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Abstract

Crude Monte-Carlo or quasi Monte-Carlo methods are well suited to characterize events of
which associated probabilities are not too low with respect to the simulation budget. For very
seldom observed events, such as the collision probability between two aircraft in airspace, these
approaches do not lead to accurate results. Indeed, the number of available samples is often
insufficient to estimate such low probabilities (at least 10° samples are needed to estimate
a probability of order 107" with 10% relative error with Monte-Carlo simulations). In this
article,one reviewed different appropriate techniques to estimate rare event probabilities that
require a fewer number of samples. These methods can be divided into four main categories:
parameterization techniques of probability density function tails, simulation techniques such as
importance sampling or importance splitting, geometric methods to approximate input failure
space and finally, surrogate modelling. Each technique is detailed, its advantages and drawbacks
are described and a synthesis that aims at giving some clues to the following question is given:
"which technique to use for which problem?".
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1. Introduction

Rare event estimation has become a large area of research in the reliability engineering
and system safety domains. A significant number of methods has been proposed to reduce
the computation burden for the estimation of rare events from sampling to extreme value
theory. However it is often difficult to determine which algorithm is the most adapted to
a given problem. Moreover, the existing survey articles on rare events are often focused
on specific algorithms [1-3]. The novelties of this article are thus to provide a broad view
of the current available techniques to estimate rare event probabilities described with
a unified notation and to provide some clues to answer this question: which rare event
technique is the most adapted to a given situation?

The general problem considered in this article is analysed in a first section and then all
the different methods are described separately. Their advantages and drawbacks are also
given. Finally, a synthesis helps the reader to determine the most appropriate method to
a given rare event estimation problem.

Let us consider a d-dimensional random vector X with a probability density function
(PDF) ho, ¢ a continuous positive scalar function ¢ : R? — R and S a threshold.
The different components of X will be denoted X = (X!, X2 ..., X%) in the following.
The function ¢ is static, i.e., does not depend on time, and represents for instance an
input-output model. This kind of model is notably used in numerous engineering appli-
cations [4-9]. We assume that the output Y = ¢(X) is a scalar random variable. In this
article, we propose to review different algorithms that can be efficient to estimate the
probability P = P(¢(X) > S) when this quantity is rare relatively to the available sim-
ulation budget N, that is when P < % For the sake of conciseness, the issue of extreme
quantile estimation is not addressed even if the vast majority of the methods that are
presented in the paper can be adapted to this specific case. The case of dynamic systems
modeled with Markov chains is also not considered in this paper. Specific algorithm ex-
tensions for large complex systems modelled by a network or a coherent fault tree are
completely detailed in [10] and will not be much developed here. It corresponds to the
case where the inputs X?, i = 1,...,d follow a Bernoulli distribution and the output is
equivalent to an indicator function.

2. Monte-Carlo methods

A simple way to estimate a probability is to consider crude Monte-Carlo (CMC) [11-
16]. For that purpose, one generates N independent and identically distributed (i.i.d.)
samples X1, ..., Xy from the PDF hy and computes their outputs with the function ¢:
?(X1), ..., (X ). The probability P(¢(X) > S), also called failure probability, is then
estimated with

N

. 1

peMe = N Z 1yx)>s: (1)
i=1

where 14(x,)>5 is equal to 1 if ¢(X;) > S and 0 otherwise. This estimation converges to
the real probability as shows the law of large numbers [13]. The positive and negative as-
pects of CMC are described in Table 1. A possible indicator of the estimation efficiency is
notably its relative deviation. The relative deviation or relative error RE of an estimator
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Advantages of CMC Drawbacks of CMC

Simple implementation Slow convergence

Information on ¢ not needed|Significant simulation budget for rare events

No bias

Table 1
Advantages and drawbacks of CMC methods.

Pof Pis given by the following ratio:

E(P) = ﬁ;) 2)

with op the standard deviation of P and E the mathematical expectation. The relative

error is said bounded when RE(P) remains bounded when P — 0 |17,18]. In that case,
the number of samples needed to get a specified relative error is bounded whatever the
rarity of ¢(X) > S. The logarithmic efficiency LE can also be defined for an unbiased

estimator P with [17,18],

52
LE(P) = lim 8B _ o (3)
P—0  log(P)
Logarithmic efficiency is a necessary but not sufficient condition for bounded relative
error. Characterizing the rare event probability estimate with these concepts is very
important even if they are often difficult to verify in practice.
Since PEMC g unbiased, the relative error of the estimator poMC g given by the ratio
UPC# with 0 pene, the standard deviation of PCMC  Knowing the true probability P
of the event (¢(X) > S), one has |11,19]

Opcmc 1 vP—-P? @)
P N P '
Considering rare event probability estimation, that is when P takes low values, one
obtains

lim gpcme _ lim ——

P50 P P—=0 /NP
The relative deviation is consequently unbounded. For instance, to estimate a probability
P of order 10~* with a 10% relative deviation, at least 10® samples are required. The
simulation budget is thus an issue when the computation time required to obtain a sample
#(X;) is not negligible. CMC is thus not adapted to rare event estimation and a wide
collection of statistic and simulation methods has been developed. The following sections
describe the different available alternatives to CMC to improve probability estimations,
i-e., to reduce the number of required samples, increase the estimation accuracy, and
thus decrease RE(P).

= +o00. (5)

3. Statistical techniques

Statistical techniques enable to derive a probability estimate and associated confidence
intervals with a fixed set of samples ¢(X;), ..., #(X ). The main statistical approaches,
extreme value theory and large deviation theory, model the behaviour of the PDF tails.
Let us review their theoretical founding.



3.1. Extreme value theory

Extreme value theory (EVT) [20,21] characterizes the distribution tails of a random
variable, based on a reasonable number of observations. Thanks to its general applica-
tive conditions, this theory has been widely used for describing extreme meteorological
phenomena with applications such as hydrology [22], snowfall [23], but also in finance
and insurance [20,24], and engineering [25].

3.1.1. Law of sample maxima

EVT is notably very useful when one has to work with only a fixed set of data. One
consequently assumes in the following that a finite set of i.i.d. samples ¢(X1), ..., o(Xn)
of the output is available, but also that one cannot generate new samples of ¢(X). The
associated ordered sample set is defined with ¢(X(1)) < ¢(X(9)) < ... < d(X (). EVT
enables to estimate for some threshold S the probability P(¢(X) > S).
The founder theorem of EVT [20,26,27] is that, under some conditions, the maxima of
an i.i.d. sequence converge to a generalized extreme value (GEV) distribution G¢, which
admits the following cumulative distribution function (CDF)

exp(—exp(—z)),  for {=0,
Ge(r) = 1 (©)

exp (—(1 —i—f;v)*E) , for £ #£0.
The set of GEV distributions is composed of three distinct types, characterized by & =
0, £ > 0 and £ < 0 that correspond to the Gumbel, Fréchet and Weibull distributions

respectively. Let us define G, the CDF of the i.i.d. samples ¢(X1), ..., p(Xn ).
Theorem 3.1 Suppose there exist ay and by, with ay > 0 such that, for all y € R

P <¢(X(N)) —bn

an

N—o00

< y) = GN(aNy+bN) — G(y),

where G is a non degenerate CDF, then G is a GEV distribution G¢. In this case, one
denotes G € MDA(E) (MDA=mazimum domain of attraction).

The sequences ay and by are computed in [20] for most well-known PDF. An approxi-
mation of P(¢(X) > S) |20] for large values of S and N can also be obtained:

PEVT (4(X) >s>z§(1+5(5‘bfv))_%. ")

an

The GEV approach is notably used when only samples of maxima are available. In that
case, the different parameters of the GEV distribution are obtained by determining max-
imum likelihood or probability weighted moment estimators. When samples of maxima
are not available, it is required to group the samples ¢(Xy), ..., #(X ) into blocks and fit
the GEV using the maximum of each block (block maxima method). The main difficulty
is to determine an efficient sample size for the different blocks.

3.1.2. Peak over threshold approach
Instead of grouping the samples into block maxima, POT considers the largest samples
#(X;) to estimate the probability P(¢(X) > S).
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There are two equivalent ways of analyzing extremes with POT. The most common is
to characterize the distribution of samples above a threshold u, which is given by the
generalized Pareto CDF. An alternative is to use a Poisson point process which counts the
number of threshold exceedances. This approach is not developed in this article, but one
can refer to [27] for more details. The first paper linking the EVT with the distribution
of a threshold exceedance is [28]. Later, De Haan obtains a result of the same type, with
a slightly simplified conclusion, using slow varying functions [29]. The following theorem
[20] can be then obtained:

Theorem 3.2 Let us assume that the distribution function G of i.i.d. samples $(X1),...,
d(XnN) is continuous. Set y* = sup{y, G(y) < 1} = inf{y, G(y) = 1}. Then, the two fol-
lowing assertions are equivalent

(i) G € MDA(E),

(ii) there ezists a positive and measurable function u — B(u) such that

lim su G"(y) — He g(u =0,
A, sup 1G(y) — Hep ()]

where G*(y) = P(¢(X) —u < y|lo(X) > u), and He g,y is the CDF of a generalized
Pareto distribution (GPD) with shape parameter & and scale parameter 5(u).
The expression of the GPD distribution function is the following

1 —exp (—%) , for £ =0,

He p(z) = 1 (8)
1—(1+%) for £ £ 0.

