports of maximally positive
polynomial systems with ℓ+1 positive (or complex) solutions. These circuits
are the following.

1. if ℓ is even, ℓ = 2k > 1, then we have the circuits W̃c1 defined over all
integers c1 such that m−ℓ

2
≤ c1 ≤ min( ℓ

2
,m− ℓ) as follows. The circuit

W̃c1 is the unique primitive circuit in Z
n with affine relation

w̃1 + 2
∑

i∈Ĩ1

w̃i +
∑

i∈J̃1

w̃i = w̃k+2 + 2
∑

i∈Ĩ2

w̃i +
∑

i∈J̃2

w̃i, (2)

where {1, k+ 2}, Ĩ1, Ĩ2, J̃1, J̃2 form a partition of {1, . . . ,m+ 2}, |Ĩ1| =
k − c1, |J̃1| = 2c1, |Ĩ2| = k − c2, |J̃2| = 2c2 and c2 = m − ℓ − c1. This
gives 1 + ⌊min(ℓ− m

2
, m−ℓ

2
)⌋ distinct circuits.
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2. if ℓ is odd, ℓ = 2k + 1 > 1, then we have the circuits W̃c1 defined over
all integers c1 such that m−ℓ−1

2
≤ c1 ≤ min( ℓ−1

2
,m− ℓ) as follows. The

circuit W̃c1 is the unique primitive circuit in Z
n with affine relation

w̃1 + w̃2 + 2
∑

i∈Ĩ1

w̃i +
∑

i∈J̃1

w̃i = 2
∑

i∈Ĩ2

w̃i +
∑

i∈J̃2

w̃i, (3)

where {1, 2}, Ĩ1, Ĩ2, J̃1, J̃2 form a partition of {1, . . . ,m + 2}, |Ĩ1| =
k − c1, |J̃1| = 2c1, |Ĩ2| = k + 1 − c2, |J̃2| = 2c2 and c2 = m − ℓ − c1.
This gives 1 + ⌊min(ℓ− m

2
, m−ℓ+1

2
)⌋ distinct circuits.

(Here ⌊x⌋ stands for the integer part of x). We illustrate Theorem 0.4 in
Section 3, see Example 3.1 and Example 3.2.

The signature of a circuit W with affine relation (1) is the pair (a, b)
where a (resp. b) is the number of non-zero coefficients λi with 1 ≤ i ≤ s
(resp. s+1 ≤ i ≤ n+2). Thus a+ b = m(W) + 2 and W has also signature
(b, a). Interestingly enough, we note the following immediate consequences
of Theorem 0.4.

Theorem 0.5. For any positive integers n and ℓ, there are at most 1 + ℓ+1
4

circuits W in Z
n up to the action on Z

n which support a maximally positive
polynomial system with ℓ+ 1 positive solutions. If W is such a circuit, then
all (non-zero) coefficients in its primitive affine relation have absolute values
1 or 2 and its signature (a, b) satisfies a, b ≥ ℓ+1

2
.

In the case n = 1, we already saw that if a polynomial in one variable
with support a1 < a2 < · · · < as is maximally positive, then ai+1 = ai+1 for
i = 1, . . . , s − 1. In particular, a basis of affine relations for the support is
given by ai−1+ ai+1 = 2ai for i = 2, . . . , s− 1. Again the coefficients in these
affine relations have absolute values 1 or 2. Together with Theorem 0.5, this
motivates the following conjecture.

Conjecture 0.6. If W ⊂ Z
n is the support of a maximally positive polyno-

mial system, then it has a basis of affine relations whose non-zero coefficients
have absolute values 1 or 2.

1. Basics on polynomial systems supported on circuits

We recall basic facts on polynomial systems supported on circuits. Let
W = {w1, . . . , wn+2} be a circuit in Z

n. Up to renumbering, there is only
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one affine relation
s∑

i=1

λiwi =
n+2∑

i=s+1

λiwi, (4)

where the coefficients λi are nonnegative coprime integer numbers and
∑s

i=1 λi =∑n+2
i=s+1 λi. This affine relation is called the primitive affine relation of W .
If we denote by Si the convex hull of W \{wi}, then we have the formula

vol(Si) = λi · [Z
n : ZW ], (5)

where vol(·) is the normalized volume on R
n obtained by multiplying the

euclidian volume by n! and [Zn : ZW ] is the index of the subgroup of Zn

generated by W . Indeed, let A be any square matrix of size n and B be any
column matrix B with n rows. Cramer’s rule says that A · X = det(A) · B
if X is the column matrix whose i-th coefficient is equal to the determinant
of the matrix Ai obtained by substituting B to the i-th column of A. In our
situation, if we write for simplicity W = {w0, w1, . . . , wn+1}, then Cramer’s
rule applied to the matrix A with columns w1 − w0, . . . , wn − w0 and to the
column matrix B = wn+1 − w0 yields

∑n
i=1 det(Ai) · (wi − w0) = det(A) ·

(wn+1 − w0). It remains to note that the normalized volume of the convex-
hull of W \{wi} is equal to the absolute value of det(Ai) for i = 1, . . . , n and
to the absolute value of det(A) for i = n + 1. Moreover, it is easy to prove
that the greatest common divisor of det(A1), . . . , det(An), det(A) is the index
of [Zn : ZW ].

