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This note is concerned with proving the finite speed of propagation for some non-local porous medium equation by adapting arguments developed by Caffarelli and Vázquez (2010).

Introduction

Caffarelli and Vázquez [START_REF] Caffarelli | Nonlinear porous medium flow with fractional potential pressure[END_REF] proved finite speed of propagation for non-negative weak solutions of

∂ t u = ∇ • (u∇ α-1 u), t > 0, x ∈ R d (1) 
with α ∈ (0, 2) and ∇ α-1 stands for ∇(-∆) α 2 -1 . We adapt here their proof in order to treat the more general case

∂ t u = ∇ • (u∇ α-1 u m-1 ), t > 0, x ∈ R d (2) 
for m > m α := 1 + d -1 (1 -α) + + 2(1 -α -1 ) + . Equation ( 2) is supplemented with the following initial condition

u(0, x) = u 0 (x), x ∈ R d (3) 
for some u 0 ∈ L 1 (R d ). The result contained in this note gives a positive answer to a question posed in [START_REF] Stan | Finite and infinite speed of propagation for porous medium equations with fractional pressure[END_REF] where finite of infinite speed of propagation is studied for another generalization of [START_REF] Biler | Barenblatt profiles for a nonlocal porous medium equation[END_REF]. We recall that weak solutions of (2)-(3) are constructed in [START_REF] Biler | Nonlocal porous medium equation: Barenblatt profiles and other weak solutions[END_REF] for m > m α (see also [START_REF] Biler | Barenblatt profiles for a nonlocal porous medium equation[END_REF]).

In the following statement (and the remaining of the note), B R denotes the ball of radius R > 0 centered at the origin.

Theorem 1.1 (Finite speed of propagation). Let m > m α and assume that u 0 ≥ 0 is integrable and supported in B R0 . Then a non-negative weak solution u of (2)-( 3) is supported in B R(t) where

R(t) = R 0 + Ct 1 α with C = C 0 u 0 m-1 α

∞

for some constant C 0 > 0 only depending on dimension, α and m.

Remark 1.2. The technical assumption m > m α is imposed to ensure the existence of weak solutions; see [START_REF] Biler | Nonlocal porous medium equation: Barenblatt profiles and other weak solutions[END_REF].

Remark 1.3. In view of the Barenblatt solutions constructed in [START_REF] Biler | Nonlocal porous medium equation: Barenblatt profiles and other weak solutions[END_REF], the previous estimate of the speed of propagation is optimal.

The remaining of the note is organized as follows. In preliminary Section 2, the equation is written in non-divergence form, non-local operators appearing in it are written as singular integrals, invariant scalings are exhibited and an approximation procedure is recalled. Section 3 is devoted to the contact analysis. A first lemma for a general barrier is derived in Subsection 3.1. The barrier to be used in the proof of the theorem is constructed in Subsection 3.2. The main error estimate is obtained in Subsection 3.3. Theorem 1.1 is finally proved in Section 4.

Notation. For a ∈ R, a + denotes max(0, a). An inequality written as A B means that there exists a constant C only depending on dimension, α and m such that A ≤ CB. If α ∈ (0, 1), a function u is in C α means that it is α-Hölder continuous. If α ∈ (1, 2), it means that ∇u is (α -1)-Hölder continuous. For α ∈ (0, 2), a function u is in C α+0 if it is in C α+ε for some ε > 0 and α + ε = 1.

Preliminaries

The contact analysis relies on writing Eq. (2) into the following non-divergence form

∂ t u = ∇u • ∇p + u∆p (4) 
where p stands for the pressure term and is defined as

p = (-∆) α 2 -1 u m-1 . It is also convenient to write v = u m-1 = G(u).
We recall that for a smooth and bounded function v, the non-local operators appearing in (4) have the following singular integral representations,

∇(-∆) α 2 -1 v = c α (v(x + z) -v(x))z dz |z| d+α , -(-∆) α 2 v = cα (v(x + z) + v(x -z) -2v(x)) dz |z| d+α .
The following elementary lemma makes the scaling of the equation precise.

