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Abstra
t

Crude Monte-Carlo or quasi Monte-Carlo methods are well suited to 
hara
terize events of

whi
h asso
iated probabilities are not too low with respe
t to the simulation budget. For very

seldom observed events, su
h as the 
ollision probability between two air
raft in airspa
e, these

approa
hes do not lead to a

urate results. Indeed, the number of available samples is often

insu�
ient to estimate su
h low probabilities (at least 10
6
samples are needed to estimate

a probability of order 10
−4

with 10% relative error with Monte-Carlo simulations). In this

arti
le,one reviewed di�erent appropriate te
hniques to estimate rare event probabilities that

require a fewer number of samples. These methods 
an be divided into four main 
ategories:

parameterization te
hniques of probability density fun
tion tails, simulation te
hniques su
h as

importan
e sampling or importan
e splitting, geometri
 methods to approximate input failure

spa
e and �nally, surrogate modelling. Ea
h te
hnique is detailed, its advantages and drawba
ks

are des
ribed and a synthesis that aims at giving some 
lues to the following question is given:

"whi
h te
hnique to use for whi
h problem?".
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1. Introdu
tion

Rare event estimation has be
ome a large area of resear
h in the reliability engineering

and system safety domains. A signi�
ant number of methods has been proposed to redu
e

the 
omputation burden for the estimation of rare events from sampling to extreme value

theory. However it is often di�
ult to determine whi
h algorithm is the most adapted to

a given problem. Moreover, the existing survey arti
les on rare events are often fo
used

on spe
i�
 algorithms [1�3℄. The novelties of this arti
le are thus to provide a broad view

of the 
urrent available te
hniques to estimate rare event probabilities des
ribed with

a uni�ed notation and to provide some 
lues to answer this question: whi
h rare event

te
hnique is the most adapted to a given situation?

The general problem 
onsidered in this arti
le is analysed in a �rst se
tion and then all

the di�erent methods are des
ribed separately. Their advantages and drawba
ks are also

given. Finally, a synthesis helps the reader to determine the most appropriate method to

a given rare event estimation problem.

Let us 
onsider a d-dimensional random ve
tor X with a probability density fun
tion

(PDF) h0, φ a 
ontinuous positive s
alar fun
tion φ : Rd → R and S a threshold.

The di�erent 
omponents of X will be denoted X = (X1, X2, ..., Xd) in the following.

The fun
tion φ is stati
, i.e., does not depend on time, and represents for instan
e an

input-output model. This kind of model is notably used in numerous engineering appli-


ations [4�9℄. We assume that the output Y = φ(X) is a s
alar random variable. In this

arti
le, we propose to review di�erent algorithms that 
an be e�
ient to estimate the

probability P = P (φ(X) > S) when this quantity is rare relatively to the available sim-

ulation budget N , that is when P < 1
N . For the sake of 
on
iseness, the issue of extreme

quantile estimation is not addressed even if the vast majority of the methods that are

presented in the paper 
an be adapted to this spe
i�
 
ase. The 
ase of dynami
 systems

modeled with Markov 
hains is also not 
onsidered in this paper. Spe
i�
 algorithm ex-

tensions for large 
omplex systems modelled by a network or a 
oherent fault tree are


ompletely detailed in [10℄ and will not be mu
h developed here. It 
orresponds to the


ase where the inputs X i
, i = 1, ..., d follow a Bernoulli distribution and the output is

equivalent to an indi
ator fun
tion.

2. Monte-Carlo methods

A simple way to estimate a probability is to 
onsider 
rude Monte-Carlo (CMC) [11�

16℄. For that purpose, one generates N independent and identi
ally distributed (i.i.d.)

samples X1, ...,XN from the PDF h0 and 
omputes their outputs with the fun
tion φ:

φ(X1), ..., φ(XN ). The probability P (φ(X) > S), also 
alled failure probability, is then

estimated with

P̂CMC =
1

N

N∑

i=1

1φ(Xi)>S, (1)

where 1φ(Xi)>S is equal to 1 if φ(Xi) > S and 0 otherwise. This estimation 
onverges to

the real probability as shows the law of large numbers [13℄. The positive and negative as-

pe
ts of CMC are des
ribed in Table 1. A possible indi
ator of the estimation e�
ien
y is

notably its relative deviation. The relative deviation or relative error RE of an estimator
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Advantages of CMC Drawba
ks of CMC

Simple implementation Slow 
onvergen
e

Information on φ not needed Signi�
ant simulation budget for rare events

No bias

Table 1

Advantages and drawba
ks of CMC methods.

P̂ of P is given by the following ratio:

RE(P̂ ) =
σP̂

E(P̂ )
, (2)

with σP̂ the standard deviation of P̂ and E the mathemati
al expe
tation. The relative

error is said bounded when RE(P̂ ) remains bounded when P −→ 0 [17,18℄. In that 
ase,

the number of samples needed to get a spe
i�ed relative error is bounded whatever the

rarity of φ(X) > S. The logarithmi
 e�
ien
y LE 
an also be de�ned for an unbiased

estimator P̂ with [17,18℄,

LE(P̂ ) = lim
P→0

log(E(P̂ 2))

log(P )
= 2. (3)

Logarithmi
 e�
ien
y is a ne
essary but not su�
ient 
ondition for bounded relative

error. Chara
terizing the rare event probability estimate with these 
on
epts is very

important even if they are often di�
ult to verify in pra
ti
e.

Sin
e P̂CMC
is unbiased, the relative error of the estimator P̂CMC

is given by the ratio

σ
P̂CMC

P with σP̂CMC , the standard deviation of P̂CMC
. Knowing the true probability P

of the event (φ(X) > S), one has [11,19℄

σP̂CMC

P
=

1√
N

√
P − P 2

P
. (4)

Considering rare event probability estimation, that is when P takes low values, one

obtains

lim
P→0

σP̂CMC

P
= lim

P→0

1√
NP

= +∞. (5)

The relative deviation is 
onsequently unbounded. For instan
e, to estimate a probability

P of order 10−4
with a 10% relative deviation, at least 106 samples are required. The

simulation budget is thus an issue when the 
omputation time required to obtain a sample

φ(Xi) is not negligible. CMC is thus not adapted to rare event estimation and a wide


olle
tion of statisti
 and simulation methods has been developed. The following se
tions

des
ribe the di�erent available alternatives to CMC to improve probability estimations,

i.e., to redu
e the number of required samples, in
rease the estimation a

ura
y, and

thus de
rease RE(P̂ ).

3. Statisti
al te
hniques

Statisti
al te
hniques enable to derive a probability estimate and asso
iated 
on�den
e

intervals with a �xed set of samples φ(X1), ..., φ(XN ). The main statisti
al approa
hes,

extreme value theory and large deviation theory, model the behaviour of the PDF tails.

Let us review their theoreti
al founding.
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3.1. Extreme value theory

Extreme value theory (EVT) [20,21℄ 
hara
terizes the distribution tails of a random

variable, based on a reasonable number of observations. Thanks to its general appli
a-

tive 
onditions, this theory has been widely used for des
ribing extreme meteorologi
al

phenomena with appli
ations su
h as hydrology [22℄, snowfall [23℄, but also in �nan
e

and insuran
e [20,24℄, and engineering [25℄.