Remark 1.1. Once at least one of its coefficients is equal to 1, a primitive
affine relation (4) determines uniquely a primitive circuit W = {w1, . . . , wn+2} ⊂
Z

n up to the action of group of invertible integer affine transformations Z
n.

Indeed, if λi = 1 then the vectors wj − wk for any given fixed k in W \ {wi}
and for j varying in W \ {wi, wk} form a basis of Zn.

We come back to the notation W = {w1, . . . , wn+2}. The (possibly degen-
erate) simplices Si for i = 1, . . . , s form (together with their faces) a polyhe-
dral subdivision of the convex-hull ∆ of W , and the same holds true for the
simplices Si with i = s + 1, . . . , n + 2 (see [6], p. 217). This shows that the
normalized volume of ∆ is equal to (

∑s
i=1 λi) · [Z

n : ZW ] = (
∑n+2

i=s+1 λi) · [Z
n :

ZW ]. Consider a non-degenerate system supported on W

n+2∑

j=1

cijx
wj = 0 , i = 1, . . . , n. (6)
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Since the system is non-degenerate, we may perturb slightly the coefficients
cij without changing the number of complex or positive solutions of the sys-
tem. Thus we may assume that the matrix (cij)1≤i,j≤n is invertible, so that
left multiplication with the inverse of this matrix produces an equivalent
system of the form

xwi = gi(x
wn+1 , xwn+2) , i = 1, . . . , n,

where g1, . . . , gn are homogeneous polynomials of degree 1. Set y = (y1, y2)
with y1 = xwn+1 , y2 = xwn+2 and set gn+1(y) = y1, gn+2(y) = y2. Perturb-
ing further the system 6, we may also assume that the polynomials gi have
distincts roots. If x is a complex (with non-zero coordinates) solution of the
system, then y is a root of the polynomial

g(y) =
s∏

i=1

((gi(y))
λi −

n+2∏

i=s+1

((gi(y))
λi (7)

and gi(y) 6= 0 for i = 1, . . . , n + 2. The polynomial g is called an eliminant
of the system. It is homogeneous of degree

∑s
i=1 λi =

∑n+2
i=s+1 λi. Thus,

the degree of g is the normalized volume of ∆ divided by the lattice index
[Zn : ZW ]. Denote by P the complement of the roots of g1, . . . , gn+2 in
the complex projective line CP 1. We may assume from the beginning that
wn+1 = 0 so that y1 = 1 and see each gi as a polynomial gi(1, y2) of degree 1
in the variable y2. Let P+ be the subset of the real projective line RP 1 where
all these polynomials gi are positive. This is either empty, or a connected
component (an interval) of P ∩ RP 1.

Proposition 1.2. ([1, 2]) The map x 7→ y is:

1. a [Z : ZW ]-to-1 map from the set of complex solutions of the system
(6) to the set of roots of g in P,

2. a bijection between the set of positive solutions of the system (6) and
the set of roots of g contained in P+.

Write the eliminant g as P −Q where P =
∏s

i=1 g
λi

i and Q =
∏n+2

i=s+1 g
λi

i .

The associated rational function is Φ = P/Q : CP 1 → CP 1, y 7→ (1, P (y)
Q(y)

).

We have degΦ = deg g =
∑s

i=1 λi =
∑n+2

i=s+1 λi. The associated real dessin
d’enfant is the graph

Γ := Φ−1(RP 1)
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The following description of properties of real dessins d’enfant is taken
from [1] with minor changes. We address the reader to [3, 9, 8] for other
useful descriptions. The graph Γ is invariant with respect to the complex
conjugation and contains the real line RP 1. Each vertex of Γ has even va-
lency, and the multiplicity of a critical point with real critical value of Φ is
half its valency. Thus critical points of Φ with real critical values are exactly
the vertices of Γ with valency greater than two. The graph Γ contains the
inverse images of (1, 0), (0, 1) and (1, 1) which are the sets of roots of P , Q
and g, respectively. Denote by the same letter p (resp. q and r) the points
of Γ which are mapped to (1, 0) (resp. (0, 1) and (1, 1)). Orient the real
axis on the target space via the arrows (1, 0) → (0, 1) → (1, 1) → (1, 0) and
pull back this orientation by φ. The graph Γ becomes an oriented graph,
with the orientation given by arrows p → q → r → p. Since the graph Γ
is invariant under complex conjugation, it is determined by its intersection
HΓ (one half of Γ) with a connected component of CP 1 \RP 1. To represent
Γ, we represent a given component of CP 1 \ RP 1 by an half plane situated
below an horizontal line representing RP 1 and draw HΓ in this half plane.