This theorem is in fact useful to estimate a probability of exceedance. Indeed, the
probability P(¢(X) > S) can be rewritten as

P(¢(X) > 5) = P(¢(X) > S[p(X) > u)P(¢(X) > u). 9)
for S > u. A natural estimate of P(¢(X) > u) is given by

N
PEME(3(X) > u) = = D" Looxou (10)
=1

With the Theorem 3.2 and for significant value of u, one obtains
P(¢(X) > S|$(X) > u) = 1 — He g (S — w). (11)
The estimate of P(¢(X) > S) is then built with

N
PPOT((X) > §) = <% > 1¢(xi)>u> X (1= He pu(S —u)). (12)
=1

The mathematical justification of Eq. 11 and Eq. 12 is notably discussed in [21], [30], [31],
or [32] for a given set of samples to determine if this set is suitable for the application
of POT. Three parameters have to be determined in the POT probability estimate of
Eq. 12: the threshold u and the couple (£, B(u)). The choice of w is very influent since
it determines the samples that are used in the estimation of (£, 8(u)). Indeed, a high
threshold leads to consider only a small number of samples in the estimation of (¢, 8(u))
and thus their estimate can be then spoiled by a large variance whereas a low threshold
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Advantages of EVT Drawbacks of EVT

No need to resample Complex estimation of the adequate parameters

(u, &, B(w)) or of the block maxima size.

Can be applied with a relatively low value of N Less efficient than simulation

methods when resampling is possible

Table 2
Advantages and drawbacks of EVT.

introduces a bias in the probability estimate [33]. There are several methods to determine
a valuable threshold u knowing the samples. The most well-known ones are the Hill plot
and the mean excess plot [20]. These methods are nevertheless very empirical since they
are based on graphical interpretation. It is often necessary in practice to compare the
estimates of u given by the different methods. Once the value of w is set, the parameters
(&, B(u)) are often estimated by maximum likelihood [34] or more occasionally by the
method of moments [35]. The estimate PPOT(¢(X) > S) given in Eq. 12 for S > u is
then completely defined. A review of these different methods can be found in [36]. It is
not possible, to our knowledge, to control the probability error estimate in EVT. Never-
theless, the use of boostrap on samples ¢(X1), ..., #(Xn) [37] can give some information
on the efficiency of EVT.

3.1.3. Block mazima versus POT

The POT method takes into account all relevant high samples ¢(X1), ..., $(X ) whereas
the block maxima method can miss some of these high samples and, on the same time,
consider some lower samples in its probability estimation. Thus, POT seems to be more
appropriate for the design of sample PDF tail. Nevertheless, the block maxima method
is preferable when the available samples are not exactly i.i.d. or when only samples of
maxima are available. For instance, the samples of a monthly river maximum height
correspond to this situation. Finally, the tuning of block maxima size turns out to be
easier than the tuning of POT threshold u in many situations [38]. The advantages and
drawbacks of EVT are presented in Table 2.

3.2. Large deviation theory

The large deviation theory (LDT) characterizes the asymptotic behaviour of PDF se-
quence tails [39—41] and more precisely, it analyses how a PDF sequence tail deviates from
its typical behaviour described by the law of large numbers. LDT can be used to evaluate
the convergence of rare event algorithms [42-46]. Let us define Hy = J(¢(X1), ..., (X n))
a random variable indexed by N with J a continuous scalar function, H its mathemat-
ical expectation and Viy = Hy — H. One says that Vy satisfies the principle of large
deviations with a continuous rate function I if the following limit exists:

lim < In[P(| Vi [> )] = ~1(7). (13)

N —oc0

The existence of this limit implies for a large value of N that

P(| VN [>7) = exp (=NI(7)) . (14)
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The probability decays exponentially as N grows to infinity, at a rate depending on
~. This approximation is a well-known result of LDT. If the limit does not exist, then
P(| Vi |> ) has a too singular behaviour or decreases faster than exponential decay. If
the limit is equal to 0, then the tail P(| Vy |> 7) decreases with N slower than exp (—Na)
with a > 0. The computation of the rate function I is not obvious but can be obtained
through the Gértner-Ellis theorem [47]. Let us define the function A(f) of Vy with

A(f0) = lim % In [E (exp (NOVN))], (15)

N —oc0

with 6 € R.

Theorem 3.3 Girtner-Ellis theorem If the function A(6) of the variable Vi exists
and is differentiable for all 0 € R, then Vi satisfies the principle of large deviations and
1(v) is given by

I(v) = sup [0y — A(9)].-
0cR

In the specific case of a scalar function J, one can derive the Cramér theorem from
Gértner-Ellis theorem [47].

Theorem 3.4 Crameér theorem If Vy = + Efil J(P(X;)) where the random vari-
ables J($(X;)) are i.i.d, the rate function is given by

I(y) = Sup [0y — AO)],

with
A(0) = In [E (exp (67 (6(X))))] -

This theorem only holds for light tail distributions.

Let us consider the Monte-Carlo probability estimate given in Eq. 1. In that case, one
has J(#(.)) = 14(). The random variable J(¢(X;)) follows a Bernoulli distribution of
mean P. The sequence Vi is defined with

N
1
Vv = <N > 1¢<Xi>>s> -P (16)

The functions A(f) and I(y) can be derived for some well-known PDF. In the case of
Bernoulli distributions of mean P, one has

A(0) = Pexp(f) +1 — P, (17)
and
1-P

One can then obtain the convergence speed of the Monte-Carlo probability estimate in
function of the number of samples with the following equation

Jim P Vi [ 9] = =16) = i (3) = (=) ({55 ) . (19

I(v) =~vIn (%) +(1=-9)ln (1_—7) . (18)

The quantity I(v) corresponds to the relative entropy (Kullback-Leibler divergence) of
a coin toss with bias v with respect to true value P. In a lot of situations, the large
deviation rate function is the Kullback-Leibler divergence [47].
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LDT cannot in fact be applied directly to determine a rare event probability in a realistic
practical case where the density of Y is not known a priori. LDT can be useful to analyze
the deviation of a probability estimate, notably if the probability estimate is a sum of
random variables as shows Eq. 19. for the CMC estimate. Specific surveys on LDT can
be found in [3,48].

4, Importance sampling
4.1. Principle of importance sampling

The objective of importance sampling (IS) is to reduce the variance of the Monte-Carlo
estimator PCMC [17,19,49-53]. The main idea is to generate the samples X1, ..., Xy with
an auxiliary PDF h that is able to generate more samples such that ¢(X) > S than PDF
ho and then to introduce a weight in the probability estimate to take into account the
change in the PDF generating the samples. The IS probability estimate P® is then given
with

- 1 < ho(X,)

The term P! is an unbiased estimate of the probability P. Its variance is given by the
following equation:

Var (]315) = Var (1¢()](\)7>5w(X)) , (21)

with w(X) = }20((XX)). The term w(X) is often called the likelihood function in the impor-

tance sampling literature. The variance of P’S strongly depends on the choice of h. If h is
well-chosen, the IS estimate has then a much smaller variance than Monte-Carlo estimate
and conversely. The objective of IS is to decrease the estimation variance and one can

thus define an optimal IS auxiliary density that minimizes the variance Var (ﬁl o ) Since

variances are non negative quantities, the optimal auxiliary density o, is determined
by cancelling the variance in Eq. 21. It is well-known that hpe is then defined with [54]

o () = 12002800 %) 22
The optimal auxiliary density hop,: depends unfortunately on the probability P that
one tries to estimate and is unusable in practice. Nevertheless, h,: can be useful to
determine an efficient sampling PDF. Indeed, a valuable sampling auxiliary PDF h will
be close to the PDF h,y relative to a given criterion. An optimization of the auxiliary
sampling PDF is then necessary. In some specific cases or specific functions ¢, importance
sampling probability estimate can have a bounded relative error as demonstrated in
[55,56] or logarithmic efficiency in [57,58].
Specific surveys on IS have been proposed such as in [1,59], and thus, the complete list
of possible importance algorithms will not be described for the sake of conciseness. We
only review the main algorithms in the next sections.
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4.2. Cross entropy optimization of importance sampling auziliary density

Let us define hy, a family of PDF indexed by a parameter A € A where A is the
multidimensional space of PDF parameters. The parameter \ is, for instance, the mean
and the covariance matrix in the case of Gaussian densities. The objective of IS with cross
entropy (CE) is to determine the parameter A, that minimizes the Kullback-Leibler
divergence between hy, , and hope [60,61]. The value of A, is thus obtained with

Aopt = argmin{D(hopt, ha)}, (23)
A€EA

where D is the Kullback-Leibler divergence defined between PDF p and PDF ¢ by

Dlawp) = [ al)n(atx)dx ~ [ a0 i) (24

Determining the parameter A,,; with Eq. 23 is not obvious since it depends on the
unknown PDF h,. In fact, it can be shown [60] that Eq. 23 is equivalent to the following
one

opt

Aopt = argmax {E [1400)>5 In (ha(X))] } - (25)

In practice, one does not focus directly on Eq. 25 since it requires the knowledge of some
samples of X so that ¢(X) > S. In most realistic applications, it is not the case. Thus,
one proceeds iteratively to estimate A,p+ with an increasing sequence of thresholds

Yo<Y1 <Y< . <Y < ... <5, (26)

chosen adaptively using quantile definition. At the iteration k, the value Ag_1 is available
and one determines in practice

N

ho(X;
Ak = argmax— Z 14x 0(X:)

g PR Xy) In(hx(X3)), (27)

where the samples X, ..., Xy are generated with hy, ,. The probability PCE s then
estimated with IS at the last iteration. The cross entropy optimization algorithm for the
IS density is described more precisely by the following scheme
(i) k=1, define hy, = ho and set p €]0,1].
(ii) Generate the population Xi,..., Xy according to the PDF hy,_, and apply the
function ¢ in order to have Y7 = ¢(X1), ..., Yv = ¢(Xn).
(iii) Compute 7, = min(S,Y,) where Y, denotes the empirical p-quantile of Y7, ..., Yn.
(iv) Optimize the parameters of the auxiliary PDF family with

N
1 ho(X;) }
AL = argmax —E 1,x. —————In|hx(X; .
k §€A {N gt |: &(Xi) >k h)\k,l(xi) [ >\( )]
(v) If v < S, k < k+ 1, back to the step (ii).