3.1.1. Law of sample maxima

EVT is notably very useful when one has to work with only a �xed set of data. One


onsequently assumes in the following that a �nite set of i.i.d. samples φ(X1), ..., φ(XN )
of the output is available, but also that one 
annot generate new samples of φ(X). The
asso
iated ordered sample set is de�ned with φ(X(1)) ≤ φ(X(2)) ≤ ... ≤ φ(X(N)). EVT
enables to estimate for some threshold S the probability P (φ(X) > S).
The founder theorem of EVT [20,26,27℄ is that, under some 
onditions, the maxima of

an i.i.d. sequen
e 
onverge to a generalized extreme value (GEV) distribution Gξ, whi
h

admits the following 
umulative distribution fun
tion (CDF)

Gξ(x) =





exp(− exp(−x)), for ξ = 0,

exp
(
−(1 + ξx)−

1
ξ

)
, for ξ 6= 0.

(6)

The set of GEV distributions is 
omposed of three distin
t types, 
hara
terized by ξ =
0, ξ > 0 and ξ < 0 that 
orrespond to the Gumbel, Fré
het and Weibull distributions

respe
tively. Let us de�ne G, the CDF of the i.i.d. samples φ(X1), ..., φ(XN ).
Theorem 3.1 Suppose there exist aN and bN , with aN > 0 su
h that, for all y ∈ R

P

(
φ(X(N))− bN

aN
≤ y

)
= GN (aNy + bN )

N→∞−→ G(y),

where G is a non degenerate CDF, then G is a GEV distribution Gξ. In this 
ase, one

denotes G ∈MDA(ξ) (MDA=maximum domain of attra
tion).

The sequen
es aN and bN are 
omputed in [20℄ for most well-known PDF. An approxi-

mation of P (φ(X) > S) [20℄ for large values of S and N 
an also be obtained:

P̂EV T (φ(X) > S) ≈ 1

N

(
1 + ξ

(
S − bN

aN

))− 1
ξ

. (7)

The GEV approa
h is notably used when only samples of maxima are available. In that


ase, the di�erent parameters of the GEV distribution are obtained by determining max-

imum likelihood or probability weighted moment estimators. When samples of maxima

are not available, it is required to group the samples φ(X1), ..., φ(XN ) into blo
ks and �t

the GEV using the maximum of ea
h blo
k (blo
k maxima method). The main di�
ulty

is to determine an e�
ient sample size for the di�erent blo
ks.

3.1.2. Peak over threshold approa
h

Instead of grouping the samples into blo
k maxima, POT 
onsiders the largest samples

φ(Xi) to estimate the probability P (φ(X) > S).
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There are two equivalent ways of analyzing extremes with POT. The most 
ommon is

to 
hara
terize the distribution of samples above a threshold u, whi
h is given by the

generalized Pareto CDF. An alternative is to use a Poisson point pro
ess whi
h 
ounts the

number of threshold ex
eedan
es. This approa
h is not developed in this arti
le, but one


an refer to [27℄ for more details. The �rst paper linking the EVT with the distribution

of a threshold ex
eedan
e is [28℄. Later, De Haan obtains a result of the same type, with

a slightly simpli�ed 
on
lusion, using slow varying fun
tions [29℄. The following theorem

[20℄ 
an be then obtained:

Theorem 3.2 Let us assume that the distribution fun
tion G of i.i.d. samples φ(X1),...,
φ(XN ) is 
ontinuous. Set y∗ = sup{y, G(y) < 1} = inf{y, G(y) = 1}. Then, the two fol-

lowing assertions are equivalent

(i) G ∈MDA(ξ),
(ii) there exists a positive and measurable fun
tion u 7→ β(u) su
h that

lim
u7→y∗

sup
0<y<y∗−u

|Gu(y)−Hξ,β(u)(y)| = 0,

where Gu(y) = P (φ(X) − u ≤ y|φ(X) > u), and Hξ,β(u) is the CDF of a generalized

Pareto distribution (GPD) with shape parameter ξ and s
ale parameter β(u).
The expression of the GPD distribution fun
tion is the following

Hξ,β(x) =





1− exp
(
− x

β

)
, for ξ = 0,

1−
(
1 + ξx

β

)−1/ξ

, for ξ 6= 0.

(8)

This theorem is in fa
t useful to estimate a probability of ex
eedan
e. Indeed, the

probability P (φ(X) > S) 
an be rewritten as

P (φ(X) > S) = P (φ(X) > S|φ(X) > u)P (φ(X) > u). (9)

for S > u. A natural estimate of P (φ(X) > u) is given by

P̂CMC(φ(X) > u) =
1

N

N∑

i=1

1φ(Xi)>u. (10)

With the Theorem 3.2 and for signi�
ant value of u, one obtains

P̂ (φ(X) > S|φ(X) > u) = 1−Hξ,β(u)(S − u). (11)

The estimate of P (φ(X) > S) is then built with

P̂POT (φ(X) > S) =

(
1

N

N∑

i=1

1φ(Xi)>u

)
×
(
1−Hξ,β(u)(S − u)

)
. (12)

The mathemati
al justi�
ation of Eq. 11 and Eq. 12 is notably dis
ussed in [21℄, [30℄, [31℄,

or [32℄ for a given set of samples to determine if this set is suitable for the appli
ation

of POT. Three parameters have to be determined in the POT probability estimate of

Eq. 12: the threshold u and the 
ouple (ξ, β(u)). The 
hoi
e of u is very in�uent sin
e

it determines the samples that are used in the estimation of (ξ, β(u)). Indeed, a high

threshold leads to 
onsider only a small number of samples in the estimation of (ξ, β(u))
and thus their estimate 
an be then spoiled by a large varian
e whereas a low threshold

5



Advantages of EVT Drawba
ks of EVT

No need to resample Complex estimation of the adequate parameters

(u, ξ, β(u)) or of the blo
k maxima size.

Can be applied with a relatively low value of N Less e�
ient than simulation

methods when resampling is possible

Table 2

Advantages and drawba
ks of EVT.

introdu
es a bias in the probability estimate [33℄. There are several methods to determine

a valuable threshold u knowing the samples. The most well-known ones are the Hill plot

and the mean ex
ess plot [20℄. These methods are nevertheless very empiri
al sin
e they

are based on graphi
al interpretation. It is often ne
essary in pra
ti
e to 
ompare the

estimates of u given by the di�erent methods. On
e the value of u is set, the parameters

(ξ, β(u)) are often estimated by maximum likelihood [34℄ or more o

asionally by the

method of moments [35℄. The estimate P̂POT (φ(X) > S) given in Eq. 12 for S > u is

then 
ompletely de�ned. A review of these di�erent methods 
an be found in [36℄. It is

not possible, to our knowledge, to 
ontrol the probability error estimate in EVT. Never-

theless, the use of boostrap on samples φ(X1), ..., φ(XN ) [37℄ 
an give some information

on the e�
ien
y of EVT.