The mutual position (with respect to any given orientation of RP 1) of the
real roots of g, P and Q together with their multiplicities can be seen on Γ.
We encode this information by what is called a root scheme [3]. A root scheme
is a k-uple ((l1,m1), . . . , (lk,mk)) ∈ ({p, q, r} × N)k. We say that a root
scheme is realizable by polynomials of degree d if there exist real polynomials
P and Q such that g = P − Q has degree d and if ρ1 < ρ2 < . . . < ρk < ρ1
are the real roots of g, P and Q ordered with respect to a given orientation
of RP 1, then li = p (resp. q, r) if ρi is root of P (resp. Q, g) and mi is the
multiplicity of ρi (see Example 1.4).

Conversely, suppose we are given a real graph Γ ⊂ CP 1 together with a
real continuous map ϕ : Γ → RP 1. Denote the inverse images of (1, 0), (0, 1)
and (1, 1) by letters p, q and r, respectively, and orient Γ with the pull back
by ϕ of the above orientation of RP 1. This graph is called a real rational
graph [3] if

• any vertex of Γ has even valence,

• any connected component of CP 1 \Γ is homeomorphic to an open disk,

Then, for any connected component D of CP 1\Γ, the map ϕ|∂D is a covering
of RP 1 whose degree dD is the number of letters p (resp. q, r) in ∂D (see
Figure 1). We define the degree of Γ to be half the sum of the degrees dD

9



over all connected components of CP 1 \ Γ. Since ϕ is a real map, the degree
of Γ is also the sum of the degrees dD over all connected components D of
CP 1 \ Γ contained in one connected component of CP 1 \ RP 1.

r

p

p

q

q

r

r

p

q

Figure 1: One component of CP 1 \ Γ of degree 2.

Proposition 1.3 ([3, 9]). A root scheme is realizable by polynomials of degree
d if and only if it can be extracted from a real rational graph of degree d on
CP 1.

We explain the proof of the if direction of Proposition 1.3. For each
connected component D of CP 1 \ Γ, extend ϕ|∂D to a, branched if dD > 1,
covering of one connected component of CP 1 \ RP 1, so that two adjacent
connected components of CP 1\Γ project to differents connected components
of CP 1 \ RP 1. Then, it is possible to glue continuously these maps in order
to obtain a real branched covering ϕ : CP 1 → CP 1 of degree d. The map ϕ
becomes a real rational map of degree d for the standard complex structure
on the target space and its pull-back by ϕ on the source space. There exist
then real polynomials P and Q such that g = P − Q has degree d and
ϕ = P/Q, so that the points p (resp. q, r) correspond to the roots of P
(resp. Q, g) and Γ = ϕ−1(RP 1).

Example 1.4. In Figure 2, we have represented a real dessin d’enfant asso-
ciated with the root scheme

(p, 2, ), (q, 3), (r, 1), (r, 1), (r, 1), (r, 1), (r, 1), (q, 2), (r, 1), (p, 4), (r, 1), (q, 3)).

It can realized by polynomials P and Q such that

P (y) = (y2−p1y1)
2(y2−p2y1)

2(y2−p3y1)
4, Q(y) = (y2−q1y1)

3(y2−p2y1)
2(y2−p3y1)

3
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q pr rp r r r r r r qq p

Figure 2: A real dessin d’enfant of degree 8.

and the real roots of the polynomials P (1, y2), Q(1, y2) and g(1, y2) = P (1, y2)−
Q(1, y2) are ordered as follows

p1 < q1 < r1 < p2 < r2 < r3 < r4 < r5 < r6 < q2 < r7 < p3 < r8 < q3.

Note that in this example all roots of g(1, y2) are real simple roots.

Note that we did not assume that all letters p and q lie on the real axis.
This is clearly the case precisely when Φ comes from a polynomial system
supported on a circuit as above. The following lemma is useful in order to
apply part (2) of Proposition 1.2.

Lemma 1.5. Consider a real dessin d’enfant Γ associated with a real rational
map Φ = P/Q : CP 1 → CP 1. Assume that the set G of all letters p, q (the
set of zeroes of P and Q) is contained in the real axis RP 1. Let I be any
open interval in RP 1 with endpoints in G such that I ∩G = ∅ and I contains
a root of g = P − Q . Then, there are homogeneous coordinates (y1, y2) on
CP 1, homogeneous degree one polynomials gi(y1, y2), i = 1, . . . , n+2, two of
them being y1 and y2 respectively, and positive integers λ1, . . . λn+2 such that
P =

∏s
i=1 g

λi

i , Q =
∏n+2

i=s+1 g
λi

i and I = {(1, y2) ∈ RP 1 | gi(1, y2) > 0 for i =
1, . . . , n+ 2}.