Lemma 2.1 (Scaling). If u satisfies (2) then U (t, x) = Au(T t, Bx) satisfies (2) as soon as T = A m-1 B α .
Consider non-negative solutions of the viscous approximation of (2), i.e.

∂ t u = ∇ • (u∇ α-1 G(u)) + δ∆u, t > 0, x ∈ R d . (5) 
For sufficiently smooth initial data u 0 , solutions are at least C 2 with respect to x and C 1 with respect to t.

3 Contact analysis

The contact analysis lemma

In the following lemma, we analyse what happens when a sufficiently regular barrier U touches a solution u of (5) from above. The monotone term such as ∂ t u, ∆u or -(-∆) α 2 u are naturally ordered. But this is not the case for the non-local drift term ∇u • ∇p. The idea is to split it is a "good" part (i.e. with the same monotony as ∆u for instance) and a bad part. It turns out that the bad part can be controlled by a fraction of the good part; see (11) in the proof of the lemma. Lemma 3.1 (Contact analysis). Let u be a solution of the approximate equation 5 and U (t, x) be C 2 ((0, +∞) × (R d \ B 1 )), radially symmetric w.r.t. x, non-increasing w.r.t. |x|. If

u ≤ U for (t, x) in [0, t c ] × R d , u(t c , x c ) = U (t c , x c ), then ∂ t U ≤ ∇U • ∇P + U ∆P + δ∆U + e (6) holds at (t c , x c ) ∈ (0, +∞) × (R d \ B 1 )) where        V = G(U ) P = (-∆) α 2 -1 V e = |∇U |(I out,+ (V ) -I out,+ (v)) ≥ 0 with I out,+ (w) =      |y|≥γ y•xc≥0 (w(x c + y) -w(x c ))(y • xc ) dy |y| d+α if α ≥ 1 |y|≥γ y•xc≥0 w(x c + y)(y • xc ) dy |y| d+α if α ∈ (0, 1 ) 
(where xC = x C /|x C |) for γ such that c α γ|∇U (x c )| ≤ cα U (x c )
where c α and cα are the constants appearing in the definitions of the two nonlocal operators.

Proof. At the contact point (t c , x c ), the following holds true

∂ t u ≥ ∂ t U ∇u = ∇U = -|∇U |x c ∆u ≤ ∆U.
This implies that

∂ t U ≤ ∇U • ∇p + U ∆p + δ∆U. (7) 
We next turn our attention to ∇p and ∆p. We drop the time dependence of functions since it plays no role in the remaining of the analysis.

The fact that U is radially symmetric and non-decreasing implies in particular that ∇U (x) = -|∇U (x)|x/|x| which in turn implies

∇U • ∇p = -|∇U |I(v) (8) 
where

I(v) =      c α (v(x c + y) -v(x c ))(y • xc ) dy |y| d+α if α ∈ [1, 2), c α v(x c + y)(y • xc ) dy |y| d+α if α ∈ (0, 1).
We now split I into several pieces by splitting the domain of integration R d into B in,± γ = {y ∈ B γ : ±y • xc ≥ 0} and B out,± γ = {y / ∈ B γ : ±y • xc ≥ 0} for some parameter γ > 0 to be fixed later. We thus can write

I(v) = I in,+ (v) + I in,-(v) + I out,+ (v) + I out,-(v)
where

I in/out,± (v) =      c α B in/out,± γ (v(x c + y) -v(x c ))(y • xc ) dy |y| d+α if α ∈ [1, 2), c α B in/out,± γ v(x c + y)(y • xc ) dy |y| d+α if α ∈ (0, 1).
We can proceed similarly for ∆p. Remark that ∆p = J(v)

where

J(v) = cα (v(x + y) + v(x -y) -2v(x)) dy |y| d+α .
We can introduce J in/out,± (v) analogously.