3.1.3. Blo
k maxima versus POT

The POTmethod takes into a

ount all relevant high samples φ(X1), ..., φ(XN ) whereas
the blo
k maxima method 
an miss some of these high samples and, on the same time,


onsider some lower samples in its probability estimation. Thus, POT seems to be more

appropriate for the design of sample PDF tail. Nevertheless, the blo
k maxima method

is preferable when the available samples are not exa
tly i.i.d. or when only samples of

maxima are available. For instan
e, the samples of a monthly river maximum height


orrespond to this situation. Finally, the tuning of blo
k maxima size turns out to be

easier than the tuning of POT threshold u in many situations [38℄. The advantages and

drawba
ks of EVT are presented in Table 2.

3.2. Large deviation theory

The large deviation theory (LDT) 
hara
terizes the asymptoti
 behaviour of PDF se-

quen
e tails [39�41℄ and more pre
isely, it analyses how a PDF sequen
e tail deviates from

its typi
al behaviour des
ribed by the law of large numbers. LDT 
an be used to evaluate

the 
onvergen
e of rare event algorithms [42�46℄. Let us de�neHN = J(φ(X1), ..., φ(XN ))
a random variable indexed by N with J a 
ontinuous s
alar fun
tion, H its mathemat-

i
al expe
tation and VN = HN − H . One says that VN satis�es the prin
iple of large

deviations with a 
ontinuous rate fun
tion I if the following limit exists:

lim
N→∞

1

N
ln[P (| VN |> γ)] = −I(γ). (13)

The existen
e of this limit implies for a large value of N that

P (| VN |> γ) ≈ exp (−NI(γ)) . (14)
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The probability de
ays exponentially as N grows to in�nity, at a rate depending on

γ. This approximation is a well-known result of LDT. If the limit does not exist, then

P (| VN |> γ) has a too singular behaviour or de
reases faster than exponential de
ay. If

the limit is equal to 0, then the tail P (| VN |> γ) de
reases with N slower than exp (−Na)
with a > 0. The 
omputation of the rate fun
tion I is not obvious but 
an be obtained

through the Gärtner-Ellis theorem [47℄. Let us de�ne the fun
tion λ(θ) of VN with

λ(θ) = lim
N→∞

1

N
ln [E (exp (NθVN ))] , (15)

with θ ∈ R.

Theorem 3.3 Gärtner-Ellis theorem If the fun
tion λ(θ) of the variable VN exists

and is di�erentiable for all θ ∈ R, then VN satis�es the prin
iple of large deviations and

I(γ) is given by

I(γ) = sup
θ∈R

[θγ − λ(θ)] .

In the spe
i�
 
ase of a s
alar fun
tion J , one 
an derive the Cramér theorem from

Gärtner-Ellis theorem [47℄.

Theorem 3.4 Cramér theorem If VN = 1
N

∑N
i=1 J(φ(Xi)) where the random vari-

ables J(φ(Xi)) are i.i.d, the rate fun
tion is given by

I(γ) = sup
θ∈R

[θγ − λ(θ)] ,

with

λ(θ) = ln [E (exp (θJ(φ(X))))] .

This theorem only holds for light tail distributions.

Let us 
onsider the Monte-Carlo probability estimate given in Eq. 1. In that 
ase, one

has J(φ(.)) = 1φ(.). The random variable J(φ(Xi)) follows a Bernoulli distribution of

mean P . The sequen
e VN is de�ned with

VN =

(
1

N

N∑

i=1

1φ(Xi)>S

)
− P. (16)

The fun
tions λ(θ) and I(γ) 
an be derived for some well-known PDF. In the 
ase of

Bernoulli distributions of mean P , one has

λ(θ) = P exp(θ) + 1− P, (17)

and

I(γ) = γ ln
( γ
P

)
+ (1 − γ) ln

(
1− γ

1− P

)
. (18)

One 
an then obtain the 
onvergen
e speed of the Monte-Carlo probability estimate in

fun
tion of the number of samples with the following equation

lim
N→∞

1

N
ln[P (| VN |> γ)] = −I(γ) = −γ ln

( γ
P

)
− (1 − γ) ln

(
1− γ

1− P

)
. (19)

The quantity I(γ) 
orresponds to the relative entropy (Kullba
k-Leibler divergen
e) of

a 
oin toss with bias γ with respe
t to true value P . In a lot of situations, the large

deviation rate fun
tion is the Kullba
k-Leibler divergen
e [47℄.
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LDT 
annot in fa
t be applied dire
tly to determine a rare event probability in a realisti


pra
ti
al 
ase where the density of Y is not known a priori. LDT 
an be useful to analyze

the deviation of a probability estimate, notably if the probability estimate is a sum of

random variables as shows Eq. 19. for the CMC estimate. Spe
i�
 surveys on LDT 
an

be found in [3,48℄.

4. Importan
e sampling

4.1. Prin
iple of importan
e sampling

The obje
tive of importan
e sampling (IS) is to redu
e the varian
e of the Monte-Carlo

estimator P̂CMC
[17,19,49�53℄. The main idea is to generate the samplesX1, ...,XN with

an auxiliary PDF h that is able to generate more samples su
h that φ(X) > S than PDF

h0 and then to introdu
e a weight in the probability estimate to take into a

ount the


hange in the PDF generating the samples. The IS probability estimate P̂ IS
is then given

with

P̂ IS =
1

N

N∑

i=1

1φ(Xi)>S
h0(Xi)

h(Xi)
. (20)

The term P̂ IS
is an unbiased estimate of the probability P . Its varian
e is given by the

following equation:

V ar
(
P̂ IS

)
=

V ar
(
1φ(X)>Sw(X)

)

N
, (21)

with w(X) = h0(X)
h(X) . The term w(X) is often 
alled the likelihood fun
tion in the impor-

tan
e sampling literature. The varian
e of P̂ IS
strongly depends on the 
hoi
e of h. If h is

well-
hosen, the IS estimate has then a mu
h smaller varian
e than Monte-Carlo estimate

and 
onversely. The obje
tive of IS is to de
rease the estimation varian
e and one 
an

thus de�ne an optimal IS auxiliary density that minimizes the varian
e V ar
(
P̂ IS

)
. Sin
e

varian
es are non negative quantities, the optimal auxiliary density hopt is determined

by 
an
elling the varian
e in Eq. 21. It is well-known that hopt is then de�ned with [54℄

hopt(X) =
1φ(X)>Sh0(X)

P
. (22)

The optimal auxiliary density hopt depends unfortunately on the probability P that

one tries to estimate and is unusable in pra
ti
e. Nevertheless, hopt 
an be useful to

determine an e�
ient sampling PDF. Indeed, a valuable sampling auxiliary PDF h will

be 
lose to the PDF hopt relative to a given 
riterion. An optimization of the auxiliary

sampling PDF is then ne
essary. In some spe
i�
 
ases or spe
i�
 fun
tions φ, importan
e

sampling probability estimate 
an have a bounded relative error as demonstrated in

[55,56℄ or logarithmi
 e�
ien
y in [57,58℄.