. . . D ho(X;
(vi) Estimate the probability P9(¢(X > 5)) = + Z 14, )>ShL(}é)'
The advantages of and drawbacks of CE are presented 1n Table 3. CE is a very practical
algorithm to approximate the optimal sampling density. Nevertheless, the choice of the
parametric family density i has to be done carefully to obtain valuable results. Due to
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Advantages of CE Drawbacks of CE

Simple optimization for exponential PDF family Strong influence of the initial

parametric density choice

Fast computation Difficult to apply in cases where the optimal

auxiliary density is multimodal

Table 3
Advantages and drawbacks of CE.

the adaptiveness of the algorithm, it is difficult to ensure the robustness (logarithmic effi-
ciency) of the CE estimate in the general case [62]. The concept of probabilistic bounded
relative error is then proposed.

4.3. Non parametric adaptive importance sampling

The objective of non parametric adaptive importance sampling (NAIS) technique [63—
66] is to approximate the IS optimal auxiliary density given in Eq. 22 with kernel density
function [67]. NAIS does not require the choice of a PDF family and is thus more flexible
than a parametric model. The iterative principle is relatively similar to the CE optimiza-
tion and is described by the following steps. For the sake of simplicity, the algorithm is
presented with a Gaussian kernel but other kinds of kernel can be used.

(i) k=1 and set p €]0,1].

(ii) Generate the population ng), s Xg\];) according to the PDF hy_1, apply the func-

tion ¢ in order to have Yl(k) = ¢(ng)), . Yjs,k) = ¢(X§\]f)).

(iii) Compute v, = min(S, Yp(k)) where Y,,(k) denotes the empirical p-quantile of Yl(k), cey Yjsfk),
. . k N ho (X @)
(iv) Estimate [ = g7 22521 2im1 Lyx )5y, n 0(()(_(])))'

(v) Update the Gaussian kernel sampling PDF with

KN
hi(X) = m Z ij(Xl('J))Kd (le (X - XEJ))) - (28)

j=1i=1

where K, is standard d-dimensional Gaussian function with zero mean and a di-
agonal covariance matrix By = diag(b},...,b%) and w;(.) = 1¢(,)27k,:f—§'()_). The
adapted coefficient in the matrix By41 can be optimized according to the AMISE
(asymptotic mean integrated square error) criterion [11] and [68].

(vi) If v, < S, k < k + 1, back to the step (ii).

i i ity PNAIS 1 . ho (X(k))

(vii) Estimate the probability P (p(X) = Z 1 x (" ))>STUC))

The advantages of and drawbacks of NAIS are presented1 in Table 4. The use of kernel

density function enables a more flexible and general model than CE. It become very

difficult to apply NAIS in cases where the input dimension d is greater than 10 due to

the numerical cost induced by the use of kernel density [66].
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Advantages of NAIS Drawbacks of NAIS

No choice of a parametric density Computation time

Efficient in cases where the optimal|Inapplicable when d is greater than 10

auxiliary density is multimodal

Table 4
Advantages and drawbacks of NAIS.

4.4. Simple changes of measure

The use of CE or NAIS is not always necessary, notably in simple cases of function
¢(.). Conventional changes of density hy can then be efficient to decrease the probability
estimate variance. Scaling and translation can be applied on the initial PDF hg. Scaling
consists in defining the auxiliary PDF h so that

1 X
h(X)=—hg | — 29
x) =1 (3, (29)
with @ € R*. Translation is another simple change of density that can be applied in IS.
The new auxiliary density is defined with translation by

h(X) = ho(X — ), (30)

with ¢ € R%. The choices of a and ¢ for each method strongly influence the importance
sampling efficiency. Valuable values of a and ¢ are not obvious to find without some
knowledge of the function ¢.

4.5. Exponential twisting

The principle of exponential twisting is very similar to LDT and saddle point approx-
imation [69-72]. The main idea of exponential twisting is to define the auxiliary density
on the output Y = ¢(X) with

h(y) = exp(fy — A(0))g(y), (31)
where g is the density of random variable Y and A\(f) = In (E (exp (6Y"))). The probability

is then determined with )
PTW =E (1yss92 ).
< Y>Sh<¥>)

The variable Y has to get exponential moments so that A(6) to be finite for at least some
values of 6 € R. The PDF h(y) depends on the parameter §. An optimal value ¢ can
be obtained with saddle point approximation with

dA(6)

do

—s. (32)
9:00pt

The parameter 6, is estimated numerically. Exponential twisting can thus only be
applied in some specific cases, notably if Y = Z?:l X% (function used in some queueing
models) or if the density g is analytically known. In the case of a sum of random variables,
this estimator has a bounded relative error if the input has a light tail [73,74]. In case of
large deviation probabilities and under some general conditions, logarithmic efficiency is
guaranteed with exponential twisting importance sampling [75].
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5. FORM/SORM

First/second-order reliability methods (FORM/SORM) [76-79] are considered as reli-
able computational methods for structural reliability. FORM is an analytical approxima-
tion in which the reliability index is interpreted as the minimum distance from the origin
to the limit state surface in standardized normal input space. This limit state surface
characterizes the input region where ¢(X) > S. The most probable failure point (design
point) is searched using mathematical programming methods. Since the performance
function is approximated by a linear function at the design point, accuracy problems
occur when the performance function is strongly nonlinear or if the most probable failure
point is not unique [80]. The second-order reliability method (SORM) has been estab-
lished as an attempt to improve the accuracy of FORM. SORM approximates the limit
state surface at the design point by a second-order surface.

FORM/SORM method are applied in four stages to estimate P(¢(X) > S):

(i) Apply a transformation T on the input X such that R = T(X) with R a normal
reduced centered PDF. Depending on the available information on the PDF of X|
several transformations can be proposed [81-86]. See Table 5 for details on the
correspondence between assumptions and transformations.

(ii) Evaluate the most probable failure point 8 such that

f = argmin || R |, (33)
R

subject to the constraint S—¢(T~!(R)) = 0 and where || . || is the Euclidian norm.
The constraint S — ¢(T~1(R)) = 0 defines the limit of failure space for variable
R. The parameter § is the design point and || 8 || is the reliability index. Several
algorithms have been proposed to solve this optimization problem as proposed in
[82,83,87,88].

(iii) Approximate the surface S — ¢(T~}(R)) = 0 at the solution 3. In the case of
FORM, this surface is a hyperplane and it is a paraboloid in the case of SORM
[89).

(iv) Estimate the failure probability with, in the case of FORM :

PFORM(¢(X) > §) = Q(— || B1]), (34)

where € is the CDF of a normal reduced and centered PDF. In the case of SORM,
the failure probability is given by [90]
d—1

PSORM(4(X) > §) = 0(— || 8 |I) [J (1 - B2, (35)

i=1
where r; denotes the principal curvature of S — ¢(T~1(R)) at the design point £3.
The term x; is defined with
- LS
0?R? R=5

(36)

with R’, i = 1,...,d, a component of the vector R. A first order saddle point ap-
proximation (FOSPA) [91,92] method has also been proposed as an improvement to
FORM/SORM. It consists in using LDT and the saddle point approximation [69-72]
which considers the function
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Assumptions on the PDF of X Corresponding transformations 7'
X is Gaussian with uncorrelated components Hasofer-Lind transformation
X has independent components (not assumed to be Gaussian) Diagonal transformation
Only the marginal laws of X and their covariance are known Nataf tranformation
The complete law of X is known Rosenblatt transformation

Table 5
Possible transformations T depending on the assumptions on the PDF of X.

A(0) = In [E (0¢(X))], (37)
to estimate the repartition function of ¢(X). Indeed, it is possible to show that
1 v
P(6(X) >S)~1—Q(w+;1n (E)) (38)
with
w = sign(0s)(2(0:5 — A\(6;))) %, (39)
and
d>\(0) 2
o=t (255 n.) (40)
The parameter 0 is the saddle point and is the solution of the equation
d*\(0
)y, = 5. (41)

d6?

The approximation proposed in Eq. 38 is not easily computable in the general case. It is
thus often necessary to linearize the function ¢ near the most probable failure point with
the constraint S — ¢(X) = 0 and also to linearize the function A. These linearizations
simplify the estimation of A(f) in Eq. 37 and of 6. The moment method is also used to
approximate the function A in [91,93,94].

The advantage of and drawbacks of geometric methods such as FORM/SORM/FOSPA
are given in Table 6. These methods do not require a large simulation budget to obtain a
valuable result. Nevertheless, the different assumptions require that one has to be careful
when one applies FORM/SORM /FOSPA to a realistic case of function ¢. There is also
no control of the error in FORM/ SORM. However, it is possible from FORM/SORM
to determine an importance sampling auxiliary density and then to sample with it to
estimate the rare event probability.