We first remark that,

   -I in/out,-(v) ≤ -I in/out,-(V ) J in/out,± (v) ≤ J in/out,± (V ) (10) holds at x c where V = G(U ).
We next remark that since G is non-decreasing and vanishes at 0 and w = v -V reaches a zero maximum at x = x c ,

-I in,+ (v -V ) ≤ -c α γJ in,+ (v -V ) (11)
holds at x c . Indeed, for α ∈ (1, 2) (the proof is the same in the other case),

γJ in,+ (w)(x c ) = cα γ B in,+ γ (w(x c + y) + w(x c -y) -2w(x c )) dy |y| d+α = 2c α γ B in,+ γ (w(x c + y) -w(x c )) dy |y| d+α ≥ 2c α B in,+ γ (w(x c + y) -w(x c ))(y • xc ) dy |y| d+α .
Combining ( 7)-( 11), we get (at x c ),

∂ t U ≤|∇U |(-I in,+ (V ) -I in,-(V ) -I out,+ (v) -I out,-(V ) + cα γJ in,+ (V )) + (U -cα γ|∇U |)J in,+ (v) + U (J in,-(V ) + J out,+ (V ) + J out,-(V )) + δ∆U.
In view of the choice of γ, we get

∂ t U ≤ -|∇U |I(V ) + U J(V ) + |∇U |(-I out,+ (v) + I out,+ (V )) + δ∆U.
We now remark that -|∇U |I(V ) = ∇U •∇P and J(V ) = ∆P we get the desired inequality.

Construction of the barrier

The previous lemma holds true for general barriers U . In this subsection, we specify the barrier we are going to use. We would like to use (R(t) -|x|) 2 but this first try does not work. First the power 2 is changed with β large enough such that V = U m-1 is regular enough. Second, a small ω β is added in order to ensure that the contact does not happen at infinity. Third, a small slope in time of the form ω β t/T is added to control some error terms.

Lemma 3.2 (Construction of a barrier). Assume that

u ∞ ≤ 1 and 0 ≤ u 0 (x) ≤ (R 0 -|x|) β + with R 0 ≥ 2 for some β > max(2, α(m -1) -1
). There then exist C > 0 and T > 0 (only depending on d, m, α, β) and U ∈ C 2 ((0, +∞) × (R d \ B 1 )) defined as follows,

U (t, x) = ω β + (R(t) -|x|) β + + ω β t T (12) 
where R(t) = R 0 + Ct and ω = ω(δ) small enough, such that i) the following holds true ∇P, ∆P, J in,+ (V ), I out,+ (V ), ∆U are bounded;

ii) u and U cannot touch at a time t < T and a point x c ∈ B 1 or x c / ∈ BR(t) ;

iii) if U touches u from above at (t c , x c ) with t c < T and x c ∈ B R(t) , then

C 1 -I out,+ (v) + δ ω . (14) 
Proof. We first remark that the condition R 0 ≥ 2 ensures that the contact point is out of

B 1 since u ∞ ≤ 1. The fact that U is C 2 in (0, +∞) × (R d \ B 1 ) and V = U m-1 is C α+0 in R d \ B 1
ensures that (13) holds true. Notice that the condition: β(m -1) > α is used here.

We should now justify that the contact point cannot be outside B R(t) at a time t ∈ (0, T ) for some small time T under control. If

|x c | > R(t) and t c < T then          0 ≤ U ≤ 2ω β ∂ t U = ω β T |∇U | = 0 ∆U = 0.
The contact analysis lemma 3.1 (with γ = 1, say), ( 6) and (13) then implies that ω β T ≤ |∆P |U ω β and choosing T small enough (but under control) yields a contradiction.