Spe
i�
 surveys on IS have been proposed su
h as in [1,59℄, and thus, the 
omplete list

of possible importan
e algorithms will not be des
ribed for the sake of 
on
iseness. We

only review the main algorithms in the next se
tions.
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4.2. Cross entropy optimization of importan
e sampling auxiliary density

Let us de�ne hλ, a family of PDF indexed by a parameter λ ∈ ∆ where ∆ is the

multidimensional spa
e of PDF parameters. The parameter λ is, for instan
e, the mean

and the 
ovarian
e matrix in the 
ase of Gaussian densities. The obje
tive of IS with 
ross

entropy (CE) is to determine the parameter λopt that minimizes the Kullba
k-Leibler

divergen
e between hλopt
and hopt [60,61℄. The value of λopt is thus obtained with

λopt = argmin
λ∈∆

{D(hopt, hλ)} , (23)

where D is the Kullba
k-Leibler divergen
e de�ned between PDF p and PDF q by

D(q, p) =

∫

Rd

q(x) ln(q(x))dx −
∫

Rd

q(x) ln(p(x))dx. (24)

Determining the parameter λopt with Eq. 23 is not obvious sin
e it depends on the

unknown PDF hopt. In fa
t, it 
an be shown [60℄ that Eq. 23 is equivalent to the following

one

λopt = argmax
λ∈∆

{
E
[
1φ(X)>S ln (hλ(X))

]}
. (25)

In pra
ti
e, one does not fo
us dire
tly on Eq. 25 sin
e it requires the knowledge of some

samples of X so that φ(X) > S. In most realisti
 appli
ations, it is not the 
ase. Thus,

one pro
eeds iteratively to estimate λopt with an in
reasing sequen
e of thresholds

γ0 < γ1 < γ2 < ... < γk < ... ≤ S, (26)


hosen adaptively using quantile de�nition. At the iteration k, the value λk−1 is available

and one determines in pra
ti
e

λk = argmax
λ∈∆

1

N

N∑

i=1

1φ(Xi)>γk

h0(Xi)

hλk−1
(Xi)

ln(hλ(Xi)), (27)

where the samples X1, ...,XN are generated with hλk−1
. The probability P̂CE

is then

estimated with IS at the last iteration. The 
ross entropy optimization algorithm for the

IS density is des
ribed more pre
isely by the following s
heme

(i) k = 1, de�ne hλ0 = h0 and set ρ ∈]0, 1[.
(ii) Generate the population X1, ...,XN a

ording to the PDF hλk−1

and apply the

fun
tion φ in order to have Y1 = φ(X1), ..., YN = φ(XN ).
(iii) Compute γk = min(S, Yρ) where Yρ denotes the empiri
al ρ-quantile of Y1, ..., YN .

(iv) Optimize the parameters of the auxiliary PDF family with

λk = argmax
λ∈∆

{
1

N

N∑

i=1

[
1φ(Xi)>γk

h0(Xi)

hλk−1
(Xi)

ln [hλ(Xi)]

]}
.

(v) If γk < S, k ← k + 1, ba
k to the step (ii).

(vi) Estimate the probability P̂CE(φ(X > S)) = 1
N

N∑

i=1

1φ(Xi)>S
h0(Xi)

hλk−1(Xi)
.

The advantages of and drawba
ks of CE are presented in Table 3. CE is a very pra
ti
al

algorithm to approximate the optimal sampling density. Nevertheless, the 
hoi
e of the

parametri
 family density hλ has to be done 
arefully to obtain valuable results. Due to
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Advantages of CE Drawba
ks of CE

Simple optimization for exponential PDF family Strong in�uen
e of the initial

parametri
 density 
hoi
e

Fast 
omputation Di�
ult to apply in 
ases where the optimal

auxiliary density is multimodal

Table 3

Advantages and drawba
ks of CE.

the adaptiveness of the algorithm, it is di�
ult to ensure the robustness (logarithmi
 e�-


ien
y) of the CE estimate in the general 
ase [62℄. The 
on
ept of probabilisti
 bounded

relative error is then proposed.

4.3. Non parametri
 adaptive importan
e sampling

The obje
tive of non parametri
 adaptive importan
e sampling (NAIS) te
hnique [63�

66℄ is to approximate the IS optimal auxiliary density given in Eq. 22 with kernel density

fun
tion [67℄. NAIS does not require the 
hoi
e of a PDF family and is thus more �exible

than a parametri
 model. The iterative prin
iple is relatively similar to the CE optimiza-

tion and is des
ribed by the following steps. For the sake of simpli
ity, the algorithm is

presented with a Gaussian kernel but other kinds of kernel 
an be used.

(i) k = 1 and set ρ ∈]0, 1[.
(ii) Generate the population X

(k)
1 , ...,X

(k)
N a

ording to the PDF hk−1, apply the fun
-

tion φ in order to have Y
(k)
1 = φ(X

(k)
1 ), ..., Y

(k)
N = φ(X

(k)
N ).

(iii) Compute γk = min(S, Y
(k)
ρ ) where Y

(k)
ρ denotes the empiri
al ρ-quantile of Y

(k)
1 , ..., Y

(k)
N .

(iv) Estimate Ik = 1
kN

∑k
j=1

∑N
i=1 1φ(X

(j)

i
)≥γk

h0(X
(j)
i

)

hj−1(X
(j)
i

)
.

(v) Update the Gaussian kernel sampling PDF with

hk(X) =
1

kNIk det (Bk)

k∑

j=1

N∑

i=1

wj(X
(j)
i )Kd

(
B−1

k

(
X−X

(j)
i

))
. (28)

where Kd is standard d-dimensional Gaussian fun
tion with zero mean and a di-

agonal 
ovarian
e matrix Bk = diag(b1k, ..., b
d
k) and wj(.) = 1φ(.)≥γk

h0(.)
hj−1(.)

. The

adapted 
oe�
ient in the matrix Bk+1 
an be optimized a

ording to the AMISE

(asymptoti
 mean integrated square error) 
riterion [11℄ and [68℄.

(vi) If γk < S, k ← k + 1, ba
k to the step (ii).

(vii) Estimate the probability P̂NAIS(φ(X) > S) = 1
N

N∑

i=1

1
φ(X

(k)
i

)>S

h0(X
(k)
i )

hk−1(X
(k)
i )

.

The advantages of and drawba
ks of NAIS are presented in Table 4. The use of kernel

density fun
tion enables a more �exible and general model than CE. It be
ome very

di�
ult to apply NAIS in 
ases where the input dimension d is greater than 10 due to

the numeri
al 
ost indu
ed by the use of kernel density [66℄.

10



Advantages of NAIS Drawba
ks of NAIS

No 
hoi
e of a parametri
 density Computation time

E�
ient in 
ases where the optimal Inappli
able when d is greater than 10

auxiliary density is multimodal

Table 4

Advantages and drawba
ks of NAIS.

4.4. Simple 
hanges of measure

The use of CE or NAIS is not always ne
essary, notably in simple 
ases of fun
tion

φ(.). Conventional 
hanges of density h0 
an then be e�
ient to de
rease the probability

estimate varian
e. S
aling and translation 
an be applied on the initial PDF h0. S
aling


onsists in de�ning the auxiliary PDF h so that

h(X) =
1

a
h0

(
X

a

)
, (29)

with a ∈ R∗
. Translation is another simple 
hange of density that 
an be applied in IS.

The new auxiliary density is de�ned with translation by

h(X) = h0(X− c), (30)

with c ∈ Rd
. The 
hoi
es of a and c for ea
h method strongly in�uen
e the importan
e

sampling e�
ien
y. Valuable values of a and c are not obvious to �nd without some

knowledge of the fun
tion φ.