6. Line sampling
6.1. Principle

The underlying idea of Line Sampling (LS) [95-97] is to employ lines instead of random
points in order to probe the failure domain of the system, i.e. X so that ¢(X) > S .
It has to be applied on input random variables that have zero-mean standard normal
density. Let us first assume that X follows a multidimensional zero-mean standard normal
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Advantages of FORM/SORM/FOSPA Drawbacks of FORM/SORM/FOSPA

Necessary simulation budget very restricted Difficult to apply when the

optimal auxiliary density is multimodal

Necessary transformation on input

variables if they are not Gaussian

Not adapted to non linear and to

high dimensional function ¢

No possible control

of the error

Table 6
Advantages and drawbacks of FORM/SORM.

distribution and also define the set A = {X € R%¢(X) > S}. The set A can be also
expressed in the following way

A={XecRYYxtc A;(X7H}. (42)
where the set A;(X 1) is defined on R and depends on X! = (X2, X3, ..., X9). Similar
sets A can be defined with respect to any direction in the random parameter space and

for all measurable A. The failure probability P(¢(X) > S) can be written with integrals
in the following way :

P :/d 14x)>sho(X)dX,
R
*/ 1xcaho(X)dX,

-/,
:/ /lxleAlho(X)XmdX‘l.
Rd-1 JR

It can then be rewritten with mathematical expectation over the variable X! thanks to
the Gaussian assumptions with
P=E(P(X'eAX). (43)

The failure probability is described as the expectation of the continuous random variable
P(X! € A,) relatively to the variable X 1. This expectation is replaced in practice in
LS by its Monte-Carlo estimate

1 e

— Y (P(X' e ALXTH), (44)

pLS —
NC i=1

where (Xl_l)7 cey (X;,é) are samples of the random variable X 1. It is still necessary to
estimate the probability P(X' € A;(X;')), that is
POC € M) = [ Loien, oYX, (45)
R K3

where w is a zero-mean standard normal variable. It is possible to show that this integral
can be approximated with
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Advantages of LS Drawbacks of LS

Necessary simulation budget restricted Difficult to apply when the

optimal auxiliary density is multimodal

Simple implementation Necessary transformation on

input variables if they are not Gaussian

Need a priori information on ¢

Table 7
Advantages and drawbacks of LS.

P(X'e A1 (X)) ~ /Oo w(XHax?, (46)

where ¢; is the value of X! such that ¢(c;, X 1y = S. This approximation is only valuable
if there is only one intersection point between the input failure region and the chosen
sampling direction. The variance of LS estimate is always lower or equal to the CMC es-
timation [95]. Nevertheless, to our knowledge, the logarithmic efficiency of this algorithm

has never been provided.

6.2. Algorithm

The computational steps of the algorithm are:

(i) Assume X follows a centered Gaussian PDF. If it is not the case, apply a transfor-
mation on X described in Table 5.

(ii) In the standard normal space, determine the unit important direction vector a €
RZ. It is the direction that enables to reach the curve S — ¢(X) = 0 with the
shortest path to the origin. This direction can be found with Monte-Carlo Markov
chain methods [98]. To simplify the notations, one assumes that the important
direction vector is o = (1,0, ..., 0). If it is not the case, a rotation has to be applied
to the variable X.

(iii) Generate Nc samples X ', ..., X;Vlc of the variable X! and estimate for each of
these samples the probability P(X' € A;(X;')) using Eq. 46.

(iv) Estimate the LS probability estimate with

1 e

— > (P(XT e AlXT))). (47)

pLS _
NC i=1

A joint use of Monte-Carlo simulations and line sampling, that does not need the knowl-
edge of the direction « has been proposed in [99,100]. It requires nevertheless some a
priori information on ¢(.) in order to be efficient. The advantages and drawbacks of LS
are presented in Table 7.
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7. Adaptive splitting technique
7.1. Principle

The idea of importance splitting, also called subset sampling, subset simulation or
sequential Monte-Carlo, is to decompose the sought probability in a product of condi-
tional probabilities that can be estimated with a reasonable simulation budget. It has
firstly been proposed in a physical context in 1951 [101], and numerous variants have
been then worked out. Considering the set A = {X € R?|¢(X) > S}, the objective
of adaptive splitting technique (AST) [102-106] is to determine the probability P(X €
A) = P(¢(X) > S). For that purpose, the principle of AST [107-113] is to iteratively
estimate supersets of A and then to estimate P(X € A) with conditional probabilities.
Let us define Ag = R D A; D ... D A,_1 D A, = A, a decreasing sequence of R?
subsets with smallest element A = A,,. The probability P(X € A) can be then rewritten
in the following way:

PXeA)=][[PXeAXeA), (48)
k=1

where P(X € Ai|X € Aj_1) is the probability that X € Ay knowing that X € Ax_;. An
optimal choice of the sequence Ay, k =0, ...,n is given when P(X € Ax|X € Ax_1) = p,
where p is a constant, that is when all the conditional probabilities are equal. The vari-
ance of P(X € A) is indeed minimized in this configuration as shown in [114,115]. Conse-
quently, if each P(X € Ag|X € Ai_1) is well estimated, then the probability P(X € A)
is estimated more accurately with AST than with a direct estimation by Monte-Carlo
[116].
Let us define h* the density of X restricted to the set Ag. The subset Ay can be defined
with A, = {X € R?|¢(X) > Sy} for k = 0,...,n with S = S, > S,, 1 > ... > S} >
... > Sp. Determining the sequence Ay, is equivalent to choose some values for Sy, with
k=0, ...,n. The values of Si for k = 0, ...,n can be determined in an adaptive manner to
perform valuable results [116] using p-quantile of samples generated with the PDF h*.

7.2. Algorithm

The different stages of AST to estimate P(¢(X) > S) are the following ones:
(i) Set k=0, p €]0,1[ and 7 = hg
(ii) Generate N samples ng), ...,Xg\]?) from h* and apply the function ¢ in order to
have V{*) = (X, v{F = o(x(P)
(iii) Estimate the p-quantile ”y,(,k) of the samples Yl(k), ey Y]gk)'
(iv) Determine the subset Ay, with Ajy; = {X € R¥|¢p(X) > ”y,gk)} and the condi-
tional density A**1.
(v) It "y,()k) < S, set k + k+ 1 and go back to stage (ii). Otherwise, estimate the
probability with

N
. 1
AST __ k
L) M R
=1
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Advantages of AST Drawbacks of AST

Applicable in high dimensions Important simulation budget

and non linear systems

Efficient on very rare events (P < 10~6)|Difficult to apply on non Gaussian inputs

Table 8
Advantages and drawbacks of AST.

Generating directly independent samples from the h* conditional densities is in most
cases impossible as they are usually unknown [102,117]. Nevertheless, AST provides an
iterative way to do it, yet in a dependent fashion using a hg-reversible Markovian kernel
K (X, ). With such a kernel and X, following the density h*, one can distribute random
variable = according to h* with the following proposal/refusal method [116]:

—_ —_ K(ka')v if K(ka) EAkv
S = :k(Xk) =
Xk, otherwise.

This proposal/refusal algorithm enables to generate any number of samples according to
h* in a relative simple manner. It also enables us to keep constant the number of samples
to estimate each P(X € Ay11|X € Ay). This operation has to be applied for each density
h¥. The generated samples are unfortunately dependent and identically distributed ac-
cording to h*. Up to now, there is no way to do this in an independent fashion. However,
under mild conditions, it can be shown [117] that applying the proposal/refusal method
several times may decrease variance.

The advantages and drawbacks of AST are described in Table 8. AST is often applied to
estimate very rare events (P < 107%). For higher probabilities, other simulation methods
as IS are more efficient than AST [116]. The logarithmic efficiency has been proved for
splitting with fixed levels in [118].

8. CMUC inspired methods

Even if CMC is not adapted to rare event estimations, CMC can nevertheless be slightly
improved with the use of stratified sampling of Latin hypercube sampling as described
the following subsections.

8.1. Stratified Sampling

The principle of stratified sampling (SS) is very similar to CMC [119]. The idea is
to propose more samples in the input space so that 14x)>s = 1. SS consists thus in
partitioning the support of X, defined by R? in the general case as proposed in Section
1, in several subsets Q;, i = 1,...,m such that Q;Q; = 0 for i # j, and |J, Q; = R™
One then generates n; i.i.d. samples X{, ..., X/, from the PDF hq, defined with

ho(X)
d; ’

h’@i (X) = ]‘XGQi (49)
where d; is defined by
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Advantages of SS Drawbacks of SS

Simple implementation Necessary information on function ¢

Potential decrease of CMC relative deviation|Subset definition strongly influences probability estimate accuracy

Table 9
Advantages and drawbacks of stratified sampling.

d = / ho(x)dx. (50)

i

The required number of samples N in SS is equal to

=1

The SS probability estimate PSS is then obtained with

PSS =N "d; Py, , (51)
i=1
where ph@i is defined as
. 1 &
Pro, = — Zl¢(x;)>s- (52)
T le

The relative deviation of P55 depends notably on n; and hg,, and is given by the following
equation [120]

O'Pssi 1 i Pth(l_Pth)
P P

2 d; p , (53)
where Py, is the true value of Pth If m = 1, the previous equation corresponds to the
CMC relative deviation given in Eq. 4. The choice of the subsets @Q; and of n; is thus
very important in order to reduce the Monte-Carlo estimator variance, but requires some
information on the input-output function ¢. If one has no clue on where 14x)~5 =11in
the input space, the method of stratified sampling is not applicable and can increase the
Monte-Carlo relative deviation if Q; and n; are not adapted to ¢. An adaptive version of
SS has been proposed in [121]. Table 9 sums up the characteristics of stratified sampling
estimator. An extended version of SS called coverage Monte-Carlo method in [122,123]
has been proposed for specific systems represented by a fault tree or a network using
its minimal cuts to improve the probability estimation. For the same kind of systems,
recursive variance reduction methods described in [124,125], have also been proposed and
have some links with SS. They are one of the most efficient methods for this application
[126].