Proof. We choose coordinates on the source space CP 1 so that I = (0,+∞) ⊂
R (I is the set of positive real numbers) under the usual identification of
RP 1\{(0, 1)} with R via (y1, y2) 7→ y2/y1. Let p1, . . . , ps ∈ R be the roots of P
and qs+1, . . . , qn+2 ∈ R the roots ofQ under the previous identification. Let λi

be half the valency of pi (or qi if i ≥ s+1) as a vertex of Γ. Since all roots of P
and Q are real, there are real numbers α and β such that P = α

∏s
i=1 g

λi

i and
Q = β

∏n+2
i=s+1 g

λi

i , where gi(y1, y2) = y2−piy1 if i ≤ s and gi(y1, y2) = y2−qiy1
otherwise. Note that the endpoints of I belong to G, hence y1 and y2 appear
among these polynomials gi. Since I is the set of positive real numbers and
I ∩G = ∅, all elements of G are non positive, hence each gi(1, y2) is positive
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on I. It follows then that I is the common domain of positivity of these
polynomials again because I ∩ G = ∅. The fact that I contains a root of
P − Q implies that α/β > 0. Thus we may replace for instance g1 with
(α/β)1/λ1g1 to have the desired form for Φ and keep the property that I is
the common domain of positivity of g1(1, y2), . . . , gn+2(1, y2).

Remark 1.6. A real dessin d’enfant as in Lemma 1.5 is the real dessin
d’enfant associated to a polynomial system xwi = gi(x

wn+1 , xwn+2), i = 1, . . . , n,
where {w1, . . . , wn+2} is any non-degenerate circuit in Z

n with affine relation∑s
i=1 λiwi =

∑n+2
i=s+1 λiwi.

2. Maximally positive systems

As an easy consequence of Proposition 1.2, we get the following result.

Proposition 2.1. If a polynomial system supported on a circuit W is max-
imally positive, then W is primitive. If a circuit W is primitive, then a
polynomial system supported on W is maximally positive if and only if all
roots of the eliminant g in P are in P+.

In fact Proposition 1.2 has a more general version called Gale duality
([5]), which shows that Proposition 2.1 may be generalized for any polynomial
system. Nevertheless, it is easy to prove directly the following result.

Proposition 2.2. The support of a maximally positive polynomial system is
primitive.

Proof. Take a basis {v1, . . . , vn} for the subgroup ZW ⊂ Z
n. Any polynomial

with support W can be written as a polynomial in the variables yi = xvi ,
i = 1, . . . , n. Therefore, a polynomial system supported on W can be solved
by first solving an intermediate system in the variables yi, and then for each
solution (c1, . . . , cn), by solving the system xvi = ci, i = 1, . . . , n. But the last
system has at most one positive solution and [Zn : ZW ] complex solutions
(this is a system supported on a simplex). Thus in order to have the same
number of positive and complex solutions for the starting system, we should
have [Zn : ZW ] = 1.

We recall now a proof of the bound in Theorem 0.1. This will be useful
later in the proof of Theorem 0.2. Set m = m(W) and assume that the
minimal affinely dependent subset of W is {w1, . . . , wm+2}. Let k be the
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number of roots r of g in the interval P+ (we assume that P+ is not empty).
Since this interval does not contain letters p and q (roots of P and Q), the
restriction of Φ to an interval formed by two consecutive roots r may be seen
as a real valued map taking the same value at the endpoints of this interval.
Thus Φ has at least one critical point between two consecutive roots r, and
therefore at least k − 1 critical points in P+. An easy computation shows
that the derivative of Φ is Φ′ = P ′Q−PQ′

Q2 = 1
Q2 · (

∏m+2
i=1 gλi−1

i ) · H, where
H is a polynomial of degree not larger than m + 1. Looking more closely
at this polynomial H, we compute that the coefficient of the monomial of
degree m+1 is (

∏m+2
i=1 ci) · (

∑s
i=1 λi−

∑m+2
i=s+1 λi), where the ci are the higher

coefficients of the gi. Thus the degree of H is in fact not larger than m. The
k+1 critical points of Φ contained in P+ are roots of H, and thus k− 1 ≤ m
which gives the desired bound k ≤ m+ 1.

2.1. Passing from non-degenerate to degenerate circuits

Consider a system supported on a non-degenerate circuit V ⊂ Z
m. Let n

be any integer such that m < n. We may identify Z
m with Ze1 + · · ·+ Zem

where (e1, . . . , en) is the standard basis of Zn. Assuming that 0 ∈ V , the
system obtained from the previous one by adding the n−m equations xi = 1
for i = m+1, . . . , n is a system supported on W = V ∪{em+1, . . . , en} ⊂ Z

n.
This support W is a degenerate circuit with m(W) = m(V) = m. These
systems have the same number of positive (resp. complex) solutions, thus if
one is maximally positive, so is the other.