4.5. Exponential twisting

The prin
iple of exponential twisting is very similar to LDT and saddle point approx-

imation [69�72℄. The main idea of exponential twisting is to de�ne the auxiliary density

on the output Y = φ(X) with

h(y) = exp(θy − λ(θ))g(y), (31)

where g is the density of random variable Y and λ(θ) = ln (E (exp (θY ))). The probability
is then determined with

PTW = E

(
1Y >S

g(Y )

h(Y )

)
.

The variable Y has to get exponential moments so that λ(θ) to be �nite for at least some

values of θ ∈ R. The PDF h(y) depends on the parameter θ. An optimal value θopt 
an

be obtained with saddle point approximation with

dλ(θ)

dθ

∣∣∣∣
θ=θopt

= S. (32)

The parameter θopt is estimated numeri
ally. Exponential twisting 
an thus only be

applied in some spe
i�
 
ases, notably if Y =
∑d

i=1 X
i
(fun
tion used in some queueing

models) or if the density g is analyti
ally known. In the 
ase of a sum of random variables,

this estimator has a bounded relative error if the input has a light tail [73,74℄. In 
ase of

large deviation probabilities and under some general 
onditions, logarithmi
 e�
ien
y is

guaranteed with exponential twisting importan
e sampling [75℄.
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5. FORM/SORM

First/se
ond-order reliability methods (FORM/SORM) [76�79℄ are 
onsidered as reli-

able 
omputational methods for stru
tural reliability. FORM is an analyti
al approxima-

tion in whi
h the reliability index is interpreted as the minimum distan
e from the origin

to the limit state surfa
e in standardized normal input spa
e. This limit state surfa
e


hara
terizes the input region where φ(X) > S. The most probable failure point (design

point) is sear
hed using mathemati
al programming methods. Sin
e the performan
e

fun
tion is approximated by a linear fun
tion at the design point, a

ura
y problems

o

ur when the performan
e fun
tion is strongly nonlinear or if the most probable failure

point is not unique [80℄. The se
ond-order reliability method (SORM) has been estab-

lished as an attempt to improve the a

ura
y of FORM. SORM approximates the limit

state surfa
e at the design point by a se
ond-order surfa
e.

FORM/SORM method are applied in four stages to estimate P (φ(X) > S):
(i) Apply a transformation T on the input X su
h that R = T (X) with R a normal

redu
ed 
entered PDF. Depending on the available information on the PDF of X,

several transformations 
an be proposed [81�86℄. See Table 5 for details on the


orresponden
e between assumptions and transformations.

(ii) Evaluate the most probable failure point β su
h that

β = argmin
R

|| R ||, (33)

subje
t to the 
onstraint S−φ(T−1(R)) = 0 and where || . || is the Eu
lidian norm.

The 
onstraint S − φ(T−1(R)) = 0 de�nes the limit of failure spa
e for variable

R. The parameter β is the design point and || β || is the reliability index. Several

algorithms have been proposed to solve this optimization problem as proposed in

[82,83,87,88℄.

(iii) Approximate the surfa
e S − φ(T−1(R)) = 0 at the solution β. In the 
ase of

FORM, this surfa
e is a hyperplane and it is a paraboloid in the 
ase of SORM

[89℄.

(iv) Estimate the failure probability with, in the 
ase of FORM :

P̂FORM (φ(X) > S) = Ω(− || β ||), (34)

where Ω is the CDF of a normal redu
ed and 
entered PDF. In the 
ase of SORM,

the failure probability is given by [90℄

P̂SORM (φ(X) > S) = Ω(− || β ||)
d−1∏

i=1

(1 − βκi)
− 1

2 , (35)

where κi denotes the prin
ipal 
urvature of S − φ(T−1(R)) at the design point β.

The term κi is de�ned with

κi =
∂2(S − φ(T−1(R)))

∂2Ri

∣∣∣∣
R=β

, (36)

with Ri
, i = 1, ..., d, a 
omponent of the ve
tor R. A �rst order saddle point ap-

proximation (FOSPA) [91,92℄ method has also been proposed as an improvement to

FORM/SORM. It 
onsists in using LDT and the saddle point approximation [69�72℄

whi
h 
onsiders the fun
tion

12



Assumptions on the PDF of X Corresponding transformations T

X is Gaussian with un
orrelated 
omponents Hasofer-Lind transformation

X has independent 
omponents (not assumed to be Gaussian) Diagonal transformation

Only the marginal laws of X and their 
ovarian
e are known Nataf tranformation

The 
omplete law of X is known Rosenblatt transformation

Table 5

Possible transformations T depending on the assumptions on the PDF of X.

λ(θ) = ln [E (θφ(X))] , (37)

to estimate the repartition fun
tion of φ(X). Indeed, it is possible to show that

P (φ(X) > S) ≈ 1− Ω

(
w +

1

w
ln
( v

w

))
, (38)

with

w = sign(θs)(2(θsS − λ(θs)))
1
2 , (39)

and

v = θs

(
2
d2λ(θ)

dθ2
|θ=θs

) 1
2

. (40)

The parameter θs is the saddle point and is the solution of the equation

d2λ(θ)

dθ2
|θ=θs = S. (41)

The approximation proposed in Eq. 38 is not easily 
omputable in the general 
ase. It is

thus often ne
essary to linearize the fun
tion φ near the most probable failure point with

the 
onstraint S − φ(X) = 0 and also to linearize the fun
tion λ. These linearizations

simplify the estimation of λ(θ) in Eq. 37 and of θs. The moment method is also used to

approximate the fun
tion λ in [91,93,94℄.

The advantage of and drawba
ks of geometri
 methods su
h as FORM/SORM/FOSPA

are given in Table 6. These methods do not require a large simulation budget to obtain a

valuable result. Nevertheless, the di�erent assumptions require that one has to be 
areful

when one applies FORM/SORM/FOSPA to a realisti
 
ase of fun
tion φ. There is also

no 
ontrol of the error in FORM/ SORM. However, it is possible from FORM/SORM

to determine an importan
e sampling auxiliary density and then to sample with it to

estimate the rare event probability.

6. Line sampling

6.1. Prin
iple

The underlying idea of Line Sampling (LS) [95�97℄ is to employ lines instead of random

points in order to probe the failure domain of the system, i.e. X so that φ(X) > S .

It has to be applied on input random variables that have zero-mean standard normal

density. Let us �rst assume thatX follows a multidimensional zero-mean standard normal

13



Advantages of FORM/SORM/FOSPA Drawba
ks of FORM/SORM/FOSPA

Ne
essary simulation budget very restri
ted Di�
ult to apply when the

optimal auxiliary density is multimodal

Ne
essary transformation on input

variables if they are not Gaussian

Not adapted to non linear and to

high dimensional fun
tion φ

No possible 
ontrol

of the error

Table 6

Advantages and drawba
ks of FORM/SORM.

distribution and also de�ne the set A = {X ∈ Rd|φ(X) > S}. The set A 
an be also

expressed in the following way

A = {X ∈ Rd|X1 ∈ A1(X
−1)}. (42)

where the set A1(X
−1) is de�ned on R and depends on X

−1 = (X2, X3, ..., Xd). Similar

sets A1 
an be de�ned with respe
t to any dire
tion in the random parameter spa
e and

for all measurable A. The failure probability P (φ(X) > S) 
an be written with integrals

in the following way :

P =

∫

Rd

1φ(X)>Sh0(X)dX,

=

∫

Rd

1X∈Ah0(X)dX,

=

∫

Rd−1

∫

R

1X1∈A1
h0(X)dX1dX−1.