8.2. Monte-Carlo method with Latin Hypercube Sampling

Latin hypercube sampling (LHS) [127-132] can be used instead of stratified sampling
when the subsets Q; are difficult to estimate. The principle is to stratify in an independent
fashion each of the d input dimensions X = (X!, X2, ..., X%) into N equipossible intervals
of probability % For a given dimension k, one generates one sample in each interval
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Advantages of LHS Drawbacks of LHS

Simple implementation|Weak potential decrease of CMC relative deviation

Table 10
Advantages and drawbacks of LHS.

according to the conditional joint law of hq for the dimension k£ and thus obtains N scalar
samples. The random matching between the scalar samples in the different dimensions
enables to obtain a N d-tuple X4,..., Xy that describes a LHS. The probability with
LHS is estimated in the same way as Monte-Carlo with

N

- 1

PEIS — N Z 1yxi)>s- (54)
i=1

This estimate is unbiased and its relative deviation is always lower than CMC [133,134].
The advantages and drawbacks of LHS are described in Table 10. In [135], the use of
LHS allows to decrease by V2 the relative deviation of the Monte-Carlo method. This
reduction is interesting and divides by 2 the computational effort. It is nevertheless
possible to obtain a better decrease of the estimate variance with statistic or simulation
techniques dedicated to rare event estimation. Some information about the relative error
bound of LHS sampling can be found in [15]. The logarithmic efficiency of this algorithm
has not been proved.

9. Other simulation algorithms
9.1. Control Variates

The control variate method [136,137] is a variance reduction technique used in Monte-
Carlo methods. The principle is the following. Let us define the random variable H =
14x)>s- One has E(H) = P and can define a random variable m such that E(m) = 7.
One can also define the variable H* so that, given a coefficient c,

H*=H+c¢(m—1). (55)

The variable H* is also an unbiased estimator of P for any choice of the coefficient c.
The variance of H* is given by

Var(H*) = Var(H) + Var(m) + 2¢ Cov(H,m), (56)

where Cov(H,m) is the covariance between H and m. It can be shown that choosing the
optimal coefficient ¢* defined by

—Cov(H,m)
e el 57
¢ Var(m) (57)
minimizes the variance of H*. In that case, the variance H* is equal to
Var(H*) = (1 - p*)Var(H), (58)

where p is the correlation coefficient between H and m. Unfortunately, the optimal
coefficient ¢* is not available and thus, different techniques allow to choose efficient values
of c. When the system can be bounded, that is, if one can determine ¢; and ¢r such
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that ¢1,(X) < ¢(X) < ¢r(X) VX, the use of control variates can decrease the variance
of the probability estimate. Such developments have notably been proposed in [138] for
fault trees.

9.2. Antithetic variates

The antithetic variate (AV) algorithm [52,139] is a variance reduction technique. Let
us assume that one has two random variables H; and Hy with the same probability law
of H = 14x)>s- One has then

E(H) = %(}E(Hl)m(Hz)) ) (@) (59)

and also

Var (Hl + H2) _ Var(Hy) + Var(Hs) + 2Cov(Hy, HQ). (60)

2 4

If H; and Hy are i.i.d, then Cov(H;, Hy) = 0 and one obtains the same variance as
Monte-Carlo estimate. The principle of AV is to obtain samples so that Cov(Hy, Ha) <
0. For instance, if X follows a multidimensional normal PDF with mean p and covariance
matrix ¥, then X’ = 2u — X follows the same law as X. In that case, one can generate
Hy = 14(x)>5 and Ha = 14(x/)>s and reduce the variance of the Monte-Carlo estimate
on P.

Control and antithetic variates cannot be easily applied in cases where the function ¢ is
not known analytically which reduces the potential applicability of these methods. Recent
results have thrown an important doubt about their interest [140]. Dagger sampling,
described in [141] and more recently in [142], is an extension of antithetic variable method.
It improves CMC estimate for specific systems such as networks or fault trees.

10. Use of metamodels in rare event probability estimation

Being able to build an efficient surrogate model which allows to reduce the number of
calls to the expensive input-output function ¢ while keeping a good accuracy is a key point
in rare event probability estimation. A great number of methods have been proposed and
compared in recent years. For the sake of conciseness, in this paper, we do not review all
the methods present in the literature which is very profuse on this subject. A survey of the
different metamodel methods can be found in [80]. In this section, we present the main
surrogate models which have been got underway with importance sampling and Monte-
Carlo estimators. Classical deterministic surrogate models such as polynomials, splines
have been tested and compared to neural networks and first order reliability method
(FORM) [143-145]. Chaos Polynomials have been associated with Monte-Carlo sampling
to estimate failure probabilities [146]. Support vector machines have also been employed
to estimate the domains of failure [147] and been coupled to rare event estimator such
as subset sampling [148].

Kriging method [149-151] presents some advantages in rare event probability estimation.
Indeed, this surrogate model is based on a Gaussian process, that allows to estimate
the variance of the prediction error and consequently to define a confidence domain
of the surrogate model. This indicator can be directly used to refine the model, i.e.,
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Advantages Drawbacks

Allow to greatly reduce computation time Induce approximation errors

due to the surrogate model

Allow to use greater simulation budget Require knowledge on ¢ to build

a consistent model especially when ¢(X) > S

Table 11
Advantages and drawbacks of metamodel probability estimate.

to choose new points to evaluate the real function that allow to improve the accuracy
of the model. Kriging has been extensively used with classical Monte Carlo estimator
[152], Importance sampling method [145,153-155], importance sampling with control
variates [156] or subset simulation [157-159]. The way to refine the Kriging model is a key
point and different strategies have been proposed [155,160,161] to exploit the complete
probabilistic description given by the Kriging to evaluate the minimal number of points
on the real expensive input-output function. A numerical comparison of different Kriging
based methods to estimate a probability of failure can be found in [162].

The advantages and drawbacks of metamodel-based rare event probability estimators
are given in Table 11.

11. Synthesis

The proposed synthesis of this article consists of a series of questions than can help

the reader to choose the appropriate methods for his estimation problem.

(i) Is it possible to use the function ¢ to resample? If resampling is not possible, that
is if one considers only a fixed set of samples ¢(X1), ..., (X n), the only available
methods are EVT and metamodel probability estimate. If resampling is possible,
the other simulation methods presented in this article are more efficient than EVT.

(ii) Is the density of Y or the function ¢ analytically known? If it is the case, then
it can be interesting to focus on LDT, exponential twisting, simple changes of
importance sampling, control variates and antithetic variates. If these methods are
not efficient, then more general algorithms are more complex to implement but
should be efficient.

(iii) Is the input region which gives ¢(X) > S approximately known? If yes, then SS
and FORM/SORM /FOSPA are adapted.

(iv) Is the input region which gives ¢(X) > S multimodal? If yes or if the answer to
this question is not known, the use of CE, FORM/SORM/FOSPA is not advised.

(v) What is the dimension d of the problem? If d < 10 (value given as an order of
magnitude), NAIS, FORM/SORM /FOSPA and LS can be considered. If d > 10,
AST and CE are the most efficient algorithms.

(vi) What is the available simulation budget N7 If N > 1000 (value given as an order of

magnitude), then CE, NAIS and AST are adapted. If N < 1000, FORM /SORM/FOSPA

and LS have to be used. CE, NAIS and AST can also be applied when N < 1000
but jointly used with a surrogate model.

(vii) Is the function ¢ highly non linear? If it is the case, then FORM/SORM/FOSPA,
LS and surrogate model can imply a bias in the estimation and has to be applied
carefully whereas AST is adapted.
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(viii) Is it possible to prove that the probability estimate has a bounded relative error or
is logarithmic efficient ? IS with exponential twisting or with CE optimisation (in
a specific context) and AST have been proved to have good robustness properties
in certain applications.
Table 12 sums up these different answers. It is often difficult to practically choose the
most efficient rare event method for a given problem. Indeed, as described in this article,
a large collection of methods is available to estimate rare event probability with more
or less accuracy depending on the problem characteristics. The answers to all the previ-
ous questions can guide the reader to an appropriate algorithm. An open topic on rare
event estimation is the analysis of the robustness properties of the different probability
estimates in very general cases. It would ease the comparison of the different algorithms
to determine which method could potentially lead to the required simulation budget for
a fixed relative error.

Impossibility [Density of| ¢ known |[¢ and Y| Region Region d < 10{d> 10|N > 1000|N < 1000|¢ non
of resampling| Y known |analytically|unknown| ¥ > S Y >S5S linear
partially|disjoint - info
known | not available
AST v v v N
Anti.Var. v v
CE Vv N X Vv Vv
Cont.Var. V4 V4
EVT Vv
Exp.Tw v v
FORM V4 va X V4
/SORM
LDT Vv Vv
LS Vv X Vv Vv
Surrogates V4 va X V4
NAIS v 4 v X v
Ss v v
Table 12

Synthesis table - /(resp. x): the method presents some advantages (resp. drawbacks) for the considerate
characteristic

12. Acknowledgements

The work of Jérome Morio has received funding from the European Community’s
Seventh Framework Program (FP7/2012-2015) under grant agreement number 284802
HIPOW project. The work of Damien Jacquemart is financially supported by DGA (Di-
rection Générale de ’Armement) and Onera. The work of Christelle Vergé is financially
supported by CNES (Centre National d’Etudes Spatiales) and Onera. The authors thank
the anonymous reviewer for his valuable remarks.