Conversely, let W = {w1, . . . , wn+2} ⊂ Z
n be a circuit with m(W) = m <

n and which is the support of a maximally positive system. Renumbering
the elements of W if necessary, we may assume that w1 = 0 and that the
minimal affinely dependent subset of W is V = {0, w2, . . . , wm+2}. Since
W is the support of a maximally positive system, we have ZW = Z

n by
Proposition 2.1. This implies that V generates the rank m sub-lattice Z

n ∩
RV , and that we may complete the family (em+1, . . . , en) := (wm+3, . . . , wn+2)
into a basis (e1, . . . , em, em+1, . . . , en) of Z

n so that ZV = Ze1 + · · ·+ Zem.
Doing the monomial change of coordinates given by this new basis of

Z
n transforms the system supported on W into a system which becomes

equivalent (after a small perturbation) to the conjunction of a system xwi =
gi(1, x

wm+2), i = 1, . . . ,m, supported on the non-degenerate circuit V ⊂
Z
m ⊂ Z

n and the system xi = gi(1, x
wm+2), i = m + 1, . . . , n,, where all

gi are degree 1 homogeneous polynomials. Clearly, if the system supported
on W is maximally positive, then so is the previous non-degenerate system
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supported on V , and both systems have the same number of positive (and
complex) solutions.

3. Proof of the main results

3.1. Proof of Theorem 0.2.

Consider a maximally positive system supported on a circuit W ⊂ Z
n

with m(W) = m and having the maximal number m(W) + 1 of positive
solutions. Then the corresponding eliminant has m + 1 roots r in P+, and
the proof of the bound in Theorem 0.1 which is recalled above shows that Φ
has exactly one critical point of multiplicity 2 between two consecutive roots
r in P+. Moreover, the critical points of Φ are precisely thesem critical points
contained in P+ and the roots of the polynomials gi such that λi ≥ 2. In
particular Φ does not have non-real critical points. Each critical point c of Φ
contained in some interval formed by two consecutive roots r is a vertex of Γ
of valency 4 (since it has multiplicity 2): among the four branches of Γ which
start from c, two lie on the real line, while the two others are symmetric
with respect to the complex conjugation. In particular, there is only one
branch of HΓ which starts from c (we will say that this branch goes down
from c). Since Γ has no vertex in H, it follows that this branch gives rise to
an arc of HΓ joining c and another critical point of Φ contained in the real
line. This last critical point cannot be a critical point contained between two
consecutive roots r, hence it is a root of some gi with λi ≥ 2. Therefore, for
each of the m critical points c contained in P+, we get one arc of HΓ joining
this c to a vertex p or q of Γ of valency larger than 4 (that is, having at
least one going down branch). We note that two different such arcs cannot
go to the same vertex p (resp. q) for otherwise this would give a connected
component of H \HΓ without letters q (resp. p) in its boundary. Thus, we
get an injective map from the set of m critical points of Φ contained in P+

to the set of roots of the gi with λi ≥ 2. Therefore at least m coefficients
among λ1, . . . , λm+2 satisfy λi ≥ 2. We also note that each root r of g is in
the boundary of exactly one connected component of H \HΓ. Thus H \HΓ
has at least m + 1 connected components. But the degree of Φ is m + 1
(since the system is maximally positive) and is the sum of local degrees at
each connected component of H \HΓ. This means that H \HΓ has exactly
m+ 1 connected components, and each local degree is equal to 1.
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pq p q p q r r r r r

Figure 3: A real dessin d’enfant with m+ 1 roots in P+ for m = m(W) = 4.

Since the degree of Φ is m+ 1, we have

m+ 1 =
s∑

i=1

λi =
m+2∑

i=s+1

λi. (8)

At least m coefficients among the m + 2 positive integers λ1, . . . , λm+2 are
greater than or equal to 2, thus at most two of them are equal to 1. Using
(8), it is easy to prove that exactly two of them should be equal to 1. Indeed,
suppose on the contrary that only one coefficient is equal to 1. Permuting s
with m + 2 − s if necessary, we may assume that this coefficient is some λi

with i ≤ s. Then (8) gives m+ 1 ≥ 1 + 2(s− 1) and m+ 1 ≥ 2(m+ 2− s),
which imply 2s − 1 ≤ m + 1 ≤ 2s − 2: a contradiction. Therefore, up to
renumbering the λi, and up to permuting s with m + 2 − s, we have two
cases:

1. λ1 = λ2 = 1 and λi ≥ 2 for i 6= 1, 2,

2. λ1 = λs+1 = 1 and λi ≥ 2 for i 6= 1, s+ 1.