It 
an then be rewritten with mathemati
al expe
tation over the variable X
−1

thanks to

the Gaussian assumptions with

P = E
(
P (X1 ∈ A1|X−1)

)
. (43)

The failure probability is des
ribed as the expe
tation of the 
ontinuous random variable

P (X1 ∈ A1) relatively to the variable X
−1
. This expe
tation is repla
ed in pra
ti
e in

LS by its Monte-Carlo estimate

P̂LS =
1

NC

NC∑

i=1

(P (X1 ∈ A1(X
−1
i ))), (44)

where (X−1
1 ), ..., (X−1

NC
) are samples of the random variable X

−1
. It is still ne
essary to

estimate the probability P (X1 ∈ A1(X
−1
i )), that is

P (X1 ∈ A1(X
−1
i )) =

∫

R

1X1∈A1(X
−1
i

)ω(X
1)dX1, (45)

where ω is a zero-mean standard normal variable. It is possible to show that this integral


an be approximated with
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Advantages of LS Drawba
ks of LS

Ne
essary simulation budget restri
ted Di�
ult to apply when the

optimal auxiliary density is multimodal

Simple implementation Ne
essary transformation on

input variables if they are not Gaussian

Need a priori information on φ

Table 7

Advantages and drawba
ks of LS.

P (X1 ∈ A1(X
−1
i )) ≈

∫ ∞

ci

ω(X1)dX1, (46)

where ci is the value of X
1
su
h that φ(ci,X

−1
i ) = S. This approximation is only valuable

if there is only one interse
tion point between the input failure region and the 
hosen

sampling dire
tion. The varian
e of LS estimate is always lower or equal to the CMC es-

timation [95℄. Nevertheless, to our knowledge, the logarithmi
 e�
ien
y of this algorithm

has never been provided.

6.2. Algorithm

The 
omputational steps of the algorithm are:

(i) Assume X follows a 
entered Gaussian PDF. If it is not the 
ase, apply a transfor-

mation on X des
ribed in Table 5.

(ii) In the standard normal spa
e, determine the unit important dire
tion ve
tor α ∈
Rd

. It is the dire
tion that enables to rea
h the 
urve S − φ(X) = 0 with the

shortest path to the origin. This dire
tion 
an be found with Monte-Carlo Markov


hain methods [98℄. To simplify the notations, one assumes that the important

dire
tion ve
tor is α = (1, 0, ..., 0). If it is not the 
ase, a rotation has to be applied

to the variable X.

(iii) Generate NC samples X
−1
1 , ...,X−1

NC
of the variable X

−1
and estimate for ea
h of

these samples the probability P (X1 ∈ A1(X
−1
i )) using Eq. 46.

(iv) Estimate the LS probability estimate with

P̂LS =
1

NC

NC∑

i=1

(P (X1 ∈ A1(X
−1
i ))). (47)

A joint use of Monte-Carlo simulations and line sampling, that does not need the knowl-

edge of the dire
tion α has been proposed in [99,100℄. It requires nevertheless some a

priori information on φ(.) in order to be e�
ient. The advantages and drawba
ks of LS

are presented in Table 7.
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7. Adaptive splitting te
hnique

7.1. Prin
iple

The idea of importan
e splitting, also 
alled subset sampling, subset simulation or

sequential Monte-Carlo, is to de
ompose the sought probability in a produ
t of 
ondi-

tional probabilities that 
an be estimated with a reasonable simulation budget. It has

�rstly been proposed in a physi
al 
ontext in 1951 [101℄, and numerous variants have

been then worked out. Considering the set A = {X ∈ Rd|φ(X) > S}, the obje
tive

of adaptive splitting te
hnique (AST) [102�106℄ is to determine the probability P (X ∈
A) = P (φ(X) > S). For that purpose, the prin
iple of AST [107�113℄ is to iteratively

estimate supersets of A and then to estimate P (X ∈ A) with 
onditional probabilities.

Let us de�ne A0 = Rd ⊃ A1 ⊃ ... ⊃ An−1 ⊃ An = A, a de
reasing sequen
e of Rd

subsets with smallest element A = An. The probability P (X ∈ A) 
an be then rewritten

in the following way:

P (X ∈ A) =

n∏

k=1

P (X ∈ Ak|X ∈ Ak−1), (48)

where P (X ∈ Ak|X ∈ Ak−1) is the probability thatX ∈ Ak knowing thatX ∈ Ak−1. An

optimal 
hoi
e of the sequen
e Ak, k = 0, ..., n is given when P (X ∈ Ak|X ∈ Ak−1) = ρ,

where ρ is a 
onstant, that is when all the 
onditional probabilities are equal. The vari-

an
e of P (X ∈ A) is indeed minimized in this 
on�guration as shown in [114,115℄. Conse-

quently, if ea
h P (X ∈ Ak|X ∈ Ak−1) is well estimated, then the probability P (X ∈ A)
is estimated more a

urately with AST than with a dire
t estimation by Monte-Carlo

[116℄.

Let us de�ne hk
the density of X restri
ted to the set Ak. The subset Ak 
an be de�ned

with Ak = {X ∈ Rd|φ(X) > Sk} for k = 0, ..., n with S = Sn > Sn−1 > ... > Sk >

... > S0. Determining the sequen
e Ak is equivalent to 
hoose some values for Sk, with

k = 0, ..., n. The values of Sk for k = 0, ..., n 
an be determined in an adaptive manner to

perform valuable results [116℄ using ρ-quantile of samples generated with the PDF hk
.

7.2. Algorithm

The di�erent stages of AST to estimate P (φ(X) > S) are the following ones:

(i) Set k = 0, ρ ∈]0, 1[ and h0 = h0

(ii) Generate N samples X
(k)
1 , ...,X

(k)
N from hk

and apply the fun
tion φ in order to

have Y
(k)
1 = φ(X

(k)
1 ), ..., Y

(k)
N = φ(X

(k)
N )

(iii) Estimate the ρ-quantile γ
(k)
ρ of the samples Y

(k)
1 , ..., Y

(k)
N .

(iv) Determine the subset Ak+1 with Ak+1 = {X ∈ Rd|φ(X) > γ
(k)
ρ } and the 
ondi-

tional density hk+1
.

(v) If γ
(k)
ρ < S, set k ← k + 1 and go ba
k to stage (ii). Otherwise, estimate the

probability with

P̂AST = (1− ρ)k × 1

N

N∑

i=1

1
φ(X

(k)

i
)>S

.
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Advantages of AST Drawba
ks of AST

Appli
able in high dimensions Important simulation budget

and non linear systems

E�
ient on very rare events (P < 10−6) Di�
ult to apply on non Gaussian inputs

Table 8

Advantages and drawba
ks of AST.

Generating dire
tly independent samples from the hk

onditional densities is in most


ases impossible as they are usually unknown [102,117℄. Nevertheless, AST provides an

iterative way to do it, yet in a dependent fashion using a h0-reversible Markovian kernel

K(X, ·). With su
h a kernel and Xk following the density hk
, one 
an distribute random

variable Ξk a

ording to hk
with the following proposal/refusal method [116℄:

Ξk = Ξk(Xk) =





K(Xk, ·), if K(Xk, ·) ∈ Ak,

X
k, otherwise.