It remains to study what happens if t c < T and x c ∈ B R(t) \ B 1 . In order to do so, we first define h and H as follows:

U = h β + H β ≤ 1 with H β = ω β tT -1 ≤ ω β for t ∈ (0, T ). Remark that h ≥ ω ≥ H.
In the contact analysis lemma 3.1, we choose γ such that

βc α γ ≤ cα h. If x c ∈ B R(t) \ B 1 , ∂ t U = βCh β-1 + ω β T ≥ βCh β-1 |∇U | = βh β-1 (15) 
Combining Lemma 3.1 with (13)-(15), we get (14).

as soon as

u 0 (x) ≤ a(R 0 -|x|) β + and L = u ∞ = u 0 ∞ .
If we simply know that u 0 is supported in B R0 and u ∞ = u 0 ∞ = L, then we can pick any a > 0 and r 1 > 0 such that ar β 1 = L and get

u 0 (x) ≤ a(r 1 + R 0 -|x|) β + .
By the previous reasoning, we get that

R(t) ≤ R 0 + r 1 + C 0 L m-1-α-1 β a α-1 β t = R 0 + r 1 + C 0 L m-1 r 1-α 1 t.
Minimizing with respect to r 1 yields the desired result in the case α > 1.

Second case. We now turn to the case α ∈ (0, 1]. Lemma 3.4 yields for

t ∈ [0, T 1 ] with T 1 = R0 C1 C 1 R 1-α+ε 0 (recall that R 0 ≥ 2).
We now start with R 1 = R 0 + C 1 T 1 = 2R 0 and we get

C 2 (3R 0 ) 1-α+ε for t ∈ [T 1 , T 2 ] with T 2 -T 1 = R 0 C 2 .
More generally, for t ∈ [T k , T k+1 ],

C k ≃ ((k + 1)R 0 ) 1-α+ε ≃ (kR 0 ) 1-α+ε with

T k+1 -T k = R 0 C k ≃ R α-ε 0 (k + 1) 1-α+ε .
We readily see that the series k (T k+1 -T k ) diverges. More precisely,

T k ≃ (kR 0 ) α-ε .
Moreover, we get that the function u is supported in B R(t) with 

R(t) -R 0 kR 0 + C k (t -T k ) (T k ) 1 α-ε + (T k ) 1-α+ε α-ε t t

  for t ∈ [T k , T k+1 ]. Hence, we get the result but not with the right power. Precisely, for L = 1 and0 ≤ u 0 (x) ≤ (R 0 -|x|) β + we get R(t) = R 0 + C 0 t β with β > 1 α .Rescaling and playing again with r 1 and a such that ar β 1 = L yields the desired result in the case α < 1. The proof of the theorem is now complete.
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Estimate of the error term

Lemma 3.3. The following estimate holds true at x c ,

for all ε > 0.

Proof. We begin with the easy case α > 1. In this case, we simply write

where we used the fact that v ≥ 0. By remarking that

at the contact point and through an easy and standard computation, we get the desired estimate in the case α > 1.

We now turn to the more subtle case α ∈ (0, 1]. In this case,

(m-1)q with p as above and q -1 = 1 -p -1 .

We next estimate u (m-1)q . Interpolation leads

Finally, we use mass conservation in order to get

Finally, we have

for all q < d 1-α which yields the desired result. Combining now Lemmas 3.2 and 3.3, we get the following one. Lemma 3.4 (Estimate of the speed of propagation). Assume that

for some β > max(2, α(m -1) -1 ). Then there exists T > 0 and C 0 > 0 only depending on dimension, m, α and β (and ε for α ≤ 1) such that, for t ∈ (0, T ), u is supported in B R0+Ct with

(for ε > 0 arbitrarily small).

Proof. In view of Lemma 3.2, the parameter ω is chosen so that ω ≫ δ, say ω = √ δ. Now Lemmas 3.2 and 3.3 imply that if C is chosen as indicated in (17), then u remains below U at least up to time T . Letting (ω, δ) go to 0 yields the desired result.

Proof of Theorem 1.1

We can now prove Theorem 1.1.

Proof of Theorem 1.1. We treat successively the α > 1 and α ≤ 1.

First case. In the case

then Lemma 3.4 implies that the support of u is contained in B R(t) with

for some constant C 0 only depending on dimension, m and α. Rescaling the solution (see Lemma 2.1), we get