In the first case, we get m+1 = λ1 + · · ·+ λs ≥ 2+ 2(s− 2) ⇒ s ≤ m+3
2

and
m+ 1 = λs+1 + · · ·+ λm+2 ≥ 2(m+ 2− s) ⇒ s ≥ m+3

2
. Thus s = m+3

2
, m is

odd, and λ1 = λ2 = 1, λi = 2 for i 6= 1, 2. Similarly, the second case leads to
s = m+2

2
, m is even, and λ1 = λs+1 = 1, λi = 2 for i 6= 1, s+ 1.

Therefore for m odd, m = 2k + 1, we get the affine relation

w1 + w2 + 2(w3 + · · ·+ wk+2) = 2(wk+3 + · · ·+ wm+2).

Since the coefficient of w2 is 1 and W is primitive, we get from (5) (see
Remark 1.1) that (w3 −w1, . . . , wn+2 −w1) is a basis for Zn. Setting w1 = 0,
w = w2 and (e1, . . . , en) = (w3, . . . , wn+2) leads to W = {0, e1, . . . , en, w}
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with w = 2(ek+1 + · · · + em) − 2(e1 + · · · + ek) as desired. Similarly, if m is
even, m = 2k, then we obtain the affine relation

w1 + 2(w2 + · · ·+ wk+1) = wk+2 + 2(wk+3 + · · ·+ wm+2).

Setting w1 = 0, w = wk+2 and (e1, . . . , en) = (w2, . . . , wk+1, wk+3, . . . , wn+2)
leads toW = {0, e1, . . . , en, w} with w = 2(e1+· · ·+ek)−2(ek+1+· · ·+em). In
any case, the fact that the resulting W is indeed the support of a maximally
positive polynomial system follows from Lemma 1.5 and Remark 1.6 (and
Subsection 2.1 when m < n).

3.2. Splitting maximally positive systems

Write the eliminant g as an affine polynomial in y2 by setting y1 = 1
(equivalently, translate W so that wn+1 = 0). Write any gi as gi = ci(y2−αi)
so that αi is the real root of gi. Hence αi is encoded by a letter p or q in Γ
according as i ≤ s or not. For any i such that λi ≥ 2, and any positive integer
k < λi, we may deform slightly gi(y2)

λi to gi(y2)
λi−k ·ck(y2−(αi+ε))k, where ε

is any real number with sufficiently small absolute value. This induces a small
deformation of the eliminant g to gε that we will call a splitting. Obviously,
gε is the eliminant of a new system supported on a circuit and having one
more equation (and variable). Moreover, the number of roots of g in P is
equal to the number of roots of gε in the corresponding Pε = P\{αi+ε}, and
the same is true for the number of roots in P+ and (Pε)+. It means that a
splitting transforms one maximally positive system into another maximally
positive system with one equation (and one variable) more. The effect of a
splitting on the corresponding dessin d’enfant is clear (see Figure 4): a root p
(resp. q) with valency 2λi gives rise to two close points p (resp. q), one with
valency 2k, the other with valency 2λi − 2k, and a vertex of Γ, not equal to
some p or q, of valency 4 (a critical point of multiplicity 2 of Φ) between these
two points. Indeed, the number of branches going down should be locally
constant. Thus λi − 1 = λi − k − 1 + k − 1 + b, where b is the total number
of branches going down from critical points of Φ between the two points p
(resp. q). Thus b = 1 which means that there is exactly one critical point of
multiplicity 2 between the two nearby points p (resp. q).

The ”inverse” operation can easily be made on a dessin d’enfant (though
it is not really the inverse of the previous deformation). If two letters p (resp.
q) are endpoints of some interval of the real projective line which does not

16



Collapsing

p

3

p

2

p

1
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Figure 4: Splitting with λi = 3 and k = 1.

contain other letters p, q, r, then we may collapse these two letters into a
single same letter with a number of going down branches equal to the total
number of going down branches starting from the two letters and the vertices
of Γ situated between them (see Figure 5). We call this inverse operation a
collapsing. Clearly, a collapsing transforms one maximally positive system
into another maximally positive system with one equation (and one variable)
less.

Collapsing

p p p

Figure 5: Collapsing.

3.3. Proof of Theorem 0.3.

Consider a maximally positive system supported on a circuit. Then all
complex roots r of g are in the interval P+. This implies that Φ does not have
non-real critical points since otherwise at least one connected component of
H \ HΓ will not have the three letters p, q, r in its boundary. This means
that HΓ consists of arcs joining real critical points of Φ. Let J be the
largest open interval contained in P+ and delimited by two letters r. The
previous argument also shows that there is no critical point of Φ in P+ \ J ,
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that an arc of HΓ should join a critical point contained in J to a critical
point in RP 1 \P+, and that there is at most one such arc joining each critical
point. Thus all critical points of Φ are double points, and we have a bijection
between the set of critical points of Φ contained in J and the set of critical
points of Φ contained in RP 1 \ P+. Moreover, each connected component I
(an open interval) of RP 1 minus the set of letters p, q, r contains at most
one critical point of Φ. Let us now perform as many collapsings as possible
on Γ. This results in a new dessin d’enfant which still corresponds to a
maximally positive system supported on a circuit W . We have to show that
this maximally positive system has the maximalm(W)+1 number of positive
solutions. For simplicity, we denote again by Γ this new dessin d’enfant and
by Φ = P