This proposal/refusal algorithm enables to generate any number of samples a

ording to

hk
in a relative simple manner. It also enables us to keep 
onstant the number of samples

to estimate ea
h P (X ∈ Ak+1|X ∈ Ak). This operation has to be applied for ea
h density
hk
. The generated samples are unfortunately dependent and identi
ally distributed a
-


ording to hk
. Up to now, there is no way to do this in an independent fashion. However,

under mild 
onditions, it 
an be shown [117℄ that applying the proposal/refusal method

several times may de
rease varian
e.

The advantages and drawba
ks of AST are des
ribed in Table 8. AST is often applied to

estimate very rare events (P < 10−6). For higher probabilities, other simulation methods

as IS are more e�
ient than AST [116℄. The logarithmi
 e�
ien
y has been proved for

splitting with �xed levels in [118℄.

8. CMC inspired methods

Even if CMC is not adapted to rare event estimations, CMC 
an nevertheless be slightly

improved with the use of strati�ed sampling of Latin hyper
ube sampling as des
ribed

the following subse
tions.

8.1. Strati�ed Sampling

The prin
iple of strati�ed sampling (SS) is very similar to CMC [119℄. The idea is

to propose more samples in the input spa
e so that 1φ(X)>S = 1. SS 
onsists thus in

partitioning the support of X, de�ned by Rd
in the general 
ase as proposed in Se
tion

1, in several subsets Qi, i = 1, ...,m su
h that Qi

⋂
Qj = ∅ for i 6= j, and

⋃
iQi = Rd

.

One then generates ni i.i.d. samples X
i
1, ...,X

i
ni

from the PDF hQi
de�ned with

hQi
(X) = 1X∈Qi

h0(X)

di
, (49)

where di is de�ned by
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Advantages of SS Drawba
ks of SS

Simple implementation Ne
essary information on fun
tion φ

Potential de
rease of CMC relative deviation Subset de�nition strongly in�uen
es probability estimate a

ura
y

Table 9

Advantages and drawba
ks of strati�ed sampling.

di =

∫

Qi

h0(x)dx. (50)

The required number of samples N in SS is equal to

N =

m∑

i=1

ni.

The SS probability estimate P̂SS
is then obtained with

P̂SS =
m∑

i=1

diP̂hQi
, (51)

where P̂hQi
is de�ned as

P̂hQi
=

1

ni

ni∑

j=1

1φ(Xi
j
)>S . (52)

The relative deviation of P̂SS
depends notably on ni and hQi

, and is given by the following

equation [120℄

σP̂SS

P
=

1

P

√√√√
m∑

i=1

di
PhQi

(1− PhQi
)

ni
, (53)

where PhQi
is the true value of P̂hQi

. If m = 1, the previous equation 
orresponds to the

CMC relative deviation given in Eq. 4. The 
hoi
e of the subsets Qi and of ni is thus

very important in order to redu
e the Monte-Carlo estimator varian
e, but requires some

information on the input-output fun
tion φ. If one has no 
lue on where 1φ(X)>S = 1 in

the input spa
e, the method of strati�ed sampling is not appli
able and 
an in
rease the

Monte-Carlo relative deviation if Qi and ni are not adapted to φ. An adaptive version of

SS has been proposed in [121℄. Table 9 sums up the 
hara
teristi
s of strati�ed sampling

estimator. An extended version of SS 
alled 
overage Monte-Carlo method in [122,123℄

has been proposed for spe
i�
 systems represented by a fault tree or a network using

its minimal 
uts to improve the probability estimation. For the same kind of systems,

re
ursive varian
e redu
tion methods des
ribed in [124,125℄, have also been proposed and

have some links with SS. They are one of the most e�
ient methods for this appli
ation

[126℄.

8.2. Monte-Carlo method with Latin Hyper
ube Sampling

Latin hyper
ube sampling (LHS) [127�132℄ 
an be used instead of strati�ed sampling

when the subsets Qi are di�
ult to estimate. The prin
iple is to stratify in an independent

fashion ea
h of the d input dimensionsX = (X1, X2, ..., Xd) into N equipossible intervals

of probability

1
N . For a given dimension k, one generates one sample in ea
h interval

18



Advantages of LHS Drawba
ks of LHS

Simple implementation Weak potential de
rease of CMC relative deviation

Table 10

Advantages and drawba
ks of LHS.

a

ording to the 
onditional joint law of h0 for the dimension k and thus obtains N s
alar

samples. The random mat
hing between the s
alar samples in the di�erent dimensions

enables to obtain a N d-tuple X1, ...,XN that des
ribes a LHS. The probability with

LHS is estimated in the same way as Monte-Carlo with

P̂LHS =
1

N

N∑

i=1

1φ(Xi)>S . (54)

This estimate is unbiased and its relative deviation is always lower than CMC [133,134℄.

The advantages and drawba
ks of LHS are des
ribed in Table 10. In [135℄, the use of

LHS allows to de
rease by

√
2 the relative deviation of the Monte-Carlo method. This

redu
tion is interesting and divides by 2 the 
omputational e�ort. It is nevertheless

possible to obtain a better de
rease of the estimate varian
e with statisti
 or simulation

te
hniques dedi
ated to rare event estimation. Some information about the relative error

bound of LHS sampling 
an be found in [15℄. The logarithmi
 e�
ien
y of this algorithm

has not been proved.

9. Other simulation algorithms

9.1. Control Variates

The 
ontrol variate method [136,137℄ is a varian
e redu
tion te
hnique used in Monte-

Carlo methods. The prin
iple is the following. Let us de�ne the random variable H =
1φ(X)>S . One has E(H) = P and 
an de�ne a random variable m su
h that E(m) = τ .

One 
an also de�ne the variable H∗
so that, given a 
oe�
ient c,

H∗ = H + c(m− τ). (55)

The variable H∗
is also an unbiased estimator of P for any 
hoi
e of the 
oe�
ient c.

The varian
e of H∗
is given by

V ar(H∗) = V ar(H) + c2V ar(m) + 2c Cov(H,m), (56)

where Cov(H,m) is the 
ovarian
e between H and m. It 
an be shown that 
hoosing the

optimal 
oe�
ient c∗ de�ned by

c∗ =
−Cov(H,m)

V ar(m)
, (57)

minimizes the varian
e of H∗
. In that 
ase, the varian
e H∗

is equal to

V ar(H∗) = (1− ρ2)V ar(H), (58)

where ρ is the 
orrelation 
oe�
ient between H and m. Unfortunately, the optimal


oe�
ient c∗ is not available and thus, di�erent te
hniques allow to 
hoose e�
ient values

of c. When the system 
an be bounded, that is, if one 
an determine φL and φR su
h
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that φL(X) < φ(X) < φR(X) ∀X, the use of 
ontrol variates 
an de
rease the varian
e

of the probability estimate. Su
h developments have notably been proposed in [138℄ for

fault trees.