References

[1] P. J. Smith, M. Shafi, H. Gao, Quick simulation: a review of importance sampling techniques
in communications systems, Selected Areas in Communications, IEEE Journal on 15 (4) (1997)
597-613.

22



(2]
(3]
[4]
[5]
(6]
(7]

(8]
9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
(17]
18]
[19]

[20]

[21]

(22]

(23]

[24]
25]

[26]

[27]
28]

[29]

[30]

M. Rocco, Extreme value theory for finance: A survey, Bank of Italy Occasional 99 (2012) 1-72.
S. Juneja, P. Shahabuddin, Chapter 11 rare-event simulation techniques: An introduction and
recent advances, in: S. G. Henderson, B. L. Nelson (Eds.), Simulation, Vol. 13 of Handbooks in
Operations Research and Management Science, Elsevier, 2006, pp. 291-350.

A. J. Keane, P. B. Nair, Computational Approaches for Aerospace Design, John Wiley & Sons,
Ltd, 2005.

J. Morio, R. Pastel, F. Le Gland, Missile target accuracy estimation with importance splitting,
Aerospace Science and Technology 25 (1) (2013) 40—44.

1. Banerjee, S. Pal, S. Maiti, Computationally efficient black-box modeling for feasibility analysis,
Computers & Chemical Engineering 34 (9) (2010) 1515 — 1521.

A. Grancharova, J. Kocijan, T. A. Johansen, Explicit output-feedback nonlinear predictive control
based on black-box models, Engineering Applications of Artificial Intelligence 24 (2) (2011) 388-
397.

V. Kreinovich, S. Ferson, A new Cauchy-based black-box technique for uncertainty in risk analysis,
Reliability Engineering & System Safety 85 (1-3) (2004) 267-279.

K. Worden, C. Wong, U. Parlitz, A. Hornstein, D. Engster, T. Tjahjowidodo, F. Al-Bender,
D. Rizos, S. Fassois, Identification of pre-sliding and sliding friction dynamics: Grey box and black-
box models, Mechanical Systems and Signal Processing 21 (1) (2007) 514-534.

H. Cancela, M. El Khadiri, G. Rubino, Rare event analysis by Monte Carlo techniques in static
models, John Wiley & Sons, Ltd, 2009, pp. 145-170.

B. W. Silverman, Density estimation for statistics and data analysis, in: Monographs on Statistics
and Applied Applied Probability, London: Chapman and Hall, 1986.

G. A. Mikhailov, Parametric Estimates by the Monte Carlo Method, VSP, Utrecht (NED), 1999.
I. M. Sobol, A Primer for the Monte Carlo Method, CRC Press, Boca Raton, FIl., 1994.

C. Robert, G. Casella, Monte Carlo Statistical Methods, Springer, New York, 2005.

H. Niederreiter, J. Spanier, Monte Carlo and Quasi-Monte Carlo Methods, Springer, 2000.

G. S. Fishman, Monte-Carlo: Concepts, Algorithms, and Applications, Springer, New York, 1996.
P. L’Ecuyer, M. Mandjes, B. Tuffin, Importance Sampling in Rare Event Simulation, John Wiley
& Sons, Ltd, 2009, pp. 17-38.

P. L’Ecuyer, J. H. Blanchet, B. Tuffin, P. W. Glynn, Asymptotic robustness of estimators in rare-
event simulation, ACM Trans. Model. Comput. Simul. 20 (1) (2010) 1-37.

D. P. Kroese, R. Y. Rubinstein, Monte-Carlo methods, Wiley Interdisciplinary Reviews:
Computational Statistics 4 (1) (2012) 48-58.

P. Embrechts, C. Kluppelberg, T. Mikosch, Modelling extremal events for insurance and finance,
ZOR Zeitschrift for Operations Research Mathematical Methods of Operations Research 97 (1)
(1994) 1-34.

S. Kotz, S. Nadarajah, Extreme Value Distributions. Theory and Applications, Imperial College
Press, London, 2000.

E. Towler, B. Rajagopalan, E. Gilleland, R. S. Summers, D. Yates, R. W. Katz, Modeling hydrologic
and water quality extremes in a changing climate: A statistical approach based on extreme value
theory, Water Resources Research 46 (11) (2010) 1-11.

J. Blanchet, C. Marty, M. Lehning, Extreme value statistics of snowfall in the Swiss alpine region,
Water Resources Research 45 (5) (2009) 1-12.

R. D. Reiss, M. Thomas, Statistical Analysis of Extreme Values, Birkhauser, 1997.

E. Castillo, A. Hadi, J. Sarabia, Extreme Value and Related Models with Applications in
Engineering and Science, John Wiley & Sons, New Jersey, 2005.

B. Gnedenko, Sur la distribution limite du terme maximum d’une série aléatoire, Annals of
Mathematics 44 (3) (1943) 423-453.

S. Resnick, Extreme values, regular variation and point process, New York, 1987.

J. Pickands, Statistical inference using extreme order statistics, Annals of Statistics 3 (1) (1975)
119-131.

L. de Haan, Slow variation and characterization of domains of attraction, in: J. de Oliveira (Ed.),
Statistical Extremes and Applications, Vol. 131 of NATO ASI Series, Springer Netherlands, 1984,
pp. 31-48.

M. I. Fraga Alves, M. Ivette Gomes, Statistical choice of extreme value domains of attraction - a
comparative analysis, Communications in Statistics - Theory and Methods 25 (4) (1996) 789-811.

23



31]

32]
33]

[34]
(35]

[36]

[37]

[38]
[39]
[40]

[41]
[42]

[43]

[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
(58]

[59]

H. Drees, L. de Haan, D. Li, Approximations to the tail empirical distribution function with
application to testing extreme value conditions, Journal of Statistical Planning and Inference
136 (10) (2006) 3498-3538.

R. B. D’Agostino, M. A. Stephens, Goodness-of-fit Techniques, Vol. 68 of Statistics: a Series of
Textbooks and Monographs, Dekker, New York, 1996.

A. L. M. Dekkers, L. De Haan, On the estimation of the extreme-value index and large quantile
estimation, The Annals of Statistics 17 (4) (1999) 1795-1832.

S. G. Coles, An introduction to statistical modeling of extreme values, Springer, New York, 2001.
J. Hosking, J. Wallis, Parameter and quantile estimation for the generalized Pareto distribution,
Technometrics 29 (3) (1987) 339-349.

C. Neves, M. Fraga Alves, Reiss and Thomas’ automatic selection of the number of extremes,
Computational Statistics and Data Analysis 47 (4) (2004) 689-704.

J. Geluk, L. de Haan, On bootstrap sample size in extreme value theory, Econometric Institute
Research Papers EI 2002-40, Erasmus University Rotterdam, Erasmus School of Economics (ESE),
Econometric Institute (2002).

A. Ferreira, L. De Haan, On the block maxima method in extreme value theory submitted.

URL http://arxiv.org/pdf/1310.3222.pdf

S. R. S. Varadhan, Special invited paper: Large deviations, The Annals of Probability 36 (2) (2008)
397-419.

A. Dembo, O. Zeitouni, Large deviations techniques and applications, Springer-Verlag, New York,
1998.

F. den Hollander, Large Deviations, American Mathematical Society, New York, 2008.

P. Dupuis, H. Wang, Importance sampling, large deviations, and differential games, Stochastics
and Stochastics Reports 76 (2004) 481-508.

J. S. Sadowsky, Evaluation of large deviation probabilities via importance sampling, in: Signals,
Systems and Computers, 1994 Conference Record of the Twenty-Eighth Asilomar Conference on,
Vol. 1, 1994, pp. 30-34.

P. Glasserman, Y. Wang, Counter examples in importance sampling for large deviations
probabilities, Ann. Appl. Prob. 7 (1997) 731-746.

T. Dean, P. Dupuis, Splitting for rare event simulation: a large deviation approach to design and
analysis, Stochastic processes and their applications 119 (2) (2009) 562-587.

P. Del Moral, J. Garnier, Genealogical particle analysis of rare events, The Annals of Applied
Probability 15 (2005) 2496-2534.

H. Touchette, The large deviation approach to statistical mechanics, Physics Reports 478 (1-3)
(2009) 1-69.

J. Blanchet, H. Lam, State-dependent importance sampling for rare-event simulation: An overview
and recent advances, Surveys in Operations Research and Management Science 17 (1) (2012) 38-59.
G. C. Orsak, B. Aazhang, A class of optimum importance sampling strategies, Information Sciences
84 (1-2) (1995) 139-160.

J.-F. Richard, W. Zhang, Efficient high-dimensional importance sampling, Journal of Econometrics
141 (2) (2007) 1385-1411.

S. Engelund, R. Rackwitz, A benchmark study on importance sampling techniques in structural
reliability, Structural Safety 12 (4) (1993) 255-276.

J. Hammersley, D. Handscomb, Monte-Carlo methods, Methuen, London, 1964.

R. E. Melchers, Importance sampling in structural systems, Structural Safety 6 (1) (1989) 3-10.
J. A. Bucklew, Introduction to Rare Event Simulation, Springer, 2004.