Q
the associated rational function. Then Γ has all the properties

described above, with the additional one that if an open interval I of RP 1

minus the union of the letters p, q, r has no letter r as endpoint, then one
endpoint is a letter p and the other is a letter q (for otherwise we may perform
another collapsing). But such an open interval cannot have only one critical
point of the rational function Φ. This means that the critical points of Φ
which are not contained in J are among the letters p and q. Recall now
that the critical points of Φ which are not roots of P or Q are the roots of
a polynomial H of degree m(W). We have obtained that the roots of H are
all simple roots (since they are double points of Φ) contained in J and that
each open interval delimited by two consecutive letters r contains one and
only one root of H. Consequently, there are m(W) such open intervals, and
thus the number of letters r is equal to m(W) + 1.

3.4. Proof of Theorem 0.4.

Consider a system supported on a circuit W̃ ⊂ Z
n with degeneracy index

m(W̃) = m and having ℓ+ 1 positive solutions. Let Γ̃ be the associated real
dessin d’enfant. Since a collapsing decreases by 1 the degeneracy index, it
follows from Theorem 0.2 and Theorem 0.3 that up to the action of the real
projective linear group on CP 1 the dessin Γ̃ can be obtained by a sequence
of c = m(W̃)− ℓ splittings from the unique real dessin d’enfant Γ associated
to a polynomial system having ℓ + 1 positive solutions and supported on a
circuit with degeneracy index ℓ. Vertices p or q with valency not less than
2 in Γ have all valency 4 (correspond to double points) and there are ℓ such
vertices. Thus the c consecutive splittings occur at c distinct vertices among
these ℓ vertices. In particular, we should have c = m− ℓ ≤ ℓ, and therefore
there is no maximally positive system when 2ℓ < m.

18



p q p q r r r r r pqq p

q p q r r r r r pqq p q

pq q r r r r r pqq p p

q p q r r r r r pp pq q

p q r r r r r pp pq q p

q q r r r r r pq p pp q

Figure 6: Real dessins d’enfant for ℓ = 4 and m = 6.

Assume from now on that m ≤ 2ℓ. It follows that c consecutive splittings

19



produces a dessin d’enfant with ℓ+c+2 letters p, q, where ℓ−c of them have
valency 4 while the remaining 2c + 2 letters have valency 2. Assume that ℓ
is odd, ℓ = 2k+1. Up to permuting p and q, the ℓ vertices of Γ with valency
4 are k letters p and k + 1 letters q. Let c1 be the number of splittings at
letters p and c2 be the number of splittings at letters q. Thus c = c1 + c2
with 0 ≤ c1 ≤ k and 0 ≤ c2 ≤ k + 1.

By Theorem 0.2, the affine relation for W is

w1 + w2 + 2
∑

i∈I1

wi = 2
∑

i∈I2

wi,

where {1, 2}, I1, I2 form a partition of {1, . . . , ℓ + 2}, |I1| = k, |I2| = k + 1.

Therefore, the primitive affine relation for W̃ is

w̃1 + w̃2 + 2
∑

i∈Ĩ1

w̃i +
∑

i∈J̃1

w̃i = 2
∑

i∈Ĩ2

w̃i +
∑

i∈J̃2

w̃i, (9)

where {1, 2}, Ĩ1, Ĩ2, J̃1, J̃2 form a partition of {1, . . . , ℓ+ 2+ c}, |Ĩ1| = k− c1,
|J̃1| = 2c1, |Ĩ2| = k + 1 − c2 and |J̃2| = 2c2. We note that if c2 ≥ 1, then
(c1, c2) and (c2 − 1, c1 + 1) give the same affine relation up to renumbering.
Moreover, we have (c1, c2) = (c2 − 1, c1 + 1) when c2 = c1 + 1. Therefore, we
get the pairs (c1, c2) = (c1, c− c1) with c1 ≥

c−1
2

= m−ℓ−1
2

, c1 ≤ k = ℓ−1
2

and

c1 ≤ c = m− ℓ for the distinct possible affine relations (9) of W̃ . This gives
the minimum between 1 + ⌊ℓ − m

2
⌋ and 1 + ⌊m−ℓ+1

2
⌋ distinct possible affine

relations for W̃ . Now since in each affine relation the coefficient of w̃2 is 1
and W̃ is primitive, we have that (w̃3 − w̃1, . . . , w̃n+2 − w̃1) is a basis of Zn

(see Remark 1.1). Thus each affine relation corrresponds to an unique circuit
in Z

n up to action of the group of invertible integer affine transformations
of Zn. The case ℓ even is similar. Set ℓ = 2k. By Theorem 0.2, the affine
relation for W is

w1 + 2
∑

i∈I1

wi = wk+2 + 2
∑

i∈I2

wi,

where {1, k + 2}, I1, I2 form a partition of {1, . . . , ℓ+ 2} and |I1| = |I2| = k.