9.2. Antitheti
 variates

The antitheti
 variate (AV) algorithm [52,139℄ is a varian
e redu
tion te
hnique. Let

us assume that one has two random variables H1 and H2 with the same probability law

of H = 1φ(X)>S . One has then

E(H) =
1

2
(E(H1) + E(H2)) = E

(
H1 +H2

2

)
, (59)

and also

V ar

(
H1 +H2

2

)
=

V ar(H1) + V ar(H2) + 2Cov(H1, H2)

4
. (60)

If H1 and H2 are i.i.d, then Cov(H1, H2) = 0 and one obtains the same varian
e as

Monte-Carlo estimate. The prin
iple of AV is to obtain samples so that Cov(H1, H2) <
0. For instan
e, if X follows a multidimensional normal PDF with mean µ and 
ovarian
e

matrix Σ, then X ′ = 2µ−X follows the same law as X . In that 
ase, one 
an generate

H1 = 1φ(X)>S and H2 = 1φ(X′)>S and redu
e the varian
e of the Monte-Carlo estimate

on P .

Control and antitheti
 variates 
annot be easily applied in 
ases where the fun
tion φ is

not known analyti
ally whi
h redu
es the potential appli
ability of these methods. Re
ent

results have thrown an important doubt about their interest [140℄. Dagger sampling,

des
ribed in [141℄ and more re
ently in [142℄, is an extension of antitheti
 variable method.

It improves CMC estimate for spe
i�
 systems su
h as networks or fault trees.

10. Use of metamodels in rare event probability estimation

Being able to build an e�
ient surrogate model whi
h allows to redu
e the number of


alls to the expensive input-output fun
tion φ while keeping a good a

ura
y is a key point

in rare event probability estimation. A great number of methods have been proposed and


ompared in re
ent years. For the sake of 
on
iseness, in this paper, we do not review all

the methods present in the literature whi
h is very profuse on this subje
t. A survey of the

di�erent metamodel methods 
an be found in [80℄. In this se
tion, we present the main

surrogate models whi
h have been got underway with importan
e sampling and Monte-

Carlo estimators. Classi
al deterministi
 surrogate models su
h as polynomials, splines

have been tested and 
ompared to neural networks and �rst order reliability method

(FORM) [143�145℄. Chaos Polynomials have been asso
iated with Monte-Carlo sampling

to estimate failure probabilities [146℄. Support ve
tor ma
hines have also been employed

to estimate the domains of failure [147℄ and been 
oupled to rare event estimator su
h

as subset sampling [148℄.

Kriging method [149�151℄ presents some advantages in rare event probability estimation.

Indeed, this surrogate model is based on a Gaussian pro
ess, that allows to estimate

the varian
e of the predi
tion error and 
onsequently to de�ne a 
on�den
e domain

of the surrogate model. This indi
ator 
an be dire
tly used to re�ne the model, i.e.,
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Advantages Drawba
ks

Allow to greatly redu
e 
omputation time Indu
e approximation errors

due to the surrogate model

Allow to use greater simulation budget Require knowledge on φ to build

a 
onsistent model espe
ially when φ(X) > S

Table 11

Advantages and drawba
ks of metamodel probability estimate.

to 
hoose new points to evaluate the real fun
tion that allow to improve the a

ura
y

of the model. Kriging has been extensively used with 
lassi
al Monte Carlo estimator

[152℄, Importan
e sampling method [145,153�155℄, importan
e sampling with 
ontrol

variates [156℄ or subset simulation [157�159℄. The way to re�ne the Kriging model is a key

point and di�erent strategies have been proposed [155,160,161℄ to exploit the 
omplete

probabilisti
 des
ription given by the Kriging to evaluate the minimal number of points

on the real expensive input-output fun
tion. A numeri
al 
omparison of di�erent Kriging

based methods to estimate a probability of failure 
an be found in [162℄.

The advantages and drawba
ks of metamodel-based rare event probability estimators

are given in Table 11.

11. Synthesis

The proposed synthesis of this arti
le 
onsists of a series of questions than 
an help

the reader to 
hoose the appropriate methods for his estimation problem.

(i) Is it possible to use the fun
tion φ to resample? If resampling is not possible, that

is if one 
onsiders only a �xed set of samples φ(X1), ..., φ(XN ), the only available

methods are EVT and metamodel probability estimate. If resampling is possible,

the other simulation methods presented in this arti
le are more e�
ient than EVT.

(ii) Is the density of Y or the fun
tion φ analyti
ally known? If it is the 
ase, then

it 
an be interesting to fo
us on LDT, exponential twisting, simple 
hanges of

importan
e sampling, 
ontrol variates and antitheti
 variates. If these methods are

not e�
ient, then more general algorithms are more 
omplex to implement but

should be e�
ient.

(iii) Is the input region whi
h gives φ(X) > S approximately known? If yes, then SS

and FORM/SORM/FOSPA are adapted.

(iv) Is the input region whi
h gives φ(X) > S multimodal? If yes or if the answer to

this question is not known, the use of CE, FORM/SORM/FOSPA is not advised.

(v) What is the dimension d of the problem? If d < 10 (value given as an order of

magnitude), NAIS, FORM/SORM/FOSPA and LS 
an be 
onsidered. If d > 10,
AST and CE are the most e�
ient algorithms.

(vi) What is the available simulation budget N? If N > 1000 (value given as an order of

magnitude), then CE, NAIS and AST are adapted. IfN < 1000, FORM/SORM/FOSPA

and LS have to be used. CE, NAIS and AST 
an also be applied when N < 1000
but jointly used with a surrogate model.

(vii) Is the fun
tion φ highly non linear? If it is the 
ase, then FORM/SORM/FOSPA,

LS and surrogate model 
an imply a bias in the estimation and has to be applied


arefully whereas AST is adapted.
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(viii) Is it possible to prove that the probability estimate has a bounded relative error or

is logarithmi
 e�
ient ? IS with exponential twisting or with CE optimisation (in

a spe
i�
 
ontext) and AST have been proved to have good robustness properties

in 
ertain appli
ations.

Table 12 sums up these di�erent answers. It is often di�
ult to pra
ti
ally 
hoose the

most e�
ient rare event method for a given problem. Indeed, as des
ribed in this arti
le,

a large 
olle
tion of methods is available to estimate rare event probability with more

or less a

ura
y depending on the problem 
hara
teristi
s. The answers to all the previ-

ous questions 
an guide the reader to an appropriate algorithm. An open topi
 on rare

event estimation is the analysis of the robustness properties of the di�erent probability

estimates in very general 
ases. It would ease the 
omparison of the di�erent algorithms

to determine whi
h method 
ould potentially lead to the required simulation budget for

a �xed relative error.

Impossibility Density of φ known φ and Y Region Region d < 10 d> 10 N > 1000 N < 1000 φ non

of resampling Y known analyti
ally unknown Y > S Y > S linear

partially disjoint - info

known not available

AST

√ √ √ √

Anti.Var.

√ √

CE

√ √
×

√ √

Cont.Var.

√ √

EVT

√

Exp.Tw

√ √

FORM

√ √
×

√
×

/SORM

LDT

√ √

LS

√
×

√ √

Surrogates

√ √
×

√
×

NAIS

√ √ √
×

√

SS

√ √

Table 12

Synthesis table -

√
(resp. ×): the method presents some advantages (resp. drawba
ks) for the 
onsiderate


hara
teristi
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