D. L. McLeish, Bounded relative error importance sampling and rare event simulation, ASTIN
Bulletin 40 (2010) 377-398.

S. Juneja, Estimating tail probabilities of heavy tailed distributions with asymptotically zero
relative error, Queueing Systems 57 (2-3) (2007) 115-127.

P. Dupuis, H. Wang, Dynamic importance sampling for uniformly recurrent Markov chains, The
Annals of Applied Probability 15 (1A) (2005) 1-38.

P. Dupuis, A. D. Sezer, H. Wang, Dynamic importance sampling for queueing networks, The Annals
of Applied Probability 17 (4) (2007) 1306-1346.

S. T. Tokdar, R. E. Kass, Importance sampling: a review, Wiley Interdisciplinary Reviews:
Computational Statistics 2 (1) (2010) 54-60.

24



[60]

[61]

(62]

[63]
(64]
(65]
[66]

[67]
[68]

[69]
[70]
[71]
[72]

[73]
[74]

[75]
[76]
[77]
[78]

[79]
[80]

(81]
82]
(83]
[84]
(85]
(86]
[87]

(88]
[89]

R. Rubinstein, D. Kroese, The Cross-Entropy Method : A Unified Approach to Combinatorial
Optimization, Monte-Carlo Simulation and Machine Learning (Information Science and Statistics),
Springer, 2004.

T. H. de Mello, R. Y. Rubinstein, Rare event estimation for static models via cross-entropy and
importance sampling, John Wiley, New York, 2002.

B. Tuffin, A. Ridder, Probabilistic bounded relative error for rare event simulation learning
techniques, in: Simulation Conference (WSC), Proceedings of the 2012 Winter Simulation
Conference, 2012, pp. 1-12.

P. Zhang, Nonparametric importance sampling, Journal of the American Statistical Association
91 (434) (1996) 1245-1253.

J. C. Neddermeyer, Non-parametric partial importance sampling for financial derivative pricing,
Quantitative Finance 11 (2010) 1193-1206.

J. C. Neddermeyer, Computationally efficient nonparametric importance sampling, Journal of the
American Statistical Association 104 (2009) 788-802.

J. Morio, Extreme quantile estimation with nonparametric adaptive importance sampling,
Simulation Modelling Practice and Theory 27 (0) (2012) 76-89.

M. P. Wand, M. C. Jones, Kernel Smoothing, Chapman and Hall, New York, 1994.

I. K. Glad, N. L. Hjort, N. G. Ushakov, Mean-squared error of kernel estimators for finite values
of the sample size, Journal of Mathematical Sciences 146 (2007) 5977-5983.

H. E. Daniels, Saddlepoint approximations in statistics, Ann. Math. Statist 25 (4) (1954) 631-650.
J. L. Jensen, Saddlepoint Approximations, Oxford University Press, USA, 1995.

S. Huzurbazar, Practical saddlepoint approximations, The American Statistician 53 (3) (1999)
225-232.

C. Goutis, G. Casella, Explaining the saddlepoint approximation, The American Statistician 53 (3)
(1999) 216-224.

S. Asmussen, Applied probability and queues, Springer, New York, 2003.

D. Siegmund, Importance sampling in the Monte Carlo study of sequential tests, The Annals of
Statistics 4 (4) (1976) 673-684.

A. B. Dieker, M. Mandjes, On asymptotically efficient simulation of large deviation probabilities,
Advances in Applied Probability 37 (2) (2005) 539-552.

Z. Yan-Gang, O. Tetsuro, A general procedure for first/second-order reliability method
(FORM/SORM), Structural Safety 21 (2) (1999) 95-112.

R. Bjerager, Methods for structural reliability computation, Springer Verlag, New York, 1991, pp.
89-136.

H.. Madsen, S. Krenk, N. C. Lind, Methods of structural safety, Springer-Verlag, Englewood Cliffs,
1986.

T. Lassen, N. Recho, Fatigue Life Analyses of Welded Structures, ISTE Wiley, New York, 2006.
B. Sudret, Meta-models for structural reliability and uncertainty quantification, in: Asian-Pacific
Symposium on Structural Reliability and its Applications, Singapore, Singapore, 2012.

A. Nataf, Distribution des distributions dont les marges sont données (in French), Comptes rendus
de I’Académie des Sciences 225 (1962) 42-43.

A. Hasofer, N. Lind, An exact and invariant first-order reliability format, Journal of Engineering
Mechanics 100 (1974) 111-121.

L. Pei-Ling, A. D. Kiureghian, Optimization algorithms for structural reliability, Structural Safety
9 (3) (1991) 161-177.

M. Rosenblatt, Remarks on a multivariate transformation, Annals of Mathematical Statistics 23
(1952) 470-472.

R. Lebrun, A. Dutfoy, An innovating analysis of the Nataf transformation from the copula
viewpoint, Probabilistic Engineering Mechanics 24 (3) (2009) 312-320.

R. Lebrun, A. Dutfoy, A generalization of the Nataf transformation to distributions with elliptical
copula, Probabilistic Engineering Mechanics 24 (2) (2009) 172-178.

R. Rackwitz, B. Flessler, Structural reliability under combined random load sequences, Computers
and Structures 9 (5) (1978) 489-494.

O. D. et H.O Madsen, Structural Reliability Methods, John Wiley and Sons, New York, 1996.

P. Bjerager, On computation methods for structural reliability analysis, Structural Safety 9 (2)
(1990) 79-96.

25



[90] K. Breitung, Asymptotic approximation for multinormal integrals, Journal of Engineering
Mechanics 110 (3) (1984) 357-366.

[91] B. Huanh, X. Du, Probabilistic uncertainty analysis by mean-value first order saddlepoint
approximation, Reliability Engineering and System Safety 93 (2) (2008) 325-336.

[92] X. Du, A. Sudjianto, First order saddlepoint approximation for reliability analysis, AIAA Journal
42 (6) (2004) 1199-1207.

[93] Z.Lu, S. Song, Z. Yue, J. Wang, Reliability sensitivity method by line sampling, Structural Safety
30 (6) (2008) 517-532.

[94] Y.-G. Zhao, T. Ono, Moment methods for structural reliability, Structural Safety 23 (1) (2001)
47-75.

[95] P.S. Koutsourelakis, H. J. Pradlwarter, G. I. Schueller, Reliability of sructures in high dimensions,
part I algorithms and application, Probabilistic Engineering Mechanics 19 (2004) 409-417.

[96] P. Koutsourelakis, Reliability of structures in high dimensions. part II. theoretical validation,
Probabilistic Engineering Mechanics 19 (4) (2004) 419-423.

[97] G. I Schueller, H. J. Pradlwarter, P. S. Koutsourelakis, A critical appraisal of reliability estimation
procedures for high dimensions, Probabilistic Engineering Mechanics 19 (2004) 463-474.

[98] C. A. Schenk, H. J. Pradlwarter, G. I. Schuéller, Realistic and efficient reliability estimation in
space engineering, in: Proceedings of the 16th ASCE Engineering Mechanics Conference, Seattle,
2003.

[99] P. Bjerager, Probability integration by directional simulation, Journal of Engineering Mechanics
114 (8) (1988) 1288-1302.

[100] J. Nie, B. R. Ellingwood, A new directional simulation method for system reliability. part II:
application of neural networks, Probabilistic Engineering Mechanics 19 (4) (2004) 437—447.

[101] H. Kahn, T. Harris, Estimation of particle transmission by random sampling, Appl. Math. Ser. 12
(1951) 27-30.

[102] F. Cérou, P. Del Moral, T. Furon, A. Guyader, Rare event simulation for a static distribution,
Vol. 7, RESIM, 2008, pp. 107-115.

[103] F. Cérou, A. Guyader, Adaptive particle techniques and rare event estimation, in: Proceedings of
ESAIM conference, Vol. 19, 2007, pp. 65-72.

[104] P. L’Ecuyer, V. Demers, B. Tuffin, Splitting for rare event simulation, in: Proceedings of the 2006
Winter Simulation Conference, 2006, pp. 137—148.

[105] M. Villén-Altamirano, J. Villén-Altamirano, Restart: a straightforward method for fast simulation
of rare events, 1994, pp. 282-289.

[106] P. Glasserman, P. Heidelberger, P. Shahabuddin, T. Zajic, Splitting for rare event simulation:
analysis of simple cases, in: Proceeding of the 1996 Winter Simulation Conference, 1996, pp. 302—
308.

[107] M. N. Rosenbluth, A. W. Rosenbluth, Monte-Carlo calculation of the average extension of molecular
chains, J. Chem. Phys 356 (1955) 356—-359.

[108] P. L’Ecuyer, F. Le Gland, P. Lezaud, B. Tuffin, Splitting Techniques, John Wiley & Sons, Ltd,
2009, pp. 39-61.

[109] P. Del Moral, Feynman-Kac Formulae, Genealogical and Interacting Particle Systems with
Applications. Probability and its Applications., Springer, New York, 2004.

[110] S. K. Au, Reliability-based design sensitivity by efficient simulation, Computers and Structures 83
(2005) 1048-1061.

[111] S. K. Au, J. L. Beck, Estimation of small failure probabilities in high dimensions by subset
simulations, Probabilistic Engineering Mechanics 16 (4) (2001) 263-277.

[112] Z. I. Botev, D. P. Kroese, Efficient Monte-Carlo simulation via the generalized splitting method.,
Statistics and Computing 22 (1) (2012) 1-16.

[113] Z. 1. Botev, D. P. Kroese, An efficient algorithm for rare-event probability estimation, combinatorial
optimization, and counting, Methodol. Comput. Appl. Probab. 10 (4) (2012) 471-505.