The affine relation for W̃ is

w̃1 + 2
∑

i∈Ĩ1

w̃i +
∑

i∈J̃1

w̃i = w̃k+2 + 2
∑

i∈Ĩ2

w̃i +
∑

i∈J̃2

w̃i, (10)

where {1, k+2}, Ĩ1, Ĩ2, J̃1, J̃2 form a partition of {1, . . . , ℓ+2+c}, |Ĩ1| = k−c1,
|J̃1| = 2c1, |Ĩ2| = k − c2, |J̃2| = 2c2, c = c1 + c2 ≤ ℓ and c1, c2 are integers
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satisfying 0 ≤ c1, c2 ≤ k. The pairs (c1, c2) and (c2, c1) give the same affine
relation (10) up to renumbering. Thus we get the pairs (c1, c2) = (c1, c− c1)
with c1 ≥ c

2
= m−ℓ

2
, c1 ≤ k = ℓ

2
and c1 ≤ m − ℓ for the distinct possible

affine relations (9) of W̃ . This gives the minimum between 1 + ⌊ℓ− m
2
⌋ and

1+⌊m−ℓ
2

⌋ distinct possible affine relations for W̃ , each of them corresponding
to an unique circuit in Z

n up to action of the group of invertible integer affine
transformations of Zn.

Example 3.1. All possible real dessin d’enfants associated to maximally pos-
itive systems in the case ℓ = 4 and m = 6 are depicted in Figure 6. Each of
them is obtained by splitting two vertices of valency 4 of the dessin d’enfant
depicted in Figure 3. This gives six primitive affine relations, one for each
dessin, for the support of the starting circuit. Namely,

w1 + w2 + 2w3 + w4 = w5 + w6 + 2w7 + w8

2w1 + 2w2 + w3 = w4 + w5 + w6 + w7 + w8

2w1 + w2 + w3 + w4 = w5 + w6 + 2w7 + w8

w1 + w2 + 2w3 + w4 = 2w5 + w6 + w7 + w8

w1 + w2 + w3 + w4 + w5 = 2w6 + 2w7 + w8

2w1 + w2 + w3 + w4 = 2w5 + w6 + w7 + w8

We have ordered the dessins d’enfant from the top to the bottom and the
coefficients of the left member of each affine relation correspond to half the
valencies of the letters p. We see that up to renumbering, the first, third,
fourth and sixth relations give the same relation, while the two remaining are
also identical. Thus we have in fact two distinct affine relations, which give
for any n ≥ m = 6 two distinct possible circuits in Z

n (up to the action of
the group of invertible integer affine transformations) with degeneracy index
m = 6 and supporting a maximally positive system with ℓ + 1 = 5 positive
solutions.

Example 3.2. Once at least one of its coefficients is equal to 1, a primitive
affine relation

∑s
i=1 λiwi =

∑m+2
i=s+1 λiwi, determines uniquely a primitive

circuit W = {w1, . . . , wn+2} ⊂ Z
n (where n ≥ m) up to the action of group

of invertible integer affine transformations Zn (see Remark 1.1). In fact (up
to the previous action on Z

n) this circuit is uniquely determined by the set
{(λ1, . . . , λs), (λs+1, . . . , λm+2)}, where we renumber the coefficients so that
0 < λ1 ≤ · · · ≤ λs and 0 < λs+1 ≤ · · · ≤ λm+2. We use this encoding
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to represent any possible primitive circuit supporting a maximally positive
system for different values of m and ℓ according to Theorem 0.4.

1. For ℓ = 4 and m = 6, we have two circuits represented by the sets
{(1, 1, 1, 2), (1, 1, 1, 2)} and {(1, 2, 2), (1, 1, 1, 1)}. This is what we ob-
tained in Example 3.1.

2. For ℓ = m = 3, we have only one circuit {(1, 1, 2), (2, 2)} according to
Theorem 0.2.

3. For ℓ = 3 and m = 4, we have two possible circuits {(1, 1, 1, 1), (2, 2)}
and {(1, 1, 2), (1, 1, 2)} obtained by replacing one 2 in the set {(1, 1, 2), (2, 2)}
corresponding to the case ℓ = m = 3 with two 1 (we make m − ℓ = 1
splitting).

4. For ℓ = 4 and m = 5, we have to make m − ℓ = 1 splitting starting
from the case ℓ = m = 4 corresponding to the set {(1, 2, 2), (1, 2, 2)}
(according to Theorem 0.2). This gives only one circuit corresponding
to the set {(1, 1, 1, 2), (1, 2, 2)}.
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