[114] A. Lagnoux, Rare event simulation, Probability in the Engineering and Informational science 20
(2006) 45-66.

[115] F. Cérou, P. Del Moral, F. Le Gland, P. Lezaud, Genetic genealogical models in rare event analysis,
INRIA report 1797 (2006) 1-30.

[116] F. Cérou, P. Del Moral, T. Furon, A. Guyader, Sequential Monte-Carlo for rare event estimation,
Statistics and Computing 22 (2012) 795-808.

26



[117] L. Tierney, Markov chains for exploring posterior distributions, Annals of Statistics 22 (1994)
1701-1762.

[118] F. Cérou, P. Del Moral, A. Guyader, A nonasymptotic theorem for unnormalized Feynman-Kac
particle models, Ann. Inst. H. Poincaré Probab. Statist. 47 (3) (2011) 629-649.

[119] W. G. Cochran, Sampling Techniques, Wiley, New York, 1977.

[120] M. Keramat, R. Kielbasa, A study of stratified sampling in variance reduction techniques for
parametric yield estimation, Circuits and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on 45 (5) (1998) 575-583.

[121] M. M. Zuniga, J. Garnier, E. Remy, E. de Rocquigny, Adaptive directional stratification for
controlled estimation of the probability of a rare event, Reliability Engineering & System Safety
96 (12) (2011) 1691 — 1712.

[122] R. M. Karp, M. G. Luby, A new Monte-Carlo method for estimating the failure probability of an
n-component system, Tech. Rep. UCB/CSD-83-117, EECS Department, University of California,
Berkeley (1983).

[123] H. Kumamoto, T. Tanaka, K. Inoue, A new Monte Carlo method for evaluating system-failure
probability, Reliability, IEEE Transactions on R-36 (1) (1987) 63-69.

[124] H. Cancela, M. El Khadiri, A recursive variance-reduction algorithm for estimating communication-
network reliability, Reliability, IEEE Transactions on 44 (4) (1995) 595-602.

[125] H. Cancela, M. El Khadiri, The recursive variance-reduction simulation algorithm for network
reliability evaluation, Reliability, IEEE Transactions on 52 (2) (2003) 207-212.

[126] D. P. Kroese, T. Taimre, Z. I. Botev, Handbook of Monte Carlo Methods, John Wiley & Sons,
Hobokem, USA, 2011.

[127] M. D. McKay, R. J. Beckman, W. Conover, A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code, Technometrics 21 (1979) 239 —
245.

[128] M. D. MacKay, Latin hypercube sampling as a tool in uncertainty analysis of computer models,
in: WSC ’92 Proceedings of the 24th conference on Winter simulation, ACM, New York, 1992, pp.
557-564.

[129] R. L. Inman, J. C. Helson, J. E. Campbell, An approach to sensitivity analysis of computer models:
Part I - introduction, input variable selection and preliminary variable assessment, Journal of
Quality Technology 13 (3) (1981) 174-183.

[130] Z. Keqin D., Zegong, L. Chuntu, Latin hypercube sampling used in the calculation of the fracture
probability, Reliability Engineering & System Safety 59 (2) (1998) 239-242.

[131] B. Ayyub, L. Kwan-Ling, Structural reliability assessment using Latin hypercube sampling, in:
Proceedings of the International Conference on Structural Safety and Reliability, ICOSSAR’89,
San Francisco, USA, 1989, pp. 174-184.

[132] P. Zhang, P. Breitkopf, C. Knopf-Lenoir, W. Zhang, Diffuse response surface model based on
moving latin hypercube patterns for reliability-based design optimization of ultrahigh strength
steel nc milling parameters, Struct. Multidiscip. Optim. 44 (5) (2011) 613-628.

[133] M. Keramat, R. Kielbasa, Modified latin hypercube sampling Monte-Carlo (MLHSMC) estimation
for average quality index, Analog Integr. Circuits Signal Process. 19 (1) (1999) 87-98.

[134] M. Keramat, R. Kielbasa, Worst case efficiency of Latin hypercube sampling Monte-Carlo (LHSMC)
yield estimator of electrical circuits, in: Proc. IEEE Int. Symp. Circuits Syst., Hong Kong, 1997,
pp. 1660-1663.

[135] G. Olsson, A. Sandberg, O. Dahlblom, On latin hypercube sampling for structural reliability
analysis, Structural Safety 25 (1) (2003) 47-68.

[136] S. P. Meyn, Control Techniques for Complex Networks, Cambridge University Press, 2007.

[137] P. Glasserman, Monte-Carlo Methods in Financial Engineering, Springer, New York, 2003.

[138] H. Kumamoto, K. Tanaka, K. Inoue, Efficient evaluation of system reliability by Monte Carlo
method, Reliability, IEEE Transactions on R-26 (5) (1977) 311-315.

[139] P. K. Sarkar, M. A. Prasad, Variance reduction in Monte-Carlo radiation transport using antithetic
variates, Annals of Nuclear Energy 19 (5) (1992) 253-265.

[140] E. Saliby, R. J. Paul, A farewell to the use of antithetic variates in monte carlo simulation., JORS
60 (7) (2009) 1026-1035.

[141] H. Kumamoto, K. Tanaka, K. Inoue, E. J. Henley, Dagger-sampling Monte Carlo for system
unavailability evaluation, Reliability, IEEE Transactions on R-29 (2) (1980) 122-125.

27



[142] S. Rongfu, S. Chanan, C. Lin, S. Yuanzhang, Short-term reliability evaluation using control variable
based dagger sampling method, Electric Power Systems Research 80 (6) (2010) 682 — 689.

[143] C. Bucher, U. Bourgund, A fast and efficient response surface approach for structural reliability
problems, Structural Safety 7 (1990) 57-66.

[144] H. Gomes, A. Awruch, Comparison of response surface and neural network with other methods for
structural reliability analysis, Structural Safety 26 (2004) 49-67.

[145] L. Schueremans, D. Van Gemert, Use of Kriging as Meta-model in simulation procedures for
structural reliability, in: 9th International conference on structural safety and reliability, Rome,
2005, pp. 2483-2490.

[146] J. Li, D. Xiu, Evaluation of failure probability via surrogate models, Journal of Computational
Physics 229 (2010) 8966—8980.

[147] A. Basudhar, S. Missoum, A. Sanchez, Limit state function identification using Support Vector
Machines for discontinuous responses and disjoint failure domains, Probabilistic Engineering
Mechanics 23 (2008) 1-11.

[148] J.-M. Bourinet, F. Deheeger, M. Lemaire, Assessing small failure probabilities by combined subset
simulation and support vector machines, Structural Safety 33 (2011) 343-353.

[149] G. Matheron, Principles of geostatistics, Economic Geology 58 (8) (1963) 1246.

[150] M. K. Sasena, Flexibility and efficienvy enhancements for constrained global design optimization
with Kriging approximation, Ph.D. thesis, University of Michigan (2002).

[151] T. J. Santner, B. J. Williams, N. I. Notz, The design and analysis of computer experiments, 2003.

[152] B. Echard, N. Gayton, M. Lemaire, AK-MCS : An active learning reliability method combining
Kriging and Monte-Carlo Simulation, Structural Safety 33 (2011) 145-154.

[153] J. Janusevskis, R. Le Riche, Simultaneous Kriging-based estimation and optimization of mean
response, Journal of Global Optimization 55 (2) (2012) 313-336.

[154] M. Balesdent, J. Morio, J. Marzat, Kriging-based adaptive importance sampling algorithms for
rare event estimation, Structural Safety 13 (2013) 1-10.

[155] V. Dubourg, E. Deheeger, B. Sudret, Metamodel-based importance sampling for the simumation of
rare events, in: Faber, M. J. Kohler and K. Nishilima (Eds.), Proceedings of the 11th International
Conference of Statistics and Probability in Civil Engineering (ICASP2011), Zurich, Switzerland,
2011.

[156] C. Cannamela, J. Garnier, B. Iooss, Controlled stratification for quantile estimation, Annals of
Applied Stats 2 (4) (2008) 1554—1580.

[157] E. Vazquez, J. Bect, A Sequential Bayesian algorithm to estimate a probability of failure, in: 15th
IFAC, Symposium on System Identification (SYSID’09), Saint-Malo, France, July 6-8, 2009.

[158] L. Li, J. Bect, E. Vazquez, Bayesian Subset Simulation: a Kriging-based subset simulation algorithm
for the estimation of small probabilities of failure, in: Proceedings of PSAM 11 and ESREL 2012,
25-29 June 2012, Helsinki, Finland, 2012.

[159] J. Bect, D. Ginsbourger, L. Li, V. Picheny, E. Vazquez, Sequential design of computer experiments
for the estimation of a probability of failure, Statistics and Computing 22 (3) (2012) 773-793.

[160] V. Picheny, Improving accuracy and compensating for uncertainty in surrogate modeling, Ph.D.
thesis, University of Florida (2009).

[161] V. Baudoui, P. Klotz, J.-B. Hiriart-Urruty, S. Jan, F. Morel, LOcal Uncertainty Processing
(LOUP) method for multidisciplinary robust design optimization, Structural and Multidisciplinary
Optimization 46 (5) (2012) 1-16.

[162] L. Li, J. Bect, E. Vazquez, A numerical comparison of two sequential Kriging-based algorithms to
estimate a probability of failure, in: Uncertainty in Computer Model Conference, Sheffield, UK,
July, 12-14, 2010.

28



